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Abstract. We introduce a new growth bound for C0-semigroups giving
information about the absence of norm-continuity of the semigroup and we
give a corresponding spectral bound. For semigroups on general Banach
spaces we prove an inequality between these bounds and we give a version
of the spectral mapping theorem in terms of the new growth bound. For
semigroups on Hilbert space we show that the bounds are equal and hence
obtain new characterizations of asymptotically norm-continuous semigroups
and semigroups norm-continuous for t > 0 in terms of the resolvent of the
infinitesimal generator. In the last section we prove that versions of the
spectral mapping theorem holds for three different definitions of the essential
spectrum and give nice relationships between the new growth bound and the
essential growth bound of the semigroup.
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1. INTRODUCTION

Let T (t) be a C0-semigroup on a Banach space X with generator A. It is well
known that if T (t) is eventually norm-continuous then the spectral mapping the-
orem holds (cf. [14], A-III, Theorem 6.6). In [13] the wider class of semigroups
that are norm-continuous at infinity is introduced and it is shown that for these
semigroups a spectral mapping theorem holds for the boundary spectrum. In [18]
a similar result is given for another generalization of eventually norm-continuous
semigroups — semigroups that are essentially norm-continuous. Such results are
of particular interest as when such a spectral mapping theorem holds the spectral
bound and growth bound of the semigroup coincide and hence the asymptotic
behaviour of solutions of the associated Cauchy problem is determined by the
spectrum of the generator.
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In this paper we study these continuity properties via the introduction of
new bounds, δ(T ), the growth bound of the local variation of T (t) which gives in-
formation about the absence of norm-continuity, and an associated spectral bound
s∞0 (A), involving the behaviour of the resolvent away from the real axis. We re-
late these bounds to essentially norm-continuous and essentially norm-measurable
semigroups, and show that semigroups that are norm-continuous at infinity (for
which we shall use the alternative terminology asymptotically norm-continuous)
have a particularly simple characterization in terms of δ(T ) (Proposition 3.5). By
reformulating the spectral mapping theorem in terms of δ(T ), we obtain a very
general version (Theorem 3.6) that has the versions given in [14], [13] and [18] as
immediate corollaries.

When the underlying space is a Hilbert space we find that δ(T ) = s∞0 (A)
and that the classes of essentially norm-continuous semigroups, essentially norm-
measurable semigroups and asymptotically norm-continuous semigroups coincide
(Theorem 4.4). It follows that these properties are all equivalent to the purely
spectral condition s∞0 (A) < s(A). Using the same techniques we obtain suffi-
cient conditions on the resolvent for a semigroup on a Hilbert space to be norm-
continuous for t > α (Theorem 4.5). A new characterization of norm-continuity
for t > 0 on Hilbert space follows.

In the final section we investigate the relationship between continuity and
compactness properties of the semigroup. We show that essentially compact semi-
groups are asymptotically norm-continuous (Theorem 5.1), and we prove a spectral
mapping theorems for the Browder essential spectrum, the upper Fredholm essen-
tial spectrum and the Fredholm essential spectrum (Theorem 5.6). These results
enable us to prove that the essential growth bound and the essential spectral bound
of a semigroup are nicely related to δ(T ) (Corollary 5.8). Together with the re-
sults of the previous chapter these give a characterization of essentially compact
semigroups on Hilbert space in terms of the resolvent and essential spectrum of
the generator (Corollary 5.9).

2. LAPLACE TRANSFORM RESULTS

In this section we shall consider results that do not require T to be a semigroup.
We shall assume only that the one-parameter families T that we consider should
be strongly measurable, exponentially bounded functions from R+ into B(X). We
shall define the type of such a family, written ω0(T ) by

ω0(T ) := inf{ω ∈ R : there exists Mω such that ‖T (t)‖ 6 Mωeωt for all t > 0}.

We shall denote the Laplace transform by L,

L (T ) (λ)x :=

∞∫
0

e−λtT (t)xdt for all x ∈ X,

and λ 7→ L (T ) (λ) is a holomorphic function from Re (λ) > ω0(T ) into B(X). For
N > 0 we shall denote the Nth derivative of the L (T ) by L (T )(N). For 1 6 p <∞
we shall denote by Lp(R, X) the space of strongly measurable functions f : R → X
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with ‖f‖p :=
{ ∞∫
−∞

‖f(t)‖p dt
}1/p

<∞. We shall identify Lp(R+, X) as a subspace

of Lp(R, X) in the obvious manner by regarding a function in Lp(R+, X) as taking
the value 0 on (−∞, 0).

We shall denote by F the Fourier transform on L1(R, X) defined by

(2.1) (Ff)(s) :=

∞∫
−∞

e−istf(t) dt.

Then by the Riemann-Lebesgue lemma, F maps L1(R, X) into the space of con-
tinuous X-valued functions vanishing at infinity. We shall also denote by F the
Fourier transform on L2(R, X) defined by (2.1) for f ∈ L1(R, X)∩L2(R, X). If X
is a Hilbert space then we also have the Hilbert space valued Plancherel Theorem
that 1√

2π
F extends to an isometry on L2(R, X).

In [18], Definition 2.6, essentially norm-continuous and essentially norm-
measurable C0-semigroups are introduced, generalizing both eventually norm-conti-
nuous semigroups and essentially compact semigroups. Here we modify these def-
initions to make them applicable to the more general situation of exponentially
bounded families T : R+ → B(X) of operators.

Definition 2.1. Let T : R+ → B(X) be an exponentially bounded family
of operators on a Banach space X, and let β > 0. T (t) is said to be essentially
norm-continuous (of type β) if for each α such that 0 < α < β there exist families
of operators S1, S2 : R+ → B(X) (depending on α) such that

T (t) = S1(t) + S2(t)

with S1 right-continuous on (0,∞) in the operator norm topology and ω0(S2) 6
ω0(T )− α.

T is said to be essentially norm-measurable (of type β) if for each 0 < α < β
there exist families of operators S1, S2 : R+ → B(X) such that

T (t) = S1(t) + S2(t)

with S1 norm-measurable on (0,∞) and ω0(S2) 6 ω0(T )− α.

Definition 2.2. Let T : R+ → B(X) be an exponentially bounded family
of operators on a Banach space X. Define the function fT : [0,∞) → [0,∞) by

fT (t) := lim sup
h→0+

‖T (t+ h)− T (t)‖.

