THE EXT CLASS OF AN APPROXIMATELY INNER AUTOMORPHISM. II

A. KISHIMOTO and A. KUMJIAN

Communicated by Norberto Salinas

Abstract

Let A be a simple unital AT algebra of real rank zero and $\operatorname{Inn}(A)$ the group of inner automorphisms of A. In the previous paper we have shown that the natural map of the group $\overline{\operatorname{Inn}}(A)$ of approximately inner automorphisms into $\operatorname{Ext}\left(\mathrm{K}_{1}(A), \mathrm{K}_{0}(A)\right) \oplus \operatorname{Ext}\left(\mathrm{K}_{0}(A), \mathrm{K}_{1}(A)\right)$ is surjective; the kernel of this map includes the subgroup of automorphisms which are homotopic to $\operatorname{Inn}(A)$. In this paper we consider the quotient of $\overline{\operatorname{Inn}}(A)$ by the smaller normal subgroup $\operatorname{AInn}(A)$ which consists of asymptotically inner automorphisms and describe it as $\operatorname{OrderExt}\left(\mathrm{K}_{1}(A), \mathrm{K}_{0}(A)\right) \oplus \operatorname{Ext}\left(\mathrm{K}_{0}(A), \mathrm{K}_{1}(A)\right)$, where $\operatorname{OrderExt}\left(\mathrm{K}_{1}(A), \mathrm{K}_{0}(A)\right)$ is a kind of extension group which takes into account the fact that $\mathrm{K}_{0}(A)$ is an ordered group and has the usual Ext as a quotient.

Keywords: C^{*}-algebra, automorphism, K-theory, extension, trace, asymptotically inner, real rank zero.
MSC (2000): Primary 46L40; Secondary 46L80, 46L35.

1. INTRODUCTION

An automorphism α of a unital C^{*}-algebra A is called inner if there is a unitary $u \in A$ such that $\alpha(a)=\operatorname{Ad} u(a)=u a u^{*}, a \in A$. We denote by $\operatorname{Inn}(A)$ the group of inner automorphisms of A, which is a normal subgroup of the group $\operatorname{Aut}(A)$ of all automorphisms of A. The topology on $\operatorname{Aut}(A)$ is determined by pointwise convergence on A. The closure $\overline{\operatorname{Inn}}(A)$ of $\operatorname{Inn}(A)$ in $\operatorname{Aut}(A)$ is, by definition, the group of approximately inner automorphisms.

There are two distinguished normal subgroups of $\overline{\operatorname{Inn}}(A)$ containing $\operatorname{Inn}(A)$. One is the group $\operatorname{HInn}(A)$ of automorphisms which are homotopic to $\operatorname{Inn}(A)$, i.e., $\alpha \in \operatorname{HInn}(A)$ if and only if there is a continuous map $\alpha .:[0,1] \rightarrow \overline{\overline{\operatorname{Inn}}(A) \text { such }}$ that

$$
\alpha_{0} \in \operatorname{Inn}(A), \quad \alpha_{1}=\alpha
$$

The other is the group $\operatorname{AInn}(A)$ of asymptotically inner automorphisms, i.e., $\alpha \in$ $\operatorname{AInn}(A)$ if and only if there is a continuous map $\alpha .:[0,1] \rightarrow \overline{\operatorname{Inn}}(A)$ and a continuous map $u .:[0,1) \rightarrow U(A)$ with $U(A)$ the unitary group of A such that

$$
\alpha_{t}=\operatorname{Ad} u_{t} \quad \text { for } t \in[0,1), \alpha_{1}=\alpha
$$

It is easy to show that they are indeed normal subgroups and that

$$
\operatorname{Inn}(A) \subset \operatorname{AInn}(A) \subset \operatorname{HInn}(A) \subset \overline{\operatorname{Inn}}(A)
$$

In this paper we describe the quotient

$$
\overline{\operatorname{Inn}}(A) / \operatorname{AInn}(A)
$$

in terms of K-theoretic data when A is a simple unital AT algebra of real rank zero.

Recall that a unital C^{*}-algebra A is said to be a unital AT algebra if it is expressible as the inductive limit of T algebras, i.e., finite direct sums of matrix algebras over $C(\mathbb{T})$, with unital embeddings. Note that a unital AT algebra A is stably finite and we denote by T_{A} the convex set of tracial states of A.

Let A be a simple unital AT algebra of real rank zero and $\alpha \in \overline{\operatorname{Inn}}(A)$. (In this case $\alpha \in \operatorname{Aut}(A)$ belongs to $\overline{\operatorname{Inn}}(A)$ if and only if $\alpha_{*}=\mathrm{id}$ on $\mathrm{K}_{*}(A)$ ([7]).) The mapping torus of α is the C^{*}-algebra:

$$
M_{\alpha}=\{x \in C[0,1] \otimes A ; \alpha(x(0))=x(1)\}
$$

The suspension of $A, \mathrm{~S} A$, is identified with the ideal of M_{α} :

$$
\mathrm{S} A=\{x \in C[0,1] \otimes A ; x(0)=0=x(1)\}
$$

From the short exact sequence:

$$
0 \longrightarrow \mathrm{~S} A \longrightarrow M_{\alpha} \longrightarrow A \longrightarrow 0
$$

one obtains the usual six-term exact sequence in K-theory, which, since $\alpha \in \overline{\operatorname{Inn}}(A)$, splits into two short exact sequences:

$$
0 \longrightarrow \mathrm{~K}_{i}(A) \longrightarrow \mathrm{K}_{i+1}\left(M_{\alpha}\right) \longrightarrow \mathrm{K}_{i+1}(A) \longrightarrow 0
$$

for $i=0,1$, where $\mathrm{K}_{i+1}(\mathrm{~S} A)$ has been identified with $\mathrm{K}_{i}(A)$. Let $\eta_{i}(\alpha)$ denote the class of this sequence in $\operatorname{Ext}\left(\mathrm{K}_{i+1}, \mathrm{~K}_{i}(A)\right)$ and let η denote the map of $\overline{\operatorname{Inn}}(A)$ into

$$
\bigoplus_{i=0}^{1} \operatorname{Ext}\left(\mathrm{~K}_{i+1}(A), \mathrm{K}_{i}(A)\right)
$$

defined by $\alpha \mapsto\left(\eta_{0}(\alpha), \eta_{1}(\alpha)\right)$, which is a group homomorphism. (By using KK theory and the universal coefficient theorem ([13]), $\eta(\alpha)$ is also described as $\operatorname{KK}(\alpha)-$ KK(id).) In the previous paper ([11]) we showed that η induces a surjective homomorphism:

$$
\overline{\operatorname{Inn}}(A) / \operatorname{HInn}(A) \longrightarrow \operatorname{Ext}\left(\mathrm{K}_{1}(A), \mathrm{K}_{0}(A)\right) \oplus \operatorname{Ext}\left(\mathrm{K}_{0}(A), \mathrm{K}_{1}(A)\right)
$$

To state the main result of this paper we proceed to describe a natural map R_{α} of $\mathrm{K}_{1}\left(M_{\alpha}\right)$ into $\operatorname{Aff}\left(T_{A}\right)$, which is the real Banach space of affine continuous functions on the compact tracial state space T_{A} of A. Note that, since we assume that A has real rank zero, T_{A} is isomorphic to the state space of $\mathrm{K}_{0}(A)$ ([1]). If
$u \in M_{\alpha}$ is a unitary given as a piecewise smooth function of $[0,1]$ into A, then $R_{\alpha}([u])$ is defined by

$$
R_{\alpha}([u])(\tau)=\frac{1}{2 \pi \mathrm{i}} \int_{0}^{1} \tau\left(\dot{u}(t) u(t)^{*}\right) \mathrm{d} t
$$

for $\tau \in T_{A}$. The map R_{α} is a group homomorphism of $\mathrm{K}_{1}\left(M_{\alpha}\right)$ into $\operatorname{Aff}\left(T_{A}\right)$ and extends the natural map D of $\mathrm{K}_{0}(A)$ into $\operatorname{Aff}\left(T_{A}\right)$ when $\mathrm{K}_{0}(A)$ is regarded as a subgroup of $\mathrm{K}_{1}\left(M_{\alpha}\right)$.

We take the set of pairs (E, R) where E is an abelian group such that

$$
0 \longrightarrow \mathrm{~K}_{0}(A) \xrightarrow{\iota} E \xrightarrow{q} \mathrm{~K}_{1}(A) \longrightarrow 0
$$

and R is a homomorphism:

$$
R: E \longrightarrow \operatorname{Aff}\left(T_{A}\right)
$$

such that $R \circ \iota=D$. We can form a group $\operatorname{OrderExt}\left(\mathrm{K}_{1}(A), \mathrm{K}_{0}(A)\right)$ from this set in much the same way as we do $\operatorname{Ext}\left(\mathrm{K}_{1}(A), \mathrm{K}_{0}(A)\right)$ from the set of E alone. From the previous paragraph we can associate $\widetilde{\eta}_{0}(\alpha) \in \operatorname{OrderExt}\left(\mathrm{K}_{1}(A), \mathrm{K}_{0}(A)\right)$ with each $\alpha \in \overline{\operatorname{Inn}}(A)$ and show that $\widetilde{\eta}_{0}$ is a homomorphism. Our main result is

$$
\overline{\operatorname{Inn}}(A) / \operatorname{AInn}(A) \cong \operatorname{OrderExt}\left(\mathrm{K}_{1}(A), \mathrm{K}_{0}(A)\right) \oplus \operatorname{Ext}\left(\mathrm{K}_{0}(A), \mathrm{K}_{1}(A)\right)
$$

where the isomorphism is induced by the map $\alpha \mapsto\left(\widetilde{\eta}_{0}(\alpha), \eta_{1}(\alpha)\right)$ (see Theorem 4.4).

In Section 2 we will define $\operatorname{OrderExt}\left(\mathrm{K}_{1}(A), \mathrm{K}_{0}(A)\right)$ and the homomorphism

$$
\widetilde{\eta}: \overline{\overline{\operatorname{Inn}}}(A) \rightarrow \operatorname{OrderExt}\left(\mathrm{K}_{1}(A), \mathrm{K}_{0}(A)\right) \oplus \operatorname{Ext}\left(\mathrm{K}_{0}(A), \mathrm{K}_{1}(A)\right)
$$

in detail and in Section 3 we will show that

$$
\operatorname{ker} \widetilde{\eta}=\operatorname{AInn}(A) \text {. }
$$

In Section 4 we will show that $\tilde{\eta}$ is surjective; thus proving the main result.

2. ORDEREXT

Let A be a simple unital C^{*}-algebra and let T_{A} be the set of tracial states of A. Let $\alpha \in \overline{\operatorname{Inn}}(A)$ and let M_{α} be the mapping torus of α. For a unitary $u \in M_{\alpha}$ such that $t \mapsto u(t)$ is (piecewise) C^{1} and for $\tau \in T_{A}$, we define

$$
\tau(u)=\frac{1}{2 \pi \mathrm{i}} \int_{0}^{1} \tau\left(\dot{u}(t) u(t)^{*}\right) \mathrm{d} t .
$$

In [16] this is denoted by $\widetilde{\Delta}_{\tau}(u)$. Since $\tau\left(\dot{u}(t) u(t)^{*}\right)=-\tau\left(u(t) \dot{u}(t)^{*}\right)$, it follows that $\tau(u) \in \mathbb{R}$. If $u, v \in M_{\alpha}$ are C^{1}-unitaries, we obtain that

$$
\tau(u v)=\tau(u)+\tau(v) .
$$

If $h=h^{*} \in M_{\alpha}$ is C^{1}, then we have for $u=\mathrm{e}^{2 \pi \mathrm{i} h}$

$$
\tau(u)=\int_{0}^{1} \tau(\dot{h}(t)) \mathrm{d} t=\tau(h(1))-\tau(h(0))=0
$$

where we have used that $\tau \circ \alpha=\tau$, which follows since $\alpha \in \overline{\operatorname{Inn}}(A)$. Thus it follows that $\tau(u)$ is constant on each connected component of the C^{1}-unitary group of M_{α}. By taking the matrix algebras over M_{α} and using the density of C^{1}-unitaries in the unitary group, we obtain a homomorphism $\tau: \mathrm{K}_{1}\left(M_{\alpha}\right) \rightarrow \mathbb{R}$ by $[u] \mapsto \tau(u)$ for each $\tau \in T_{A}$. Since $\tau \in T_{A} \mapsto \tau(u)$ is affine and continuous, we thus obtain:

Lemma 2.1. For any $\alpha \in \overline{\operatorname{Inn}}(A)$ there exists a homomorphism

$$
R_{\alpha}: \mathrm{K}_{1}\left(M_{\alpha}\right) \longrightarrow \operatorname{Aff}\left(T_{A}\right)
$$

defined by $R_{\alpha}([u])(\tau)=\tau(u)$, which is called the rotation map for α.
Since $\alpha_{*}=\operatorname{id}$ on $\mathrm{K}_{i}(A)$, we have the short exact sequence:

$$
0 \longrightarrow \mathrm{~K}_{0}(A) \xrightarrow{\iota_{*}} \mathrm{~K}_{1}\left(M_{\alpha}\right) \xrightarrow{q_{*}} \mathrm{~K}_{1}(A) \longrightarrow 0
$$

from the short exact sequence of C^{*}-algebras:

$$
0 \longrightarrow \mathrm{~S} A \xrightarrow{\iota} M_{\alpha} \xrightarrow{q} A \longrightarrow 0
$$

If p is a projection in A, we have that $\iota_{*}([p])=[u]$ where $u \in M_{\alpha}$ is the unitary defined by

$$
u(t)=\mathrm{e}^{2 \pi \mathrm{i} t} p+1-p
$$

Thus we obtain:
Lemma 2.2. For $\alpha \in \overline{\operatorname{Inn}}(A)$ the following diagram commutes:

where D is the homomorphism of $\mathrm{K}_{0}(A)$ into $\operatorname{Aff}\left(T_{A}\right)$ defined by $D([p])(\tau)=\tau(p)$, which is called the dimension map for A.

