# CRISS-CROSS COMMUTIVITY. II 

ROBIN HARTE

Communicated by Norberto Salinas


#### Abstract

Equality of non zero spectra of reversed products have multivariable analogues for "criss-cross commuting" tuples; some of these multivariable results in turn have single variable consequences.


Keywords: Criss-cross commutivity, spectrum, exactness, Kato invertibility.
MSC (2000): 47A10.

We recall ([8], [6]) that two $n$-tuples of operators $T \in \mathrm{BL}(X, Y)^{n}$ and $S \in$ $\mathrm{BL}(Y, X)^{n}$ criss-cross commute if
(0.1) $\quad T_{i} S_{k} T_{j}=T_{j} S_{k} T_{i} \quad$ and $\quad S_{i} T_{k} S_{j}=S_{j} T_{k} S_{i}$
for each $i, j, k=1,2, \ldots, n$; an immediate consequence is that each of the tuples

$$
\begin{align*}
& S \cdot T=\left(S_{1} T_{1}, S_{2} T_{2}, \ldots, S_{n} T_{n}\right) \in \operatorname{BL}(X, X)^{n} \quad \text { and } \\
& T \cdot S=\left(T_{1} S_{1}, T_{2} S_{2}, \ldots, T_{n} S_{n}\right) \in \operatorname{BL}(Y, Y)^{n} \tag{0.2}
\end{align*}
$$

is commutative. Li Shauchan has noticed ([8]) that if $S$ and $T$ criss-cross commute then the tuples $S \cdot T$ and $T \cdot S$ share the same non-zero Taylor spectrum, and we have offered ([6]) some break-down of the argument. In this note we continue these observations, in particular for the inclusions (9.1) of [7] which between them may well make up most of the Taylor spectrum of a general $n$-tuple. What is amusing is how this multivariable observation feeds back into the single variable situation, enabling us to add a footnote to the rather comprehensive discussion of Barnes ([1]). We also see how what we have called skew exactness ([5], [2]) is transmitted to reversed products with criss-cross commutivity.

In single variables we compare the non-zero spectrum of reversed products $S T$ and $T S$, which means in practise the analysis of the operators $I-S T$ and $I-T S$. For $n$-tuples $S \cdot T$ and $T \cdot S$ the "non-zero spectrum" consists of all complex $n$-tuples $\lambda=\left(\lambda_{1}, \lambda_{1}, \ldots, \lambda_{n}\right) \neq 0=(0,0, \ldots, 0)$ : we can without loss of generality always take $\lambda_{1}=1$.

Theorem 1. Suppose $\left(T_{1}, T_{j}, T_{k}\right)$ in $\operatorname{BL}(X, Y)$ and $\left(S_{1}, S_{j}, S_{k}\right)$ in $\operatorname{BL}(Y, X)$ criss-cross commute: then there is implication

$$
\begin{equation*}
\left(I-S_{1} T_{1}\right)^{-1}(0) \cap \bigcap_{j}\left(\lambda_{j} I-S_{j} T_{j}\right)^{-1}(0) \subseteq \sum_{k}\left(\lambda_{k} I-S_{k} T_{k}\right)(X) \tag{1.1}
\end{equation*}
$$

implies

$$
\begin{equation*}
\left(I-T_{1} S_{1}\right)^{-1}(0) \cap \bigcap_{j}\left(\lambda_{j} I-T_{j} S_{j}\right)^{-1}(0) \subseteq \sum_{k}\left(\lambda_{k} I-T_{k} S_{k}\right)(Y) \tag{1.2}
\end{equation*}
$$

and implication

$$
\begin{equation*}
\bigcap_{j}\left(\lambda_{j} I-S_{j} T_{j}\right)^{-1}(0) \subseteq\left(I-S_{1} T_{1}\right)(X)+\sum_{k}\left(\lambda_{k} I-S_{k} T_{k}\right)(X) \tag{1.3}
\end{equation*}
$$

implies

$$
\begin{equation*}
\bigcap_{j}\left(\lambda_{j} I-T_{j} S_{j}\right)^{-1}(0) \subseteq\left(I-T_{1} S_{1}\right)(Y)+\sum_{k}\left(\lambda_{k} I-T_{k} S_{k}\right)(X) . \tag{1.4}
\end{equation*}
$$

