SP-PROPERTY FOR A PAIR OF C^* -ALGEBRAS

HIROYUKI OSAKA

Communicated by William B. Arveson

ABSTRACT. Recall that a C^* -algebra A has the SP-property if every non-zero hereditary C^* -subalgebra of A has a non-zero projection. Let $1 \in A \subset B$ be a pair of unital C^* -algebras. In this paper we investigate a sufficient condition for B to have the SP-property, given that A has it. In particular, if there exists a faithful conditional expectation E from B to A of index-finite type in the sense of Watatani, then B has the SP-property under the condition that A is simple with the SP-property. As an application, we have the structure theory of purely infinite simple C^* -algebras.

KEYWORDS: C^* -index theory, SP-property, conditional expectation. MSC (2000): Primary 46L05; Secondary 46L35.

1. INTRODUCTION

A C^* -algebra A has the SP-property if every non-zero hereditary C^* -subalgebra of A has a non-zero projection. This concept has been studied by several mathematicians. For example, this concept is weaker than the real rank zero condition, which means that every hereditary C^* -subalgebra of A has an approximate identity of projections ([2], [19], and [9]). When A is a simple unital C^* -algebra, Jeong and the author ([13]) in the case of the integer group, and Kishimoto and Kumjian ([16]) in the case of a general discrete group G, proved that the reduced crossed product $A \times_{\alpha r} G$ has the SP-property if A has the SP-property and α is a homomorphism from G into the set of automorphisms on A such that α_g is outer for all $g \in G$. In the case that G is finite, Jeong and the author ([14]) proved that any crossed product algebra $A \times_{\alpha} G$ has the SP-property when A has the SP-property. As an application, we showed that any crossed product algebra $A \times_{\alpha} G$ has the condition that A has stable rank one, that is, the set of invertible elements in A is dense in it. Moreover, under the same condition if a given crossed product algebra has real rank zero, it also has stable rank one. Unfortunately, however, we do not know if a crossed product algebra of a UHF-algebra by \mathbb{Z}_2 has stable rank one, in general. Note that Elliott presented

an example of a crossed product algebra of this type which does not have real rank zero ([8]).

In this paper, we consider a general condition for a pair of unital C^* -algebras with the same unit to have the SP-property. In particular, we consider this problem in the case of a conditional expectation from B to A of index-finite type in the sense of Watatani ([25]).

Our main theorem (Theorem 5.1) is that if there exists a faithful conditional expectation E from B to A of index-finite type, then B has the SP-property provided that A is simple with the SP-property. Before giving a proof of it, we consider the case that A is a purely infinite simple C^* -algebra in Section 4. There, we point out the existence of one pair of elements as a quasi-basis for E, and show that B is a direct sum of purely infinite simple C^* -algebras. This is a proof of an announcement by Izumi at the Fields Institute in 1995. We believe that our observation will be helpful in determining the stable rank of the crossed product algebra $A \times_{\alpha} G$ of a simple unital C^* -algebra A with stable rank one by a finite group G.

2. THE SP-PROPERTY

In this section we present a sufficient condition for B to have the SP-property, given that A has it.

The argument in Lemma 10 of [16] gives the following general result.

THEOREM Let $1 \in A \subset B$ be a pair of C^* -algebras. Suppose that A has the SP-property and there is a faithful conditional expectation E from B to A. If for any non-zero positive element x in B and an arbitrary positive number $\varepsilon > 0$ there is an element y in A such that

$$||y^*(x - E(x))y|| < \varepsilon, \quad ||y^*E(x)y|| \ge ||E(x)|| - \varepsilon$$

then B has the SP-property. Moreover, every non-zero hereditary C^* -subalgebra of B has a projection which is equivalent to some projection in A in the sense of Murray-von Neumann.

Proof. Set $a = y^* E(x)y$. Consider the continuous functions f and g defined by

$$f(t) = \max(0, t - (1 - \varepsilon) ||a||), \quad g(t) = \min(t, (1 - \varepsilon) ||a||).$$

Note that $fg = (1 - \varepsilon) ||a|| f$.