Let $G_{i}=\mathrm{K}_{i}(A)$. If

$$
0 \longrightarrow G_{0} \xrightarrow{\iota} E \xrightarrow{q} G_{1} \longrightarrow 0
$$

is exact, we denote this short exact sequence by E, the same symbol at the middle. Let R be a homomorphism of E into $\operatorname{Aff}\left(T_{A}\right)$ such that $R \circ \iota=D$. We consider the set of all pairs (E, R), which we call order-extensions for $\left(G_{1}, G_{0}\right)$.

If $\left(E^{\prime}, R^{\prime}\right)$ is another order-extension, we say that (E, R) and $\left(E^{\prime}, R^{\prime}\right)$ are isomorphic if there is an isomorphism φ of E into E^{\prime} such that $R=R^{\prime} \circ \varphi$ and

$$
\begin{array}{cccccccc}
0 & \longrightarrow & G_{0} & \xrightarrow{\iota} & E & \xrightarrow{q} & G_{1} & \longrightarrow
\end{array} 00
$$

is commutative. Note that if (E, R) and $\left(E^{\prime}, R^{\prime}\right)$ are isomorphic, E and E^{\prime} are isomorphic as extensions. We define an addition for such pairs by extending that for extensions as follows. If (E, R) and $\left(E^{\prime}, R^{\prime}\right)$ are given, define

$$
\begin{aligned}
E^{\prime \prime} & =\left\{(x, y) \in E \oplus E^{\prime} \mid q(x)=q^{\prime}(y)\right\} /\left\{\left(\iota(a),-\iota^{\prime}(a)\right) \mid a \in G_{0}\right\} \\
\iota^{\prime \prime} & \left.: G_{0} \longrightarrow E^{\prime \prime}, \quad a \longmapsto[\iota(a), 0)\right] \\
q^{\prime \prime} & : E^{\prime \prime} \longrightarrow G_{1}, \quad[(x, y)] \longmapsto q(x) \\
R^{\prime \prime} & : E^{\prime \prime} \longrightarrow \operatorname{Aff}\left(T_{A}\right), \quad[(x, y)] \longmapsto R(x)+R^{\prime}(y) .
\end{aligned}
$$

It is easy to show that these objects are well defined,

$$
0 \longrightarrow G_{0} \xrightarrow{\iota^{\prime \prime}} E^{\prime \prime} \xrightarrow{q^{\prime \prime}} G_{1} \longrightarrow 0
$$

is exact, and $R^{\prime \prime} \circ \iota^{\prime \prime}=D$. The sum of (E, R) and $\left(E^{\prime}, R^{\prime}\right)$ is defined to be $\left(E^{\prime \prime}, R^{\prime \prime}\right)$. Again it is easy to show that the isomorphism classes of those orderextensions form an abelian semigroup. Then the identity element for this semigroup is given by the isomorphism class $\left[\left(E_{0}, R_{0}\right)\right]$ of the trivial order-extension $\left(E_{0}, R_{0}\right)$ given by:

$$
\begin{aligned}
E_{0} & =G_{0} \oplus G_{1} \\
\iota_{0} & : G_{0} \longrightarrow E_{0}, \quad a \longmapsto(a, 0) \\
q_{0} & : E_{0} \longrightarrow G_{1}, \quad(a, b) \longmapsto b \\
R_{0} & : E_{0} \longrightarrow \operatorname{Aff}\left(T_{A}\right), \quad(a, b) \longmapsto D(a) .
\end{aligned}
$$

The inverse of $[(E, R)]$ is given by $\left[\left(E^{\prime}, R^{\prime}\right)\right]$ where

$$
E^{\prime}=E, \quad \iota^{\prime}=-\iota, \quad q^{\prime}=q, \quad R^{\prime}=-R .
$$

Thus this semigroup is a group, which we denote by $\operatorname{OrderExt}\left(G_{1}, G_{0}\right)$. Note that $\operatorname{Order} \operatorname{Ext}\left(G_{1}, G_{0}\right)$ depends also on the dimension map $D: G_{0} \rightarrow \operatorname{Aff}\left(T_{A}\right)$.

Lemma 2.3. The map

$$
\begin{aligned}
\widetilde{\eta}_{0}: \overline{\overline{\operatorname{Inn}}}(A) & \longrightarrow \operatorname{OrderExt}\left(\mathrm{K}_{1}(A), \mathrm{K}_{0}(A)\right) \\
\alpha & \longmapsto\left[\left(\mathrm{K}_{1}\left(M_{\alpha}\right), R_{\alpha}\right)\right]
\end{aligned}
$$

is a homomorphism.
Proof. By Lemma 2.2, $\widetilde{\eta}_{0}$ is well-defined.
Let $\alpha, \beta \in \overline{\operatorname{Inn}}(A)$ and (E, R) be the sum of $\left(\mathrm{K}_{1}\left(M_{\alpha}\right), R_{\alpha}\right)$ and $\left(\mathrm{K}_{1}\left(M_{\beta}\right), R_{\beta}\right)$. We have to show that (E, R) is isomorphic to $\left(\mathrm{K}_{1}\left(M_{\alpha \beta}\right), R_{\alpha \beta}\right)$.

Let $g \in \mathrm{~K}_{1}\left(M_{\alpha}\right)$ and $h \in \mathrm{~K}_{1}\left(M_{\beta}\right)$ such that $q(g)=q(h)$. Let $v \in M_{n} \otimes M_{\alpha}$ and $w \in M_{n} \otimes M_{\beta}$ be unitaries such that $[v]=g,[w]=h$, and $v(0)=w(0)$. Then we define a unitary $u \in M_{n} \otimes M_{\alpha \beta}$ by

$$
u(t)= \begin{cases}v(2 t) & 0 \leqslant t \leqslant 1 / 2 \\ \alpha(w(2 t-1)) & 1 / 2 \leqslant t \leqslant 1\end{cases}
$$

Then $[u] \in \mathrm{K}_{1}\left(M_{\alpha \beta}\right)$ depends only on $[v]$ and $[w]$. Thus we have a map φ from

$$
\left\{(g, h) \in \mathrm{K}_{1}\left(M_{\alpha}\right) \oplus \mathrm{K}_{1}\left(M_{\beta}\right) \mid q(g)=q(h)\right\}
$$

to $\mathrm{K}_{1}\left(M_{\alpha \beta}\right)$. It is easy to show that φ is a surjective homomorphism and the kernel of φ equals $\left\{(\iota(a),-\iota(a)) \mid a \in \mathrm{~K}_{0}(A)\right\}$. Hence φ induces an isomorphism $\phi: E \rightarrow \mathrm{~K}_{1}\left(M_{\alpha \beta}\right)$. Since

$$
R_{\alpha \beta}([u])=R_{\alpha}([v])+R_{\beta}([w])
$$

for the above $u,(E, R)$ is isomorphic to $\left(\mathrm{K}_{1}\left(M_{\alpha \beta}\right), R_{\alpha \beta}\right)$.

Lemma 2.4. If (E, R) is an order-extension for $\left(G_{1}, G_{0}\right)$ and Range $R=$ Range D, then

$$
0 \longrightarrow \operatorname{ker} D \xrightarrow{\iota_{*} \mid \operatorname{ker} D} \operatorname{ker} R \xrightarrow{q_{*} \mid \operatorname{ker} R} G_{1} \longrightarrow 0
$$

is exact.
Proof. It is obvious that the above sequence is well-defined, the compositions of two consecutive maps vanish, and it is exact at ker D. Let $g \in \operatorname{ker} R$ with $q_{*}(g)=$ 0 . Then there is a $g^{\prime} \in G_{0}$ such that $\iota_{*}\left(g^{\prime}\right)=g$. But, since $D\left(g^{\prime}\right)=R(g)=0$, we have that $g^{\prime} \in \operatorname{ker} D$, which implies that it is exact at ker R. Let $g \in G_{1}$. Then there is a $g^{\prime} \in E$ with $q_{*}\left(g^{\prime}\right)=g$ and there must be a $g^{\prime \prime} \in G_{0}$ such that $D\left(g^{\prime \prime}\right)=R\left(g^{\prime}\right)$. Since $q_{*}\left(g^{\prime}-\iota_{*}\left(g^{\prime \prime}\right)\right)=g$ and $R\left(g^{\prime}-\iota_{*}\left(g^{\prime \prime}\right)\right)=0$, we have that $g \in \operatorname{Range}\left(q_{*} \mid \operatorname{ker} R\right)$.

Proposition 2.5. If (E, R) is an order-extension for $\left(G_{1}, G_{0}\right)$, the following conditions are equivalent:
(i) $[(E, R)]=0$;
(ii) (a) $0 \rightarrow G_{0} \rightarrow E \rightarrow G_{1} \rightarrow 0$ is trivial,
(b) Range $R=$ Range D,
(c) $0 \rightarrow \operatorname{ker} D \rightarrow \operatorname{ker} R \rightarrow G_{1} \rightarrow 0$ is trivial;
(iii) $0 \rightarrow \operatorname{ker} D \rightarrow \operatorname{ker} R \rightarrow G_{1} \rightarrow 0$ is exact and trivial.

Proof. If $\left(E_{0}, R_{0}\right)$ is the trivial order-extension, it satisfies (ii). Any orderextension isomorphic to (E_{0}, R_{0}) also satisfies (ii). Thus (i) implies (ii).

Suppose that (E, R) satisfies (ii). Note that the sequence in (c) is exact by Lemma 2.4. By (c) there is a homomorphism ν of G_{1} into ker R such that $q \circ \nu=$ id. Hence $E=\iota\left(G_{0}\right) \oplus \nu\left(G_{1}\right)$ and R is given by

$$
\iota\left(G_{0}\right) \oplus \nu\left(G_{1}\right) \rightarrow \operatorname{Aff}\left(T_{A}\right), \quad a+b \mapsto D(a)
$$

Thus (E, R) is isomorphic to the trivial order-extension, i.e., (ii) implies (i).
It follows from Lemma 2.4 that (ii) implies (iii). The converse also follows from the arguments in the previous paragraph.

Remark 2.6. By the Thom isomorphism ([5]), $\mathrm{K}_{i}\left(M_{\alpha}\right)$ is isomorphic to $\mathrm{K}_{i+1}\left(A \times_{\alpha} \mathbb{Z}\right)$ as an abelian group. By extending $\tau \in T_{A}$ to a tracial state of $A \times_{\alpha} \mathbb{Z}$ and defining a natural map $D_{\alpha}: \mathrm{K}_{0}\left(A \times_{\alpha} \mathbb{Z}\right) \rightarrow \operatorname{Aff}\left(T_{A}\right)$, it follows that $\left(\mathrm{K}_{1}\left(M_{\alpha}\right), R_{\alpha}\right)$ is isomorphic to $\left(\mathrm{K}_{0}\left(A \times_{\alpha} \mathbb{Z}\right), D_{\alpha}\right)([5])$. See also [6], [12], [1].

3. ASYMPTOTICALLY INNER AUTOMORPHISMS

From now on we will assume that the C^{*}-algebra A is a simple unital AT algebra of real rank zero. In this case by Elliott's result ([7]) A is determined by $\left(\mathrm{K}_{0}(A),[1], \mathrm{K}_{1}(A)\right)$ up to isomorphism, where $\mathrm{K}_{0}(A)$ is a dimension group, $\mathrm{K}_{1}(A)$ is a torsion-free abelian group, and $[1] \in \mathrm{K}_{0}(A)^{+}$. Note that the tracial state space T_{A} of A is identified with the compact convex set of order-preserving homomorphisms $f: \mathrm{K}_{0}(A) \rightarrow \mathbb{R}$ with $f([1])=1$.

Let $\alpha \in \overline{\operatorname{Inn}}(A)$. We recall that α is asymptotically inner if there exists a continuous map $v:[0,1) \rightarrow U(A)$ such that

$$
\alpha(a)=\lim _{t \rightarrow 1} \operatorname{Ad} v_{t}(a), \quad a \in A
$$

We denote by $\operatorname{AInn}(A)$ the group of asymptotically inner automorphisms of A. We also recall that $\widetilde{\eta}$ is the homomorphism of $\overline{\operatorname{Inn}}(A)$ into

$$
\operatorname{OrderExt}\left(\mathrm{K}_{1}(A), \mathrm{K}_{0}(A)\right) \oplus \operatorname{Ext}\left(\mathrm{K}_{0}(A), \mathrm{K}_{1}(A)\right)
$$

defined by $\alpha \mapsto \widetilde{\eta}_{0}(\alpha) \oplus \eta_{1}(\alpha)$.
Before stating the main theorem of this section, let us recall the notion of Bott element for pairs of almost commuting unitaries in a unital C^{*}-algebra A ([10], [11]): Given $u, v \in U(A)$ with $[u, v] \equiv u v-v u \approx 0$, we associate $B(u, v) \in$ $\mathrm{K}_{0}(A)$, which is the equivalence class of a projection close to the image of the Bott projection in $M_{2} \otimes C\left(\mathbb{T}^{2}\right)$ under the quasi-homomorphism from $M_{2} \otimes C\left(\mathbb{T}^{2}\right)$ into $M_{2} \otimes A$ mapping the two canonical unitaries of $C\left(\mathbb{T}^{2}\right)$ into u, v respectively. If $A=M_{n}$, this can also be given by

$$
B(u, v)=\frac{1}{2 \pi \mathrm{i}} \operatorname{Tr}\left(\log v u v^{*} u^{*}\right) \in \mathbb{Z}=\mathrm{K}_{0}\left(M_{n}\right)
$$

where \log is the logarithm with values in $\{z ; \operatorname{Im}(z) \in(-\pi, \pi)\}$. (That $B(u, v)$ is an integer follows from the fact that the determinant of $v u v^{*} u^{*}$ is 1.) We note that $B(u, v)$ is invariant under homotopy of pairs of almost commuting unitaries and that $B(u, v)=-B\left(u^{*}, v\right)=-B(v, u), B\left(u, v_{1} v_{2}\right)=B\left(u, v_{1}\right)+B\left(u, v_{2}\right)$. We quote [4] for another characterization of the Bott element, which is used to prove the following result we will need later: If A is a simple unital AT algebra of real rank zero and $u, v \in U(A)$ satisfy that $[u, v] \approx 0, B(u, v)=0, \operatorname{Sp}(v)$ is almost dense in \mathbb{T}, and $[u]=0$, then there is a path $u_{t}, t \in[0,1]$ in $U(A)$ such that $\left[u_{t}, v\right] \approx 0$, $u_{0}=1$, and $u_{1}=u$.

