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Abstract. Let T be a representation of an abelian semigroup S on a Ba-
nach space X. We identify a necessary and sufficient condition, which we
name superexpansiveness, for T to have an extension to a representation U
on a Banach space Y containing X such that each U(t) (t ∈ S) has a con-
tractive inverse. Although there are many such extensions (Y, U) in general,
there is a unique one which has a certain universal property. The spectrum
of this extension coincides with the unitary part of the spectrum of T , so
various results in spectral theory of group representations can be extended
to superexpansive representations.
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1. INTRODUCTION

The spectral theory of bounded or non-quasianalytic representations of locally
compact, abelian groups on Banach spaces, as developed by Arveson ([2]) and
Lyubich ([17]), is very powerful. In particular, there are spectral subspaces asso-
ciated with the representations and (weak) spectral mapping theorems hold. In
general, the spectral theory of representations of semigroups is much less powerful.
However, Douglas ([10]) showed that any semigroup of isometries can be extended
to a group of isometries on a larger space. Since this construction preserves the
unitary part of the spectrum of the representation, it is immediately possible to
make certain deductions about semigroups of isometries ([4]). These results have
played an important role in the stability theory of bounded one-parameter, and
(especially) more general, semigroups of operators (see the survey articles [3], Sec-
tion 5, [24], Section 4).

In this paper, we consider the question when an abelian semigroup of op-
erators can be extended to a semigroup of invertible operators with contractive
inverses on a larger space. An obvious necessary condition is that each operator is
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expansive in the sense that ‖Tx‖ > ‖x‖ for all x. We shall see that this condition
is sufficient as well as necessary in the case of a single operator or a one-parameter
semigroup of operators (see [19] and [21] for a related result about extending a
single operator). However, the necessary and sufficient condition, superexpansive-
ness, for a general semigroup, is a little stronger as it has to reflect the structure
of the semigroup. This condition is closely related to Arens’s condition for the ex-
istence of inverses in an extension of a Banach algebra ([1]). Indeed, it is possible
to use Arens’s result, together with a construction of Müller ([19]) (we are grateful
to the referee for bringing [19] to our attention) to show that superexpansiveness
is sufficient, although we give a more direct construction of an extension. Unlike
the isometric case, the extension is not unique, but as in the case of isometric dual
representations ([5]), there is a unique extension which has a certain universal
property. For results about dilations of operators which are somewhat parallel to
ours, see [23].

Section 2 contains the definition and background material on superexpan-
siveness, and the construction of the extension of a superexpansive representation
is in Section 3. In Section 4, we show that the extension of a bounded semigroup
of operators on a superreflexive Banach space acts on a superreflexive space.

In Section 5, we give some applications to spectral theory of non-quasiana-
lytic representations of semigroups. We extend the notion of unitary spectrum
to these representations, and in many cases it consists exactly of the unimodular
approximate eigenvalues. For a superexpansive representation, the spectrum is
preserved by the generic extension, so we are able to deduce various results for
superexpansive, non-quasianalytic semigroup representations from known results
for group representations.

As in the case of bounded representations, our results have applications to
the (weighted) stability theory of representations of semigroups. These results will
be given in a separate paper ([7]).

Throughout this paper, S will be a measurable subsemigroup of a locally
compact abelian group G. We assume that G = S−S, and that S has non-empty
interior S◦, so that G = S◦−S◦. We define a relation on G by: t1 � t2 if and only
if t1 − t2 ∈ S ∪ {0}. This relation is reflexive and transitive; it is antisymmetric if
and only if S ∩ (−S) ⊆ {0}.

A weight on S is a map w : S → [1,∞) satisfying w(s+ t) 6 w(s)w(t) for all
s, t ∈ S. The exponential type of a weight w is defined to be

sup
t∈S

lim
n→∞

logw(nt)
n

.

A weight w is said to be non-quasianalytic if
∞∑

n=1

logw(nt)
n2

<∞

for all t ∈ S. The exponential type of a non-quasianalytic weight is 0. We shall
assume throughout that our weights are measurable and bounded on compact
subsets of S.
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We consider S to be equipped with the restriction of Haar measure. For
a weight w, we let L1

w(S) be the Banach algebra of all (equivalence classes of)
measurable functions f : S → C such that ‖f‖ :=

∫
S

|f(t)|w(t) dt <∞.

A representation of S on a Banach space X is a map T : S → B(X) which is
continuous in the strong operator topology and which is a semigroup homomor-
phism, so that T (t1 + t2) = T (t1)T (t2) (t1, t2 ∈ S). For a representation T , there
is an associated weight wT defined by wT (t) = max(‖T (t)‖, 1). We refer to the ex-
ponential type of T , or T being non-quasianalytic, according to the corresponding
notions for wT .

We remark that our results include the following special cases:
(a) S = Z+, G = Z, T is the representation generated by any single operator;
(b) S = R+ = [0,∞), G = R, T is any C0-semigroup;
(c) S = Zn

+, G = Zn, T is generated by any n commuting operators;
(d) S = Rn

+, G = Rn, T is generated by any n commuting C0-semigroups;
(e) S any abelian (multiplicative) semigroup of injective bounded linear oper-

ators on X, G the (discrete) enveloping group of S, T the identity representation.

2. EXPANSIVE REPRESENTATIONS

We are seeking conditions under which a representation T of S on X can be
extended to a representation U of G on a larger space Y in such a way that U(−t)
is a contraction, for each t ∈ S. It is clear that a necessary condition for this is
that the representation should be expansive in the following sense.

We say that an operator T on a normed space X is expansive if ‖Tx‖ > ‖x‖
for all x ∈ X, and a semigroup representation T : S → B(X) is expansive if each
of the operators T (t) is expansive.

We shall see in Example 2.3 that expansiveness is not the condition that we
seek. The problem with this definition is that when S is not a simple semigroup,
expansiveness does not tell us enough about the way T acts. We need a definition
which involves the whole representation rather than just its individual members.
Such a condition is given in the following definition.

