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Abstract. In this paper we study mapping properties of the Bergman pro-
jection P , i.e. which function spaces or classes are preserved by P. It is shown
that the Bergman projection is of weak type (1, 1) and bounded on the Orlicz
space Lϕ(D,dA) iff Lϕ(D,dA) is reflexive. So the dual space of the Bergman
space Lϕa is Lψa if Lϕ(D,dA) is reflexive, where ϕ and ψ are a pair of comple-
mentary Young functions. In addition, we also get that the Kolmogorov type
inequality and the Zygmund type inequality hold for the Bergman projection.
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1. INTRODUCTION

Let D denote the open unit disk in the complex plane C and dA(z) the normalized
area measure on D. For 1 6 p < ∞, the Bergman space Lpa is the set of analytic
functions on D which are in Lp(D,dA). It can be easily verified by the mean
value formula and the Holder inequality that Lpa is a closed subspace of Lp(D,dA).
This implies, in particular, that there exists an orthogonal projection P from
L2(D,dA) onto L2

a, which is called the Bergman projection and can be represented
as an integral operator

(1.1) Pf(z) =
∫
D

f(w)K(w, z) dA(w)

for f in L2(D,dA) where K(z, w) is the Bergman reproducing kernel.
Bergman spaces have a long history. Its theory goes back to the book [3]

in the early fifties by S. Bergman, where the first systematic treatment of L2
a

was given, and since then there have been a lot of papers devoted to this area.
One of important problems in the theory of Bergman spaces is to study mapping
properties of P, i.e. which function spaces or classes are preserved by P . The
boundedness of P on L2(D,dA) follows immediately from the definition of P. But
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the boundedness of P on Lp(D,dA) is not obvious at all. To our knowledge,
Zakarjuta and Judovic ([22]) are the first to prove that the Bergman projection
is bounded on Lp(D,dA) for 1 < p < ∞, using the theory of singular integral
operators. Another proof based on the Schur’s test, which has become standard
in more recent literatures, was given by Forelli and Rudin ([6]) and was applied
to the case of the strongly pseudo-convex domains by Phong and Stein ([14]). For
a detailed presentation of the Lp-theory of Bergman spaces and further historical
references, we refer to Axler′s survey paper ([1]) and Zhu′s book ([23]).

The aim of this paper is to deal with Bergman spaces with general Orlicz
norms. The interest in such a study lies not only in the fact that we shall have a
more general theory but more importantly in that it leads to certain finer results
and shields light on the Lp-situation. To illustrate the main ideas and motivation
of this paper, we begin by recalling some facts from the theory of Hardy spaces.
We know that, as early as the twenties, one realized that the Lp-spaces themselves
are insufficient to describe the mapping properties of operators such as the con-
jugate function operator, which is the periodic analog of the Hilbert transform.
It is in connection with the conjugate function operator that A.N. Kolmogorov
([9]) in 1925 established the so-called weak type estimates and then A. Zgymund
([24]) and E.T. Titchmarsh ([18] and [19]) in 1928 independently introduced the
spaces L log+ L and Lexp which are actually two concrete Orlicz spaces. It is clear
that, in order to reflect these classical results in the theory of Bergman spaces, a
more general framework than one provided by the Lp-spaces will be required. In
this paper we shall establish the weak type (1,1) estimate, the Kolmogorov type
estimate, the Zygmund type estimate and the Lϕ-boundedness for the Bergman
projection in the general framework.

The main results of this paper are following theorems.

Theorem 1.1. The Bergman projection is of weak type (1, 1), i.e. there
exists a constant C independent of f such that

(Pf)∗(t) 6
C‖f‖1

t

for all f ∈ L1(D,dA) and t > 0.

Theorem 1.2. (Kolmogorov inequality) If f ∈ L1(D,dA), then Pf ∈
Lp(D,dA) for all 0 < p < 1. More precisely, there is a constant Cp depending
only, p such that

‖Pf‖p 6 Cp‖f‖1.

Theorem 1.3. (Zygmund inequality) The Bergman projection P is a bounded
operator from the Zygmund space L log+ L into L1

a, i.e. there is a constant C such
that

‖Pf‖1 6 C‖f‖L log+ L

for all f in L log+ L.
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Theorem 1.4. The Bergman projection is a bounded operator from L∞(D,dA)
to the Zygmund space Lexp(D,dA), i.e. there is a constant C such that

‖Pf‖exp 6 C‖f‖∞

for all f in L∞(D,dA).

The last two theorems are the counterparts for the Bergman projection of
the well-known results in the theory of the Hardy spaces. Since the continuous
embeddings

L∞(D,dA) ↪→ Lexp(D,dA) ↪→ Lp(D,dA) ↪→ L log+ L(D,dA) ↪→ L1(D,dA)

hold for 1 < p <∞, they can be also viewed as the substitutes for the L1(D,dA)
and L∞(D,dA) boundedness of the Bergman projection respectively.

Theorem 1.5. Suppose that ϕ and ψ are a pair of complementary Young
functions. Then the Bergman projection is bounded iff both ϕ and ψ satisfy the
∆2-condition iff the Orlicz space Lϕ(D,dA) is reflexive.

Theorem 1.5 contains, in particular, the Lp-boundedness of the Bergman
projection as its consequence. Through such a general result, one will be able to
gain a better insight into the reason why P is bounded on Lp(D,dA) for 1 < p <∞,
but unbounded for p = 1, or p = ∞.

Theorem 1.6. For a reflexive Orlicz space Lϕ(D,dA), the dual of the Berg-
man space Lϕa can be identified with Lψa where ψ is the complementary Young
function of ϕ. More precisely, for every bounded linear functional l on Lϕa , there
exists some unique g ∈ Lψa such that

l(f) =
∫
D

fg dA(z).

Furthermore, the norm ‖l‖ of l is equivalent to ‖g‖ψ.

If the Orlicz space Lϕ(D,dA) is not reflexive, the duality problem is much
more complicated. However, as with L1

a, it is possible to give a satisfactory de-
scription of the dual and predual of Lϕa by Besov spaces. Since this is lenghty, we
shall publish those results in the forthcoming paper.