Theorem 3.1. Let A be a simple unital AT algebra of real rank zero and let $\alpha \in \overline{\operatorname{Inn}}(A)$. Then the following conditions are equivalent:
(i) $\widetilde{\eta}(\alpha)=0$,
(ii) $\alpha \in \operatorname{AInn}(A)$.

Proof of (ii) \Rightarrow (i). Since η is homotopy invariant, $\eta(\alpha)=\left(\eta_{0}(\alpha), \eta_{1}(\alpha)\right)=0$ in $\operatorname{Ext}\left(\mathrm{K}_{1}(A), \mathrm{K}_{0}(A)\right) \oplus \operatorname{Ext}\left(\mathrm{K}_{0}(A), \mathrm{K}_{1}(A)\right)$.

We may suppose that we have a piecewise C^{1} map v of $[0,1)$ into $U(A)$ such that

$$
\alpha(a)=\lim _{t \rightarrow 1} \operatorname{Ad} v_{t}(a), \quad a \in A
$$

Let $u \in U(A)$. We define a unitary $\widehat{u} \in M_{\alpha} \otimes M_{2}$ by composing the following paths:

$$
[0,1] \ni t \mapsto R_{t}\left(\begin{array}{cc}
1 & 0 \\
0 & v_{0}
\end{array}\right) R_{t}^{-1}\left(\begin{array}{cc}
u & 0 \\
0 & 1
\end{array}\right) R_{t}\left(\begin{array}{cc}
1 & 0 \\
0 & v_{0}^{*}
\end{array}\right) R_{t}^{-1}
$$

and

$$
[0,1) \ni t \mapsto\left(\begin{array}{cc}
v_{t} u v_{t}^{*} & 0 \\
0 & 1
\end{array}\right)
$$

with

$$
1 \mapsto\left(\begin{array}{cc}
\alpha(u) & 0 \\
0 & 1
\end{array}\right)
$$

where

$$
R_{t}=\left(\begin{array}{cc}
\cos \frac{\pi}{2} t & -\sin \frac{\pi}{2} t \\
\sin \frac{\pi}{2} t & \cos \frac{\pi}{2} t
\end{array}\right)
$$

Then it follows that $\tau\left(\dot{\widehat{u}}(t) \widehat{u}(t)^{*}\right)=0$ for $\tau \in T_{A}$. In particular, $R_{\alpha}([\widehat{u}])=0$. Since $q_{*}([\widehat{u}])=[u]$, the map $[u] \mapsto[\widehat{u}]$ defines a homomorphism φ of $\mathrm{K}_{1}(A)$ into $\operatorname{ker} R_{\alpha}$ such that $q_{*} \circ \varphi=\mathrm{id}$. This implies that

$$
0 \longrightarrow \operatorname{ker} D \longrightarrow \operatorname{ker} R_{\alpha} \longrightarrow \mathrm{K}_{1}(A) \longrightarrow 0
$$

is exact and trivial, and thus concludes the proof by Proposition 2.5.
The rest of this section will be devoted to the proof of (i) \Rightarrow (ii).
Let $\left\{A_{n}\right\}$ be an increasing sequence of T subalgebras of A such that $A_{1} \ni 1$ and $A=\bigcup_{n=1}^{\infty} A_{n}$. We express A_{n} as

$$
A_{n}=\bigoplus_{i=1}^{k_{n}} B_{n, i} \otimes C(\mathbb{T})
$$

where $B_{n, i}$ is isomorphic to the full matrix algebra $M_{[n, i]}$. By identifying $\mathrm{K}_{i}(A)$ with $\mathbb{Z}^{k_{n}}$ in a natural way we obtain a homomorphism $\mathrm{K}_{i}\left(A_{n}\right)$ into $\mathrm{K}_{i}\left(A_{n+1}\right)$ as the multiplication of a matrix χ_{n}^{i}. We always assume that $\chi_{n}^{0}(i, j)$ is big and $\left|\chi_{n}^{1}(i, j)\right| / \chi_{n}^{0}(i, j)$ is small compared with 1 and that the embedding of A_{n} into A_{n+1} is in standard form, i.e., $B_{n}=\bigoplus_{i=1}^{k_{n}} B_{n i} \subset B_{n+1}$ and the canonical unitary z_{n} of $1 \otimes C(\mathbb{T}) \subset A_{n}$ in $B_{n+1} \cap B_{n}^{\prime} \otimes C(\mathbb{T})$ is a direct sum of elements of the form:

$$
\left(\begin{array}{cccc}
0 & & & z_{n+1}^{L} \\
1 & \cdot & & \\
& \ddots & \ddots & \\
& & 1 & 0
\end{array}\right)
$$

with $L= \pm 1$; e.g., if $\chi_{n}^{1}(i, j)>0, z_{n} p_{n+1}{ }_{i} p_{n j}$ is a direct sum of $\chi_{n}^{1}(i, j)$ matrices of the above form with $L=1$ in $B_{n+1} \cap B_{n}^{\prime} \otimes C(\mathbb{T}) p_{n+1}{ }_{i} p_{n j} \cong M_{\chi_{n}^{0}(i, j)} \otimes C(\mathbb{T})$ ([7], [11]).

For each $n=1,2, \ldots$ let

$$
M_{\alpha, n}=\left\{x \in C[0,1] \otimes A \mid x(0) \in A_{n}, \alpha(x(0))=x(1)\right\}
$$

Then we obtain the exact sequence of C^{*}-algebras:

$$
0 \longrightarrow \mathrm{~S} A \xrightarrow{\iota_{n}} M_{\alpha, n} \xrightarrow{q_{n}} A_{n} \longrightarrow 0
$$

from which follow the exact sequences of abelian groups:

$$
0 \longrightarrow \mathrm{~K}_{i}(A) \longrightarrow \mathrm{K}_{i+1}\left(M_{\alpha, n}\right) \longrightarrow \mathrm{K}_{i+1}\left(A_{n}\right) \longrightarrow 0
$$

Since $\mathrm{K}_{i}\left(A_{n}\right) \cong \mathbb{Z}^{k_{n}}$, the above extensions are all trivial.
Let $R=R_{\alpha}$ and $R_{n}=R \circ j_{n *}: \mathrm{K}_{1}\left(M_{\alpha, n}\right) \rightarrow \operatorname{Aff}\left(T_{A}\right)$, where j_{n} is the embedding of $M_{\alpha, n}$ into M_{α}. Since Range $D=$ Range R_{n}, we obtain by Lemma 2.4 that

$$
0 \longrightarrow \operatorname{ker} D \xrightarrow{\iota_{n *}} \operatorname{ker} R_{n} \xrightarrow{q_{n *}} \mathrm{~K}_{1}\left(A_{n}\right) \longrightarrow 0
$$

is exact. Note that the inductive limit of these extensions is naturally isomorphic to the exact sequence:

$$
0 \rightarrow \operatorname{ker} D \rightarrow \operatorname{ker} R \rightarrow \mathrm{~K}_{1}(A) \rightarrow 0
$$

We shall specify a homomorphism φ_{n} of $\mathrm{K}_{1}\left(A_{n}\right)$ into ker R_{n} such that

$$
q_{n *} \circ \varphi_{n}=\mathrm{id} .
$$

Since $\alpha \in \overline{\overline{\operatorname{Inn}}}(A)$, there exists a $u_{n} \in U(A)$ for each n such that

$$
\alpha\left|B_{n}=\operatorname{Ad} u_{n}\right| B_{n}, \quad \alpha\left(z_{n}\right) \approx \operatorname{Ad} u_{n}\left(z_{n}\right),
$$

where $B_{n}=\bigoplus_{i=1}^{k_{n}} B_{n, i} \subset A_{n}$ and z_{n} is the canonical unitary of $C(\mathbb{T}) \subset A_{n}$. Define

$$
h_{n, i}=\frac{1}{2 \pi \mathrm{i}} \log \alpha\left(z_{n, i}\right) \operatorname{Ad} u_{n}\left(z_{n, i}\right)^{*}
$$

where $z_{n, i}=z_{n} p_{n, i}+1-p_{n, i}$ with $p_{n, i}$ the identity of $B_{n, i}$ and $h_{n, i}=h_{n, i}^{*}$ is defined uniquely as $\left\|h_{n, i}\right\| \approx 0$ since $\alpha\left(z_{n, i}\right) \operatorname{Ad} u_{n}\left(z_{n, i}^{*}\right) \approx 1$. Define $\zeta_{n, i} \in U\left(M_{\alpha, n} \otimes M_{2}\right)$ by composing two paths of unitaries:

$$
[0,1] \ni t \mapsto R_{t}\left(u_{n}^{*} \oplus 1\right) R_{t}^{-1}\left(u_{n} \oplus 1\right)\left(z_{n, i} \oplus 1\right)\left(u_{n}^{*} \oplus 1\right) R_{t}\left(u_{n} \oplus 1\right) R_{t}^{-1}
$$

and

$$
[0,1] \ni t \mapsto \mathrm{e}^{2 \pi \mathrm{i} t h_{n, i}} \operatorname{Ad} u_{n}\left(z_{n, i}\right) \oplus 1
$$

Then we have that

$$
q_{n}\left(\zeta_{n, i}\right)=z_{n, i} \oplus 1, \quad R_{n}\left(\left[\zeta_{n, i}\right]\right)=\widehat{h}_{n, i}
$$

where $\widehat{h}_{n, i} \in \operatorname{Aff}\left(T_{A}\right)$ is defined by

$$
\widehat{h}_{n, i}(\tau)=\tau\left(h_{n, i}\right), \quad \tau \in T_{A}
$$

Since the above procedure applies to a unitary $z_{n} p+1-p$ with p a minimal projection in B_{n}, it follows that $\left[\zeta_{n, i}\right] \in \mathrm{K}_{1}\left(M_{\alpha, n}\right)$ is divisible by $[n, i]$. Thus one obtains a homomorphism φ_{n} of $\mathrm{K}_{1}\left(A_{n}\right)$ into $\mathrm{K}_{1}\left(M_{\alpha, n}\right)$ with $q_{n *} \circ \varphi=$ id by setting

$$
\varphi_{n}:\left[z_{n, i}\right] \longmapsto\left[\zeta_{n, i}\right] .
$$

Lemma 3.2. Range D is dense in $\operatorname{Aff}\left(T_{A}\right)$.
Proof. Since A is a simple unital AT algebra of real rank zero, it is approximately divisible ([8]). Thus this is 3.14 (a) of [3]. (A unital C^{*}-algebra is approximately divisible if it has a central sequence $\left\{B_{n}\right\}$ of unital C^{*}-subalgebras with $B_{n} \cong M_{2} \oplus M_{3}$ ([3]). Since A is obtained as the inductive limit of $\left\{A_{n}\right\}$ all being T algebras with unital embeddings and the embeddings need to satisfy only the K-theoretic conditions and the condition of real rank zero ([2]), thanks to Elliott's result [7], we can easily arrange the inductive system so that $A_{n+1} \cap A_{n}^{\prime} \supset M_{2} \oplus M_{3}$, which implies that A is approximately divisible.)