We say that the representation T is superexpansive if for every n ∈ N,
t, t1, . . . , tn ∈ S and x, x1, . . . , xn ∈ X which satisfy ti � t for all i and T (t)x =
T (t1)x1 + · · ·+ T (tn)xn, we have that ‖x‖ 6 ‖x1‖+ · · ·+ ‖xn‖.

As a justification for the terminology we note that T being superexpansive
implies that T (s) is an expansive operator for all s ∈ S. To see this take any
s0 ∈ S, and let t = s + s0, t1 = s0 and x1 = T (s)x. Example 2.3 will show that
the converse is not true in general, but Proposition 2.2 will show that it is true in
some cases, notably when S = Z+.

It is easy to verify that if T (s) is isometric for all s ∈ S, then T is superexpan-
sive. We now give another important example of a superexpansive representation.



142 Charles J.K. Batty and Stephen B. Yeates

Example 2.1. Let w be a �-increasing, continuous weight on S. There is
a representation R of S on L1

w(S), given by right translations:

(R(t)f)(s) =
{

0 if s− t /∈ S,
f(s− t) if s− t ∈ S,

for all s, t ∈ S. Then R(t) is a bounded operator for each t ∈ S and ‖R(t)‖ 6 w(t).
The mapping t 7→ R(t) is easily seen to be strongly continuous.

We claim that R is superexpansive. Suppose that f, f1, . . . , fn ∈ L1
w(S),

t, t1, . . . , tn ∈ S with ti � t and R(t)f = R(t1)f1 + · · ·+R(tn)fn. Then

‖f‖ =
∫

t+S

|(R(t)f)(s)|w(s− t) ds =
∫

t+S

∣∣∣∣ n∑
i=1

(R(ti)fi)(s)
∣∣∣∣w(s− t) ds

6
n∑

i=1

∫
t+S

|(R(ti)fi)(s)|w(s− t) ds

6
n∑

i=1

∫
ti+S

|fi(s− ti)|w(s− ti) ds =
n∑

i=1

‖fi‖.

Proposition 2.2. Suppose that G = S ∪ (−S) and that T (s) is expansive
for all s ∈ S. Then T is superexpansive.

Proof. Suppose that n ∈ N, t, t1, . . . , tn ∈ S, x, x1, . . . , xn ∈ X, ti � t for all
i and T (t)x = T (t1)x1 + · · ·+ T (tn)xn. Since the relation � on G is total we can
assume, without loss of generality, that t1 � t2 � · · · � tn.

Since T is expansive, each of the operators T (s) is injective, so

T (t− tn)x = T (t1 − tn)x1 + · · ·+ T (tn−1 − tn)xn−1 + xn.

Hence

‖xn‖ = ‖T (t− tn)x− T (t1 − tn)x1 − · · · − T (tn−1 − tn)xn−1‖
= ‖T (tn−1 − tn)

(
T (t− tn−1)x− T (t1 − tn−1)x1 − · · · − xn−1

)
‖

> ‖T (t− tn−1)x− T (t1 − tn−1)x1 − · · · − xn−1‖
>

∥∥T (t− tn−1)x− T (t1 − tn−1)x1 − · · · − T (tn−2 − tn−1)xn−2

∥∥− ‖xn−1‖
= ‖T (tn−2 − tn−1)

(
T (t− tn−2)x− T (t1 − tn−2)x1 − · · · − xn−2

)
‖ − ‖xn−1‖

>
∥∥T (t− tn−2)x− T (t1 − tn−2)x1 − · · · − T (tn−3 − tn−2)xn−3

∥∥
− ‖xn−2‖ − ‖xn−1‖

...

> ‖T (t− t1)x‖ − ‖x1‖ − ‖x2‖ − · · · − ‖xn−1‖
> ‖x‖ − ‖x1‖ − ‖x2‖ − · · · − ‖xn−1‖.

Reordering the terms, this says that ‖x‖ 6 ‖x1‖+ ‖x2‖+ · · ·+ ‖xn‖. Hence T is
super expansive.
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Our definitions of expansive and superexpansive representations are related
to properties identified by Arens ([1]) when considering the possibility of extending
a Banach algebra in such a way as to make one or more given elements invertible
(see the remarks following Theorem 3.3). Arens asked whether his two proper-
ties were equivalent. Bollobás ([8]) gave an example to answer Arens’s question
and this also serves to show that expansive representations are not necessarily
superexpansive.

Example 2.3. In [8], Bollobás constructed a commutative Banach algebra,
B, containing elements b0, b1, b2, g1, g2 such that:

(i) ‖gix‖ > ‖x‖ for all x ∈ B and i = 1, 2;
(ii) g1g2b0 = g1b1 + g2b2;
(iii) ‖b1‖ = ‖b2‖ = 1;
(iv) and ‖b0‖ is as large as desired.
So we can arrange that ‖b0‖ > ‖b1‖+ ‖b2‖ = 2.

Taking the multiplication operators Ti on B given by Tix := gix for i = 1, 2,
we obtain two commuting expansive operators, Ti, such that the representation of
Z2

+ given by (n,m) 7→ Tn
1 T

m
2 is not superexpansive.

3. THE CONSTRUCTION OF AN EXTENSION

Let T be a representation of S on X. We say that (Y, U, π) is an extension of
(X,T ) if Y is a Banach space, U is a representation of G on Y , and π : X → Y is
a linear map such that

(1) π is isometric,
(2) U(t) ◦ π = π ◦ T (t) for all t ∈ S, and
(3) U(t) is invertible for all t ∈ S.

Since U : G→ B(Y ) is a homomorphism, it follows that U(0) is an idempo-
tent in B(Y ), i.e., a projection. Therefore the condition “U(t) is invertible”, could
be replaced by the equivalent condition “U(0) = I”.

We say that an extension (Y, U, π) of (X,T ) is minimal if the subspace
{U(t)π(x) : t ∈ G, x ∈ X} is dense in Y . Given any extension (Y,U, π) of (X,T ),
one can form a minimal extension by replacing Y by the closure of {U(t)π(x) : t ∈
G, x ∈ X}.

We say that a representation (Y, U) of G is S-expansive if ‖U(s)y‖ > ‖y‖ for
all y ∈ Y and s ∈ S, or equivalently, ‖U(−s)‖ 6 1 for all s ∈ S.