This paper is organized as follows. Section 2 contains preliminaries on Orlicz
spaces and Bergman spaces. In Section 3 we show that the Bergman projection
is of weak type (1, 1). In Section 4 we prove a Marcinkiewicz type interpolation
theorem for Orlicz spaces. Using the interpolation theorem we prove “if part” of
Theorem 1.5 in Section 6. Theorem 1.6 is also proved in the section. The “only
if” part of Theorem 1.5 is proved in Section 5. In the last section we present the
proofs of the Kolmogorov inequality and the Zygmund inequalities.
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2. ORLICZ SPACES AND BERGMAN SPACES

The Orlicz spaces were first considered by Birnbaum and Orlicz ([4]) and Orlicz
([12] and [13]). In this section we present certain definitions, notation and related
facts, which will be used later on. Most of them may be found in [10], [21] and [2].

Definition 2.1. Let p : [0,∞] → [0,∞] be a non-decreasing and left-conti-
nuous function with p(0) = 0. Suppose p is non-trivial, i.e., it is neither identically
zero nor identically infinite on (0,∞), Then the function, defined by

ϕ(t) =

1∫
0

p(s) ds

for t > 0, is said to be a Young function.
Let q(s) = inf{t : p(t) > s} for 0 6 s 6 ∞, which is called the left-continuous

inverse of p and has the same properties as p. Thus to the Young function ϕ we
can associate its complementary Young function given by

ψ(t) =

t∫
0

q(s) ds

for t > 0.

The introduction of Young functions has been inspired by the obvious role
played by the functions tp in the definition of Lp spaces. We note that the comple-
mentary Young function of ψ is ϕ. It is also obvious that a Young function must
be convex on the interval where it is finite. Furthermore, if ϕ and ψ are a pair of
complementary Young functions, then one has the Young inequality

st 6 ϕ(t) + ψ(s)

for s, t > 0 with equality if and only if either t = q(s) or s = p(t) holds.

Definition 2.2. A Young function ϕ is said to satisfy the ∆2-condition
(shortly, ϕ ∈ ∆2) if there exist constants t0 > 0 and c > 1 such that

ϕ(2t) < cϕ(t)

for t > t0.
A Young function is said to satisfy the ∆∗

2-condition if its complementary
Young function satisfies the ∆2-condition.

We point out that the ∆2-condition assures that the Young function ϕ(t)
does not increase too fast as t increases, more precisely, that ϕ = O(ta) for some
1 6 a < ∞. But the converse is not true. In fact, as shown in [10], the Young
function

ψ(t) =

t∫
0

q(s) ds

where

q(s) =
{
s if s ∈ [0, 1),
(k − 1)! if s ∈ [(k − 1)!, k!), k = 2, 3, . . .
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increases no more rapidly than t2/2, but does not satisfy the ∆2-condition.
If ϕ is a Young function, following Lindberg ([11]), we can associate to it two

numbers αϕ and αϕ given by

αϕ = lim sup
t→∞

tp(t)
ϕ(t)

, αϕ = lim inf
t→∞

tq(t)
ψ(t)

which are called the upper index and the lower index of ϕ, respectively.
With these two indices, we can rephase Theorem 4.1 and Lemma 4.1 in [10]

in the following form:

Lemma 2.3. Let ϕ and ψ be a pair of complementary Young functions. Then
ϕ satisfies the ∆2-condition iff αϕ <∞ iff αψ > 1.

Definition 2.4. Let ϕ be a Young function. We define the Orlicz class
Lϕ(D,dA) as the set of all complex measurable functions f on D for which the
integral

ρ(f, ϕ) =
∫
D

ϕ(|f(z)|) dA(z)

is finite, and the Orlicz space Lϕ(D,dA) as the linear hull of Lϕ(D,dA) with the
Luxemberg norm

‖f‖(ϕ) = inf{c > 0 : ρ(f/c, ϕ) 6 1}.
In the sequel we shall also use another norm on Lϕ(D,dA) known as the

Orlicz norm, given by

‖f‖ϕ = sup
ρ(g,ψ)61

∣∣∣ ∫
D

f(z)g(z) dA(z)
∣∣∣.

As it is well-known, the Luxemberg and Orlicz norms are equivalent, more
precisely

‖f‖(ϕ) 6 ‖f‖ϕ 6 2‖f‖(ϕ).

Let ϕ and ψ be a pair of complementary Young functions. We shall call the
space Lψ(D,dA) the associate space of Lϕ(D,dA). In general, the dual space of
the Orlicz space Lϕ(D,dA) is not identical with its associate space Lψ(D,dA), but
we have the following lemma.

Lemma 2.5. Let ϕ and ψ be a pair of complementary Young functions. Sup-
pose that ϕ satisfies the ∆2-condition. Then the dual space of Lϕ(D,dA) can be
“identified” with Lψ(D,dA). More precisely, a linear functional l on Lϕ(D,dA) is
uniquely represented by a function g in Lψ(D,dA) in the following way:

l(f) =
∫
D

f(z)g(z) dA(z)

for all f in Lϕ(D,dA) and
‖l‖ 6 ‖g‖ψ 6 C‖l‖

for some constant C which is independent of l.

The following well-known fact is important for our further discussion, which
gives an elegant characterization of reflexivity of an Orlicz space in terms of the
upper and lower indices of its Young function.
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Lemma 2.6. Let ϕ be a Young function. Then the following are equivalent:
(i) Lϕ(D,dA) is reflexive;
(ii) ϕ satisfies both the ∆2- and ∆∗

2-conditions;
(iii) 1 < αϕ < αϕ <∞.

We say that two Young functions ϕ1 and ϕ2 are equivalent if there are con-
stants k1, k2 and t0 such that

ϕ1(k1t) 6 ϕ2(t) 6 ϕ1(k2t)

for t > t0.
Now let us look at several examples of Orlicz spaces. (i) The Lebesgue

spaces Lp are the most commonly used Orlicz spaces. If 1 < p <∞, then we have
p(t) = ptp−1, ϕ(t) = tp and ψ(t) = tq with 1/p+ 1/q = 1. It is easily verified that
the Young functions ϕ and ψ satisfy the ∆2-condition if 1 < p <∞, hence in this
case Lp is reflexive. If p = 1, then p(t) = 1 for t > 0 with p(0) = 0, ϕ(t) = t and

ψ(t) =
{

0 0 6 t 6 1,
∞ 1 < t.