Since A has the SP-property, there is a non-zero projection p in f(a)Af(a). Then, there is an element $d_1 \in f(a)A$ such that $||p - f(a)d_1|| < \frac{1}{3}$. So, $||p - d_1^*f(a)^2d_1|| < 1$, and $||p - pd_1^*f(a)^2d_1p|| < 1$. So, $pd_1^*f(a)^2d_1p$ is invertible in pAp. Hence, there is an element $d_2 \in pAp$ such that $p = d_2^*pd_1^*f(a)^2d_1pd_2$. Set $w = d_2^*pd_1^*f(a)^{\frac{1}{2}}$. Then, w in $\overline{f(a)Af(a)}$ such that $p = wf(a)w^*$.

Let $z_0 = (1-\varepsilon)^{-\frac{1}{2}} ||a||^{-\frac{1}{2}} wf(a)^{\frac{1}{2}}$. Then $||z_0|| = (1-\varepsilon)^{-\frac{1}{2}} ||a||^{-\frac{1}{2}}$ and $z_0 g(a) z_0^* = p$. Since $g(a) \leq a$, we have $p = z_0 g(a) z_0^* \leq z_0 a z_0^*$. Thus, there exists an element $z \in pA$ such that

$$zaz^* = p, \quad ||z|| \leq ||z_0|| = (1 - \varepsilon)^{-\frac{1}{2}} ||a||^{-\frac{1}{2}}.$$

SP-property for a pair of C^* -algebras

Hence, we have

$$||zy^*xyz^* - p|| = ||zy^*(x - E(x))yz^*|| < \frac{\varepsilon}{1 - \varepsilon} \times \frac{1}{||E(x)|| - \varepsilon}$$

Note that the last inequality follows from the fact that

$$||a||^{-1} \leq \frac{1}{||E(x)|| - \varepsilon}.$$

We may assume that $||zy^*xyz^* - p|| < 1$. Since $zy^*xyz^* \in pBp$, zy^*xyz^* is invertible in pBp; that is, there exists an element $z_1 \in B$ such that $z_1y^*xyz_1^* = p$. Therefore, since $\overline{z_1y^*x^{\frac{1}{2}}Bx^{\frac{1}{2}}yz_1^*} \cong \overline{x^{\frac{1}{2}}yz_1^*Bz_1y^*x^{\frac{1}{2}}}$ by Section 1.4 of [6], \overline{xBx} has a projection which is equivalent to a projection p in A. Indeed, $p = z_1y^*xyz_1^* \sim x^{\frac{1}{2}}yz_1^*z_1y^*x^{\frac{1}{2}}$ in $\overline{x^{\frac{1}{2}}yz_1^*Bz_1y^*x^{\frac{1}{2}}} \subseteq \overline{xBx}$.

Next, we consider the following stronger assumption on a conditional expectation E from B to A.

DEFINITION Let $1 \in A \subset B$ be a pair of C^* -algebras. A conditional expectation E from B to A is called *outer* if for any element $x \in B$ with E(x) = 0 and any non-zero hereditary C^* -subalgebra C of A,

$$\inf\{\|cxc\|: c \in C^+, \|c\| = 1\} = 0.$$

The following result comes from the same argument as in Lemma 3.2 of [15] and Theorem 2.1.

COROLLARY Let $1 \in A \subset B$ be a pair of C^* -algebras. Suppose that A has the SP-property and there is a faithful conditional expectation E from B to A. If E is outer, then B has the SP-property.

Proof. For the reader we write a sketch of the proof. Let x be a non-zero element in B, and let $\varepsilon > 0$ be an arbitrary positive number. Consider a continuous function $f : [0, ||x||] \to \mathbb{R}^+$ given by

$$f(t) = \begin{cases} 1, & t \ge \|E(x)\|;\\ \text{linear}, & \|E(x)\| - \varepsilon \le t < \|E(x)\|;\\ 0, & t < \|E(x)\| - \varepsilon. \end{cases}$$

Let C be a hereditary C*-subalgebra of A generated by f(E(x)). Then, since $||E(x)c - ||E(x)||c|| < \varepsilon$, for any positive $c \in C$ with norm one, $||cE(x)c|| > ||E(x)||-\varepsilon$. Indeed, since $||c(E(x)c - ||E(x)||c)|| < \varepsilon$, we have $||cE(x)c - ||E(x)||c^2|| < \varepsilon$. Hence,

$$||E(x)|| = |||E(x)||c^{2}|| = ||cE(x)c + ||E(x)||c^{2} - cE(x)c|| < ||cE(x)c|| + \varepsilon.$$

From the outerness of E, for any arbitrary positive number $\varepsilon > 0$ there is a positive element $y \in C$ with norm one such that

$$||y(x - E(x))y|| < \varepsilon, \quad ||yE(x)y|| > ||E(x)|| - \varepsilon.$$

Hence, B has the SP-property by Theorem 2.1.