Let

$$
\delta_{n}=\operatorname{mininf}_{i}\left\{\tau\left(p_{n, i}\right) ; \tau \in T_{A}\right\}
$$

where $p_{n, i}$ is the identity of $B_{n, i}$. Since A is simple, δ_{n} is strictly positive. We choose the unitary $u_{n} \in A$ so that $\left\|h_{n, i}\right\|<\delta_{n}$. Since Range $R_{n}=$ Range D, we have, for any $\varepsilon>0$ with $\left\|h_{n, i}\right\|+\varepsilon<\delta_{n}$, projections $p_{ \pm} \in A$ such that

$$
\frac{1}{[n, i]} \widehat{h}_{n, i}=D\left(p_{+}\right)-D\left(p_{-}\right), \quad\left\|D\left(p_{ \pm}\right)\right\|<\frac{1}{[n, i]}\left(\left\|h_{n, i}\right\|+\varepsilon\right)
$$

where D is also regarded as a map of the projections into $\operatorname{Aff}\left(T_{A}\right)$. (First we approximate $\widehat{h}_{n i+} /[n, i]$ by $D\left(p_{+}\right)$with p_{+}a projection such that $D\left(p_{+}\right)-\widehat{h}_{n i+} /[n, i]>$ 0 (or strictly positive), where $h_{n i+}$ is the positive part of $h_{n, i}$. We should note that $\left\|\widehat{h}_{n i+} /[n, i]\right\| \leqslant\left\|h_{n, i}\right\| /[n, i]$ and find a projection p_{-}such that $D\left(p_{-}\right)=$ $\left.D\left(p_{+}\right)-\widehat{h}_{n, i} /[n, i] \approx \widehat{h}_{n i-} /[n, i].\right)$ Since $D\left(p_{ \pm}\right)<\delta_{n} /[n, i] \leqslant D\left(p_{n, i}\right) /[n, i]$, we find projections $e_{i \pm} \in p_{n, i} A p_{n, i} \cap B_{n, i}^{\prime}$ such that

$$
\widehat{h}_{n, i}=D\left(e_{i+}\right)-D\left(e_{i-}\right), \quad\left\|D\left(e_{i \pm}\right)\right\|<\left\|h_{n, i}\right\|+\varepsilon
$$

Thus, by making $\left\|h_{n, i}\right\|$ small, we can make $\left\|D\left(e_{i \pm}\right)\right\|$ arbitrarily small. Then, by using Lemma 3.4 below, we can find a unitary $w_{n, i} \in p_{n, i} A p_{n, i} \cap B_{n, i}^{\prime}$ such that $w_{n, i}=w_{n, i} p_{n, i}+1-p_{n, i}, \operatorname{Ad} w_{n, i}\left(z_{n, i}\right) \approx z_{n, i},\left(\right.$ in the order of $\left.\left\|h_{n, i}\right\|\right), \widehat{k}_{n, i}=\widehat{h}_{n, i}$, where

$$
k_{n, i}=\frac{1}{2 \pi \mathrm{i}} \log \operatorname{Ad} w_{n, i}\left(z_{n, i}\right) z_{n, i}^{*}
$$

Let $w_{n}=w_{n 1} w_{n 2} \cdots w_{n k_{n}}$. Note that

$$
\begin{aligned}
\alpha\left(z_{n, i}\right) \operatorname{Ad} u_{n} w_{n}\left(z_{n, i}^{*}\right) & =\alpha\left(z_{n, i}\right) \operatorname{Ad} u_{n}\left(z_{n, i}^{*}\right) \operatorname{Ad} u_{n}\left(z_{n, i} \operatorname{Ad} w_{n}\left(z_{n, i}^{*}\right)\right) \\
& =\mathrm{e}^{2 \pi \mathrm{i} h_{n, i}} \operatorname{Ad} u_{n}\left(\mathrm{e}^{-2 \pi \mathrm{i} k_{n, i}}\right) .
\end{aligned}
$$

Then composing the two paths:

$$
[0,1] \ni t \longmapsto \operatorname{Ad} u_{n}\left(\mathrm{e}^{-2 \pi \mathrm{i} t k_{n, i}}\right) \quad \text { and } \quad[0,1] \ni t \longmapsto \mathrm{e}^{2 \pi \mathrm{i} t h_{n, i}} \operatorname{Ad} u_{n}\left(\mathrm{e}^{-2 \pi \mathrm{i} k_{n, i}}\right)
$$

multiplied with $\operatorname{Ad} u_{n} w_{n}\left(z_{n, i}\right)$ to the right, we obtain a path U from $\operatorname{Ad} u_{n} w_{n}\left(z_{n, i}\right)$ to $\alpha\left(z_{n, i}\right)$ such that

$$
\frac{1}{2 \pi \mathrm{i}} \int_{0}^{1} \tau\left(\dot{U}(t) U(t)^{*}\right) \mathrm{d} t=0, \quad \tau \in T_{A}
$$

Since U is in a small neighbourhood of $\alpha\left(z_{n, i}\right) \approx \operatorname{Ad} u_{n} w_{n}\left(z_{n, i}\right)$, it follows that the unitary $\zeta_{n, i}$ obtained from $z_{n, i}$ in the same way as before with $u_{n} w_{n}$ in place of u_{n} satisfies

$$
R_{n}\left(\left[\zeta_{n, i}\right]\right)=0
$$

Thus we have shown:

Lemma 3.3. Suppose that $\widetilde{\eta}_{0}(\alpha)=0$. Then for any n and $\varepsilon \in(0,1)$ there exists a unitary $u_{n} \in A$ such that

$$
\alpha\left|B_{n}=\operatorname{Ad} u_{n}\right| B_{n}, \quad\left\|\alpha\left(z_{n, i}\right)-z_{n, i}\right\|<\varepsilon, \quad \widehat{h}_{n, i}=0
$$

where

$$
h_{n, i}=\frac{1}{2 \pi \mathrm{i}} \log \alpha\left(z_{n, i}\right) \operatorname{Ad} u_{n}\left(z_{n, i}^{*}\right)
$$

Hence defining a unitary $\zeta_{n, i} \in M_{\alpha, n} \otimes M_{2}$ by composing the two paths:

$$
[0,1] \ni t \mapsto R_{t}\left(u_{n}^{*} \oplus 1\right) R_{t}^{-1}\left(\operatorname{Ad} u_{n}\left(z_{n, i}\right) \oplus 1\right) R_{t}\left(u_{n} \oplus 1\right) R_{t}^{-1}
$$

and

$$
[0,1] \ni t \mapsto \mathrm{e}^{2 \pi \mathrm{i} t h_{n, i}} \operatorname{Ad} u_{n}\left(z_{n, i}\right) \oplus 1
$$

where R_{t} is defined as before, one can define a homomorphism φ_{n} of $\mathrm{K}_{1}\left(A_{n}\right)$ into $\operatorname{ker} R_{n}$ by $\varphi\left(\left[z_{n, i}\right]\right)=\left[\zeta_{n, i}\right], i=1, \ldots, k_{n}$.

Lemma 3.4. If $e \in p_{n, i} A p_{n, i} \cap B_{n, i}^{\prime}$ is a projection such that $\|D(e)\|$ is sufficiently small, then for any $\varepsilon>0$ there exists a unitary $w_{ \pm} \in p_{n, i} A p_{n, i} \cap B_{n, i}^{\prime}$ such that

$$
\left\|\operatorname{Ad} w_{ \pm}\left(z_{n, i}\right)-z_{n, i}\right\|<2 \pi\|D(e)\|+\varepsilon, \quad\left[w_{ \pm}\right]=0, \quad B\left(w_{ \pm}, z_{n, i}\right)= \pm[e]
$$

In particular if $k_{ \pm}=(1 / 2 \pi \mathrm{i}) \log \operatorname{Ad} z_{n, i} w_{ \pm}\left(z_{n, i}^{*}\right)$, it follows that $\widehat{k}_{ \pm}= \pm D(e)$.
Proof. To simplify the notation we may suppose that $p_{n, i} A_{n, i} p_{n, i} \cap B_{n, i}^{\prime}$ to be A and $z_{n, i}$ to be the canonical unitary $z_{1} \in A_{1}=C(\mathbb{T})$.

Since the projection e plays a role only through [e], we may suppose that $e \in A_{m}$ for some $m>1$. We will later assume that m is sufficiently large. Since $A_{n} \hookrightarrow A_{n+1}$ are in the standard form, $z_{1} p_{m j}$ in $B_{m j} \otimes C(\mathbb{T})$ looks like a direct sum of elements of the form:

$$
\left(\begin{array}{cccc}
0 & & & z_{m j}^{L_{s}} \\
1 & \cdot & & \\
& \ddots & & \\
& & 1 & 0
\end{array}\right) \in M_{M_{s}}(C(\mathbb{T}))
$$

where $L_{s}= \pm 1, M_{s} \gg 1$ and

$$
\sum_{s} L_{s}=\chi_{m 1}^{1}(j, 1), \quad \sum_{s} M_{s}=\chi_{m 1}^{0}(j, 1)=[m, j] .
$$

Note that $D(e)$ takes values in the convex hull of

$$
\frac{\operatorname{dim}\left(e p_{m j}\right)}{[m, j]}, \quad j=1, \ldots, k_{m}
$$

which are all assumed to be much less than 1 . Let t_{m} be the maximum of these k_{m} values. Then t_{m} decreases as $m \rightarrow \infty$ and the limit of t_{m} equals $\tau(e)$ for some $\tau \in T_{A}$ (or $\|D(e)\|$). Thus if m is sufficiently large, we may assume that
$t_{m}<\|D(e)\|+\varepsilon / 4 \pi$. We can obtain the required unitary w_{j} in $B_{m j} \otimes C(\mathbb{T})$ as the direct sum of elements of the form:

$$
\left(\begin{array}{lllll}
1 & & & & \\
& \omega & & & \\
& & \omega^{2} & & \\
& & & \ddots & \\
& & & & \omega^{M_{s}-1}
\end{array}\right)
$$

where $\omega=\mathrm{e}^{-2 \pi \mathrm{i} N_{s}} / M_{s}$ and the integers N_{s} are chosen so that

$$
\sum N_{s}=\operatorname{dim}\left(e p_{m j}\right), \quad \frac{N_{s}}{M_{s}} \approx \frac{\operatorname{dim}\left(e p_{m j}\right)}{[m, j]}
$$

Note that by defining

$$
k_{j}=\frac{1}{2 \pi \mathrm{i}} \log z_{1} p_{m j} \operatorname{Ad} w_{j}\left(z_{1}^{*} p_{m j}\right)
$$

the Bott element $B\left(w_{j}, z_{1} p_{m j}\right) \in \mathrm{K}_{0}\left(A_{m} p_{m j}\right)=\mathbb{Z}$ for the almost commuting pair $w_{j}, z_{1} p_{m j}$ of unitaries in $A_{m} p_{m j}=B_{m j} \otimes C(\mathbb{T})$ is equal to

$$
\operatorname{Tr}\left(k_{j}\right)=\operatorname{Tr}\left(\bigoplus_{s} \frac{N_{s}}{M_{s}} 1_{s}\right)=\sum N_{s}=\operatorname{dim}\left(e p_{m j}\right)
$$

where $k_{j} \in B_{m j} \otimes C(\mathbb{T})$ should be evaluated at some (or any) point of \mathbb{T} (see [10], [11], [4]). This shows that

$$
B\left(w_{j}, z_{1} p_{m j}\right)=\left[e p_{m j}\right]
$$

and in particular that $\widehat{k}_{j}=D\left(e p_{m j}\right)$.
If m is sufficiently large or all M_{s} are sufficiently large, we can assume that

$$
\frac{N_{s}}{M_{s}}<\|D(e)\|+\varepsilon / 2 \pi
$$

Thus we obtain the norm estimate

$$
\left\|\operatorname{Ad} w_{j}\left(z_{1} p_{m j}\right)-z_{1} p_{m j}\right\|<2 \pi\|D(e)\|+\varepsilon
$$

By taking $w_{+}=w_{1}+w_{2}+\cdots+w_{k_{m}}$, this completes the proof for w_{+}. For w_{-}we just replace ω in the definition of w_{j} by $\bar{\omega}=\mathrm{e}^{2 \pi \mathrm{i} N_{s} / M_{s}}$.

By defining $\varphi_{n}: \mathrm{K}_{1}\left(A_{n}\right) \rightarrow \operatorname{ker} R_{n}$ as above, we identify ker R_{n} with ker $D \oplus$ $\mathrm{K}_{1}\left(A_{n}\right)$. We now have to translate the natural map $\operatorname{ker} R_{n} \rightarrow \operatorname{ker} R_{n+1}$ into the $\operatorname{map} \psi_{n}: \operatorname{ker} D \oplus \mathrm{~K}_{1}\left(A_{n}\right) \rightarrow \operatorname{ker} D \oplus \mathrm{~K}_{1}\left(A_{n+1}\right)$:

$$
\begin{array}{cccccccccc}
0 & \rightarrow & \operatorname{ker} D & \rightarrow & \operatorname{ker} D & \oplus & \mathrm{~K}_{1}\left(A_{n}\right) & \rightarrow & \mathrm{K}_{1}\left(A_{n}\right) & \rightarrow \\
& & \| & & \| & \psi_{n}^{0} \swarrow & \downarrow \chi_{n}^{1} & & \downarrow \chi_{n}^{1} & \\
\\
0 & \rightarrow & \operatorname{ker} D & \rightarrow & \operatorname{ker} D & \oplus & \mathrm{~K}_{1}\left(A_{n+1}\right) & \rightarrow & \mathrm{K}_{1}\left(A_{n+1}\right) & \rightarrow \\
\hline
\end{array}
$$

where we have used that ψ_{n} must be of the form $\psi_{n}(a, b)=\left(a+\psi_{n}^{0}(b), \chi_{n}^{1}(b)\right)$.

Lemma 3.5. If u_{n} is a unitary in A and $\varepsilon \in(0,1)$ such that

$$
\alpha\left|B_{n}=\operatorname{Ad} u_{n}\right| B_{n}, \quad\left\|\alpha\left(z_{n}\right)-\operatorname{Ad} u_{n}\left(z_{n}\right)\right\|<\varepsilon, \quad \widehat{h}_{n, i}=0
$$

then for any $m \leqslant n$ and $j=1, \ldots, k_{m}$,

$$
\begin{align*}
& \left\|\alpha\left(z_{m j}\right)-\operatorname{Ad} u_{n}\left(z_{m j}\right)\right\|<\varepsilon, \tag{3.1}\\
& \widehat{h}_{m j}=0 \tag{3.2}
\end{align*}
$$

where

$$
h_{m j}=\frac{1}{2 \pi \mathrm{i}} \log \alpha\left(z_{m j}\right) \operatorname{Ad} u_{n}\left(z_{m j}^{*}\right) .
$$

Proof. By the assumption on the embedding of A_{m} into A_{n}, (3.1) follows immediately. Since the homomorphism $\varphi_{n}: \mathrm{K}_{1}\left(A_{n}\right) \rightarrow \operatorname{ker} R_{n}$ can be defined on $\left[z_{m j}\right]$ in the canonical way and $R_{n} \varphi_{n}\left(\left[z_{m j}\right]\right)=\widehat{h}_{m j},(3.2)$ also follows immediately

Lemma 3.6. The homomorphism $\psi_{n}^{0}: \mathrm{K}_{1}\left(A_{n}\right) \rightarrow \operatorname{ker} D$ is given by

$$
\left[z_{n, i}\right] \longmapsto B\left(u_{n+1}^{*} u_{n}, z_{n, i}\right),
$$

where $\left[z_{n, i}\right]=[n, i] e_{i}$ with $\left(e_{i}\right)_{i}$ the canonical basis for $\mathbb{Z}^{k_{n}}=\mathrm{K}_{1}\left(A_{n}\right)$ and $B\left(u_{n+1}^{*} u_{n}, z_{n, i}\right)$ is divisible by $[n, i]$.