So ϕ(t) in this case satisfies ∆2-condition but ψ(t) does not.
(ii) Another interesting examples of Orlicz spaces are the Zygmund spaces

Lp logL with Young functions ϕ = tp log+ t. It is easy to check that both ϕ and
its complementary Young function ψ satisfy the ∆2-condition when p > 1.

(iii) Let
p(t) =

{ 0 0 6 t 6 1,
et−1 1 < t.

Then we have the Orlicz space Lϕ(D,dA) with the Young function

ϕ(t) =
{
t 0 6 t 6 1,
et−1 1 < t.

A simple computation shows that the Orlicz space Lϕ(D,dA) is the associate space
of the Zygmund space L log+ L with the Young function t log+ t. Moreover, the
Young function ϕ(t) is equivalent to the Young function et. So the Orlicz space
Lϕ(D,dA) is the Zygmund space Lexp(D,dA).

Definition 2.7. Let ϕ be a Young function. The Bergman space Lϕa is the
subset of the Orlicz space Lϕ(D,dA) consisting of functions analytic on D.

As with Lpa, it is easy to check that Lϕa is a Banach space with the Orlicz
norm ‖f‖ϕ. Since the evaluation at any fixed point z in D is a bounded functional
on L2

a, there is a function K(z, w) in L2
a such that

f(z) = 〈f,K(z, · )〉
for all f in L2

a. K(z, w) is called the Bergman reproducing kernel. In fact, for any
orthogonal basis {en(w)}, K(z, w) can be represented as

K(z, w) =
∞∑
1

en(z)en(w)

where the sum converges pointwise to K(z, w). In the case of the unit disk

(2.1) K(z, w) =
1

(1− zw)2
.
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K(z, w) plays a very important role in the theory of the Bergman spaces, differen-
tial geometry and differential equations, since we can use it to define the Bergman
metric on D as follows. For z in D and u, v in C, the Bergman metric Hz(u, v) is
defined by

Hz(u, v) =
∂

∂z

∂

∂z
logK(z, z)uv.

Then D is a complete Hermitian symmetric space of noncompact type with the
Bergman metric which gives the usual topology on D. By definition, the Bergman
distance β(z, w) is given by

β(z, w) = inf
γ

1∫
0

√
Hγ(t)(γ′(t), γ′(t)) dt

where the inf is taken over all geodesics in D which connect z and w. It is clear
that the argument above can be carried over any domains in Cn.

On the other hand, it is deep and well-known in Lie theory that any sym-
metric domains can be realized as a unit ball of Cn with some norm for some n.
So it is natural to ask whether the theory of Bergman spaces and the Bergman
projection on the unit disk still holds on any bounded symmetric domains with
rank greater than one. However, as we know, the Lp-boundedness of the Bergman
projection on the bounded symmetric domains is still an open question for any
1 < p <∞ except for p = 2.

Throughout this paper, C will stand for different constants from place to
place for our convenience.

3. THE WEAK TYPE (1,1)

As mentioned before, the Bergman projection is unbounded on L1(D,dA) and
L∞(D,dA). To remedy this situation, one is led to look for certain substitute
results. The substitute result for L∞(D,dA) is well-known. It asserts that the
Bergman projection is a bounded operator from L∞(D,dA) onto the Bloch space.
In this section, as a useful substitute for L1(D,dA), we shall show that the Bergman
projection is of weak type (1, 1). Although its counterpart for the Hilbert transform
have been known in the theory of the Hardy spaces for a long time, to our great
surprise, we could not find this result in the literature. We present it on the one
hand for it is of interest in its own right, and on the other hand also because it is
indispensable to our further consideration.

First, we recall that an operator T defined in Lp(D,dA) with values in the
class of measurable functions of the measure space (D,dA) is said to be of weak
type (p, q) if there is a constant Ap,q depending only on p and q such that

(Tf)∗(t) 6
(
Ap,q

‖f‖p
t

)q
for t > 0 and all f ∈ Lp(D,dA), where (Tf)∗(t) stands for the normalized Lebesgue
measure of the set

{z ∈ D : |(Tf)(z)| > t}
and called the distribution function of Tf.
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Proof of Theorem 1.1. It is obvious that the inequality holds for t 6 ‖f‖1,
since then, by the definition of the distribution function,

(Pf)∗(t) = |{z ∈ D : |Pf(z)| > t}| 6 |D| = 1 6
‖f‖1

t
.

Now suppose that t > ‖f‖1. To verify the desired inequality, let n be a
fixed integer such that π/2n < 1/2 and divide D in a mesh consisting of the disk
D0 = {z ∈ D : |z| 6 1− 2π/n} and n curvilinear squares

Dj =
{
z = reiθ : 1− 2π

n
< r < 1,

2(j − 1)π
n

< θ <
2jπ
n

}
for j = 1, 2, . . . , n. Obviously, f can be written as f =

n∑
j=0

fj , where fj is supported

in Dj . Since P is linear and

(Pf)∗(t) 6
n∑
j=0

(Pfj)∗
( t

n+ 1

)
,

it suffices to prove (Pfj)∗(t) 6 C
‖fj‖1
t for all j.

Since the Bergman kernel K(z, w) is bounded uniformly on D×D0, it is easy
to see that there is a constant C independent of f such that (Pf0)∗(t) 6 C ‖f‖1

t

for all f in L1(D,dA) and t > 0.
We next turn to the proof of inequality for (Pfj)∗(t) with j 6= 0. The proof

rests on the so-called Calderon-Zygmund decomposition. We sketch it as follows.
First step. We use the stopping time argument to decompose each curv-

linear squares Dj as Dj = Fj ∪ Ωj with Fj ∩ Ωj = 0 so that
(i) fj(z) < t a.e. z ∈ F ;

(ii) Ωj =
⋃
Qjk;

(iii) t < |Qjk|
−1

∫
Qj

k

|fj(z)|dA(z) < Ct;(3.1)

for k and j where Qjk denote the curvilinear squares with the same form as Dj and
having pairwise disjoint interiors. The argument is the same as the standard one,
except that in the proof of (iii) we need to use our assumption t > ‖f‖1, which has
|Dj |−1

∫
Dj

|f(w)|dA(w) < Ct as a consequence, and the observation that if Qjk,m+1

is a dyadic subsquare obtained by bisecting each sides of the square Qjk,m in the
mth step of the subdivision process, then there exists a constant c independent
of m such that 1

c |Q
j
k,m| < |Qjk,m+1| < |Qjk,m|. For more details concerning the

stopping time argument, see [16] and [7].
Using the above decomposition of Dj , we define the Calderon-Zygmund de-

composition of fj corresponding to a given t > ‖f‖1, as follows

(3.2) gj(z) =


fj(z) if z ∈ D/Ωj ,

1

|Qj
k
|

∫
Qj

k

f(w) dA(w) if z ∈ Qjk,
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and

(3.3) bj(z) = fj(z)− gj(z).