Then we may define

δ(T ) := inf{ω ∈ R : there exists Mω such thatfT (t) 6 Mωeωt}
and we have δ(T ) 6 ω0(T ).

Notice that if T : R+ → B(X) is a family of operators on a Banach space X
with ω0(T ) > −∞ then we can define T ′(t) := e−ω0(T )tT (t) and we have ω0(T ′) =
0, δ(T ′) = δ(T ) − ω0(T ), and T ′(t) is essentially norm-continuous (respective
essentially norm-measurable) of type β if and only if T (t) also has this property.
Hence by replacing T (t) by T ′(t) if necessary we will usually be able to assume
that ω0(T ) = 0.
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Definition 2.3. Let T : R+ → B(X) be an exponentially bounded, strongly
measurable family of operators on a Banach space X. For N ∈ N, γ > ω0(T ),
define

ϕTγ (N) :=
(

lim sup
|s|→∞

∥∥∥ 1
N !
L (T )(N) (γ + is)

∥∥∥) 1
N+1

.

Theorem 2.4. Let T be a strongly measurable, exponentially bounded family
of operators on a Banach space X, and let β > 0. Then we have (i)⇒(ii)⇒(iii)⇒
(iv), and (iii)⇒(iv′), where

(i) T (t) is essentially norm-continuous of type β;
(ii) δ(T ) 6 ω0(T )− β;
(iii) T (t) is essentially norm-measurable of type β;
(iv) there is a constant C > 0 such that given γ > ω0(T ) there exists rγ > 0

such that ‖L (T ) (γ + is)‖ < C whenever |s| > rγ ;
(iv′) let γ > ω0(T ); for each 0 < α < β there exists Nα such that ϕTγ (Nα) 6

(γ + α)−1.

Proof. (i)⇒(ii). Suppose that T (t) is essentially norm-continuous of type β,
so if 0 < α < β then there exist S1, S2 such that T (t) = S1(t) + S2(t) where S1

is right norm-continuous for t > 0 and ω0(S2) 6 ω0(T ) − α. Then as S1 is right
norm-continuous,

δ(T ) = δ(S1 + S2) = δ(S2) 6 ω0(S2) 6 ω0(T )− α.

As 0 < α < β was arbitrary, we get that δ(T ) 6 ω0(T )− β.
(ii)⇒(iii). Without loss of generality we may assume that ω0(T ) = 0, so,

assuming (ii), we have that if 0 < α < β there is a constant C > 0 such that for
all t > 0 we have

lim sup
h→0+

‖T (t+ h)− T (t)‖ 6 Ce−αt.

So for each t > 0 there exists a half open interval Ut = [t, xt) with

‖T (s)− T (t)‖ < 2Ce−αt for all s ∈ Ut.

We may also assume that the intervals have length less than d where e−αd > 1
2 .

As [0,∞) is Lindelöf in the Sorgenfrey topology (see [4], Example 3.8.14, p. 248)
generated by the half open intervals [a, b), there is a countable family {Uti : i ∈ N}
that covers it. Let Vti := Uti \

⋃
j<i

Utj so that Vti ⊆ Uti , the Vti are disjoint and

have union [0,∞), and define

S(t) =
∞∑
0

χVti
(t)T (ti).

Then if s ∈ [0,∞), there is ti such that s ∈ Vti , and

‖T (s)− S(s)‖ = ‖T (s)− T (ti)‖ 6 2Ce−αti = 2Ce−αse−α(ti−s) 6 4Ce−αs.

S(t) is a limit of step functions, so it is norm-measurable. So putting S1(t) = S(t),
and S2(t) = T (t) − S(t) we have T (t) = S1(t) + S2(t) with S1 norm-measurable,
and ω0(S2) 6 −α. As 0 < α < β was arbitrary, it follows that T (t) is essentially
norm-measurable of type β.
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(iii)⇒(iv). Suppose that T (t) is essentially norm-measurable of type β > 0
and, without loss of generality, that ω0(T ) = 0. Let 0 < α < β. Then we have
that there exist S1, S2 and K > 0 such that T (t) = S1(t) + S2(t) with S1 norm-
measurable and

‖S2(t)‖ 6 Ke−αt.
Let γ > 0. Then as S1 is norm-measurable with ω0(S1) = 0, we have that the

function t 7→ e−γtS1(t) is in L1((0,∞), B(X)). Hence by the Riemann-Lebesgue
lemma there exists rγ > 0 such that ‖F (e−γ ·S1( · )) (s)‖ < K

α whenever |s| > rγ .
Then if x ∈ X,

‖L (T ) (is+ γ)x‖ 6
∥∥∥ ∞∫

0

e−(γ+is)tT (t)xdt
∥∥∥

6
∥∥∥ ∞∫

0

e−(γ+is)tS1(t)xdt
∥∥∥ +

∥∥∥ ∞∫
0

e−(γ+is)tS2(t)xdt
∥∥∥

6 ‖F
(
e−γ ·S1( · )

)
(−s)‖‖x‖+

∞∫
0

Ke−αt‖x‖dt 6 2
K

α
‖x‖.

(iii)⇒(iv′). Assume (iii). Without loss of generality we may assume that
γ > ω0(T ) = 0. We may choose S1,S2 and ε > 0 such that T (t) = S1(t) + S2(t)
with S1 norm-measurable and ω0(S2) 6 −(α+ ε). Then

∞∑
n=0

∞∫
0

∥∥∥(α+ γ)n+1e−(is+γ)t t
n

n!
S2(t)

∥∥∥dt

=(α+ γ)
∞∑
n=0

∞∫
0

∥∥∥ ((α+ γ)t)n

n!
e−(α+γ)teαtS2(t)

∥∥∥dt6(α+ γ)

∞∫
0

eαt‖S2(t)‖dt<∞.

Hence it follows that there exists N > 0 such that for all s ∈ R,∥∥∥ ∞∫
0

e−(is+γ)t t
N

N !
S2(t) dt

∥∥∥ < 1
2
(α+ γ)−(N+1).

As S1 is norm-measurable with ω0(S1) = 0, we have that the function t 7→
1
N !e

−ttNS1(t) is in L1((0,∞), B(X)). Therefore by the Riemann-Lebesgue lemma
there exists r > 0 such that∥∥∥ ∞∫

0

e−(is+γ)t t
N

N !
S1(t) dt

∥∥∥ < 1
2
(α+ γ)−(N+1),

whenever |s| > r. Combining these we get, for |s| > r,∥∥∥ 1
N !
L (T )(N) (is+ γ)

∥∥∥ =
∥∥∥ ∞∫

0

e−(is+γ)t t
N

N !
T (t) dt

∥∥∥ 6 (α+ γ)−(N+1).
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3. SEMIGROUP RESULTS

We now introduce four spectral bounds, of which the first two are familiar and the
last two are new.