We say that a minimal S-expansive extension (Y,U, π) of (X,T ) is universal
if for all minimal S-expansive extensions (Z, V, ρ), all x ∈ X and all t ∈ G,

‖V (t)ρ(x)‖ 6 ‖U(t)π(x)‖.

Since V (s1 − s2)ρ(x) = V (−s2)ρ(T (s1)x), it suffices to check this condition when
t ∈ −S. Furthermore, it is easy to see that this is equivalent to the existence of a
(unique) linear contraction i : Y → Z such that i ◦ π = ρ and V (t) ◦ i = i ◦ U(t)
for all t ∈ G.

We first show that when T is isometric, then this universal property corre-
sponds to U being isometric.
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Example 3.1. Let T be a representation of S by isometries on X, and let
(Y,U, π) be the (unique) minimal extension of (X,T ) to a representation of G by
isometries ([10]). It is clear that (Y,U, π) is S-expansive, and we now show that
it is universal.

Let (Z, V, ρ) be any minimal S-expansive extension of (X,T ). For x ∈ X
and s ∈ S,

‖V (−s)ρ(x)‖ 6 ‖ρ(x)‖ = ‖x‖ = ‖U(−s)π(x)‖.

Conversely, suppose that (Z, V, ρ) is a universal minimal S-expansive exten-
sion of (X,T ). For x ∈ X, t ∈ G and s ∈ S,

‖V (t)V (−s)ρ(x)‖ = ‖V (t− s)ρ(x)‖ > ‖U(t− s)π(x)‖ = ‖x‖ > ‖V (−s)ρ(x)‖.

The minimality now implies that V (t) is expansive. Similarly, V (−t) = V (t)−1 is
expansive, so V (t) is an isometry.

Proposition 3.2. Let (X,T ) be a representation of S, and suppose that
there is an S-expansive extension (Y,U, π) of (X,T ). Then (X,T ) is superexpan-
sive.

Proof. Suppose that n ∈ N, t, t1, . . . , tn ∈ S, x, x1, . . . , xn ∈ X, ti � t for all
i and T (t)x = T (t1)x1 + · · ·+ T (tn)xn. Since t− ti ∈ S ∪ {0} and U(t− ti)−1 is a
contraction for all i,

‖x‖ = ‖U(t)−1U(t)π(x)‖ = ‖U(t)−1π(T (t)x)‖
= ‖U(t− t1)−1π(x1) + · · ·+ U(t− tn)−1π(xn)‖
6 ‖U(t− t1)−1π(x1)‖+ · · ·+ ‖U(t− tn)−1π(xn)‖
6 ‖x1‖+ · · ·+ ‖xn‖.

We now give the main result of this section, the extension theorem, which
is the converse of Proposition 3.2, and which generalises Douglas’s construction
([10]) when T is isometric (see Example 3.1).

Theorem 3.3. Let (X,T ) be a superexpansive representation of S. There
is a universal minimal S-expansive extension (Y,U, π) of (X,T ). Moreover, if
(Z, V, ρ) is any other universal minimal S-expansive extension of (X,T ) then there
is an isometric isomorphism i of Y onto Z such that i◦π = ρ and i◦U(t) = V (t)◦i
for all t ∈ G.

Proof. Let X0 = X×G. We define an equivalence relation on X0 by (x, t) ∼
(y, s) if there exists u ∈ S such that s+u, t+u ∈ S and T (s+u)x = T (t+u)y. Since
each operator T (v) for v ∈ S is expansive, it is injective. Hence, if (x, t) ∼ (y, s),
then T (s+ u)x = T (t+ u)y for all u ∈ S with s+ u, t+ u ∈ S.

We let X1 be the space of equivalence classes, X1 = X0/ ∼, and we denote
the equivalence class containing (x, t) by [x, t]. Since G = S −S, each equivalence
class contains a member (x, t) with t ∈ S. Now X1 is a vector space under the
operations

[x, t] + [y, s] = [T (s)x+ T (t)y, s+ t], where s, t ∈ S
α[x, t] = [αx, t].
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The idea behind this is that (T (s)x, t) ∼ (x, t− s), and so we have converted the
semigroup to a translation, which is clearly an invertible operation on this space.
We have to define a norm on the space X1, so that X is isometrically embedded
into it.

For [x, t] ∈ X1 we define

(3.1) ‖[x, t]‖ = inf
{ n∑

i=1

‖xi‖ : n ∈ N, xi ∈ X, ti ∈ S ∪ {0},
n∑

i=1

[xi, ti] = [x, t]
}
.

Since this definition is in terms of the equivalence class, and not a representative
of the class, it is well defined.

The next step is to prove that ‖ · ‖ is a norm on X1, and that there is
an isometric embedding of X into X1. The fact that ‖ · ‖ satisfies the triangle
inequality is built into the definition since, if [x, t], [y, s] ∈ X1,

‖[x, t] + [y, s]‖

= inf
{ n∑

i=1

‖xi‖ : n ∈ N, xi ∈ X, ti ∈ S ∪ {0},
n∑

i=1

[xi, ti] = [x, t] + [y, s]
}

6 inf
{ n∑

i=1

‖xi‖+
m∑

i=1

‖yi‖ : n,m ∈ N, xi, yi ∈ X, ti, si ∈ S ∪ {0},

n∑
i=1

[xi, ti] = [x, t],
m∑

i=1

[yi, si] = [y, s]
}

= ‖[x, t]‖+ ‖[y, s]‖.

Since λ[x, t] = [λx, t] and, for non-zero λ,
n∑

i=1

[xi, ti] = [x, t] if and only if
n∑

i=1

[λxi, ti] = [λx, t], it is easy to see that ‖λ[x, t]‖ = |λ| ‖[x, t]‖.

To complete the proof that ‖ · ‖ is a norm we need to show that ‖[x, t]‖ 6= 0
whenever [x, t] 6= 0. It is clear that [x, t] = 0 if and only if x = 0. Let x 6= 0 and

t ∈ S ∪ {0}. Suppose that n ∈ N, xi ∈ X, ti ∈ S ∪ {0} and
n∑

i=1

[xi, ti] = [x, t].