Then gj is in L2(D,dA), because the above construction gives

‖gj‖2
2 =

∫
Fj

|gj(z)|2 dA(z) +
∫
Ωj

|gj(z)|2 dA(z)

6
∫
Fj

t|fj(z)|dA(z) +
∫
Ωj

∣∣∣ ∞∑
k=1

|Qjk|
−1

∫
Qj

k

fj(w) dA(w)
∣∣∣2 dA(z)

6 t‖f1‖1 + c2t2|Ωj |6 t‖f1‖1 + c2t2
∞∑
k=1

1
t

∣∣∣ ∫
Qj

k

fj(w) dA(w)
∣∣∣6(c2 + 1))t‖f‖1.

In addition, P is bounded on L2(D,dA) by the definition. So we have

(Pgj)∗(t) 6
1
t2

1
t2

∫
D

|(Pgj)(z)|2 dA(z) 6
C

t2

∫
D

|gj(z)|2 dA(z) 6 C
‖fj‖1

t
.

Second step. We now come to the estimate for (Pbj)∗(t). Let bk,j(z) =
b(z)χQj

k
(z) where χQj

k
(z) denotes the characteristic function of the set Qjk; then

bj(z) =
∞∑
k=1

bk,j(z) and Pbj(z) =
∞∑
k=1

Pbk,j(z).

For each k, let Sk be the circumscribed disk of Qjk, S1
k the disk with the same

center wk as Sk and radius two times as that of Sk. Let Ω′ =
⋃

S1
k. It is clear that

there is a fixed constant C such that

(3.4) |Ω′| 6 C|Ω| 6 C
‖f‖1

t
.

Since ∫
Qj

k

bj(w) dA(w) = 0,

we have

|(Pbk,j)(z)| =
∣∣∣ ∫
Qj

k

(K(z, w)−K(z, wk))bk,j(w) dA(w)
∣∣∣

6
∫
Qj

k

|K(z, w)−K(z, wk)| |bk,j(w)|dA(w).
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Therefore∫
D\Ω′

|Pbj(z)|dA(z) 6
∞∑
k=1

∫
D\S1

k

|Pbk,j(z)|dA(z)

6
∞∑
k=1

∫
w∈Qj

k

|bk,j(w)|
∫

z∈D\S1
k

|K(z, w)−K(z, wk)|dA(z) dA(w).

It follows from (2.1) and a simple computation that for w ∈ Qjk∫
z∈D\S1

k

|K(z, w)−K(z, wk)|dA(z) 6 C

∫
|z−wk|>2|w−wk|

|z|<1

|w − wk|
|z − wk|3

dA(z)

6 C

∫
|z|>2

1
|z|3

dA(z) = C <∞.

So we have ∫
D\Ω′

|Pbj(z)|dA(z) 6
∞∑
k=1

∫
Qj

k

A|bk,j(z)|dA(w).

On the other hand, by (3.1), (3.2) and (3.3) we have |bj(z)| 6 |fj(z)| + |gj(z)| 6
|f(z)|+ Ct. Thus

(3.5)
∫

D\Ω′

|Pbj(z)|dA(z) 6 A(‖f‖1 + Ct|Ω|) 6 A(C + 1)‖f‖1.

Moreover

(3.6) (Pb)∗(t) 6
∣∣(D \ Ω′)

⋂
{|Pbj(z)| > t}

∣∣ + |Ω′|.

Combining (3.4), (3.5) and (3.6) we obtain that (Pb)∗(t) 6 C ‖f‖1
t .

Final step. Combining the estimates of (Pgj)∗(t) and (Pbj)∗(t) we have

(Pfj)∗(t) < (Pgj)∗
( t

2

)
+ (Pbj)∗

( t
2

)
6 C

‖f‖1

t

for j = 1, 2, . . . , n, thus completing the proof of the theorem.
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4. INTERPOLATION ON ORLICZ SPACES

In this section, following [5] and [17], we shall show a Marcinkiewicz type interpo-
lation theorem for Orlicz spaces, which is good enough for our purpose and looks
more natural and convenient than some interpolation theorems for Orlicz spaces
given in [8], [15] and [20].

Definition 4.1. Let ϕ be a Young function and Lϕ the Orlicz space. A
linear operator T defined on Lϕ is said to be of mean strong type (ϕ,ϕ) if

(4.1)
∫
D

ϕ(|Tf |) dA(z) 6 C

∫
D

ϕ(|f |) dA(z)

for f ∈ Lϕ(D,dA), and T is said to be mean weak type (ϕ,ϕ) if

(4.2) |{z : |Tf(z)| > t}| 6
C

∫
D
ϕ(|f |) dA(z)

ϕ(t)

for f ∈ Lϕ(D,dA) and t > 0, where C is independent of f.

It is easy to see that an operator T is of mean weak type (ϕ,ϕ) if it is of
mean strong type (ϕ,ϕ). Moreover, note also that the mean strong type (tp, tp)
and the usual strong type (p, p) coincide.

Lemma 4.2. Let ϕ be a Young function. If T is of mean strong type (ϕ,ϕ),
then T is a bounded operator on Lϕ(D,dA).

The proof of the lemma is routine and so it is omitted.

Theorem 4.3. Let ϕ0, ϕ1, and ϕ2 be Young functions. Suppose that their
upper and lower indices satisfy the following condition

(4.3) 1 6 αϕ0
6 αϕ0 < αϕ2

6 αϕ2 < αϕ1
6 αϕ1 <∞.