Proof. First of all we shall show that $D\left(B\left(u_{n+1}^{*} u_{n}, z_{n, i}\right)\right)=0$. If we define the self-adjoint $h_{i} \in A$ by

$$
\begin{aligned}
& h_{1}=\frac{1}{2 \pi \mathrm{i}} \log \alpha\left(z_{n, i}\right) \operatorname{Ad} u_{n+1}\left(z_{n, i}^{*}\right), \\
& h_{2}=\frac{1}{2 \pi \mathrm{i}} \log \alpha\left(z_{n, i}\right) \operatorname{Ad} u_{n}\left(z_{n, i}^{*}\right), \\
& h_{3}=\frac{1}{2 \pi \mathrm{i}} \log z_{n, i} \operatorname{Ad}\left(u_{n+1}^{*} u_{n}\right)\left(z_{n, i}^{*}\right),
\end{aligned}
$$

then $\widehat{h}_{2}=0$ and $\widehat{h}_{1}=0$ by Lemma 3.5 and hence $\widehat{h}_{3}=0$ since

$$
\operatorname{Ad} u_{n+1}\left(\mathrm{e}^{2 \pi \mathrm{i} h_{3}}\right)=\mathrm{e}^{-2 \pi \mathrm{i} h_{1}} \mathrm{e}^{2 \pi \mathrm{i} h_{2}} .
$$

(One way of proving that $\widehat{h}_{3}=0$ is to take a closed path w of unitaries:

$$
w(t)= \begin{cases}\mathrm{e}^{-6 \pi \mathrm{i} t h_{1}} & 0 \leqslant t \leqslant 1 / 3 \\ \mathrm{e}^{-2 \pi \mathrm{i} h_{1}} \mathrm{e}^{2 \pi \mathrm{i}(3 t-1) h_{2}} & 1 / 3 \leqslant t \leqslant 2 / 3 \\ \mathrm{e}^{-2 \pi \mathrm{i} h_{1}} \mathrm{e}^{2 \pi \mathrm{i} h_{2}} \operatorname{Ad} u_{n+1}\left(\mathrm{e}^{2 \pi \mathrm{i}(3 t-2) h_{3}}\right) & 2 / 3 \leqslant t \leqslant 1\end{cases}
$$

in a neighbourhood of 1 , and compute for any $\tau \in T_{A}$,

$$
\left.0=1 / 2 \pi \mathrm{i} \int_{0}^{1} \tau\left(\dot{w}(t) w(t)^{*}\right) \mathrm{d} t=-\tau\left(h_{1}\right)+\tau\left(h_{2}\right)-\tau\left(h_{3}\right) .\right)
$$

We may suppose that $u_{n+1}^{*} u_{n} \in A_{m} \cap B_{n}^{\prime}$ for some $m>n$. In this case $B\left(u_{n+1}^{*} u_{n}, z_{n, i}\right)$ in $\mathrm{K}_{0}\left(A_{m}\right)$ is defined by $\left(\operatorname{Tr}_{B_{m j}}\left(h_{3} p_{m j}\right)\right)_{j}$, where $h_{3} p_{m j} \in B_{m j} \otimes$ $C(\mathbb{T})$ is evaluated at a point of \mathbb{T}, and $\widehat{h}_{3}=0$ means that for any $\tau \in T_{A}$,

$$
\sum_{j} \tau\left(p_{m j}\right) \frac{\operatorname{Tr}_{B_{m j}}\left(h_{3} p_{m j}\right)}{[m, j]}=0
$$

Define a path $v_{n t}, t \in[0,1]$ of unitaries in $A \otimes M_{2}$ by

$$
v_{n t}=R_{t}\left(u_{n}^{*} \oplus 1\right) R_{t}^{-1}\left(u_{n} \oplus 1\right) .
$$

Then to compute $\psi_{n}^{0}\left(\left[z_{n, i}\right]\right)$ we have to calculate

$$
\begin{align*}
\psi_{n}^{0}\left(\left[z_{n, i}\right]\right) & =\varphi_{n}\left(\left[z_{n, i}\right]\right)-\varphi_{n+1}\left(\left[z_{n, i}\right]\right) \\
& =\left[t \mapsto \operatorname{Ad} v_{n, t}\left(z_{n, i}\right)\right]-\left[t \mapsto \operatorname{Ad} v_{n+1, t}\left(z_{n, i}\right)\right] \tag{3.3}
\end{align*}
$$

in $\mathrm{K}_{1}\left(M_{\alpha, n+1}\right)$ where $z_{n, i}$ is identified with $z_{n, i} \oplus 1$ (see 2.8 of [11] for a similar computation). More precisely, we have to add a short path from $\operatorname{Ad} u_{n}\left(z_{n, i}\right)$ (respectively $\left.\operatorname{Ad} u_{n+1}\left(z_{n, i}\right)\right)$ to $\alpha\left(z_{n, i}\right)$ to the path $t \mapsto \operatorname{Ad} v_{n, t}\left(z_{n, i}\right)$ (respectively $\left.t \mapsto \operatorname{Ad} v_{n+1, t}\left(z_{n, i}\right)\right)$ to get a unitary in $M_{\alpha, n+1} \otimes M_{2}$ and we always understand the formulae in this way. Note that (3.3) is equal to

$$
\left[t \mapsto \operatorname{Ad} v_{n, t}\left(z_{n, i}\right) \operatorname{Ad} v_{n+1, t}\left(z_{n, i}^{*}\right)\right]
$$

in $\mathrm{K}_{1}(\mathrm{~S} A) \subset \mathrm{K}_{1}\left(M_{\alpha, n+1}\right)$ or, by applying $t \mapsto \operatorname{Ad} v_{n+1, t}^{*}$, which induces the identity map on $\mathrm{K}_{1}(\mathrm{~S} A)$, to $\left[t \mapsto v_{n+1, t}^{*} v_{n, t} z_{n, i} v_{n, t}^{*} v_{n+1, t} z_{n, i}^{*}\right]$. Since

$$
v_{n+1, t}^{*} v_{n, t}=\left(u_{n+1}^{*} \oplus 1\right) R_{t}\left(u_{n+1} u_{n}^{*} \oplus 1\right) R_{t}^{-1}\left(u_{n} \oplus 1\right)
$$

the above element is equal to the class of

$$
t \mapsto\left(u_{n+1} z_{n, i}^{*} u_{n+1}^{*} \oplus 1\right) R_{t}\left(u_{n+1} u_{n}^{*} \oplus 1\right) R_{t}^{-1}\left(u_{n} z_{n, i} u_{n}^{*} \oplus 1\right) R_{t}\left(u_{n} u_{n+1}^{*} \oplus 1\right) R_{t}^{-1}
$$

by applying $\operatorname{Ad}\left(u_{n+1} z_{n, i}^{*} \oplus 1\right)$. Again this is equal to the class of

$$
t \mapsto\left(u_{n}^{*} u_{n+1} z_{n, i}^{*} u_{n+1}^{*} u_{n} \oplus 1\right) R_{t}\left(u_{n}^{*} u_{n+1} \oplus 1\right) R_{t}^{-1}\left(z_{n, i} \oplus 1\right) R_{t}\left(u_{n+1}^{*} u_{n} \oplus 1\right) R_{t}^{-1}
$$

by applying $t \mapsto \operatorname{Ad}\left(u_{n}^{*} \oplus u_{n}^{*}\right)$. More precisely, we have to add a short path to connect the value at $t=1, u_{n}^{*} u_{n+1} z_{n, i}^{*} u_{n+1}^{*} u_{n} z_{n, i} \oplus 1$ to 1 . Since $u_{n+1}^{*} u_{n} \in$ $A_{m} \cap B_{n}^{\prime}$ by the assumption, the path can be taken in A_{m}. The above element in $\mathrm{K}_{1}\left(\mathrm{~S} A_{m}\right)=\mathrm{K}_{0}\left(A_{m}\right)$ is equal to

$$
\begin{aligned}
& \left(-\frac{1}{2 \pi \mathrm{i}} \operatorname{Tr}_{B_{m j}} \log \left(u_{n}^{*} u_{n+1} z_{n, i}^{*} u_{n+1}^{*} u_{n} z_{n, i} p_{m j}\right)\right)_{j} \\
& \quad=\left(\frac{1}{2 \pi \mathrm{i}} \operatorname{Tr}_{\mathrm{B}_{\mathrm{mj}}} \log \left(z_{n, i}\left(u_{n+1}^{*} u_{n}\right) z_{n, i}^{*}\left(u_{n+1}^{*} u_{n}\right)^{*} p_{m j}\right)\right)_{j} \\
& \quad=B_{A_{m}}\left(u_{n+1}^{*} u_{n}, z_{n, i}\right)
\end{aligned}
$$

Note also that since the non-trivial part of $z_{n, i}\left(u_{n+1}^{*} u_{n}\right) z_{n, i}^{*}\left(u_{n+1}^{*} u_{n}\right)^{*}$ belongs to $p_{n, i} A_{m} p_{n, i} \cap B_{n, i}^{\prime}$, each component of $B_{A_{m}}\left(u_{n+1}^{*} u_{n}, z_{n, i}\right)$ is divisible by $[n, i]$. Then we obtain that

$$
\psi_{n}^{0}\left(\left[z_{n, i}\right]\right)=B\left(u_{n+1}^{*} u_{n}, z_{n, i}\right), \quad i=1, \ldots, k_{n}
$$

is a well-defined homomorphism of $\mathrm{K}_{1}\left(A_{n}\right)$ into $\operatorname{ker} D \subset \mathrm{~K}_{0}(A)$.

Lemma 3.7. Suppose that $\widetilde{\eta}_{0}(\alpha)=0$. Then there exist unitaries $u_{n} \in A$ such that

$$
\begin{array}{ll}
\alpha\left|B_{n}=\operatorname{Ad} u_{n}\right| B_{n}, & \\
\left\|\alpha\left(z_{m}\right)-\operatorname{Ad} u_{n}\left(z_{m}\right)\right\|<2^{-n}, & m \leqslant n, \\
B\left(u_{n+1}^{*} u_{n}, z_{n, i}\right)=0, & i=1, \ldots, k_{n}, \\
\widehat{h}_{n, i}=0, & i=1, \ldots, k_{n},
\end{array}
$$

where

$$
h_{n, i}=\frac{1}{2 \pi \mathrm{i}} \log \alpha\left(z_{n, i}\right) \operatorname{Ad} u_{n}\left(z_{n, i}^{*}\right) .
$$

Proof. By the assumption and Proposition 2.5, the sequence of trivial extensions:

defines the trivial extension in $\operatorname{Ext}\left(\mathrm{K}_{1}(A), \operatorname{ker} D\right)$. Hence we have a homomorphism $h_{n}^{0}: \mathrm{K}_{1}\left(A_{n}\right) \rightarrow \operatorname{ker} D$ for each n such that

$$
\psi_{n}^{0}=h_{n}^{0}-h_{n+1}^{0} \chi_{n}^{1} .
$$

(To see this we denote by E the inductive limit of the middle terms, and by φ a homomorphism of $\mathrm{K}_{1}(A)$ into E such that $q \varphi=\mathrm{id}$. If ξ_{n} denotes the natural homomorphism of $\mathrm{K}_{1}\left(A_{n}\right)$ into ker $D \oplus \mathrm{~K}_{1}\left(A_{n}\right)$ composed with ker $D \oplus \mathrm{~K}_{1}\left(A_{n}\right) \rightarrow$ E, ψ_{n}^{0} is given by $\psi_{n}^{0}=\xi_{n}-\xi_{n+1} \chi_{n}^{1}$. We set $h_{n}^{0}=\xi_{n}-\varphi_{n}$ where φ_{n} is the homomorphism $\mathrm{K}_{1}\left(A_{n}\right) \rightarrow \mathrm{K}_{1}(A)$ composed with $\varphi: \mathrm{K}_{1}(A) \rightarrow E$. Then it follows that

$$
h_{n}^{0}-h_{n+1}^{0} \chi_{n}^{1}=\xi_{n}-\varphi_{n}-\xi_{n+1} \chi_{n}^{1}+\varphi_{n+1} \chi_{n}^{1}=\xi_{n}-\xi_{n+1} \chi_{n}^{1}=\psi_{n}^{0},
$$

where we have used that $\varphi_{n}=\varphi_{n+1} \chi_{n}^{1}$.)
Since $h_{n}^{0}\left(e_{i}^{n}\right) \in \operatorname{ker} D$, where $\left(e_{i}^{n}\right)_{i=1}^{k_{n}}$ is the canonical basis for $\mathbb{Z}^{k_{n}}=\mathrm{K}_{1}\left(A_{n}\right)$, we can find projections $e_{i \pm}^{n} \in p_{n, i} A p_{n, i} \cap B_{n, i}^{\prime}$ such that

$$
[n, i] h_{n}^{0}\left(e_{i}^{n}\right)=\left[e_{i+}^{n}\right]-\left[e_{i-}^{n}\right]
$$