We present some examples of a pair of C^* -algebras with an outer conditional expectation.

EXAMPLE ([15]) Let G be a discrete group and let α be a representation of G by automorphisms of a simple unital C^{*}-algebra A. Suppose α is outer. Then, the canonical conditional expectation from the reduced crossed product $A \times_{\alpha r} G$ to A is outer.

Proof. Let $u_g, g \in G$ be the standard unitaries in the multiplier algebra of $A \times_{\alpha r} G$ implementing α . Let e be the identity of G. Let x be an element in $A \times_{\alpha r} G$ with E(x) = 0. We approximate x by an element of the dense *-algebra spanned by $Au_g, g \in G$, and hence we may assume that $x = \sum_{i=1}^n c_i u_{g_i}$, where $c_i \in A$, and g_1, \ldots, g_n are distinct elements of $G \setminus \{e\}$.

By Lemma 3.2 of [15], for any $\varepsilon > 0$ there is a positive element $c \in C$ such that ||c|| = 1,

$$\|cc_i u_{g_i} c\| < \frac{\varepsilon}{n}, \quad i = 1, \dots, n.$$

Hence,

$$\|cxc\| = \left\| c \left(\sum_{i=1}^n c_i u_{g_i} \right) c \right\| \leq \sum_{i=1}^n \|cc_i u_{g_i} c\| < \varepsilon.$$

This completes the proof.

EXAMPLE Let ρ be a corner endomorphism of a unital C^{*}-algebra A, and let E be the canonical conditional expectation from the crossed product $A \times_{\rho} \mathbb{N}$ by ρ to A. Suppose that

$$\mathbb{T}(\rho) = \{\lambda \in \mathbb{T} : \widehat{\rho}(I) = I \text{ for } \forall I \in \operatorname{Prime}(A \times_{\rho} \mathbb{N})\} = \mathbb{T}.$$

Then E is outer.

Proof. This comes from the same argument as in Example 2.4 modifying Proposition 2.2 of [13].

We now have the structure theorem for the pure infiniteness of a simple crossed product algebra of a purely infinite simple C^* -algebra by a discrete group.

COROLLARY ([12], [16]) Let A be a purely infinite simple C^{*}-algebra, G a discrete group, and α an action of G on A. Suppose that α is outer. Then the reduced crossed product $A \times_{\alpha r} G$ is a purely infinite simple C^{*}-algebra.

Proof. In the case of a countable abelian group G see [12], Corollary 3.3. In the case of a general discrete group G see [16], Lemma 10.

3. C^* -INDEX THEORY

In this section, we summarize the C^* -index theory of Watatani ([25]).

Let $1 \in A \subseteq B$ be a pair of C^* -algebras, and let $E : B \to A$ be a faithful conditional expectation from B to A.

A finite family $\{(u_1, v_1), \ldots, (u_n, v_n)\}$ in $B \times B$ is called a *quasi-basis* for E if

$$\sum_{i=1}^{n} u_i E(v_i b) = \sum_{i=1}^{n} E(bu_i) v_i = b \quad \text{for } b \in B.$$

We say that a conditional expectation E is of *index-finite type* if there exists a quasi-basis for E. In this case the index of E is defined by

$$\operatorname{Index}(E) = \sum_{i=1}^{n} u_i v_i.$$

Note that $\operatorname{Index}(E)$ does not depend on the choice of a quasi-basis and every conditional expectation E of index-finite type on a C^* -algebra has a quasi-basis of the form $\{(u_1, u_1^*), \ldots, (u_n, u_n^*)\}$ (Lemma 2.1.6, [25]). Moreover, $\operatorname{Index}(E)$ is always contained in the centre of B, so that it is a scalar whenever B has a trivial centre, in particular when B is simple.