If T is of mean weak types (ϕ0, ϕ0) and (ϕ1, ϕ1), then it is of mean strong type
(ϕ2, ϕ2). In particular, T is a bounded operator on the Orlicz space Lϕ2(D,dA).

Proof. By Lemma 2.3 we see that the condition (4.3) implies that ϕi satisfy
the ∆2-condition. Since the measure of D is 1, we can find a Young function
ϕ′(t) equivalent to ϕ(t) such that αϕ′ 6 p′(t)t

ϕ′(t) 6 αϕ′ for t > 0 if ϕ(t) satisfies
∆2-condition. So, without loss of generality, we may assume that

(4.4) αϕi
6
pi(t)t
ϕi(t)

6 αϕi

for t > 0 and i = 0, 1, 2. Now we want to prove

(4.5)
∫
D

ϕ2(|Tf |) dA 6 C

∫
D

ϕ2(|f |) dA

for f ∈ Lϕ2(D,dA) = Lϕ2(D,dA). To this end, for any f ∈ Lϕ2(D,dA) and given
t > 0, we break up f as f1 + f2 in the following way

(4.6) f1(z) =

{
f(z) if |f(z)| < t,

t |f(z)|
f(z) otherwise;
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and f0(z) = f(z)− f1(z). Since

(4.7) |Tf(z)| 6 |Tf0(z)|+ |Tf1(z)|,

we have

{z ∈ D : |Tf(z)| > s} ⊂
{
z ∈ D : |Tf0(z)| >

s

2

}
∪

{
z ∈ D : |Tf1(z)| >

s

2

}
or

(4.8) (Tf)∗(s) 6 (Tf0)∗
(s

2

)
+ (Tf1)∗

(s
2

)
.

It is readily seen that

(Tf1)∗(s) =
{

(Tf)∗(s) if s 6 t,
0 otherwise; and (Tf0)∗(s) = (Tf)∗(s+ t).

Clearly, f1 ∈ Lϕ1(D,dA). On the other hand, by the condition (4.3) and (4.4), we
have

(4.9)
sp0(s)
ϕ0(s)

6 αϕ0 6 αϕ2
<
sp2(s)
ϕ2(s)

< αϕ2 < αϕ1
6
sp1(s)
ϕ1(s)

,

so there are constants C1 and C2 such that

(4.10) C1ϕ0(s) 6 ϕ2(s) 6 C2ϕ1(s).

From (4.9) and the fact that f is in Lϕ2(D,dA) it follows at once that f0 is in
Lϕ0(D,dA). Now, by the assumption of the theorem, T is of mean weak types
(ϕ0, ϕ0) and (ϕ1, ϕ1), so there are constants B0 and B1 such that

(Tfi)∗(s) 6

Bi
∫
D
ϕi(|fi|) dA(z)

ϕi(s)

for i = 0, 1. This together with (4.8) gives

(4.11) (Tf)∗(2t) 6
1∑
i=0

Bi
∫
D
ϕi(|fi|) dA(z)

ϕi(s)
.

Since for a Young function ϕ and a measurable function g on D the relation

ρ(g, ϕ) =
∫
D

ϕ(|g|) dA(z) =

∞∫
0

g∗(s)p(s) ds

holds, we can rewrite (4.11) in the following form

(4.12) (Tf)∗(2t) 6

B0

∞∫
0

p0(u)f∗(u+ t) du

ϕ0
+
B1

t∫
0

p1(u)f∗(u) du

ϕ1(t)
.
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Multiplying both sides of above inequality by p(t) and integrating with respect to
t over (0,∞), one gets

∞∫
0

p(t)(Tf)∗(2t) dt 6 B0

∞∫
0

p(t)
ϕ0(t)

( ∞∫
0

p0(u)f∗(u+ t) du
)

dt

+B1

∞∫
0

p(t)
ϕ1(t)

( ∞∫
0

p1(u)f∗(u) du
)

dt = B0I0 +B1I1.

Let us first estimate the integral I1. It can be easily seen from (4.9) that
lim
t→0

ϕ(t)
ϕ1(t)

= 0. Changing the order of integration in I1 implies

I1 = −
∞∫
0

f∗(u)
p1(u)ϕ2(u)
ϕ1(u)

du+

∞∫
0

f∗(u)p1(u)
( ∞∫
u

ϕ(t)p1(t)
ϕ2

1(t)
dt

)
du.

By (4.9)
ϕ2(t)p1(t)
ϕ2

1(t)
> αϕ1

ϕ2(t)
ϕ1(t)t

>
αϕ1p2(t)
αϕ2ϕ1(t)

.

Therefore we obtain

I1 > −
∞∫
0

f∗(u)
p1(u)ϕ2(u)
ϕ1(u)

du+
αϕ1

αϕ2

∞∫
0

f∗(u)p1(u)

∞∫
u

p(t)
ϕ1(t)

dtdu

= −
∞∫
0

f∗(u)
p1(u)ϕ2(u)
ϕ1(u)

du+
αϕ1

αϕ2

I1

or

I1 6
αϕ2

αϕ1
− αϕ2

∞∫
0

f∗(u)
p1(u)ϕ2(u)
ϕ1(u)

du 6
αϕ2αϕ1

αϕ1
(αϕ1

− αϕ2)

∞∫
0

f∗(u)p2(u) du

6
αϕ2αϕ1

αϕ1
(αϕ1

− αϕ2)

∫
ϕ(|f |) dA(z).

We next come to estimate the integral I0. Making the change of variables
u = s− t and then changing the order of integration, we get

I0 =

∞∫
0

p2(t)
ϕ0(t)

∞∫
t

f∗(s)p0(s− t) ds =

∞∫
0

f∗(s)

s∫
0

p2(t)
ϕ0(t)

p0(s− t) dtds

6

∞∫
0

f∗(s)p0(s)

s∫
0

p2(t)
ϕ0(t)

dt.
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Write I2 for the integral on the right hand side of the above inequality. Now since
lim
t→0

ϕ(t)
ϕ0(t)

= 0, we obtain

I2 =

∞∫
0

f∗(s)
p0(s)ϕ2(s)
ϕ0(s)

ds+

∞∫
0

f∗(s)p0(s)

s∫
0

ϕ(t)p0(t)
ϕ2

0(t)
dtds.