Choose s ∈ S such that ti � s for each i. Then

[x, t] =
n∑

i=1

[xi, ti] =
n∑

i=1

[T (s− ti)xi, s] =
[ n∑

i=1

T (s− ti)xi, s

]
.

Hence

T (s)x = T (t)
( n∑

i=1

T (s− ti)xi

)
=

n∑
i=1

T (s− ti)(T (t)xi),

where T (0) := I if 0 /∈ S. Since s − ti � s for each i, the superexpansiveness
implies that

‖x‖ 6
n∑

i=1

‖T (t)xi‖ 6 ‖T (t)‖
n∑

i=1

‖xi‖.
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Since this is true for all such xi and ti and ‖T (t)‖ > 0, we have ‖[x, t]‖ >
‖x‖/‖T (t)‖ > 0.

Next we need to embed X isometrically into X1. The embedding is given by
π : x 7→ [x, 0], and it is immediate that ‖[x, 0]‖ 6 ‖x‖. The previous paragraph,
with t = 0, shows that ‖x‖ 6 ‖[x, 0]‖.

So we have now shown that equation (3.1) defines a norm on the space X1,
under which the map π : x 7→ [x, 0] is an isometric embedding of X into X1.
We now define U(t)[x, s] = [x, s − t] (x ∈ X, s, t ∈ G). It is clear that U is a
well-defined homomorphism of G into the space of all linear operators on X1, and
U(t) ◦ π = π ◦ T (t) for all t ∈ S.

Next we check that U(−s) is a contraction for all s ∈ S. Suppose that s ∈ S,

xi ∈ X, ti ∈ S ∪ {0} and [x, t] =
n∑

i=1

[xi, ti]. Then [x, t + s] =
n∑

i=1

[xi, ti + s], and

ti + s ∈ S, hence ‖[x, t + s]‖ 6
n∑

i=1

‖xi‖ for any such xi. Therefore ‖[x, t + s]‖ 6

‖[x, t]‖ for all x ∈ X, t ∈ G and s ∈ S, so U(−s) is a contraction for all s ∈ S.
Next we show that U(s) is a bounded operator for all s. If s ∈ S, we have

U(s)[x, t] = [T (s)x, t]. Suppose that xi ∈ X and ti ∈ S ∪{0} are such that [x, t] =
n∑

i=1

[xi, ti]. Then [T (s)x, t] =
n∑

i=1

[T (s)xi, ti] hence ‖[T (s)x, t]‖ 6
n∑

i=1

‖T (s)xi‖ 6

n∑
i=1

‖T (s)‖ ‖xi‖ for all such xi and ti. Therefore ‖[T (s)x, t]‖ 6 ‖T (s)‖ ‖[x, t]‖. We

shall prove a more general version of this inequality in Lemma 3.4. Any s ∈ G can
be written as s = s1 − s2 where si ∈ S for i = 1, 2. Then U(s) = U(s1)U(−s2)
and we have just shown that both U(s1) and U(−s2) are bounded operators, so
U(s) is a bounded operator.

We now take the Banach space Y to be the completion of X1 with the norm
given by (3.1), and extend each U(t) continuously to an operator (also denoted
by U(t)) on Y . To show that U is strongly continuous, we first observe that the
maps x 7→ [(x, t)] from X into Y are injective, bounded linear maps for each t ∈ G,
since ‖[(x, t)]‖ 6 ‖U(−t)‖ ‖x‖. Let s ∈ G with s = s1 − s2 where si ∈ S◦. Then,
whenever u ∈ G is close enough to s, we have u+ s2 ∈ S, hence

lim
u→s

‖U(u)[x, t]− U(s)[x, t]‖ = lim
u→s

‖U(u− t)[x, 0]− U(s− t)[x, 0]‖

6 lim
u→s

‖U(−s2 − t)‖ ‖U(u+ s2)[x, 0]− U(s1)[x, 0]‖

= lim
u→s

‖U(−s2 − t)‖ ‖[T (u+ s2)x, 0]− [T (s1)x, 0]‖

= lim
u→s

‖U(−s2 − t)‖ ‖T (u+ s2)x− T (s1)x‖ = 0.

Hence U is strongly continuous on a dense subset of Y .
Now let y ∈ Y and s = s1 − s2 ∈ G, with s1, s2 ∈ S◦. Since S◦ is locally

compact and T is strongly continuous, there is a neighbourhood W of s1 in G,
contained in S, on which the map ‖T (·)‖ is bounded, say by C. Then ‖U(·)‖ is
bounded on W −s2 by C‖U(−s2)‖ and W −s2 is a neighbourhood of s in G. Thus
U is locally bounded, and it follows that U is strongly continuous on Y .

It is clear that (Y, U, π) is a minimal S-expansive extension of (X,T ). To
show that (Y, U, π) is universal, let (Z, V, ρ) be any S-expansive extension of (X,T ).
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Suppose that x ∈ X, t ∈ S ∪ {0} and that n ∈ N, xi ∈ X, ti ∈ S ∪ {0} (1 6 i 6 n)

are such that
n∑

i=1

[xi, ti] = [x, t]. Choose s ∈ S such that t � s and ti � s for each

i. Then

[T (s− t)x, s] =
n∑

i=1

[T (s− ti)xi, s] =
[ n∑

i=1

T (s− ti)xi, s

]
.

Hence T (s− t)x =
n∑

i=1

T (s− ti)xi. Therefore

V (−t)ρ(x) = V (−s)V (s− t)ρ(x) = V (−s)ρ(T (s− t)x)

= V (−s)ρ
( n∑

i=1

T (s− ti)xi

)
=

n∑
i=1

V (−s)V (s− ti)ρ(xi)

=
n∑

i=1

V (−ti)ρ(xi).

But V (−ti) is a contraction and ρ is isometric, therefore

‖V (−t)ρ(x)‖ 6
n∑

i=1

‖ρ(xi)‖ =
n∑

i=1

‖xi‖.

Thus ‖V (−t)ρ(x)‖ 6 ‖[x, t]‖ = ‖U(−t)π(x)‖. This suffices to show that (Y, U, π)
is universal.