and $\left\|D\left(e_{i \pm}^{n}\right)\right\|$ is arbitrarily small. (We find a positive $g \in \mathrm{~K}_{0}(A)$ with $\|D(g)\|$ sufficiently small and then find projections $e_{i \pm}^{n}$ such that $\left[e_{i+}^{n}\right]=[n, i]\left(g+h_{n}^{0}\left(e_{i}^{n}\right)\right)$ and $\left[e_{i-}^{n}\right]=[n, i] g$.) Then, by Lemma 3.4, we find a unitary $w_{n} \in A \cap B_{n}^{\prime}$ such that

$$
\left[w_{n}\right]=0, \quad B\left(w_{n}, z_{n, i}\right)=-\left[e_{i+}^{n}\right]+\left[e_{i-}^{n}\right]=-[n, i] h_{n}^{0}\left(e_{i}^{n}\right)
$$

and $\left\|\left[w_{n}, z_{n, i}\right]\right\|$ is arbitrarily small for $i=1, \ldots, k_{n}$. Since

$$
\begin{aligned}
B\left(w_{n+1}^{*}, z_{n, i}\right) & =\sum_{j} B\left(w_{n+1}^{*} p_{n+1, j}, z_{n, i} p_{n+1, j}\right) \\
& =\sum_{j} \chi_{n}^{1}(j, i)[n, i] B\left(w_{n+1}^{*}, z_{n+1, j}\right) /[n+1, j] \\
& =\sum_{j} \chi_{n}^{1}(j, i)[n, i] h_{n+1}^{0}\left(e_{j}^{n+1}\right)=[n, i] h_{n+1}^{0} \chi_{n}^{1}\left(e_{i}^{n}\right),
\end{aligned}
$$

we have that

$$
B\left(w_{n+1}^{*} u_{n+1}^{*} u_{n} w_{n}, z_{n, i}\right)=0
$$

Since $D\left(B\left(w_{n}, z_{n, i}\right)\right)=0$, we have that $\widehat{k}_{i}=0$ for $k_{i}=(1 / 2 \pi \mathrm{i}) \log z_{n, i} \operatorname{Ad} w_{n}\left(z_{n, i}^{*}\right)$, and hence that $\widehat{h}_{i}=0$ for $h_{i}=(1 / 2 \pi \mathrm{i}) \log \alpha\left(z_{n, i}\right) \operatorname{Ad} u_{n} w_{n}\left(z_{n, i}^{*}\right)$. Thus by replacing u_{n} by $u_{n} w_{n}$, we have the conclusion.

Note that the exact sequence

$$
0 \longrightarrow \mathrm{~K}_{1}(A) \longrightarrow \mathrm{K}_{0}\left(M_{\alpha}\right) \longrightarrow \mathrm{K}_{0}(A) \longrightarrow 0
$$

is obtained as the inductive limit of

By defining a homomorphism $\varphi_{n}: \mathrm{K}_{0}\left(A_{n}\right) \rightarrow \mathrm{K}_{0}\left(M_{\alpha, n}\right)$ just as in Lemma 3.3, we identify $\mathrm{K}_{0}\left(M_{\alpha, n}\right)$ with $\mathrm{K}_{1}(A) \oplus \mathrm{K}_{0}\left(A_{n}\right)$ and find a homomorphism $\psi_{n}^{1}: \mathrm{K}_{0}\left(A_{n}\right) \rightarrow$ $\mathrm{K}_{1}(A)$ as in the following diagram:

Lemma 3.8. The homomorphism $\psi_{n}^{1}: \mathrm{K}_{0}\left(A_{n}\right) \rightarrow \mathrm{K}_{1}(A)$ is given by

$$
\left[p_{n, i}\right] \mapsto\left[u_{n+1}^{*} u_{n} p_{n, i}\right]
$$

where $\left[p_{n, i}\right]=[n, i] e_{i}$ with $\left(e_{i}\right)$ the canonical basis for $\mathbb{Z}^{k_{n}}=\mathrm{K}_{0}\left(A_{n}\right)$ and $\left[u_{n+1}^{*} u_{n} p_{n, i}\right]$ is divisible by $[n, i]$.

Proof. As in the proof of Lemma 3.6 we have to decide

$$
\begin{equation*}
\left[t \mapsto \operatorname{Ad} v_{n, t}\left(p_{n, i}\right)\right]-\left[t \mapsto \operatorname{Ad} v_{n+1, t}\left(p_{n, i}\right)\right] \tag{3.4}
\end{equation*}
$$

in $\mathrm{K}_{0}\left(M_{\alpha, n+1}\right)$, where $p_{n, i}$ denotes $p_{n, i} \oplus 0$ in $A \otimes M_{2}$. (Note that $\operatorname{Ad} u_{n}\left(p_{n, i}\right)=$ $\alpha\left(p_{n, i}\right)$ and $\operatorname{Ad} u_{n+1}\left(p_{n, i}\right)=p_{n, i}$.) Note that the identification of $\mathrm{K}_{1}(A)$ with $\mathrm{K}_{0}(\mathrm{~S} A)$ is done in such a way that $\left[u_{n}\right]$ corresponds to

$$
\left[t \mapsto \operatorname{Ad} v_{n, t}(1 \oplus 0)\right]-[(1 \oplus 0)]
$$

([1], 8.2.2). Since

$$
\left[t \mapsto \operatorname{Ad} v_{n, t}\left(p_{n, i}\right)\right]=\left[t \mapsto \operatorname{Ad} v_{n, t}(1 \oplus 0)\right]-\left[t \mapsto \operatorname{Ad} v_{n, t}\left(1-p_{n, i}\right)\right]
$$

(3.4) equals

$$
\begin{aligned}
& {\left[t \mapsto \operatorname{Ad} v_{n, t}(1 \oplus 0)\right]-\left[t \mapsto \operatorname{Ad}\left(v_{n, t}\left(1-p_{n, i}\right)+v_{n+1, t} p_{n, i}\right)(1 \oplus 0)\right]} \\
& \quad=\left[u_{n}\right]-\left[u_{n}\left(1-p_{n, i}\right)+u_{n+1} p_{n, i}\right]=\left[u_{n+1}^{*} u_{n} p_{n, i}\right]
\end{aligned}
$$

where we have used the fact that

$$
t \mapsto v_{n, t}\left(\left(1-p_{n, i}\right) \oplus\left(1-\alpha\left(p_{n, i}\right)\right)+v_{n+1, t}\left(p_{n, i} \oplus \alpha\left(p_{n, i}\right)\right)\right.
$$

is a path of unitaries from $1 \oplus 1$ to

$$
\left(u_{n}\left(1-p_{n, i}\right)+u_{n+1} p_{n, i}\right) \oplus\left(u_{n}^{*}\left(1-\alpha\left(p_{n, i}\right)\right)+u_{n+1}^{*} \alpha\left(p_{n, i}\right)\right)
$$

Lemma 3.9. Suppose that $\widetilde{\eta}(\alpha)=0$. Then there is a unitary $u_{n} \in A$ for each n such that

$$
\begin{aligned}
& \alpha\left|B_{n}=\operatorname{Ad} u_{n}\right| B_{n}, \quad\left\|\alpha\left(z_{m}\right)-\operatorname{Ad} u_{n}\left(z_{m}\right)\right\|<2^{-n}, \quad m \leqslant n \\
& B\left(u_{n+1}^{*} u_{n}, z_{n, i}\right)=0, \quad\left[u_{n+1}^{*} u_{n} p_{n, i}\right]=0, \quad \widehat{h}_{n, i}=0
\end{aligned}
$$

for $i=1, \ldots, k_{n}$, where

$$
h_{n, i}=\frac{1}{2 \pi \mathrm{i}} \log \alpha\left(z_{n, i}\right) \operatorname{Ad} u_{n}\left(z_{n, i}^{*}\right)
$$

Proof. Comparing with Lemma 3.7, the newly appeared conditions are only

$$
\left[u_{n+1}^{*} u_{n} p_{n, i}\right]=0
$$

We will find a unitary $w_{n} \in A \cap B_{n}^{\prime}$ such that $\left[w_{n}, z_{n}\right]=0$ and the above conditions are satisfied by replacing all u_{n} by $u_{n} w_{n}$. With the condition $\left[w_{n+1}, z_{n+1}\right]=0$, it follows that $\left[w_{n+1}, z_{n}\right]=0$ and that the other conditions are preserved.

From the assumption that

$$
0 \longrightarrow \mathrm{~K}_{1}(A) \longrightarrow \mathrm{K}_{0}\left(M_{\alpha}\right) \longrightarrow \mathrm{K}_{0}(A) \longrightarrow 0
$$

is trivial, we have a homomorphism $h_{n}^{1}: \mathrm{K}_{0}\left(A_{n}\right) \rightarrow \mathrm{K}_{1}(A)$ for each n such that

$$
\psi_{n}^{1}=h_{n}^{1}-h_{n+1}^{1} \chi_{n}^{0}
$$

We only have to find a unitary $w_{n} \in A \cap B_{n}^{\prime}$ such that $\left[w_{n}, z_{n}\right]=0$ and

$$
\left[w_{n} p_{n, i}\right]=-[n, i] h_{n}^{1}\left(e_{i}\right), \quad i=1, \ldots, k_{n}
$$

Since $z_{n} p_{n, i}$ in $p_{n, i} A_{m} p_{n, i} \cap B_{n, i}^{\prime}$ for $m>n$ is a direct sum of elements of the form

$$
\left(\begin{array}{cccc}
0 & & & z_{n+1}^{L} p_{n, i} \\
1 & \cdot & & \\
& \ddots & \ddots & \\
& & 1 & 0
\end{array}\right)
$$

with $L= \pm 1$, this follows immediately.
Proof of (i) \Rightarrow (ii) of Theorem 3.1. Under the assumption (i) we have found a sequence $\left\{u_{n}\right\}$ of unitaries as in the previous lemma. Now we apply the homotopy lemma to the pair $u_{n+1}^{*} u_{n} p_{n, i}, z_{n} p_{n, i}$ of unitaries in $p_{n, i} A p_{n, i} \cap B_{n, i}^{\prime}([4], 8.1)$: From the conditions

$$
B\left(u_{n+1}^{*} u_{n}, z_{n, i}\right)=0, \quad\left[u_{n+1}^{*} u_{n} p_{n, i}\right]=0
$$

calculated in $p_{n, i} A p_{n, i} \cap B_{n, i}^{\prime}$, that follow since $\mathrm{K}_{*}\left(p_{n, i} A p_{n, i} \cap B_{n, i}^{\prime}\right) \rightarrow \mathrm{K}_{*}\left(p_{n, i} A p_{n, i}\right)$ $\rightarrow \mathrm{K}_{*}(A)$ are injective, and the condition $\left\|\left[u_{n+1}^{*} u_{n}, z_{n}\right]\right\| \rightarrow 0$ as $n \rightarrow \infty$, we obtain a continuous path $v_{n, i ; t}$ of unitaries in $p_{n, i} A p_{n, i} \cap B_{n, i}^{\prime}$ such that

$$
v_{n, i ; 0}=p_{n, i}, \quad v_{n, i ; 1}=u_{n}^{*} u_{n+1} p_{n, i}
$$

and

$$
\max _{t}\left\|\left[v_{n, i ; t}, z_{n, i}\right]\right\| \longrightarrow 0 \text { as } n \rightarrow \infty
$$

Let $v_{n ; t}=\sum_{i} v_{n, i ; t}$, and define a continuous path v_{t} of unitaries for $t \in[1, \infty)$ by

$$
\begin{aligned}
v_{1} & =u_{1} \\
v_{n+t} & =u_{n} v_{n ; t}, \quad 0 \leqslant t \leqslant 1
\end{aligned}
$$

for $n=1,2, \ldots$. Then since $\max _{t}\left\|\left[v_{n ; t}, z_{m}\right]\right\| \longrightarrow 0$ as $n \rightarrow \infty$, we obtain that for any $m, \lim _{t \rightarrow \infty} \operatorname{Ad} v_{t}\left(z_{m}\right)=\alpha\left(z_{m}\right)$. We also have that for $t \geqslant m$ and $a \in B_{m}$ $\operatorname{Ad} v_{t}(a)=\alpha(a)$. Thus it follows that for any $x \in A \lim _{t \rightarrow \infty} \operatorname{Ad} v_{t}(x)=\alpha(x)$. This completes the proof.