Hence

I2 6

∞∫
0

f∗(s)
p0(s)ϕ2(s)
ϕ0(s)

ds+
αϕ0

αϕ2

∞∫
0

f∗(s)p0(s)

s∫
0

p2(t)
ϕ0(t)

dtds

=
αϕ0

αϕ2

( ∫
ϕ(|f |) dA(z) + I2

)
or

I2 6
αϕ0

αϕ2
− αϕ0

∫
ϕ(|f |) dA(z).

This implies

I0 6
αϕ0

αϕ2
− αϕ0

∫
ϕ(|f |) dA(z).

Combining estimates of I0 and I1, we finally obtain
∞∫
0

p2(t)(Tf)∗(2t) dt 6 C

∫
D

ϕ2(|f |) dA(z)

for some positive constant C. However we have
∞∫
0

p2(t)(Tf)∗(2t) dt >
1

2αϕ2

∫
D

ϕ2(|Tf |) dA(z).

Hence ∫
D

ϕ2(|Tf |) dA(z) 6 C

∫
D

ϕ2(|f |) dA(z).

as desired. The rest of the theorem is immediate consequence of Lemma 4.2.

5. A NECESSARY CONDITION FOR THE Lϕ-BOUNDEDNESS

In this section a necessary condition for the Bergman projection to be bounded on
the Orlicz spaces is established. We will show that this condition is also sufficient
in next section.

The following lemma shows that the Bergman projection ever maps the char-
acteristic functions of curvilinear rectangles near the boundary of the disk into
unbounded analytic functions on the disk.
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Lemma 5.1. For 0 < r0 < 1 and 0 < β < 2π, let χr0,β(z) be the character-
istic function of the set

{reiθ ∈ D : r0 < r < 1 and |θ| < β}.

Then

(Pχr0,β)(z) =
1
iπ

(
log

1− ze−iβ

1− zeiβ
− r20 log

1− zr0e−iβ

1− zr0eiβ

+
∞∑
n=1

−1
n(n+ 2)

zn(e−inβ − einβ)(1− rn+2
0 )

)
.

Proof. Since the Bergman kernel K(z, w) has the power series expansion

K(z, w) =
∞∑
n=1

(n+ 1)znwn,

it follows from the integral formula (1.1) of Bergman projection that

Pχr0,β(z) =
1
π

1∫
r0

β∫
−β

∞∑
n=0

(n+ 1)znrne−inθr dr dθ

=
1
iπ

∑ n+ 1
n(n+ 2)

zn(e−inβ − einβ)(1− rn+2
0 ).

On the other hand, log(1− w) =
∞∑
n=1

wn

n . Thus we get

Pχr0,β(z) =
1
iπ

(
log

1− ze−iβ

1− zeiβ
− r20 log

1− zr0e−iβ

1− zr0eiβ

)
+

1
iπ

∞∑
n=1

−1
n(n+ 2)

zn(e−inβ − einβ)(1− rn+2
0 ).

Lemma 5.2. For small enough β > 0, if r0 = 1−β, then there is a constant
M such that ∣∣∣r20 log

1− zr0e−iβ

1− zr0eiβ

∣∣∣ < M

for all z in

Q(β) =
{
reiθ : r0 < r < 1 and |θ − β| < β

20

}
.

Proof. Set h(θ, r) =
∣∣∣ 1−zr0e−iβ

1−zr0eiβ

∣∣∣2. If we write z = reiθ, then

h(θ, r) =
1 + (rr0)2 − 2rr0 cos(θ − β)
1 + (rr0)2 − 2rr0 cos(θ + β)

.



18 Yaohua Deng, Li Huang, Tao Zhao, and Dechao Zheng

It is easy to see that h(θ, r) is decreasing with respect to r in Q(β). So h(θ, r) >
h(θ, 1). On the other hand

h(θ, 1) = 1−
4r0

(
sin2 θ+β

2 − sin θ−β
2

)
(1− r0)2 + 4r0 sin2 θ+β

2

= 1− 4r0 sin θ sinβ
β2 + 4r0 sin2 θ+β

2

> 1−
4r0 sin 21

20β sinβ
β2 + 4r0 sin2 39

40β

if |θ − β| 6 β
20 with β small enough. Since

lim
β→0

(
1−

4r0 sin 21
20β sinβ

β2 + 4r0 sin2 39
40β

)
=

241
1921

> 0,

then h(θ, 1) > 240
1921 if |θ − β| 6 β

20 with small enough β. So there is a constant M
such that ∣∣∣r20 log

1− zr0e−iβ

1− zr0eiβ

∣∣∣ < M

uniformly for z in Q(β).

Lemma 5.3. There are a positive number t0 and a measurable function
g(t) > 0 such that ∣∣{z ∈ D : |Pχ1−β,β(z)| > t}

∣∣ > β2g(t)
for t > t0 whenever β is small enough.

Proof. Suppose that t>0. We consider the distribution function (Pχ1−β,β)∗(t)
of Pχ1−β,β (Pχ1−β,β)∗(t) = |{z ∈ D : |Pχ1−β,β(z)| > t}|. It follows from Lem-
mas 5.1 and 5.2 that there is a constant C > 0 such that

|Pχ1−β,β(z)| >
1
π

∣∣∣ log
∣∣∣1− ze−iβ

1− zeiβ

∣∣∣ ∣∣∣− C

for z in Q(β) whenever β is small enough. Clearly

(Pχ1−β,β)∗(t) >
∣∣∣{z ∈ D :

∣∣∣ log
∣∣∣1− ze−iβ

1− zeiβ

∣∣∣ ∣∣∣ > (t+ C)π
}⋂

Q(β)
∣∣∣.

It is easy to see that the set{
z ∈ D :

∣∣∣ log
∣∣∣1− ze−iβ

1− zeiβ

∣∣∣ ∣∣∣ > (t+ C)π
}

contains a disk with center
(

cosβ, 1+e−2π(t+C)

1−e−2π(t+C) sinβ
)

and radius 2 sin βe−π(t+C)

1−e−2π(t+C) .