Finally, suppose that (Z, V, ρ) is any universal minimal S-expansive extension
of (X,T ). Then

‖V (t)ρ(x)‖ = ‖U(t)π(x)‖

for all x ∈ X and t ∈ G. Let i(U(t)π(x)) = V (t)ρ(x). It is easy to verify that i
is well-defined and linear. Since i is isometric with dense range, it extends to an
isometry of Y onto Z, and it is easy to verify that i◦π = ρ and i◦U(t) = V (t)◦i.

Remarks. (1) Suppose that (Z, V, ρ) is an extension of the superexpansive
representation (X,T ) such that

(3.2) ‖V (−t)ρ(x)‖ 6 ‖x‖

for all x ∈ X and t ∈ S, a condition which is weaker than being S-expansive. Let
(Y, U, π) be the extension constructed in Theorem 3.3. The proof above shows
that

‖V (−t)ρ(x)‖ 6 ‖U(−t)x‖

for all x ∈ X and t ∈ S. Hence there is a linear contraction i : Y → Z such that
i ◦ π = ρ and V (t) ◦ i = i ◦ U(t) for all t ∈ G.
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(2) Let x ∈ X, and t ∈ S. Suppose that y1, y2, . . . , yn ∈ X, s1, s2, . . . , sn ∈ S,

and
n∑

i=1

si = t. Put

x1 = y1,

xi = yi − T (si−1)yi−1 (i = 2, . . . , n),

xn+1 = x− T (sn)yn,

t1 = 0,

ti = s1 + · · ·+ si−1 (i = 2, . . . , n+ 1).

Then
n+1∑
i=1

[xi, ti] = [x, t]. Hence

(3.3)

‖[x, t]‖ 6 inf
{
‖y1‖+ ‖y2 − T (s1)y1‖+ · · ·+ ‖x− T (sn)yn‖ :

n ∈ N, yi ∈ X, si ∈ S,
n∑

i=1

si = t

}
.

Equality holds when G = S∪(−S). In particular, the right-hand side of (3.3) then
depends only on the equivalence class of (x, t) and satisfies the triangle inequality.
As this fact plays no role in our results, we omit the proof.

(3) Read ([21]) and Müller ([19]) independently showed that a single operator
T can be extended to an operator S whose spectrum is the approximate point
spectrum of T . Although this extension is different from ours even in the case of
a single operator, Müller’s technique is relevant to us. He found a way to deduce
the result for operators from the corresponding result in Banach algebras obtained
earlier by Read ([20]). It is possible to use Müller’s technique, together with the
construction of Arens ([1]) for Banach algebras, to obtain the existence of an S-
expansive extension in Theorem 3.3. Moreover the minimal part of that extension
is universal, and so it coincides with our extesions, up to isometric isomorphism.
However, the constructions of Arens and Müller produce a complicated description
of the space Y , and our more direct construction is simpler to present for the
purpose of establishing further properties. (We are grateful to the referee for
bringing the work of Read and Müller to our attention.)

(4) Stroescu ([23]) has shown that, if G is a group and T is a strongly
continuous mapping T : G→ B(X) satisfying ‖T (t)‖ 6 w(t) for a weight w on G,
then there is a dilation of T to a representation of G. She also applied this result to
one-parameter semigroups of operators. There is no immediate connection between
our results and hers, although there are some similarities in the constructions. (We
are grateful to B. Nagy for bringing [23] to our attention.)

In the light of the uniqueness statement of Theorem 3.3, and to simplify the
terminology, we call the extension (Y,U, π) constructed in Theorem 3.3 the generic
extension of (X,T ). Moreover, we will often suppress the map π and regard X as
a subspace of Y . For the rest of this section, we consider further properties of the
generic extension.
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Let A be a bounded linear operator which commutes with T (t) for all t ∈ S.
Then we can define an operator Ã on X1 by Ã[x, t] = [Ax, t]. This is well-defined
since if [x, t] = [y, s] then there exists u ∈ S such that t + u, s + u ∈ S and
T (s+ u)x = T (t+ u)y. Then

T (s+ u)Ax = AT (s+ u)x = AT (t+ u)y = T (t+ u)Ay,

hence [Ax, t] = [Ay, s]. Now we claim that Ã is a bounded linear operator and
‖Ã‖ = ‖A‖. Then we can extend Ã continuously to the completion of X1. The
linearity of Ã is obvious and it is clear that Ã agrees with A on the embedded
copy of X, so that ‖Ã‖ > ‖A‖, provided that Ã is bounded.

Lemma 3.4. Let A be a bounded linear operator which commutes with T (t)
for all t ∈ S. Then ‖[Ax, t]‖ 6 ‖A‖ ‖[x, t]‖.

Proof. Since A commutes with all the T (t), whenever [x, t] =
n∑

i=1

[xi, ti] we

have that [Ax, t] =
n∑

i=1

[Axi, ti]. Therefore

‖[Ax, t]‖ = inf
{ n∑

i=1

‖xi‖ : xi ∈ X, ti ∈ S ∪ {0}, [Ax, t] =
n∑

i=1

[xi, ti]
}

6 inf
{ n∑

i=1

‖Axi‖ : xi ∈ X, ti ∈ S ∪ {0}, [Ax, t] =
n∑

i=1

[Axi, ti]
}

6 inf
{ n∑

i=1

‖Axi‖ : xi ∈ X, ti ∈ S ∪ {0}, [x, t] =
n∑

i=1

[xi, ti]
}

6 ‖A‖ inf
{ n∑

i=1

‖xi‖ : xi ∈ X, ti ∈ S ∪ {0}, [x, t] =
n∑

i=1

[xi, ti]
}
.

Proposition 3.5. Let (Y, U) be the generic extension of (X,T ). If A ∈
B(X) and A commutes with T (t) for all t ∈ S, then A extends to a bounded linear
operator Ã on Y with the properties ‖A‖ = ‖Ã‖ and the spectrum, σ(Ã), of Ã
is contained in σ(A). Moreover, Ã is the unique bounded linear map on Y such
that U(t)Ax = ÃU(t)x for all t ∈ G and x ∈ X. The map A 7→ Ã is an algebra
homomorphism from the subalgebra BT (X) of all bounded linear operators on X
which commute with T into the algebra BU (Y ) of all bounded linear operators on
Y which commute with U .