Definition 3.1. Let T (t) be a C0-semigroup with generator A. We define

s(A) := inf{ω : a+ is ∈ ρ(A) whenever a > ω and s ∈ R};
s0(A) := inf{ω : there exists Cω such that a+ is ∈ ρ(A) and

‖R(a+ is,A)‖ < Cω whenever a > ω and s ∈ R};
s∞(A) := inf{ω : there exists rω such that a+ is ∈ ρ(A)

whenever a > ω and |s| > rω};
s∞0 (A) := inf{ω : there exist rω, Cω such that a+ is ∈ ρ(A)

and ‖R(a+ is,A)‖ < Cω whenever a > ω and |s| > rω}.

For any C0-semigroup, T (t), the spectral bounds and the growth bound are
related by the well-known inequality s(A) 6 s0(A) 6 ω0(T ) (see for instance
[15], Section 1.2). A corollary to the next proposition gives a similar relationship
between the new spectral and growth bounds s∞(A), s∞0 (A) and δ(T ).

Proposition 3.2. Let T(t) be a C0-semigroup, γ > ω0(T ). Then for each
N ∈ N we have s∞0 (A) 6 γ − (ϕTγ (N))−1.

Proof. Without loss of generality suppose that ω0(T ) = 0 and ϕTγ (N) < γ−1.
Let 0 < u < 1, and α > 0 be such that ϕTγ (N) < (γ + α)−1. We have that
1
N !L (T )(N) (is+ γ) = (−1)NR(is+ γ,A)N+1, so there are constants N, r > 0 such
that for |s| > r ∥∥R(γ + is,A)N+1

∥∥ 6 (γ + α)−(N+1).

Define

K := sup
s∈R

N∑
n=0

‖R(γ + is,A)n+1‖(γ + α)n.

Then as 1 > s0(A), K <∞. For |s| > r and |a− γ| 6 (γ + α)u,
∞∑
n=0

‖R(γ + is,A)n+1(γ − a)n‖

6
∞∑
j=0

( N∑
k=0

‖R(γ + is,A)k+1‖ |a− γ|k
)
‖R(γ + is,A)N+1(γ − a)N+1‖j6

∞∑
j=0

Kuj ,

so that the Neumann series

R(a+ is,A) =
∞∑
n=0

R(γ + is,A)n+1(γ − a)n

is uniformly convergent with respect to s and a in this region. Hence s∞0 (A) 6
γ− (γ+α)u. As 0 < u < 1 and 0 < α < (ϕTγ (N))−1− γ were arbitrary, we obtain
s∞0 (A) 6 γ − (ϕTγ (N))−1.
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Corollary 3.3. Let T (t) be a C0-semigroup then s∞(A) 6 s∞0 (A) 6 δ(T ).

Proof. The first inequality is obvious. The second follows from the above
proposition and Theorem 2.4, (ii)⇒(iv′).

In [13] (Definition 1.1) the C0-semigroups that are norm-continuous at in-
finity are introduced. We shall use the name asymptotically norm-continuous for
these semigroups instead, and we show that this property is in fact the same as
the seemingly stronger property δ(T ) < ω0(T ).

Definition 3.4. A C0-semigroup T (t) with generator A is called asymptot-
ically norm-continuous (norm-continuous at infinity in [13]) if

lim
t→∞

lim sup
s→0

‖e−ω0(T )tT (t)(I − e−ω0(T )sT (s))‖ = 0.

Proposition 3.5. Let T (t) be a C0-semigroup. Then the function

fT (t) := lim sup
h→0+

‖T (t+ h)− T (t)‖

is submultiplicative. Hence δ(T ) < ω0(T ) if and only if T (t) is asymptotically
norm-continuous.

Proof. Let s, t, h > 0. Then

2‖T (s+ t+ h)− T (s+ t)‖
= ‖T (s+ t+ 2h)− 2T (s+ t+ h) + T (s+ t) + T (s+ t)− T (s+ t+ 2h)‖
6 ‖(T (s+ h)− T (s))(T (t+ h)− T (t))‖+ ‖T (s+ t+ 2h)− T (s+ t)‖
6 ‖T (s+ h)− T (s)‖ ‖T (t+ h)− T (t)‖+ ‖T (s+ t+ 2h)− T (s+ t)‖.

Letting h→ 0+ we get

2fT (s+ t) 6 fT (s)fT (t) + fT (s+ t),
so

fT (s+ t) 6 fT (s)fT (t).

It is clear that if δ(T ) < ω0(T ) then T (t) is asymptotically norm-continuous. Sup-
pose that T (t) is asymptotically norm-continuous, so that by definition eω0(T )tfT (t)
→ 0 as t→∞. As fT is submultiplicative, so is t 7→ eω0(T )tfT (t) so it follows that
it decays exponentially fast. Hence δ(T ) < ω0(T ).

One of the simplest classes of C0-semigroups are multiplier semigroups. For
these semigroups the situation is particularly simple. Let E be the Banach space
C0(X) where X is a locally compact space, and let q : X → C be continuous such
that sup

x∈X
Re (q(x)) <∞. Then the multiplication operator Af = qf with maximal

domain generates the multiplier semigroup T (t) on E where T (t)f = etqf . Then
we have that σ(A) = Ran q ([14], Example 1.28), and it is easy to see that

s(A) = s0(A) = ω0(T ) = sup
x∈X

Re (q(x)),

and
s∞(A) = s∞0 (A) = δ(T ) = inf{ω : Ran q ∩ {Re (λ) > ω} is bounded}.
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Hence T (t) is asymptotically norm-continuous if and only if there exists a ∈ R
such that Ran q∩{λ : Re (λ) > a} is bounded and non-empty. [13], Example 1.11,
considers the case where q(x) = −1 + 1

x + ix on the space E = C0[1,∞). This
semigroup is asymptotically norm-continuous but not eventually norm-continuous,
with s(A) = s0(A) = ω0(T ) = 0 and s∞(A) = s∞0 (A) = δ(T ) = ϕTγ (N) = −1 for
every N ∈ N and γ > 0.