Proof. If (1.1) holds and if $y \in Y$ is in the left hand side of (1.2) then

$$
\begin{aligned}
S_{1} y & \in S_{1}\left(I-T_{1} S_{1}\right)^{-1}(0) \cap \bigcap_{j} S_{1}\left(\lambda_{j} I-T_{j} S_{j}\right)^{-1}(0) \\
& \subseteq\left(I-S_{1} T_{1}\right)^{-1}(0) \cap \bigcap_{j}\left(\lambda_{j} I-S_{j} T_{j}\right)^{-1}(0)
\end{aligned}
$$

using at this point the criss-cross commutivity assumption. Now applying (1.1) and the assumption about $y \in Y$,
$y=T_{1} S_{1} y \in T_{1} \sum_{k}\left(\lambda_{k} I-S_{k} T_{k}\right)(X) \subseteq \sum_{k}\left(\lambda_{k} I-T_{k} S_{k}\right) T_{1} X \subseteq \sum_{k}\left(\lambda_{k} I-T_{k} S_{k}\right) Y$, using again criss-cross commutivity. Thus (1.2) holds. If instead (1.3) holds and if $y \in Y$ is in the left hand side of (1.3) then

$$
\begin{aligned}
S_{1} y & \in S_{1} \bigcap_{j}\left(\lambda_{j} I-T_{j} S_{j}\right)^{-1}(0) \subseteq \bigcap_{j}\left(\lambda_{j} I-S_{j} T_{j}\right)^{-1}(0) \\
& \subseteq\left(I-S_{1} T_{1}\right) X+\sum_{k}\left(\lambda_{k} I-S_{k} T_{k}\right) X
\end{aligned}
$$

using again the criss-cross commutivity assumption and the condition (1.3). Thus $T_{1} S_{1} y \in T_{1}\left(I-S_{1} T_{1}\right) X+T_{1} \sum_{k}\left(\lambda_{k} I-S_{k} T_{k}\right) X \subseteq\left(I-T_{1} S_{1}\right) Y+\sum_{k}\left(\lambda_{k} I-T_{k} S_{k}\right) Y$, using criss-cross commutivity, and finally

$$
y=\left(I-T_{1} S_{1}\right) y+T_{1} S_{1} y .
$$

To apply this to the one variable environment we offer a lemma (cf. [1], page 1060):

Lemma 2. If $T \in \operatorname{BL}(X, X)$ and $S \in \mathrm{BL}(Y, Y)$ there are polynomials $p_{m}$ for each $m \in \mathbb{N}$ for which

$$
\begin{equation*}
(I-S T)^{m}=I-S p_{m}(T S) T \in \operatorname{BL}(X, X) \tag{2.1}
\end{equation*}
$$

with

$$
\begin{equation*}
S p_{m}(T S)=p_{m}(S T) S \in \mathrm{BL}(Y, X) \tag{2.2}
\end{equation*}
$$

Proof. Inductively

$$
\begin{equation*}
p_{1}(U)=I \quad \text { and } \quad p_{m+1}(U)=I+p_{m}(U)-U p_{m}(U) . \tag{2.3}
\end{equation*}
$$

Barnes ([1]) shows that if $T \in \operatorname{BL}(X, Y)$ and $S \in \operatorname{BL}(Y, X)$ then $I-S T \in$ $\mathrm{BL}(X, X)$ and $I-T S \in \mathrm{BL}(Y, Y)$ either both or neither have closed range (Theorem 5 of [1]), and either both or neither have generalized inverses (Theorem 4 of [1]). We here extend these observations to what we have called Kato invertibility ([3]) and Kato non-singularity ([4]), which consist of either the generalized invertibility or the closed range condition together with the Saphar condition ([3], [4]): $U \in \mathrm{BL}(X, X)$ is "hyperexact", or has the Saphar condition, iff

$$
\begin{equation*}
U^{-1}(0) \subseteq \bigcap_{n} U^{n}(X) \tag{2.4}
\end{equation*}
$$

equivalently

$$
\begin{equation*}
\bigcup_{n} U^{-n}(0) \subseteq U(X) \tag{2.5}
\end{equation*}
$$