Then there are positive constants t0 and C1 such that for t > t0∣∣∣{z ∈ D :
∣∣∣ log

∣∣∣1− ze−iβ

1− zeiβ

∣∣∣ ∣∣∣ > t+ C}
⋂
Q(β)

∣∣∣ >
C1 sin2 βe−2π(t+C)

(1− e−2π(t+C))2
.

Since lim
β→0

sin β
β = 1, we have λβ(t) > g(t)β2 if β is small enough and t > t0, where

g(t) =
c1e−2π(t+C)

2(1− e−2π(t+C))2
.

Now we are going to prove the main result of the section.
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Theorem 5.4. Let ϕ and ψ be complementary Young functions. If the
Bergman projection is bounded on the Orlicz space Lϕ(D,dA), then both ϕ and
ψ satisfy the ∆2-condition.

Proof. Suppose that the Bergman projection is bounded on the Orlicz space
Lϕ(D,dA). Then there is a constant C such that ‖Pf‖(ϕ) 6 C‖f‖(ϕ) for all f in
Lϕ(D,dA). In particular, for any β > 0 we have ‖Pχ1−β,β‖(ϕ) 6 C‖χ1−β,β‖(ϕ).
By the definitions of the Luxemberg norm, this means that∫

D

ϕ
( Pχ1−β,β

C‖χ1−β,β‖(ϕ)

)
dA(z) 6 1.

However, by the definitions of the distribution function and the integration, we
see that∫

D

ϕ
( Pχ1−β,β

C‖χ1−β,β‖(ϕ)

)
dA(z) =

1
π

∞∫
0

(Pχ1−β,β)∗(t)p
( t

C‖χ1−β,β‖ϕ

) dt
C‖χ1−β,β‖ϕ

,

where p(t) is the right derivative of the Young function ϕ. So we have
∞∫
0

(Pχ1−β,β)∗(t)p
( t

C‖χ1−β,β‖ϕ

) dt
C‖χ1−β,β‖ϕ

6 π.

Since p(t) is nondecreasing, for any t0 > 0

p
( t0
C‖χ1−β,β‖ϕ

) t0
C‖χ1−β,β‖ϕ

∞∫
t0

(Pχ1−β,β)∗(t) dt 6 πt0.

On the other hand,

ϕ
( t0
C‖χ1−β,β‖ϕ

)
6 p

( t0
C‖χ1−β,β‖ϕ

) t0
C‖χ1−β,β‖ϕ

.

Hence

ϕ
( t0
C‖χ1−β,β‖ϕ

) ∞∫
t0

(Pχ1−β,β)∗(t) dt 6 πt0.

It follows from Lemma 5.3 that

ϕ
( t0
C‖χ1−β,β‖ϕ

) ∞∫
t0

β2g(t) dt 6 πt0

or

ϕ
( t0
C‖χ1−β,β‖ϕ

)
6
C1t0
β2

.(5.1)

Combining (5.1) and (9.23) of [10] it follows that

ϕ
( t0
C‖χ1−β,β‖ϕ

)
6 Ct0ϕ

( 1
‖χ1−β,β‖ϕ

)
.



20 Yaohua Deng, Li Huang, Tao Zhao, and Dechao Zheng

Now let s = 1
‖χ1−β,β‖ϕ

; then s goes to ∞ as β goes to 0. If we choose t0 so that
a = t0/C = 2, then ϕ(2s) 6 Cϕ(s) for large enough s, which means that ϕ satisfies
the ∆2-condition.

Since we have shown above that ϕ satisfies the ∆2-condition, it follows from
Lemma 2.5 that the dual space of the Orlicz space Lϕ(D,dA) is the Orlicz space
Lψ(D,dA). On the other hand, since the adjoint operator P ∗ on Lψ(D,dA) of
P is also P , the boundedness of P on Lϕ(D,dA) implies that P is bounded on
Lψ(D,dA) as well. Using the same argument as above we can get that ψ(t) must
satisfy the ∆2-condition. The theorem is thus proved.

Since L1(D,dA) and L∞(D,dA) are nonreflexive, as an immediate conse-
quence of the theorem, we see that the Bergman projection P is not bounded on
L1(D,dA) or L∞(D,dA).

6. THE DUALS OF BERGMAN SPACES Lϕ
a

As we see in Section 1, we have

(6.1) f(z) =
∫
D

f(z)
(1− zw)2

dA(w)

for all f in L2
a. It is natural to ask whether the integral formula (6.1) holds for all

Bergman spaces Lϕa . The following theorem says that this is the case.

Theorem 6.1. Let ϕ be a Young function and z in D. Then

f(z) =
∫
D

f(z)
(1− zw)2

dA(w)

for all f in Lϕa .

Proof. By the definition of the Young function, it is clear that 1/t 6 p(t)/ϕ(t)
for all t > 0. This implies that

(6.2) t 6 Cϕ(t)

for t > t0 with a suitable constant C. So Lϕa is a subset of L1
a. Then (6.1) follows

from Proposition 1.7 in [1].

Now we are going to prove the converse of Theorem 5.4.

Theorem 6.2. Suppose that ϕ and ψ are a pair of complementary Young
functions. If both ϕ and ψ satisfy the ∆2-condition, then the Bergman projection
is bounded on the Orlicz space Lϕ(D,dA).

Proof. Since P is bounded on L2(D,dA) and of weak type (1, 1) by The-
orem 1.1, it follows from Theorem 4.3 that P is of mean strong type (ϕ,ϕ) if
1 < αϕ 6 αϕ < 2. In particular, it is bounded on Lϕ(D,dA).

On the other hand, the complementary Young function ψ of ϕ satisfies 2 <
αψ 6 αψ <∞ if 1 < αϕ 6 αϕ < 2.

Using the duality, we also have that P is bounded on Lϕ(D,dA) if 2 < αϕ 6
αϕ <∞.
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Now let 1 < αϕ 6 2 6 αϕ. Take ϕ0(t) = tαϕ−e with 1 < αϕ − e and ϕ1(t) =
tαϕ+e. It follows from the above argument and the remark following Definition 4.1
that P is of mean strong (ϕ0, ϕ0) and (ϕ1, ϕ1). So Theorem 4.3 tells us that P is
of mean strong type (ϕ,ϕ). By Lemma 4.2, P is bounded on Lϕ(D,dA).