It is well known that for eventually norm-continuous semigroups the spec-
tral mapping theorem holds i.e. σ(T (τ)) \ {0} = exp(τσ(A)). Versions of the
spectral mapping theorem that hold for the boundary spectrum are known for
essentially norm-continuous semigroups ([18], Theorem 3.2) and more generally
for asymptotically norm-continuous semigroups ([13], Theorem 1.2). We now give
a modification of the proof of [13], Theorem 1.2 that generalizes these results in
terms of δ(T ). In [8], Herbst introduces property P for the generator of a C0-
semigroup which is just s∞0 (A) = −∞. As a corollary of Gearhart’s theorem,
a spectral mapping theorem is given for semigroups on Hilbert spaces satisfying
property P ([8], Lemma 2.1). This will follow as a corollary to the next theorem
when we prove s∞0 (A) = δ(T ) for semigroups on Hilbert space in Section 4. Recall
that if we denote the spectral radius by r( · ), then for C0-semigroups we have the
relationship r(T (τ)) = eω0(T )τ (see [15], Proposition 1.2.1).

Theorem 3.6. For τ > 0 define

Γτ := {λ ∈ C : eδ(T )τ < |λ|}.

Then the spectral mapping theorem holds for the part of the spectrum of T (τ) in
Γτ , i.e.

σ(T (τ)) ∩ Γτ = exp(τσ(A)) ∩ Γτ .

In particular if T (t) is eventually norm-continuous so that δ(T ) = −∞ then

σ(T (τ)) \ {0} = exp(τσ(A)).

If T (t) is asymptotically norm-continuous, i.e. if δ(T ) < ω0(T ), then the spectral
mapping theorem holds for the boundary spectrum,

σ(T (τ)) ∩ {λ : |λ| = eω0(T )τ} = exp(τσ(A)) ∩ {λ : |λ| = eω0(T )τ},

and we have ω0(T ) = s(A).

Proof. Without loss of generality we may suppose that ω0(T ) = 0. If δ(T ) =
0 we have nothing to prove so assume that δ(T ) < 0. Let 0 < α < −δ(T ). We
have to show that for any such α the spectral mapping theorem holds for the part
of the spectrum of T (τ) in

Γ′τ := {λ ∈ C : e−ατ < |λ|}.

By the spectral inclusion theorem ([14], A-III 6.2) and the spectral mapping theo-
rem for the residual spectrum ([14], A-III 6.5) it is sufficient to prove that whenever
τ > 0 and λ ∈ σa(T (τ)) ∩ Γ′τ then λ ∈ eτσ(A), where σa denotes the approximate
point spectrum. Define the space

`∞T (X) := {(xn) ∈ `∞(X) : lim
t→0

‖T (t)xn − xn‖ = 0 uniformly for n ∈ N}.
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This is well-known to be a closed subspace of `∞(X) containing the space c0(X).
Define the space X̂T to be the quotient `∞T (X)/c0(X). Then it is well known that
(T (t)) induces a C0-semigroup (T̂ (t)) on X̂T via

T̂ (t)((xn) + c0(X)) := (T (t)xn) + c0(X) for all (xn) ∈ `∞T (X).

Moreover, if Â is the generator of (T̂ (t)) then σ(Â) = σ(A). Let τ > 0 and
λ ∈ σa(T (τ)) ∩ Γ′τ . Then there exists a normalized sequence (xn) ⊆ X such that

lim
n→∞

‖T (τ)xn − λxn‖ = 0.

To show that λ ∈ eτσ(A) we shall show that (xn) ∈ `∞T (X) so that (xn) + c0(X)
is a λ-eigenvector of T̂ (τ) as then by the spectral mapping theorem for the point
spectrum ([14], A-III 6.4), λ ∈ eτσ(Â) = eτσ(A). Let ε > 0. By definition,

lim
k→∞

lim sup
h→0+

‖eαkτ (T (kτ + h)− T (kτ))‖ = 0.

As λ ∈ Γ′τ , we have |λ|−k 6 eαkτ , so

lim
k→∞

lim sup
h→0+

‖ |λ|−k T (kτ)(I − T (h))‖ = 0.

So there are k > 0 and δ > 0 such that

|λ|−k ‖T (kτ)(I − T (t))‖ 6
ε

2
whenever 0 6 t 6 δ.

Let M := sup{‖I − T (t)‖ : 0 6 t 6 δ}. We have

lim
n→∞

‖T (τ)xn − λxn‖ = 0

and hence
lim
n→∞

‖T (kτ)xn − λkxn‖ = 0.

So there is an n0 such that

‖T (kτ)xn − λkxn‖ 6
ε

2M
|λ|k whenever n > n0.

Now for 0 6 t 6 δ and n > n0, we have

‖T (t)xn − xn‖ = |λ|−k ‖T (t)λkxn − λkxn‖

6 |λ|−k ‖(I − T (t))(λk − T (kτ))xn‖+ |λ|−k ‖T (kτ)(I − T (t))xn‖

6 M |λ|−k ‖(λk − T (kτ))xn‖+ |λ|−k ‖T (kτ)(I − T (t))xn‖ 6 ε.

So (xn) ∈ `∞T (X) and the proof is complete.

Proposition 3.7. (i) For any semigroup we have ω0(T ) = max(δ(T ), s(A)).
(ii) If s0(A) < ω0(T ), then s∞0 (A) < δ(T ).

Proof. (i) Suppose for a contradiction that δ(T ) < ω0(T ) and s(A) < ω0(T ),
then by the Spectral mapping Theorem 3.6 we have s(A) = s0(A) = ω0(T ), a
contradiction.

(ii) This follows immediately from (i) and the fact that s(A) < s0(A).
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Proposition 3.8. s0(A) = max(s(A), s∞0 (A)).

Proof. We have that s(A) 6 s0(A) and s∞0 (A) 6 s0(A), so suppose for a
contradiction that s(A) < s0(A) and that there exists a ∈ R such that s∞0 (A) <
a < s0(A) and s(A) < a. Then there exist N,C > 0 such that λ ∈ ρ(A) with
‖R(λ,A)‖ 6 C whenever Reλ > a and |Imλ| > N . Let

S1 :={λ ∈ C : Reλ > a, |Imλ| > N}.
S2 :={λ ∈ C : a 6 Reλ 6 s0(A) + 1, |Imλ| 6 N}.
S3 :={λ ∈ C : s0(A) + 1 6 Reλ, |Imλ| 6 N}.