Proof. We have already shown that Ã defines a bounded linear operator on
Y and that ‖A‖ = ‖Ã‖. The fact that U(t)Ax = ÃU(t)x is immediate from the
definition of Ã, and the uniqueness follows from the minimality of the extension.
It is clear that ϕ : A 7→ Ã is an algebra homomorphism from BT (X) into BU (Y ),
with ϕ(IX) = IY . Therefore if λ ∈ C \ σ(A), then IX = (λIX − A)−1(λIX − A),
so IY = ϕ(IX) = ϕ((λIX −A)−1)(λIY − Ã), hence λ /∈ σ(Ã).
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Corollary 3.6. Let (Y,U) be the generic extension of (X,T ). Then

(i) U(t) = T̃ (t) for all t ∈ S;

(ii) ‖U(t)‖ = ‖T (t)‖ for all t ∈ S;

(iii) ‖U(t)‖ 6 inf{‖T (s)‖ : s ∈ S, t � s} for all t ∈ G;

(iv) if T is norm-continuous, then U is norm-continuous.

Proof. It is clear that (i) holds, and (ii) is then a consequence of Proposition
3.5. If t ∈ G, s ∈ S and t � s, then

‖U(t)‖ 6 ‖U(−(s− t))‖ ‖U(s)‖ 6 ‖T (s)‖,

so (iii) follows.

By Proposition 3.5, ‖U(t)−U(s)‖ = ‖T (t)−T (s)‖ for all s, t ∈ S. Now, for
s1, s2, t1, t2 ∈ S,

‖U(t1 − t2)− U(s1 − s2)‖ = ‖U(−t2 − s2)(U(t1 + s2)− U(s1 + t2))‖
6 ‖T (t1 + s2)− T (s1 + t2)‖.

Now (iv) follows.

Example 3.7. Consider S = Rn
+ as a subsemigroup of G = Rn; the relation

� is then the usual coordinatewise lattice ordering. Let w be an increasing, con-
tinuous weight on Rn

+, and consider the representation R of Rn
+ on L1

w(Rn
+) as in

Example 2.1. Since the representation is superexpansive, Theorem 3.3 shows that
there is a generic extension (Y, U) of this representation, and Corollary 3.6 shows
that

‖U(t)‖ 6 w′(t) := inf{w(s) : s ∈ Rn
+, t � s} = w(t ∨ 0),

where t ∨ 0 is the supremum of {t, 0} in the lattice Rn. If w1 is any weight on
Rn which extends w, then there is a minimal extension given by right translations
on L1

w1
(Rn). This extension satisfies (3.2) if and only if w1 6 w′, and it is Rn

+-
expansive if and only if w1 is increasing.

The expectation is that the generic extension should be translation on some
space of functions on Rn, and the universal property roughly says that the norm
on the generic extension is as large as possible. Thus it is no surprise that the
generic extension is given by right translations on the space Y = L1

w′(Rn). The
calculations for this are carried out in [25], Section 4.3.

The corresponding result holds for the representation of Zn
+ by right transla-

tions on a weighted space `1w(Zn
+). However, it is not true in general for represen-

tations by right translations on Lp
w(Rn

+) or `pw(Zn
+) for p > 1 ([25], Section 4.4.5).
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4. ISOMETRIC REPRESENTATIONS ON SUPERREFLEXIVE SPACES

For many representations (X,T ), the space X or the operators T (t) have some
special properties, which it would be desirable to preserve while extending the
representation. In general, a superexpansive representation has many different
minimal S-expansive extensions, and the universal property which identifies a
unique generic extension is a general Banach space property (roughly speaking,
it identifies the extension with the largest possible norm). Therefore one should
not expect this construction to preserve other structure in general, but it is some-
times possible to construct a space which has a universal property related to the
structure. This can be done for example, for representations by homomorphisms
of Banach algebras and Banach lattices (see [25], Section 4.4 for details).

When T is a superexpansive representation of S on a Hilbert space X with
generic extension (Y,U), the space Y may not be a Hilbert space ([25], Sec-
tion 4.4.5), although Y is a Hilbert space when T is isometric ([15]). We refer
the reader to [16] for further results in this area.

The following example taken from [11], Example 2.3.9 shows that Y may not
be reflexive when X is reflexive and T is isometric.

Example 4.1. Let `∞n denote the space Cn equipped with the supremum
norm, and let X be the reflexive space

X = `2-
∞⊕

n=1

`∞n .

Define Rn : `∞n → `∞n+1 by

Rn : (ζ1, ζ2, . . . , ζn) 7→ (ζ1, ζ2, . . . , ζn, 0),

and define T : X → X by

T : (xn)∞n=1 7→ (0, R1x1, R2x2, . . . , Rn−1xn−1, . . .),

where xn ∈ `∞n . Then T is an isometry, and induces a representation n 7→ Tn of
Z+ on X.

The generic extension of (X,T ) is given as follows:

Y = `2-
∞⊕
−∞

c0, U : (yn)∞−∞ 7→ (yn−1)∞−∞, π : (xn)∞1 7→ (x∗n)∞−∞,

where c0 is the space of all sequences (y(k))k>1 which converge to 0 with the
supremum norm, and

x∗n(k) =
{
xn(k) (1 6 k 6 n),
0 otherwise.

The space Y is not reflexive.

In Example 4.1, X is not superreflexive. Theorem 4.2 will show that this is
necesary in such an example. We recall now the notion of superreflexivity.

Let X be a Banach space, I be a set, and U be an ultrafilter on I. Consider
the Banach spaces l∞(I,X) of all bounded functions from I to X, and c0(I,X;U)
of all bounded functions from I toX which converge to zero through the ultrafilter,
both with the supremum norm. The space l∞(I,X)/c0(I,X;U) is an ultrapower of
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X, which we denote by (X)U . Then X is superreflexive if all of its ultrapowers are
reflexive, that is, for all possible choices of I and U , the space (X)U is reflexive. For
equivalent definitions of superreflexivity, see [9], Section VII.4.B, [12], [13]. Note
that closed subspaces and ultrapowers of superreflexive spaces are superreflexive
([22], Proposition 2.1).