Proof of Theorem 1.6. Suppose that l is a bounded linear functional on
Lϕa . By the Hahn-Banach theorem, l can be extended to a linear functional L on
the Orlicz space Lϕ(D,dA) so that ‖L‖ is equal to ‖l‖. Since the Orlicz space
Lϕ(D,dA) is reflexive, both ϕ and ψ satisfy the ∆2-condition by Lemma 2.6.
It follows from Lemma 2.5 that there is a function h in Lψ(D,dA) such that
L(f) =

∫
D
fh dA(z) for f in Lϕ(D,dA). Let g = P (h). We see from Theorem 6.2

that g is in Lψa and ‖g‖ψ 6 C‖h‖ψ. If f is in Lϕa , then∫
D

fg dA(z) =
∫
D

fP (h) dA(z) =
∫
D

P (f)hdA(z).

It follows from Theorem 6.1 that
∫
D
fg dA(z) =

∫
D
fhdA(z). So l(f) = L(f) =∫

D
fg dA(z) for f in Lϕa . It is clear, by the Hölder inequality, that ‖l‖ 6 ‖g‖ψ. On

the other hand, since ‖g‖ψ = ‖Ph‖ψ 6 C‖h‖ψ, by Lemma 2.5 we conclude that
‖l‖ is equivalent to ‖g‖ψ.

7. SOME CLASSICAL ESTIMATES

In this section we will establish several counterparts for the Bergman projection
of the well-known inequalities in the theory of the Hardy spaces.

In the classical theory, it is well-known that even if for 0 < p < 1 the
Hardy space Hp fails to be a Banach space, there is the Kolmogorov inequality
‖Hf‖p 6 cp‖f‖1 for all f in L1(∂D). Theorem 1.2 asserts that the Kolmogorov
inequality holds for the Bergman projection as well.

Proof of Theorem 1.2. It follows from Theorem 1.1 that∫
D

|Pf(z)|p dA(z) =

∞∫
0

psp−1(Pf)∗(s) ds 6 (Pf)∗(0)tp + p

∞∫
t

sp−1C
‖f‖1

s
ds

6 tp + C‖f‖1
p

1− p
tp−1

for all t > 0. Set g(t) = tp + C‖f‖1
p

1−p t
p−1.

It is easy to show that g(t) assumes the minimun value at t = C‖f‖1. So we
have ∫

D

|Pf(z)|p dA(z) 6
1

1− p
Cp‖f‖p1.

This gives ‖Pf‖p 6
(

1
1−p

)p
C‖f‖1.
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Before going to the proofs of Theorems 1.3 and 1.4, we recall that the Zyg-
mund space L log+ L is the set of complex valued measurable functions f on D
satisfying ∫

D

|f(z)| log+ |f(z)|dA(z) <∞

and the Zygmund space Lexp consists of all complex-valued functions f on D such
that for some constant k(f)∫

D

exp
(∣∣∣f(z)
k(f)

∣∣∣) dA(z) <∞.

We have mentioned before that the spaces L log+ L and Lexp are Orlicz spaces.

Proof of Theorem 1.3. From the integral formula (1.1) of the Bergman projec-
tion we see that Pf(z) =

∫
D
f(w)K(w, z) dA(w) is analytic on D if f is in L log+ L.

So we need only to show that the Bergman projection is a bounded map from
L log+ L into L1. To do this, let

ϕ(t) =
{ 0 if 0 6 t < 1,
t− 1 otherwise;

and ϕ1(t) = t log+ t, the Young function of the Orlicz space L log+ L. It is easy to
see that ϕ(t) is equivalent to the Young function of L1. Thus, by Theorems 13.2
and 13.3 of [10], it suffices to verify that there is a constant C such that ‖Pf‖ϕ 6
C‖f‖L log+ L. From the definition of the Bergman projection P and Theorem 1.1,
we know that P is bounded on L2(D,dA) and of weak type (1, 1), so a standard
argument as in the proof of Theorem 1.1 shows that

(Pf)∗(t) 6

c1
∞∫
t

f∗(s) ds

t
+
c2

t∫
0

f∗(s) ds

t2
.

Now, let p be the right derivative of ϕ. Multiplying both sides of the last inequality
by p(t) and then integrating with respect to t, we infer that

∞∫
0

(Pf)∗(2t)p(t) dt 6 c1

∞∫
1

∞∫
t

f∗(s)
t

dsdt+ c2

∞∫
1

t∫
0

f∗(s)
t2

dsdt = c1I1 + c2I2.

Since the domains of the integrals I1 and I2 are the trapezoids {(t, s) : 1 < t <
∞, t < s < ∞} and {(t, s) : 1 < t < ∞, 0 < s < t} respectively, interchanging the
order of the integrations, we obtain

I1 =

∞∫
1

f∗(s) log sds and I2 =

∞∫
1

f∗(s)
s

ds 6

∞∫
1

f∗(s) ds.

So
∞∫
1

(Pf)∗(2t)p(t) dt 6 C

∞∫
1

f∗(s)(1 + log s) ds.
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Since ϕ(t) satisfies the ∆2-condition, we have
∞∫
1

(Pf)∗(t)p(t) dt 6 C

∞∫
1

(Pf)∗(2t)p(t) dt.

Thus ‖Pf‖ϕ 6 C‖f‖L logL.
In addition, the Young function ϕ(t) is equivalent to the Young function

of L1(D,dA). So we conclude that there is a constant C such that ‖Pf‖1 6
C‖f‖L logL, which completes the proof of Theorem 1.3.

Proof of Theorem 1.4. As mentioned in Example (iii) in Section 2, the space
Lexp(D,dA) is the associate space of the Orlicz space L log+ L. Now the Young
functions of L1(D,dA) and L log+ L satisfy the ∆2-condition, so the dual spaces of
L1(D,dA) and L log+ L are respectively L∞(D,dA) and Lexp by Lemma 2.5. On
the other hand, since the Bergman projection P is self-adjoint, from Theorem 3.1
we conclude that P is a bounded map from Lexp(D,dA) to L1(D,dA).
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