Then S1 ⊆ ρ(A) with ‖R(λ,A)‖ bounded for λ ∈ S1. The same is true of S2 as
a > s(A) and S2 is compact. The same is also true of S3 by definition of s0(A). We
therefore have the same for S1 ∪ S2 ∪ S3 = {λ ∈ C : Reλ > a}. Hence a > s0(A),
a contradiction.

It follows from Propositions 3.7 and 3.8 that any of the standard examples
of semigroups satisfying s0(A) < ω0(T ) (respective s(A) < s0(A)) also satisfy
s∞0 (A) < δ(T ) (respective s∞(A) < s∞0 (A)). In particular there are examples of
positive C0-semigroups on Banach lattices such that s0(A) = s(A) < ω0(T ) ([16],
A-IV, Ex 1.2 or [15], Example 1.4.4), and it is easy to check that for these example
we actually have s(A) = s0(A) = s∞0 (A) < δ(T ) = ω0(T ). Moreover, there exists
a C0-semigroup on a Hilbert space where s∞(A) = s(A) < s0(A) = s∞0 (A) =
δ(T ) = ω0(T ) ([15], Example 1.2.4).

4. HILBERT SPACE RESULTS

The main results of this section all follow almost immediately from one, namely
Lemma 4.3. The proof of this is an adaptation of [13], Lemma 2.3 and requires
two preliminary results.

Lemma 4.1. Let T (t) be a C0-semigroup on a Hilbert space H such that
ω0(T ) = 0. Then there exists a constant C > 0 such that, for all x ∈ H and
ϕ ∈ H∗, ( ∞∫

−∞

‖R(1 + is,A)x‖2 ds
)1/2

6 C‖x‖

and ( ∞∫
−∞

‖R(1 + is,A)∗ϕ‖2 ds
)1/2

6 C‖ϕ‖.

Proof. As ω0(T ) = 0 we have that for x ∈ H
∞∫
0

‖e−tT (t)x‖2 dt 6
( ∞∫

0

‖e−tT (t)‖2 dt
)
‖x‖2 <∞.
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So by the Hilbert space valued Plancherel theorem,( ∞∫
−∞

‖R(1 + is,A)x‖2 ds
)1/2

=
√

2π
( ∞∫

0

‖e−tT (t)x‖2 dt
)1/2

6
√

2π
( ∞∫

0

‖e−tT (t)‖2 dt
)1/2

‖x‖.

AsH is a Hilbert space, T (t)∗ is a C0-semigroup onH∗ = H and ‖T (t)‖ = ‖T (t)∗‖,
so we also have( ∞∫

−∞

‖R(1 + is,A)∗ϕ‖2 ds
)1/2

6
√

2π
( ∞∫

0

‖e−tT (t)‖2 dt
)1/2

‖ϕ‖.

Lemma 4.2. Let a, b,N,K ∈ R be such that λ ∈ ρ(A) with ‖R(λ,A)‖ < K
whenever a 6 Reλ 6 b and |Imλ| > N . Let n > 1, x ∈ X. Then

lim
|s|→∞

‖R(µ+ is)nx‖ → 0

uniformly with respect to µ ∈ [a, b], and

lim
|s|→∞

b+is∫
a+is

eλtR(λ,A)nxdλ = 0.

Proof. Let ε > 0. Then as D(A) is dense in X, there exists y ∈ D(A) such
that ‖x− y‖ < ε. We have that if |s| > N and a 6 µ 6 b,

(µ+ is)R(µ+ is,A)y = y +R(µ+ is,A)Ay
so

‖R(µ+ is,A)y‖ 6
1

|µ+ is|
(‖y‖+K‖Ay‖).

Hence there exists t > N such that ‖R(µ + is,A)y‖ < ε whenever |s| > t and
a 6 µ 6 b. Then for these s and µ,

‖R(µ+ is,A)x‖ 6 ‖R(µ+ is,A)(x− y)‖+ ‖R(µ+ is,A)y‖ 6 (K + 1)ε,

and

‖R(µ+ is,A)nx‖ 6 ‖R(µ+ is,A)‖n−1‖R(µ+ is,A)x‖ 6 Kn−1(K + 1)ε.

Hence ∥∥∥ b+is∫
a+is

eλtR(λ,A)nxdλ
∥∥∥ 6 ebt(b− a)Kn−1(K + 1)ε.

Lemma 4.3. Let T (t) be a C0-semigroup on a Hilbert space H. Suppose that
ω0(T ) = 0 and that there exist constants a ∈ R and N,K > 0 such that whenever
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Reλ > a and |Imλ| > N we have λ ∈ ρ(A) with ‖R(λ,A)‖ 6 K. Let b > 0 and
define the operator Sa,b,N (t) by

Sa,b,N (t)x :=
1

2πi

∫
Γa,b,N

eλtR(λ,A)xdλ

where Γa,b,N is the contour

[a− iN, b− iN ] ∪ [b− iN, b+ iN ] ∪ [b+ iN, a+ iN ].

Then {Sa,b,N (t)}t>0 is a norm-continuous family of operators such that there exists
a constant C > 0, independent of a, b, and N , with

‖T (t)− Sa,b,N (t)‖ 6
eat

πt
(K + C(1 + |1− a|K)2,

for all t.

Proof. Let x ∈ H, ϕ ∈ H∗, then we have by [19], Theorem 1.1,

ϕ(T (t)x) =
1

2πi
lim
M→∞

b+iM∫
b−iM

eλtϕ(R(λ,A)x) dλ.

By Lemma 4.2

lim
|M |→∞

b+iM∫
a+iM

eλtϕ(R(λ,A)x) dλ = 0,

so by using Cauchy’s theorem we have that

ϕ((T (t)− Sa,b,N (t))x)

= lim
M→∞

1
2πi

( a+iM∫
a+iN

eλtϕ(R(λ,A)x) dλ+

a−iN∫
a−iM

eλtϕ(R(λ,A)x) dλ
)
.

Integrating by parts gives

a+iM∫
a+iN

eλtϕ(R(λ,A)x) dλ =
e(a+iM)t

t
ϕ(R(a+ iM,A)x)− e(a+iN)t

t
ϕ(R(a+ iN,A)x)

+

a+iM∫
a+iN

eλt

t
ϕ(R(λ,A)2x) dλ.