Theorem 3. If $T \in \operatorname{BL}(X, Y)$ and $S \in \operatorname{BL}(Y, X)$ and $m \in \mathbb{N}$ then

$$
\begin{equation*}
(I-S T)^{-1}(0) \subseteq(I-S T)^{m} X \tag{3.1}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
(I-T S)^{-1}(0) \subseteq(I-T S)^{m} Y \tag{3.2}
\end{equation*}
$$

Proof. This is easy to see without recourse to criss-cross commutivity; however Lemma 2 shows that we can write, taking $R=p_{m}(T S) T$,

$$
(I-S T)^{m}=I-S R
$$

in such a way that

$$
\left(T_{1}, T_{2}\right)=(T, R) \quad \text { and } \quad\left(S_{1}, S_{2}\right)=(S, S)
$$

criss-cross commute. Indeed it is trivial that

$$
S_{1} T_{j} S_{2}=S_{2} T_{j} S_{1}, \quad j=1,2,
$$

and we notice

$$
T_{1} S_{j} T_{2}=T S R=T S p_{m}(T S) T=T p_{m}(S T) S T=R S T=T_{2} S_{j} T_{1}, \quad j=1,2
$$

Now Theorem 1 applies.
We recall that we have described a chain of operators $(S, T): X \rightarrow Y \rightarrow Z$ as skew exact ([5], Section 10.9 of [2]) if either

$$
\begin{equation*}
(S T)^{-1}(0)=T^{-1}(0), \quad \text { equivalently } S^{-1}(0) \cap T(X)=\{0\} \tag{3.3}
\end{equation*}
$$

or dually
$(S T) X \supseteq S(Y), \quad$ equivalently $S^{-1}(0)+T(X)=Y$.
Stronger "split" versions would be that there is $R$ for which respectively

$$
\begin{equation*}
T=R S T \tag{3.5}
\end{equation*}
$$

or

$$
\begin{equation*}
S=S T R \tag{3.6}
\end{equation*}
$$

Theorem 4. Suppose $\left(T_{1}, T_{j}, T_{k}\right)$ in $\mathrm{BL}(X, Y)$ and $\left(S_{1}, S_{j}, S_{k}\right)$ in $\operatorname{BL}(Y, X)$ criss-cross commute: then there is implication

$$
\begin{equation*}
\left(I-S_{1} T_{1}\right)^{-1}(0) \cap \bigcap_{j}\left(\lambda_{j} I-S_{j} T_{j}\right)^{-1}(0) \cap \sum_{k}\left(\lambda_{k} I-S_{k} T_{k}\right)(X)=\{0\} \tag{4.1}
\end{equation*}
$$

implies

$$
\begin{equation*}
\left(I-T_{1} S_{1}\right)^{-1}(0) \cap \bigcap_{j}\left(\lambda_{j} I-T_{j} S_{j}\right)^{-1}(0) \cap \sum_{k}\left(\lambda_{k} I-T_{k} S_{k}\right)(Y)=\{0\} \tag{4.2}
\end{equation*}
$$

and implication

$$
\begin{equation*}
\bigcap_{j}\left(\lambda_{j} I-S_{j} T_{j}\right)^{-1}(0)+\left(I-S_{1} T_{1}\right) X+\sum_{k}\left(\lambda_{k} I-S_{k} T_{k}\right) X=X \tag{4.3}
\end{equation*}
$$

implies

$$
\begin{equation*}
\bigcap_{j}\left(\lambda_{j} I-T_{j} S_{j}\right)^{-1}(0)+\left(I-T_{1} S_{1}\right) X+\sum_{k}\left(\lambda_{k} I-T_{k} S_{k}\right) X=X \tag{4.4}
\end{equation*}
$$