4. MAIN THEOREM

Proposition 4.1. If $\varphi \in \operatorname{Hom}\left(\mathrm{K}_{1}(A), \operatorname{Aff}\left(T_{A}\right)\right)$, there exists an automorphism $\alpha \in \overline{\operatorname{Inn}}(A)$ such that $\eta(\alpha)$ is trivial and the rotation map $R_{\alpha}: \mathrm{K}_{1}\left(M_{\alpha}\right) \rightarrow$ $\operatorname{Aff}\left(T_{A}\right)$ is given by

$$
R_{\alpha}(a, b)=D(a)+\varphi(b)
$$

for some identification of $\mathrm{K}_{1}\left(M_{\alpha}\right)$ with $\mathrm{K}_{0}(A) \oplus \mathrm{K}_{1}(A)$.
To prove this we first prepare:
Lemma 4.2. If $\varphi \in \operatorname{Hom}\left(\mathrm{K}_{1}(A), \operatorname{Aff}\left(T_{A}\right)\right)$, there exists an inductive system

$$
\mathbb{Z}^{k_{1}} \xrightarrow{\chi_{1}^{i}} \mathbb{Z}^{k_{2}} \xrightarrow{\chi_{2}^{i}} \mathbb{Z}^{k_{3}} \longrightarrow \cdots
$$

whose limit is isomorphic to $\mathrm{K}_{i}(A)$ for $i=0,1$ and homomorphisms $h_{n}: \mathbb{Z}^{k_{n}} \rightarrow$ $\mathbb{Z}^{k_{n+1}}$ such that

$$
\begin{aligned}
\left|\varphi \circ \chi_{\infty, n-1}^{1}\left(e_{j}^{n-1}\right)-D \circ \chi_{\infty, n}^{0} \circ h_{n-1}\left(e_{j}^{n-1}\right)\right| & <2^{-n+1} \ell_{n-1}^{-1} D \circ \chi_{\infty, n-1}^{0}\left(e_{j}^{n-1}\right), \\
\left|h_{n-1} \circ \chi_{n-2}^{1}\left(e_{j}^{n-2}\right)-\chi_{n-1}^{0} \circ h_{n-2}\left(e_{j}^{n-2}\right)\right| & <2^{-n+3} \ell_{n-2}^{-1} \chi_{n, n-2}^{0}\left(e_{j}^{n-2}\right), \\
\left|\chi_{n}^{0}(i, j)\right| & \geqslant 2^{n+1} \max \left(\left|\chi_{n}^{1}(i, j)\right|, 1\right),
\end{aligned}
$$

where that $|x|<y$ for $x, y \in \mathbb{Z}^{k_{n}}$ means that $\left|x_{i}\right|<y_{i}$ for all $i,\left(e_{j}^{n}\right)_{j}$ is the canonical basis for $\mathbb{Z}^{k_{n}}$,

$$
\ell_{n}=\max \left\{[n, j] \mid j=1, \ldots, k_{n}\right\}
$$

and $([n, j])_{j} \in \mathbb{Z}^{k_{n}}$ corresponds to $[1] \in \mathrm{K}_{0}(A)$.
Proof. Suppose that we are given inductive systems

$$
\mathbb{Z}^{k_{1}} \xrightarrow{\chi_{1}^{i}} \mathbb{Z}^{k_{2}} \longrightarrow \cdots
$$

such that the limit is isomorphic to $\mathrm{K}_{i}(A)$ for $i=0,1$, and

$$
\chi_{n}^{0}(i, j) \geqslant 2^{n+1} \max \left(\left|\chi_{n}^{1}(i, j)\right|, 1\right)
$$

By passing to a subsequence we construct the homomorphisms h_{n} with the required properties.

Suppose that we have constructed h_{1}, \ldots, h_{n-1} and fixed $\mathbb{Z}^{k_{1}}, \ldots, \mathbb{Z}^{k_{n}}$. Then we compute ℓ_{n} and find $\xi: \mathbb{Z}^{k_{n}} \rightarrow \mathrm{~K}_{0}(A)$ such that

$$
\left|\varphi \chi_{\infty, n}^{1}\left(e_{j}^{n}\right)-D \xi\left(e_{j}^{n}\right)\right|<2^{-n} \ell_{n}^{-1} D \chi_{\infty, n}^{0}\left(e_{j}^{n}\right) .
$$

This is obviously possible by the density of Range D and

$$
\inf _{\tau \in T_{A}} D \chi_{\infty, n}^{0}\left(e_{j}^{n}\right)(\tau)>0
$$

Then we find an $m>n$ such that Range $\xi \subset$ Range $\chi_{\infty, m}^{0}$, and $\eta: \mathbb{Z}^{k_{n}} \rightarrow \mathbb{Z}^{m}$ such that

$$
\begin{aligned}
& \mathbb{Z}^{k_{n}} \\
& \\
& \\
& \\
& \\
& \mathrm{~K}_{0}(A)
\end{aligned} \stackrel{\eta}{\longrightarrow} \quad \chi_{\infty, m}^{0} \mathbb{Z}^{m}
$$

is commutative. Note

$$
\begin{aligned}
\mid D \chi_{\infty, m}^{0} & \eta \chi_{n-1}^{1}\left(e_{j}^{n-1}\right)-D \chi_{\infty, n}^{0} h_{n-1}\left(e_{j}^{n-1}\right) \mid \\
\leqslant & \left|D \chi_{\infty, m} \eta \chi_{n-1}^{1}\left(e_{j}^{n-1}\right)-\varphi \chi_{\infty, n-1}^{1}\left(e_{j}^{n-1}\right)\right| \\
& \quad+\left|\varphi \chi_{\infty, n-1}^{1}\left(e_{j}^{n-1}\right)-D \chi_{\infty, n}^{0} h_{n-1}\left(e_{j}^{n-1}\right)\right| \\
< & 2^{-n} \ell_{n}^{-1} \sum_{i=1}^{k_{n}} D \chi_{\infty, n}^{0}\left(e_{i}^{n}\right)\left|\chi_{n-1}^{1}(i, j)\right|+2^{-n+1} \ell_{n-1}^{-1} D \chi_{\infty, n-1}^{0}\left(e_{j}^{n-1}\right) \\
< & 2^{-n} \ell_{n}^{-1} \sum_{i} D \chi_{\infty, n}^{0}\left(e_{i}^{n}\right) \chi_{n-1}^{0}(i, j)+2^{-n+1} \ell_{n-1}^{-1} D \chi_{\infty, n-1}^{0}\left(e_{j}^{n-1}\right) \\
< & \left(2^{-n} \ell_{n}^{-1}+2^{-n+1} \ell_{n-1}^{-1}\right) D \chi_{\infty, n-1}^{0}\left(e_{j}^{n-1}\right) \\
< & 2^{-n+2} \ell_{n-1}^{-1} D \chi_{\infty, n-1}^{0}\left(e_{j}^{n-1}\right) .
\end{aligned}
$$

Thus by choosing a sufficiently large $\ell>m$ it follows that

$$
\left|\chi_{\ell, m}^{0} \eta \chi_{n-1}^{1}\left(e_{j}^{n-1}\right)-\chi_{\ell, n}^{0} h_{n-1}\left(e_{j}^{n-1}\right)\right|<2^{-n+2} \ell_{n-1}^{-1} \chi_{\ell, n-1}^{0}\left(e_{j}^{n-1}\right) .
$$

By taking $\mathbb{Z}^{k_{\ell}}$ for $\mathbb{Z}^{k_{n+1}}$ and $\chi_{\ell, m}^{0} \eta$ for h_{n}, the lemma is proved.
Proof of Proposition 4.1. By the previous lemma we have the following diagram:

$$
\begin{array}{lllllll}
\longrightarrow \mathbb{Z}^{k_{n}} & \stackrel{\chi_{n}^{1}}{\searrow_{n}} & \mathbb{Z}^{k_{n+1}} & \longrightarrow & \cdots & \longrightarrow & \mathrm{~K}_{1}(A) \\
\longrightarrow \mathbb{Z}_{n+1} \\
& \xrightarrow{k_{n}} & \xrightarrow{\chi_{n}^{0}} \\
\mathbb{Z}^{k_{n+1}} & \longrightarrow & \mathbb{Z}^{k_{n+2}} & \longrightarrow & \cdots & \longrightarrow & \mathrm{~K}_{0}(A)
\end{array}
$$

with the specified properties. Accordingly, we construct an increasing sequence $\left\{A_{n}\right\}$ of T algebras such that

$$
A_{n}=B_{n} \otimes C(\mathbb{T}), \quad B_{n}=\bigoplus_{i=1}^{k_{n}} B_{n, i}, \quad B_{n, i} \cong M_{[n, i]}
$$

and the embeddings of A_{n} into A_{n+1} are in the standard form. By Elliott's theory ([7]), we identify $\bigcup_{n=1}^{\infty} A_{n}$ with A.

Define $\psi_{n}^{0}: \mathrm{K}_{1}\left(A_{n}\right) \rightarrow \mathrm{K}_{0}\left(A_{n+2}\right)$ by

$$
\psi_{n}^{0}=h_{n+1} \chi_{n}^{1}-\chi_{n+1}^{0} h_{n}
$$

By the properties specified in Lemma 4.2 we have that

$$
\left|\psi_{n}^{0}(i, j)\right|<2^{-n+1} \ell_{n}^{-1} \chi_{n+2, n}^{0}(i, j)
$$

Then, by Lemma 3.4 (and its proof), we find a unitary $w_{n j} \in B_{n+2} \cap B_{n}^{\prime}$ such that

$$
\begin{aligned}
& w_{n j}=w_{n j} p_{n j}+1-p_{n j} \\
& \left\|\operatorname{Ad} w_{n j}\left(z_{n j}\right)-z_{n j}\right\| \leqslant 3 \pi 2^{-n+1} \\
& B\left(w_{n j}, z_{n j}\right)=-[n, j] \psi_{n}^{0}\left(e_{j}^{n}\right)
\end{aligned}
$$

(Because $z_{n j}$ in $B_{n+2, i} \otimes C(\mathbb{T})$ is a direct sum of elements of the form as in the proof of Lemma 3.4 such that the matrix sizes M_{s} are at least $2^{2 n}$; hence the error introduced by choosing N_{s} in that proof will be of the order $2^{-2 n}$.) If w_{n} denotes $w_{n 1} w_{n 2} \cdots w_{n k_{n}}$, then we have that

$$
\begin{aligned}
& w_{n} \in B_{n+2} \cap B_{n}^{\prime}, \quad\left\|\operatorname{Ad} w_{n}\left(z_{n}\right)-z_{n}\right\| \leqslant 3 \pi 2^{-n+1} \\
& B\left(w_{n}, z_{n j}\right)=-[n, j] \psi_{n}^{0}\left(e_{j}^{n}\right), \quad\left[w_{n} p_{n j}\right]=0
\end{aligned}
$$

We define the following two automorphisms β_{0}, β_{1} of A by

$$
\beta_{0}=\lim _{n \rightarrow \infty} \operatorname{Ad}\left(w_{2} w_{4} \cdots w_{2 n}\right), \quad \beta_{1}=\lim _{n \rightarrow \infty} \operatorname{Ad}\left(w_{1} w_{3} \cdots w_{2 n-1}\right)
$$

To show the limits exist, note that $\left[w_{m}, w_{n}\right]=0$ if $|m-n| \geqslant 2$ and the limits obviously exist on $\bigcup_{n=1}^{\infty} B_{n}$. Since $\operatorname{Ad}\left(w_{n} w_{n+2} \cdots w_{n+2 k}\right)\left(z_{n}\right)$ in $A_{n+2 k+2}$ is a direct sum of elements of the form

$$
\left(\begin{array}{cccc}
0 & & & z_{n+2 k+2}^{L} \\
1 & \cdot & & \\
& \ddots & \ddots & \\
& & 1 & 0
\end{array}\right)
$$

with $L= \pm 1$, we have that

$$
\left\|\operatorname{Ad}\left(w_{n} \cdots w_{n+2 k} w_{n+2 k+2}\right)\left(z_{n}\right)-\operatorname{Ad}\left(w_{n} \cdots w_{n+2 k}\right)\left(z_{n}\right)\right\|<3 \pi 2^{-(n+2 k+1)}
$$

Then it also follows that the limits exist on z_{1}, z_{2}, \ldots. Since the same reasoning applies to the inverses, we have shown that β_{0}, β_{1} exist as automorphisms.

Now we shall show that the product $\beta_{0} \beta_{1}$ has the required properties.
By [11], 2.4, the extension $\eta_{1}\left(\beta_{i}\right)$

$$
0 \longrightarrow \mathrm{~K}_{1}(A) \longrightarrow \mathrm{K}_{0}\left(M_{\beta_{i}}\right) \longrightarrow \mathrm{K}_{0}(A) \longrightarrow 0
$$

is trivial for $i=0,1$ and the extension $\eta_{0}\left(\beta_{i}\right)$

$$
0 \longrightarrow \mathrm{~K}_{0}(A) \longrightarrow \mathrm{K}_{1}\left(M_{\beta_{i}}\right) \longrightarrow \mathrm{K}_{1}(A) \longrightarrow 0
$$

is given as the inductive limit of

$$
\left.\begin{array}{cccccccccc}
0 & \longrightarrow & \mathbb{Z}^{k_{n}} & \longrightarrow & \mathbb{Z}^{k_{n}} & \oplus & \mathbb{Z}^{k_{n}} & \longrightarrow & \mathbb{Z}^{k_{n}} & \longrightarrow
\end{array}\right) 0
$$

with $n \equiv i(\bmod 2)$. Hence $\eta_{1}\left(\beta_{0} \beta_{1}\right)=\eta_{1}\left(\beta_{0}\right)+\eta_{1}\left(\beta_{1}\right)=0$. We will compute $\eta_{0}\left(\beta_{0}\right)+\eta_{0}\left(\beta_{1}\right)$ below.

Define

$$
E=\left\{(x, y) \in \mathrm{K}_{1}\left(M_{\beta_{0}}\right) \oplus \mathrm{K}_{1}\left(M_{\beta_{1}}\right) \mid q(x)=q(y)\right\} /\left\{(a,-a) \mid a \in \mathrm{~K}_{0}(A)\right\}
$$

If $g \in \mathrm{~K}_{1}(A)$ is the image of $x_{2 n+1} \in \mathbb{Z}^{k_{2 n+1}}$, define $\eta_{n}:$ Range $\chi_{\infty, 2 n+1}^{1} \rightarrow$ $\mathrm{K}_{1}\left(M_{\beta_{0}}\right) \oplus \mathrm{K}_{1}\left(M_{\beta_{1}}\right)$ by

$$
\eta_{n}(g)=\left(h_{2 n+1}\left(x_{2 n+1}\right), x_{2 n+2}\right) \oplus\left(0, x_{2 n+1}\right)
$$

where the right hand side should be regarded as an element of $\mathrm{K}_{1}\left(M_{\beta_{0}}\right) \oplus \mathrm{K}_{1}\left(M_{\beta_{1}}\right)$. Then

$$
\begin{aligned}
\eta_{n+1} & (g) \\
= & \eta_{n}(g) \\
= & \left(h_{2 n+3}\left(x_{2 n+3}\right)-\psi_{2 n+2}^{0}\left(x_{2 n+2}\right)-\chi_{2 n+4,2 n+2}^{0} h_{2 n+1}\left(x_{2 n+1}\right), 0\right) \\
& \oplus\left(-\psi_{2 n+1}^{0}\left(x_{2 n+1}\right), 0\right) \\
= & \left(\chi_{2 n+3}^{0} h_{2 n+2}\left(x_{2 n+2}\right)-\chi_{2 n+4,2 n+2}^{0} h_{2 n+1}\left(x_{2 n+1}\right), 0\right) \\
& \oplus\left(-h_{2 n+2}\left(x_{2 n+2}\right)+\chi_{2 n+2}^{0} h_{2 n+1}\left(x_{2 n+1}\right), 0\right)
\end{aligned}
$$

Thus $\left(\eta_{n}\right)$ gives a well-defined homomorphism $\eta: \mathrm{K}_{1}(A) \rightarrow E$ such that $q \eta=\mathrm{id}$. This shows that $\eta_{0}\left(\beta_{0} \beta_{1}\right)=0$.