But by Lemma 4.2,

lim
M→∞

|ϕ(R(a+ iM,A)x)| = 0
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and∣∣∣ a+iM∫
a+iN

eλt

t
ϕ(R(λ,A)2x) dλ

∣∣∣ 6
eat

t

M∫
N

‖R(a+ is,A)∗ϕ‖ ‖R(a+ is,A)x‖ds

6 (1 + |1− a|K)2
eat

t

M∫
N

‖R(1 + is,A)∗ϕ‖ ‖R(1 + is,A)x‖ds

(using the resolvent identity)

6 (1 + |1− a|K)2
eat

t

( ∞∫
−∞

‖R(1 + is,A)∗ϕ‖2 ds
)1/2( ∞∫

−∞

‖R(1 + is,A)x‖2 ds
)1/2

6 C(1 + |1− a|K)2
eat

t
‖x‖ ‖ϕ‖,

where we have used Lemma 4.1 and C is a constant. Similarly we have

∣∣∣ a−iN∫
a−iM

eλt

t
ϕ(R(λ,A)2x) dλ

∣∣∣ 6 C(1 + |1− a|K)2
eat

t
‖x‖ ‖ϕ‖.

So combining these gives

|ϕ((T (t)− Sa,b,N (t))x)|

6
eat

2πt
(|ϕ(R(a+ iN)x)|+ |ϕ(R(a− iN)x)|+ 2C(1 + |1− a|K)2‖x‖ ‖ϕ‖)

6
eat

πt
(K + C(1 + |1− a|K)2)‖x‖ ‖ϕ‖.

So we have

‖T (t)− Sa,b,N (t)‖ 6
eat

πt
(K + C(1 + |1− a|K)2).

It is clear that the family {Sa,b,N (t)}t>0 is norm-continuous for t > 0 by the
dominated convergence theorem.

We now come to the main results of this section.

Theorem 4.4. Let T (t) be a C0-semigroup on a Hilbert space, and let γ >
ω0(T ), β > 0. The following properties are equivalent:

(i) T (t) is essentially norm-continuous of type β;
(ii) δ(T ) 6 ω0(T )− β;
(iii) T (t) is essentially norm-measurable of type β;
(iv) given 0 < α < β, there exists Nα such that ϕTγ (Nα) 6 (γ + α)−1;
(v) s∞0 (A) 6 ω0(T )− β;
(vi) s∞0 (A) 6 s(A)− β;

It follows that s∞0 (A) = δ(T ).

Proof. We have (i)⇒(ii)⇒(iii)⇒(iv) by Theorem 2.4, and (iv)⇒(v) by Propo-
sition 3.2, so it suffices to show that (v)⇒(i), (vi)⇒(v) and (ii)⇒(vi). (v)⇒(i).
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Assume (v), and without loss of generality we may suppose that ω0(T ) = 0, so
that s∞0 (A) 6 −β. Let 0 < α < β. Then −α > s∞0 (A) so by Lemma 4.3 (tak-
ing a = −α and any b > 0) there exist a norm-continuous family of operators
{S(t)}t>0 and a constant C (depending on α) such that

‖T (t)− S(t)‖ 6 C
e−αt

t
.

Hence T (t) is essentially norm-continuous of type β.
(vi)⇒(v). This follows immediately from the fact that s(A) 6 ω0(T ).
(ii)⇒(vi). Assume (ii). Then T (t) is asymptotically norm-continuous, hence

s(A) = ω0(T ) (by Proposition 3.6, or [13], Corollary 1.4), and (vi) holds. To see
that s∞0 (A) = δ(T ) we only need to show that δ(T ) 6 s∞0 (A) (by Corollary 3.3),
and this follows from (v)⇒(ii) by taking β = ω0(T )− s∞0 (A).

So we have that on a Hilbert space the classes of essentially norm-continuous
semigroups, essentially norm-measurable semigroups and of asymptotically norm-
continuous semigroups coincide, and by (iv)⇔(ii), they have a characterization in
terms of the behaviour of the resolvent along vertical lines: T (t) is asymptotically
norm-continuous if and only if for some (every) γ > ω0(T ) there exists N such
that ϕTγ (N) < (γ+ω0(T ))−1. Similar results for eventually norm-continuous semi-
groups and semigroups norm-continuous for t > 0 are also known. In our notation,
the result of Blasco and Martinez in [1] becomes that a semigroup on a Hilbert
space is eventually norm-continuous if and only if (NϕTγ (N))∞n=0 is bounded for
some (all) γ > ω0(T ), and the result of You Puhong ([17], with a more elementary
proof given in [3]) that T (t) is norm-continuous for t > 0 if and only if ϕTγ (0) = 0
for some (all) γ > ω0(T ). By (vi)⇔(ii) above we have a second characterization
of asymptotically norm-continuous semigroups on Hilbert space in terms of the
resolvent being bounded in a region: T (t) is asymptotically norm-continuous if
and only if s∞0 (A) < s(A). We now use Lemma 4.3 to obtain a similar result for
semigroups norm-continuous for t > 0.

Theorem 4.5. Let T (t) be a C0-semigroup with generator A on a Hilbert
space H.

(i) Suppose that there exist K > 0, α > 0, c > ω0(T ) and a decreasing
function ψ : (0,∞) → R such that ψ(M) → −∞ as M →∞, and

S := {λ ∈ C : Reλ > ψ(|Imλ)|} ⊆ ρ(A)

with ‖R(λ,A)‖ 6 Ke−αReλ whenever λ ∈ S and Reλ 6 c. Then T (t) is norm-
continuous for t > 2α.

(ii) T (t) is norm-continuous for t > 0 if and only if there exist K > 0 and
a decreasing function ψ : (0,∞) → R such that ψ(M) → −∞ as M →∞, and

S := {λ ∈ C : Reλ > ψ(Im |λ|)} ⊆ ρ(A)

with ‖R(λ,A)‖ 6 K for λ ∈ S.
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Proof. (i) Assume, without loss of generality, that ω0(T ) = 0, and suppose
that such a function ψ exists. Suppose R is sufficiently large that ψ(R) < 0. By
Lemma 4.3, with a = ψ(R), b = 1, N = R, there exist exponentially bounded
norm-continuous families SR : R+ → B(X), and C > 0 (independent of R) such
that

‖T (t)− SR(t)‖ 6
eψ(R)t

πt
(Ke−αψ(R) + C(1 + |1− ψ(R)|Ke−αψ(R))2)

and hence

lim sup
h→0

‖T (t+ h)− T (t)‖ 6 2
eψ(R)(t−2α)

πt
(Keαψ(R) + C(eαψ(R) + |1− ψ(R)|K)2).