Proof. If (4.1) holds and if $y \in Y$ is in the left hand side of (4.2) then, using criss-cross commutivity, $S_{1} y \in X$ is in the left hand side of (4.1). Thus by (4.1) $S_{1} y=0$, by assumption $y=T_{1} S_{1} y=0$, giving (4.2). If (4.3) holds and if $y \in Y$ then with criss-cross commutivity $S_{1} y \in X$ is in the left hand side of (4.3): there are $x, z_{1}, z_{k} \in X$ for which

$$
S_{1} y=x+\left(I-S_{1} T_{1}\right) z_{1}+\sum_{k}\left(\lambda_{k} I-S_{k} T_{k}\right) z_{k} \quad \text { with } \lambda_{j} x=S_{j} T_{j} x
$$

By criss-cross commutivity it follows
$T_{1} S_{1} y=T_{1} x+\left(I-T_{1} S_{1}\right) T_{1} z_{1}+\sum_{k}\left(\lambda_{k} I-T_{k} S_{k}\right) T_{1} z_{k} \quad$ with $\lambda_{j} T_{1} x=T_{j} S_{j} T_{1} x$.
Therefore, $T_{1} S_{1} y$, and hence also $y=\left(I-T_{1} S_{1}\right) y+T_{1} S_{1} y$, is in the left hand side of (4.4).

The criss-cross commutivity cannot be omitted from the assumptions:
Example 5. If $X=Y=\ell_{2}$ and if $U$ and $V$ are the forward and the backward shifts then (3.5) holds and (3.4) fails with $T=I-V U$ and $S=I-U V$, while (3.6) holds and (3.3) fails with $T=I-U V$ and $S=I-V U$.

For the proof notice that $I-V U=0 \neq I-U V$.
Of course the pairs $\left(T_{1}, T_{2}\right)=(V, U)$ and $\left(S_{1}, S_{2}\right)=(U, V)$ do not criss-cross commute. We might also remark on the failure of a sort of dual to Theorem 4:

Example 6. If $U$ and $V$ are the forward and backward shifts on $X=Y=\ell_{2}$ then
(6.1) $\quad(V U)^{-1}(0) \cap(I-V U)(X)=\{0\}$ but $(U V)^{-1}(0) \cap(I-U V)(Y) \neq\{0\}$
and
(6.2) $\quad(V U) X+(I-V U)^{-1}(0)=X$ but $(U V)(Y)+(I-U V)^{-1}(0) \neq Y$.

The proof is clear.

## REFERENCES

1. B. Barnes, Common operator properties of the linear operators $R S$ and $S R$, Proc. Amer. Math. Soc. 126(1998), 1055-1061.
2. R. Harte, Invertibility and Singularity, Marcel Dekker, New York 1988.
3. R. Harte, Taylor exactness and Kato's jump, Proc. Amer. Math. Soc. 119 (1993), 793-801.
4. R. Harte, On Kato non-singularity, Proc. Amer. Math. Soc. $\mathbf{1 1 7}(1996), 107-114$.
5. R. Harte, Exactness plus skew exactness equals invertibility, Proc. Roy. Irish Acad. Sect. A 97(1997), 15-18.
6. R. Harte, On criss-cross commutativity. J. Operator Theory $\mathbf{3 7}(1997), 303-309$.
7. R. Harte, C. Hernandez, On the Taylor spectrum of left-right multipliers, Proc. Amer. Math. Soc. 126(1998), 397-404.
8. L. Shaukan, Taylor spectral invariance for criss-cross commuting pairs on Banach spaces, Proc. Amer. Math. Soc. 124(1996), 2069-2071.

ROBIN HARTE
School of Mathematics
Trinity College
Dublin 2
IRELAND
E-mail: rharte@maths.tcd.ie

Received November 21, 1998; revised February 2, 1999.