Theorem 4.2. Suppose that T is an isometric representation on a super-
reflexive Banach space X, and that (Y,U, π) is the generic extension. Then Y is
superreflexive.

Proof. To prove this result it is sufficient to exhibit the extension space as a
subspace of some ultrapower of X. We shall take the set I = S and the ultrafilter
U will be related to the ordering on S. To be precise consider the filter F on S

which is generated by the sets

It := {s ∈ S : s � t}

for t ∈ S. It is easy to check that the above sets do form a filter base, and hence
generate a filter. We now take U to be any ultrafilter containing F .

Given x ∈ X and t ∈ S, choose a function f ∈ l∞(S,X) such that f(t+ s) =
T (s)x for all s ∈ S, and set θ(U(−t)π(x)) = f + c0(S,X;U). Since It ∈ U , it is
easy to verify that this map is well-defined (independent of the choice of f and of
different representations of a vector as U(−t)π(x)) and linear. Moreover,

‖θ(U(−t)π(x))‖ = ‖f + c0(S,X;U)‖ = inf
A∈U

sup
s∈A

‖f(s)‖

= inf
A∈U

sup
s∈A∩It

‖T (s− t)x‖ = ‖x‖ = ‖U(−t)π(x)‖,

since T and U are isometric (Example 3.1). Hence θ extends by continuity to an
isometry of Y onto a closed subspace of (X)U , so Y is a superreflexive space.

We have been unable to establish a version of Theorem 4.2 for non-isometric
representations. The primary obstruction to establishing such a result is not, as it
may appear at first, the use of bounded functions in the definition of superreflex-
ivity, but rather the representation of the extension space as a space of functions.
In the isometric case the extension space can be naturally identified with a space
of functions, indeed this is how Douglas ([10]) proved his result, however such a
natural identification does not appear to exist for extensions of slowly growing
representations. Indeed, the obstruction is the same as that to using translations
on the space BUC(S,X)/C0(S,X) to construct the extension space, which is es-
sentially the method Douglas uses in his extension theorem. This method is not
applicable unless T has the property that ‖T (t)x‖/‖T (t)‖ → 0 only if x = 0. Some
operators of this type are considered in [16].
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5. SPECTRA AND ISOMETRIES

In this section we let T be a representation of S on a complex Banach space X,
and we let Ĝ be the dual group of G. The unitary spectrum Spu(T ) of T is the set
of all χ ∈ Ĝ such that

(5.1) |f̂(χ)| 6 ‖f̂(T )‖
whenever f ∈ Cc(S), the space of continuous complex-valued functions on S with
compact support. Here,

f̂(χ) =
∫
S

f(t)χ(t) dt, f̂(T )x =
∫
S

f(t)T (t)xdt.

If w is a weight on S such that ‖T (t)‖ 6 w(t) for all t ∈ S (for example, w = wT ),
then it follows that (5.1) holds for all f in the closure of Cc(S) in L1

w(S), in
particular for all f ∈ L1

w(S◦). When w is of exponential type 0, it then follows
that (5.1) also holds for all f ∈ L1

w(S), by an argument involving translations and
convolutions (see the proof of Proposition 5.3).

When T is a bounded representation of S, this definition of Spu(T ) agrees
with that in [6]. In particular, if (X,U) is a bounded representation of G, then
Spu(U) is the Arveson spectrum (or finite L-spectrum) of U . If U is a non-
quasianalytic representation of G, then Spu(U) agrees with the spectrum defined
in [14], and also with the L-spectrum of U . In this case, we shall write Sp(U)
instead of Spu(U).

This definition of unitary spectrum may not agree with the usual concept of
spectrum for representations of Z+ and R+ with positive exponential type (see [6],
Example 2.1). However, for representations of exponential type 0, the definition
relates only to the peripheral part of the spectrum, and the following example,
proposition, and subsequent remarks shows that this definition of Spu(T ) is natural
in many cases.

Example 5.1. (i) Let S = Z+ and identify Ẑ with the unit circle Γ. Let
T be a representation of Z+ on X with exponential type 0, so T (1) has spectral
radius at most 1. Then Spu(T ) = σ(T (1)) ∩ Γ.

To see this, let A be the norm-closed linear span of {T (r) : r ∈ Z+}, and let
λ ∈ Γ. Then A is a commutative Banach algebra, and λ ∈ Spu(T ) if and only if∣∣∣∣ n∑

r=0

αrλ
r

∣∣∣∣ 6

∥∥∥∥ n∑
r=0

αrT (1)r

∥∥∥∥
for all n ∈ N and αr ∈ C. Thus λ ∈ Spu(T ) if and only if there is a character ψ of
A such that ψ(T (1)) = λ, or equivalently, λ ∈ σA(T (1)). However, the topological
boundaries of σA(T (1)) and σ(T (1)) coincide, and the result follows.

(ii) Let S = R+ and identify R̂ with R. Let T be a representation of R+

on X with zero exponential type. Let A be the generator of the C0-semigroup
T , so that σ(A) ⊆ {λ ∈ C : Reλ 6 0}. Then i Spu(T ) = σ(A) ∩ iR. This can
be proved by a similar argument to (i) above, taking A to be the norm-closure of
{f̂(T ) : f ∈ Cc(S)}, and considering the spectra in A and B(X) of the element
(I −A)−1 of A.
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In both parts of Example 5.1, Spu(T ) consists of approximate eigenvalues
of the representation T , and we now see that this remains true for many non-
quasianalytic representations of general semigroups. Thus, we say that χ ∈ Ĝ is
an approximate eigenvalue, and a net (xα) of unit vectors in X is an approximate
eigenvector, of T if lim

α
‖T (t)xα − χ(t)xα‖ = 0 uniformly for t in compact subsets

of S.