Fixing t > 2α, and letting R→∞, we get

lim sup
h→0

‖T (t+ h)− T (t)‖ = 0.

Hence T (t) is norm-continuous for t > 2α.
(ii) If T (t) is norm-continuous for t > 0, then the existence of a function

ψ with the required properties follows from the Riemann-Lebesgue lemma and a
simple expansion of the resolvent argument (see [17], Lemma 2). The converse
follows from (i) with α = 0.

5. ESSENTIALLY COMPACT SEMIGROUPS AND ESSENTIAL SPECTRA

Let K(X) be the two-sided ideal of compact operators in B(X). Then we define
the essential norm of T ∈ B(X) by

‖T‖ess := inf{‖T −K‖ : K ∈ K(X)}.

We define the essential growth bound of a semigroup T (t) by

ωess
0 (T ) := inf{ω ∈ R : there exists Mω such that‖T (t)‖ess 6 Mωeωt for all t > 0}

(see [15], Section 3.6). It is clear that ωess
0 (T ) 6 ω0(T ). A semigroup is said to be

essentially compact if ωess
0 (T ) < ω0(T ).

It is well-known that eventually compact semigroups are eventually norm-
continuous. In [18], Proposition 3.1, Thieme shows that essentially compact semi-
groups are essentially norm-continuous. It then follows by Theorem 2.4 that essen-
tially compact semigroups are asymptotically norm continuous. We now show how
Thieme’s proof in fact gives the quantified version of this result, δ(T ) 6 ωess

0 (T ).
It is well-known that ω0(T ) = max(ωess

0 (T ), s(A)) (see for instance [15], Theo-
rem 3.6.1) — in the light of the relationship between δ(T ) and ωess

0 (T ) this can be
seen as a corollary of ω0(T ) = max(δ(T ), s(A)) (Proposition 3.7).
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Proposition 5.1. δ(T ) 6 ωess
0 (T ).

Proof. Without loss of generality we may suppose that ω0(T ) = 0. If
ωess

0 (T ) = ω0(T ), then the result follows from the fact that δ(T ) 6 ω0(T ), so
suppose ωess

0 (T ) < ω < ω0(T ). Then there exist compact linear operators Kn and
M > 0 such that

‖T (n)−Kn‖ 6 Meωn for all n ∈ N.

Define

S(t) =
{
I 0 6 t < 1;
T (t− n)Kn n 6 t < n+ 1.

Then S(t) is right norm-continuous, and if n 6 t < n+ 1,

‖T (t)− S(t)‖ = ‖T (t− n)(T (n)−Kn)‖ 6 CMeωn

6 CMeωteω(n−t) 6 CMe−ωeωt,

where C := sup
06r61

‖T (r)‖. As ωess
0 (T ) < ω < ω0(T ) was arbitrary, it follows that

δ(T ) 6 ωess
0 (T ).

Definition 5.2. Let S be a closed linear operator. We define four differ-
ent notions of the essential spectrum of S: the Browder essential spectrum, the
upper-Fredholm essential spectrum, the lower-Fredholm essential spectrum, and the
Fredholm essential spectrum respectively by

σess
b (S) :={λ ∈ C : λ is a limit point of σ(S) or λ is an eigenvalue of

infinite algebraic multiplicity or Ran (λ− S) is not closed};
σess

f+ (S) :={λ ∈ C : Ker (λ− S) has infinite dimension or Ran (λ− S)

is not closed};
σess

f− (S) :={λ ∈ C : Ran (λ− S) has infinite codimension};
σess

f (S) :=σess
f+ ∪ σess

f− .

See [7], Section 3, for more on the relationships between these spectra, and the
other definitions of “essential spectrum” available.

Remark 5.3. (i) Some authors explicitly include that points λ, such that
Ran (λ− S) is not closed, are in σess

f− (S) as part of the definition. But if a closed
operator has finite codimension then it automatically follows that it has closed
range, so the additional clause is not required.

(ii) The definition of the given Browder essential spectrum is equivalent to
the following (See [2], Theorem A.3.3.)

σess
b (S) :=σ(A) \ {λ ∈ C : λ is an isolated point of σ(A) such that the

spectral projection of {λ} has finite rank}.

Definition 5.4. Let L ∈ B(X). We define the essential spectral radius of
L by

ress(L) := sup{|λ| : λ ∈ σess
b (L)}.
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Let A be a closed linear operator. We define the essential spectral bound of A by

sess(A) = sup{Reλ : λ ∈ σess
b (A)}.

Note that we could have defined the quantities above in term of any of
the four essential spectra given in Definition 5.2, potentially giving four different
essential spectral radii ressb (L), ressf+(L), ressf−(L) and ressf (L), and similarly four
different essential spectral bounds. The next result shows that we do not need to
worry about this.

Proposition 5.5. (i) For any bounded operator L, the four quantities
ressb (L), ressf+(L), ressf−(L), and ressf (L) are equal.

(ii) If A is the generator of a C0-semigroup we have that sessb (A), sessf+(A),
sessf−(A), and sessf (A) are equal.

(iii) We shall denote the common value in (i) by ress(L), and in (ii) by sess(A).
If A generates a C0-semigroup T (t), then ress(T (τ)) = eτω

ess
0 (T ) for every τ > 0.

Proof. (i) This follows from [12], Theorem 6.5.
(ii) From [7], Section 6, it follows that

σess((βI −A)−1) \ {0} = {(β − λ)−1 : λ ∈ σess(A)}

where σess is any of the four essential spectra. Hence we have that if sess( · ) and
ress( · ) are the corresponding spectral bounds and radii,

sess(A) = lim
β→∞

{
β − 1

ress((βI −A)−1)

}
,

and the result follows from (i).
(iii) This is given on [15], page 106.

In [13], Martinez and Mazon give a sketch proof of how to modify their
spectral mapping theorem to obtain a spectral mapping theorem for the boundary
spectrum of σess

f+(A) for asymptotically norm-continuous semigroups. We now
observe that the improvements made to the spectral mapping theorem of Martinez
and Mazon in Theorem 3.6 carry through to give a corresponding spectral mapping
theorem for the part of σess

f+(A) in {Reλ > δ(T )}. Moreover, Theorem 3.6 allows
us to give easy proofs that the same result holds for σess

f (A) and σess
b (A).