Let $u_{n}=w_{n} w_{n-2} \cdots$. We take a path $v(t)$ of unitaries in $A \otimes M_{2}$ from $z_{n j}$ to $\beta_{0}\left(z_{n j}\right)$ by composing the following two paths for even $m \geqslant n$:

$$
v_{1}(t)=R_{t}\left(1 \oplus u_{m}\right) R_{t}^{-1}\left(z_{n j} \oplus 1\right) R_{t}\left(1 \oplus u_{m}^{*}\right) R_{t}^{-1}
$$

and a short path v_{2} from $\operatorname{Ad} u_{m}\left(z_{n j}\right)$ to $\beta_{0}\left(z_{n j}\right)$. For $\tau \in T_{A}$ we want to compute

$$
\frac{1}{2 \pi \mathrm{i}} \int_{0}^{1} \tau\left(\dot{v}(t) v(t)^{*}\right) \mathrm{d} t
$$

We know the contribution from v_{1} is zero and the contribution from v_{2} is given by $\lim _{k \rightarrow \infty} \tau\left(B\left(w_{m+2}^{*} w_{m+4}^{*} \cdots w_{m+2 k}^{*}, z_{n j}\right)\right)=\lim \tau\left(\sum_{i=1}^{k} \chi_{\infty, 2 m+2 i+2}^{0} \psi_{m+2 i}^{0} \chi_{m+2 i, n}^{1}\left(e_{j}^{n}\right)\right)$.
Thus we obtain that

$$
R_{\beta_{0}}([v])=\sum_{i=1}^{\infty} D \chi_{\infty, 2 m+2 i+2}^{0} \psi_{m+2 i}^{0} \chi_{m+2 i, n}^{1}\left(e_{j}^{n}\right)
$$

A similar computation applies to β_{1}. For an odd n we let $m=n-1$ for computing $r_{0}=R_{\beta_{0}}([v])$ and let $m=n$ for computing the corresponding r_{1}, and obtain that

$$
\begin{aligned}
r_{0}+r_{1} & =\sum_{i=1}^{\infty} D \chi_{\infty, n+i+2}^{0} \psi_{n+i}^{0} \chi_{n+i, n}^{1}\left(e_{j}^{n}\right) \\
& =\sum_{i=1}^{\infty}\left(D \chi_{\infty, n+i+2}^{0} h_{n+i+1} \chi_{n+i+1, n}^{1}\left(e_{j}^{n}\right)-D \chi_{\infty, n+i+1}^{0} h_{n+i} \chi_{n+i, n}^{1}\left(e_{j}^{n}\right)\right) \\
& =\varphi \chi_{\infty, n}^{1}\left(e_{j}^{n}\right)-D \chi_{\infty, n+1}^{0} h_{n+1} \chi_{n}^{1}\left(e_{j}^{n}\right)
\end{aligned}
$$

Under the identification of $\mathrm{K}_{1}\left(M_{\beta_{0} \beta_{1}}\right)$ with $\mathrm{K}_{0}(A) \oplus \mathrm{K}_{1}(A)$ specified above, the above element corresponds to $\left(-h_{n+1} \chi_{n}^{1}\left(e_{j}^{n}\right),\left[z_{n j}\right]\right)$. This implies that $R_{\beta_{0} \beta_{1}}$ satisfies the required properties.

Let Q be the homomorphism of $\operatorname{OrderExt}\left(\mathrm{K}_{1}(A), \mathrm{K}_{0}(A)\right)$ into $\operatorname{Ext}\left(\mathrm{K}_{1}(A)\right.$, $\left.\mathrm{K}_{0}(A)\right)$ defined by $[(E, R)] \mapsto[E]$. Then ker Q is the subgroup of the isomorphism classes of $\left(E_{0}, R_{\varphi}\right)$ where E_{0} is the trivial extension $\mathrm{K}_{1}(A) \oplus \mathrm{K}_{0}(A)$, and R_{φ} : $E_{0} \rightarrow \operatorname{Aff}\left(T_{A}\right)$ is determined by $\varphi \in \operatorname{Hom}\left(\mathrm{K}_{1}(A), \operatorname{Aff}\left(T_{A}\right)\right)$ as in the previous proposition:

$$
R_{\varphi}:(a, b) \mapsto D(a)+\varphi(b)
$$

Proposition 4.3. The following sequences of abelian groups are exact:

$$
\begin{aligned}
0 & \operatorname{ker} Q \longrightarrow \operatorname{OrderExt}\left(\mathrm{~K}_{1}(A), \mathrm{K}_{0}(A)\right) \stackrel{Q}{\longrightarrow} \operatorname{Ext}\left(\mathrm{~K}_{1}(A), \mathrm{K}_{0}(A)\right) \longrightarrow 0 \\
0 & \operatorname{Hom}\left(\mathrm{~K}_{1}(A), \operatorname{ker} D\right) \longrightarrow \operatorname{Hom}\left(\mathrm{K}_{1}(A), \mathrm{K}_{0}(A)\right) \\
& \longrightarrow \operatorname{Hom}\left(\mathrm{K}_{1}(A), \operatorname{Aff}\left(T_{A}\right)\right) \longrightarrow \operatorname{ker} Q \longrightarrow 0
\end{aligned}
$$

Proof. For the first sequence we only have to show that Q is surjective. Given an extension

$$
0 \longrightarrow \mathrm{~K}_{0}(A) \longrightarrow E \longrightarrow \mathrm{~K}_{1}(A) \longrightarrow 0
$$

we regard $\mathrm{K}_{0}(A)$ as a subgroup of E and have to extend $D: \mathrm{K}_{0}(A) \rightarrow \operatorname{Aff}\left(T_{A}\right)$ to a homomorphism $R: E \rightarrow \operatorname{Aff}\left(T_{A}\right)$. This can be done step by step by using the fact that $\operatorname{Aff}\left(T_{A}\right)$ is divisible.

For the second sequence we only have to show that $\left(E_{0}, R_{\varphi}\right)$ and $\left(E_{0}, R_{\psi}\right)$ are isomorphic if and only if $\varphi=\psi+D \circ h$ for some $h \in \operatorname{Hom}\left(\mathrm{~K}_{1}(A), \mathrm{K}_{0}(A)\right)$. This follows because an isomorphism $\mu: E_{0} \rightarrow E_{0}$ is given by

$$
\mu:(a, b) \mapsto(a+h(b), b)
$$

for some $h \in \operatorname{Hom}\left(\mathrm{~K}_{1}(A), \mathrm{K}_{0}(A)\right)$ with $R_{\psi} \circ \mu=R_{\varphi}$.
Theorem 4.4. Let A be a simple unital AT algebra of real rank zero, $\overline{\operatorname{Inn}}(A)$ the group of approximately inner automorphisms of A, and $\operatorname{AInn}(A)$ the group of asymptotically inner automorphisms of A. Then $\operatorname{AInn}(A)$ is a normal subgroup of $\overline{\operatorname{Inn}}(A)$ and the quotient $\overline{\operatorname{Inn}}(A) / \operatorname{AInn}(A)$ is isomorphic to

$$
\operatorname{OrderExt}\left(\mathrm{K}_{1}(A), \mathrm{K}_{0}(A)\right) \oplus \operatorname{Ext}\left(\mathrm{K}_{0}(A), \mathrm{K}_{1}(A)\right)
$$

with isomorphism induced by $\widetilde{\eta}$.
Proof. Before Theorem 3.1 we have described the homomorphism

$$
\widetilde{\eta}: \overline{\operatorname{Inn}}(A) \rightarrow \operatorname{OrderExt}\left(\mathrm{K}_{1}(A), \mathrm{K}_{0}(A)\right) \oplus \operatorname{Ext}\left(\mathrm{K}_{0}(A), \mathrm{K}_{1}(A)\right)
$$

and showed in Theorem 3.1 that $\operatorname{ker} \widetilde{\eta}=\operatorname{AInn}(A) . \quad$ By 3.1 of [11] we have shown that $\eta=\left(\eta_{0}, \eta_{1}\right)=\left(Q \widetilde{\eta}_{0}, \eta_{1}\right)$ is surjective onto $\operatorname{Ext}\left(\mathrm{K}_{1}(A), \mathrm{K}_{0}(A)\right) \oplus$ $\operatorname{Ext}\left(\mathrm{K}_{0}(A), \mathrm{K}_{1}(A)\right)$. By Proposition 4.1 we know that Range $\widetilde{\eta}$ contains ker Q, which shows that $\widetilde{\eta}$ is surjective. This completes the proof.

Example 4.5. If A is the irrational rotation C^{*}-algebra generated by unitaries u, v with $u v u^{*} v^{*}=\mathrm{e}^{2 \pi \mathrm{i} \theta} 1$ for some irrational number $\theta \in(0,1)$, then A is a simple unital AT algebra of real rank zero by [9], and $\mathrm{K}_{i}(A) \cong \mathbb{Z}^{2}$ and hence $\operatorname{Ext}\left(\mathrm{K}_{i}(A), \mathrm{K}_{i+1}(A)\right)=0$. But since A has only one tracial state and Range $D=$ $\mathbb{Z}+\theta \mathbb{Z}$, it follows that $\operatorname{Hom}\left(\mathrm{K}_{1}(A), \operatorname{Aff}\left(T_{A}\right)\right) \cong \mathbb{R}^{2}$ and $\operatorname{OrderExt}\left(\mathrm{K}_{1}(A), \mathrm{K}_{0}(A)\right) \cong$ $\mathbb{R}^{2} /(\mathbb{Z}+\theta \mathbb{Z})^{2}$ which is isomorphic to $\overline{\operatorname{Inn}}(A) / \operatorname{AInn}(A)$. Note also that $\operatorname{HInn}(A)=$ $\overline{\operatorname{Inn}}(A)$ in this case since the natural \mathbb{T}^{2} action on A exhausts all OrderExt.

Acknowledgements. The authors are indebted to G.A. Elliott for discussions at an early stage of this work.

The research was supported by NSF grant DMS-9706982.

REFERENCES

1. B. Blackadar, K-theory for Operator Algebras, Math. Sci. Res. Inst. Publ., vol. 5, Springer-Verlag, New York 1986.
2. B. Blackadar, O. Bratteli, G.A. Elliott, A. Kumjian, Reduction of real rank in inductive limits of C^{*}-algebras, Math. Ann. 292(1992), 111-126.
3. B. Blackadar, A. Kumuian, M. Rørdam, Approximately central matrix units and the structure of non-commutative tori, K-Theory 6(1992), 267-284.
4. O. Bratteli, G.A. Elliott, D.E. Evans, A. Kishimoto, Homotopy of a pair of approximately commuting unitaries in a simple C^{*}-algebra, J. Funct. Anal., 160(1998), 466-523..
5. A. Connes, An analogue of the Thom isomorphism for crossed products of a C^{*} algebra by an action of $\mathbb{R}, A d v$. in Math. 39(1981), 31-55.
6. P. de la Harpe, G. Skandalis, Déterminant associé à une trace sur une algèbre de Banach, Ann. Inst. Fourier (Grenoble) 34(1984), 241-260.
7. G.A. Elliott, On the classification of C^{*}-algebras of real rank zero, J. Reine Angew. Math. 443(1993), 179-219.
8. G.A. Elliott, Classification of certain simple C^{*}-algebras. II, J. Ramanujan Math. Soc., 12(1997), 97-134.
9. G.A. Elliott, D.E. Evans, The structure of the irrational rotation C^{*}-algebra, Ann. Math. 138(1993), 477-501.
10. R. Exel, T. Loring, Invariants of almost commuting matrices, J. Funct. Anal. 95(1991), 364-376.
11. A. Kishimoto, A. Kumjian, The Ext class of an approximately inner automorphism, Trans. Amer. Math. Soc. 350(1998), 4127-4148.
12. M. Pimsner, Range of traces on K_{0} of reduced crossed products by free groups, in Operator algebras and their connections with topology and ergodic theory, Proceedings, Buşteni, Romania, 1983, Lecture Notes in Math., vol. 1132, Springer-Verlag, Berlin-Heidelberg-New York, 1985.
13. J. Rosenberg, C. Schochet, The Künneth theorem and the universal coefficient theorem for Kasparov's generalized K-functor, Duke Math. J. 55(1987), 431474.
14. K. Thomsen, Traces, unitary characters and crossed products by \mathbb{Z}, Publ. Res. Inst. Math. Sci. 31(1995), 1011-1029.

A. KISHIMOTO

Department of Mathematics Hokkaido University

Sapporo 060
JAPAN
E-mail: kishi@math.sci.hokudai.ac.jp
A. KUMJIAN

Department of Mathematics
University of Nevada
Reno, NV 89557 USA
E-mail: alex@unr.edu

Received November 29, 1998; revised October 6, 1999.