Proposition 5.2. Let T be a representation of S on X, and let χ ∈ Ĝ.
Suppose that there is a weight w such that the following conditions are satisfied:

(i) ‖T (t)‖ 6 w(t) for all t ∈ S;
(ii) w is non-quasianalytic;
(iii) For all s ∈ S, sup

n>1

inf
t∈S

(w(ns+t)
w(t) )1/n > 1.

Then Spu(T ) is the set of all approximate eigenvalues for T in Ĝ.

Remarks. Condition (ii) of Proposition 5.2 is satisfied if w is continuous or
if w is �-increasing. Condition (iii) is satisfied if w is �-increasing or if w extends
to a weight on G with zero exponential type.

For a given non-quasianalytic representation T , it is possible to choose a
weight w to satisfy all the conditions of Proposition 5.2 in each of the following
cases:

(a) T is expansive (put w(t) = ‖T (t)‖);
(b) (X,T ) has an extension to a representation (Y, U, π) of G with zero

exponential type (put w(t) = ‖U(t)‖).

For some semigroups, including Zn
+ and Rn

+, it is possible to define a weight
satisfying conditions (i) and (iii) by

w(t) = max(sup{‖T (s)‖ : s ∈ S, s � t}, 1).

However it is not clear (even for S = Z+) that this weight is non-quasianalytic
whenever T is non-quasianalytic.

Proof of Proposition 5.2. Suppose that χ is an approximate eigenvalue of
T , with approximate eigenvector (xα). Then lim

α
‖f̂(T )xα − f̂(χ)xα‖ = 0, so

‖f̂(T )‖ > |f̂(χ)| whenever f ∈ Cc(S). Thus χ ∈ Spu(T ).
The converse has been proved in [14], Lemma 1.2.8 and [18] (see [17], p. 203)

for non-quasianalytic representations of groups. The general result is proved in
[25], Theorem 3.5.2 using a similar strategy to [14], but with additional technical
complications. Since we shall not use this result here, we omit the lengthy proof.

Proposition 5.3. Let (X,T ) be a superexpansive, non-quasianalytic rep-
resentation of S. Then the generic extension (Y, U) is non-quasianalytic and
Sp(U) = Spu(T ).

Proof. The fact that U is non-quasianalytic follows from Corollary 3.6 (iii).
Let f ∈ Cc(S), t ∈ G, x ∈ X. Then

f̂(U)U(t)x = U(t)f̂(U)x = U(t)
∫
S

f(s)T (s)xds = U(t)f̂(T )x.
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By Proposition 3.5, f̂(U) = (f̂(T ))˜ and ‖f̂(U)‖ = ‖f̂(T )‖. Now, for χ ∈ Sp(U),
|f̂(χ)| 6 ‖f̂(U)‖ = ‖f̂(T )‖, so χ ∈ Spu(T ).

Conversely, let χ ∈ Spu(T ), and let f ∈ Cc(G) with support K. Since K
is compact and G = S◦ − S◦, there exists s ∈ S such that s + K ⊆ S. Define
fs : S → C by

fs(t) = f(t− s).

Then fs is supported by the compact subset s+K of S, so

|f̂s(χ)| 6 ‖f̂s(U)‖.

But f̂s(χ) = χ(s)f̂(χ) and f̂s(U) = U(s)f̂(U), so

|f̂(χ)| 6 ‖T (s)‖ ‖f̂(U)‖.
Replacing f by its n-fold convolution gives

|f̂(χ)| 6 ‖T (ns)‖1/n‖f̂(U)‖ → ‖f̂(U)‖
as n→∞, since T is non-quasianalytic. Thus, χ ∈ Sp(U).

Remark. In Proposition 5.3, it is possible to prove that Spu(T ) ⊆ Sp(U) via
Proposition 5.2 by the same method as in [4], Proposition 2.1, but the argument
given there that Sp(U) ⊆ Spu(T ) does not work in non-isometric cases. It is the
latter inclusion which we shall need in the following results.

Corollary 5.4. Let T be a superexpansive, non-quasianalytic representa-
tion of S on a Banach space X.

(i) If X 6= {0}, then Spu(T ) is non-empty.
(ii) T is norm-continuous if and only if Spu(T ) is compact.

Proof. Part (i) follows from Proposition 5.3 and the corresponding result
for non-quasianalytic representations of groups ([17], Theorem 3, p. 203, [14],
Proposition 1.2.6). Part (ii) follows from Proposition 5.3, Corollary 3.5, and the
corresponding result for groups [17], Lemma 3, p. 201, [14], Proposition 1.3.5.

We shall now consider the situation when Spu(T ) is countable, and
log ‖T (nt)‖ = o(

√
n) as n → ∞, for all t ∈ S. We use our extension theorem,

and a result of Zarrabi ([26]) for group representations, to show that such a rep-
resentation is always a group representation. We need two preliminary results.

Proposition 5.5. ([14], Theorem 4.5.1) Let w be a weight on G such that,
for all t ∈ S, w(−t) = 1 and logw(nt) = o(

√
n) as n → ∞. Then each countable

closed subset of Ĝ is a set of spectral synthesis for L1
w(G).

Theorem 5.6. Let U be a representation of G which is bounded by a weight
w, and suppose that the following conditions are satisfied:

(i) w(−t) = 1 for all t ∈ S;
(ii) logw(nt) = o(

√
n) as n→∞, for each t ∈ S;

(iii) Sp(U) is countable.
Then U(t) is an isometry for each t ∈ G.

Proof. This was proved by Zarrabi ([26]), when G = Z and S = Z−. The
general case is similar, using Proposition 5.5; a full proof is given in [25], Theo-
rem 3.7.2.
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Theorem 5.7. Let T be a superexpansive representation of S on X, and
suppose that Spu(T ) is countable and ‖T (nt)‖ = o(

√
n) as n→∞, for each t ∈ S.

Then T (t) is an invertible isometry, for each t ∈ S.

Proof. Let (Y, U) be the generic extension of (X,T ), and let w(t) =
max(‖U(t)‖, 1) (t ∈ G). By Proposition 5.3 and Theorem 5.6, U(t), and hence
T (t), is an isometry, for each t ∈ S. The invertibility of T (t) now follows from [4],
Theorem 5.1.
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