Theorem 5.6. For τ > 0 define Γτ := {λ ∈ C : eδ(T )τ < |λ|}. Then the
spectral mapping theorem holds for the part of each of the Browder essential spec-
trum, the upper-Fredholm essential spectrum, and the Fredholm essential spectrum
of T (τ) in Γτ , i.e.

σess(T (τ)) ∩ Γτ = exp(τσess(A)) ∩ Γτ ,

where
(i) σess = σess

b ,
(ii) σess = σess

f+ ; or
(iii) σess = σess

f .

Proof. Without loss of generality we may assume that δ(T ) < ω0(T ) = 0.
Let τ > 0.
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(i) By the spectral inclusion theorem for the Browder essential spectrum
([2], Proposition 8.4) it is sufficient to prove that whenever λ ∈ σess

b (T (τ)) with
|λ| > eδ(T )τ , then λ = eµτ for some µ ∈ σess

b (A).
Let λ ∈ σess

b (T (τ)) with |λ| > eδ(T )τ . Choose µ0 ∈ C such that eµ0τ = λ and
define S := {µ ∈ σ(A) : eµτ = λ} ⊆ {µ0 + 2πin/τ : n ∈ N}. As Re (µ0) > s∞(A)
(Corollary 3.3), S must be bounded and hence finite, and as Re (µ0) > δ(T ), the
spectral mapping theorem (Theorem 3.6) gives that S is non-empty.

Suppose first that λ is a limit point of σ(T (τ)). Then by the spectral mapping
theorem we may take a sequence (νn)∞n=0 such that eνnτ → λ. Then Re (νi) −→
Re (µ0) > s∞(A), so we have that {|Im (νi)|} is bounded, and hence by taking a
subsequence if necessary, we may assume that (νn) converges to some µ. Then
µ ∈ S ∩ σess

b (A) and λ = eµτ .
Now suppose that λ is an isolated point of σ(T (τ)). Suppose for contradiction

that no µ ∈ S is in σess
b (A). Then each µ ∈ S is isolated in σ(A), and the spectral

projection of {µ} has finite rank. Thus the spectral projection P corresponding
to S has finite rank. {µ0 + 2πin

τ : n ∈ N} ∩ σ(A|kerP ) = ∅, so by applying the
spectral mapping theorem (Theorem 3.6) to the semigroup T (t)|kerP , it follows
that λ is not in σ(T (τ)|kerP ). Therefore P dominates the spectral projection
corresponding to λ in σ(T (τ)), so this spectral projection must have finite rank,
and λ is not in σess

b (T (τ)), a contradiction.
(ii) A sketch proof is given in [13] for a spectral mapping theorem for the

boundary of σess
f+ (T (τ)) that holds for asymptotically norm-continuous semigroups.

We show that with minor modifications this proof also gives our stronger result.
Let m(X) := {(xn) ∈ `∞(X) : (xn) is relatively compact}. We use the following
characterization of σess

f+ , from [5], Theorem 3.3. For a closed operator S,

σess
f+ (S) ={λ ∈ C : there exists (xn) ∈ `∞(X) \m(X) such

that xn ∈ D(S) and ((λ− S)xn) ∈ m(X)}.

From the relationship

(5.1) (eλτ − T (τ))x = (λ−A)

τ∫
0

eλ(τ−s)T (s)xds

(see [14], A-I, (3.1)), we have that ((eλτ−T (τ))xn) ∈ m(X) whenever ((λ−A)xn) ∈
m(X) so that we always have exp(τσess

f+ (A)) ⊆ σess
f+ (T (τ)). For the other inclusion,

we can use the same proof as in Theorem 3.6, using the space `∞T (X)/m(X) instead
of `∞T (X)/c0(X).

(iii) From (5.1) we have that Ran (eλτ−T (τ)) has infinite codimension when-
ever Ran (λ − A) does. Hence the “easy” inclusion holds for the whole of the
lower-Fredholm essential spectrum and hence by (ii) for the whole of the Fred-
holm essential spectrum. Let |λ| > eδ(T )τ . By the inclusion we already have,
and (ii), it is sufficient to prove that whenever Ran (T (τ) − λ) is closed with in-
finite codimension then there exists µ ∈ S := {µ ∈ σ(A) : eµτ = λ} such that
Ran (A− µ) has infinite codimension. Suppose this is false for a contradiction.
Let µ ∈ S. Then we have that(

X/Ran (A− µ)
)∗ ∼= (

Ran (A− µ)
)⊥ = Ker (A∗ − µ) has finite dimension.
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As in the proof of (i), S is finite, so that K := span
⋃
µ∈S

Ker (A∗ − µ) is finite

dimensional. By [14], A-III, Corollary 6.4, Ker (T ∗(τ) − λ) is the closure of K in
the weak* topology, so also has finite dimension. As

Ker (T (τ)∗ − λ) =
(
Ran (T (τ)− λ)

)⊥ ∼= (
X/Ran (T (τ)− λ)

)∗
we have that Ran (T (τ)− λ) = Ran (T (τ) − λ) has finite codimension, a contra-
diction.

Remark 5.7. We have that for a densely defined closed operator S, λ ∈
σess

f− (S) if and only if λ ∈ σess
f+ (S∗) (see [5], Corollary 3.5). It therefore follows,

by duality, that above spectral mapping theorem holds for the lower-Fredholm
essential spectrum for C0-semigroups on reflexive spaces.

Corollary 5.8. ωess
0 (T ) = max(δ(T ), sess(A)).

Proof. By Proposition 5.1, either ωess
0 (T ) = δ(T ) in which case we are done,

or we have δ(T ) < ωess
0 (T ). In the second case, we have eω

ess
0 (T ) = ress(T (1)) =

es
ess(A) by the spectral mapping theorem proved above.

As a corollary of these results we obtain the following, which characterizes
essentially compact semigroups on Hilbert spaces in terms of the resolvent and
essential spectrum of the generator.

Corollary 5.9. A C0-semigroup on a Hilbert space is essentially compact
if and only if s∞0 (A) < s(A) and sess(A) < s(A).

Proof. As s∞0 (A) = δ(T ) holds on a Hilbert space (Theorem 4.4), we have
ωess

0 (T ) = max(s∞0 (A), sess(A)). The result now follows from the fact that s(A) 6
ω0(T ), with equality when the semigroup is essentially compact ([15],
Theorem 3.6.1).
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