Let $E: B \to A$ be a faithful conditional expectation. Then $B_A(=B)$ is a pre-Hilbert module over A with an A-valued inner product

$$\langle x, y \rangle = E(x^*y), \quad x, y \in B_A$$

Let \mathcal{E} be the completion of B_A with respect to the norm on B_A defined by

$$||x||_{B_A} = ||E(x^*x)||_A^{\frac{1}{2}}, \quad x \in B_A.$$

Then \mathcal{E} is a Hilbert C^* -module over A. Since E is faithful, the canonical map $B \to \mathcal{E}$ is injective. Let $L_A(\mathcal{E})$ be the set of all (right) A-module homomorphisms $T: \mathcal{E} \to \mathcal{E}$ with an adjoint A-module homomorphism $T^*: \mathcal{E} \to \mathcal{E}$ such that

$$T\xi,\zeta\rangle = \langle \xi, T^*\zeta\rangle \quad \xi,\zeta \in \mathcal{E}.$$

Then $L_A(\mathcal{E})$ is a C^* -algebra with the operator norm $||T|| = \sup\{||T\xi|| : ||\xi|| = 1\}$. There is an injective *-homomorphism $\lambda : B \to L_A(\mathcal{E})$ defined by

$$\lambda(b)x = bx$$

for $x \in B_A$, $b \in B$, so that B can be viewed as a C^* -subalgebra of $L_A(\mathcal{E})$. Note that the map $e_A : B_A \to B_A$ defined by

$$e_A x = E(x), \quad x \in B_A$$

is bounded and thus it can be extended to a bounded linear operator, denoted by e_A again, on \mathcal{E} . Then $e_A \in L_A(\mathcal{E})$ and $e_A = e_A^2 = e_A^*$; that is, e_A is a projection in $L_A(\mathcal{E})$.

The (reduced) C^* -basic construction is a C^* -subalgebra of $L_A(\mathcal{E})$ defined to be

$$C^*(B, e_A) = \overline{\operatorname{span}\{\lambda(x)e_A\lambda(y) \in L_A(\mathcal{E}) : x, y \in B\}}^{\|\cdot\|}$$

([25], Definition 2.1.2). Then, LEMMA ([25], Lemma 2.1.4) (i) $e_A C^*(B, e_A) e_A = \lambda(A) e_A$.

(ii) $\psi: A \to e_A C^*(B, e_A) e_A, \ \psi(a) = \lambda(a) e_A, \ is \ a *-isomorphism \ (onto).$

LEMMA ([25], Lemma 2.1.5) The following are equivalent:

(i) $E: B \to A$ is of index-finite type.

(ii) $C^*(B, e_A)$ has an identity and there exists a number c with 0 < c < 1 such that

$$E(x^*x) \ge c(x^*x), \quad x \in B.$$

The above inequality was shown first in [20] by Pimsner and Popa for the conditional expectation $E_N: M \to N$ from a type II₁ factor M onto its subfactor N (c can be taken as the inverse of the Jones index [M:N]).

The conditional expectation $E_B: C^*(B, e_A) \to B$ defined by

$$E_B(\lambda(x)e_A\lambda(y)) = (\operatorname{Index}(E))^{-1}xy, \quad x, y \in B$$

is called the dual conditional expectation of $E: B \to A$. If E is of index-finite type, so is E_B with a quasi-basis $\{(w_i, w_i^*)\}$, where $w_i = \sqrt{\operatorname{Index}(E)}u_i e_A$, and $\{(u_i, u_i^*)\}$ is a quasi-basis for E ([25], Proposition 2.3.4).

Even if $\operatorname{Index}(E)$ is scalar, we do not know the relation between the number of pairs in a quasi-basis and $\operatorname{Index}(E)$. Izumi, however, showed recently that if we extend a conditional expectation E from σ -unital C^* -algebra D to a stable simple C^* -algebra C with $\overline{DC} = D$ to the multiplier algebra M(D), then it has only one pair as a quasi-basis. In the case that C and D are stable, we have the following result.

THEOREM ([11]) Let $1 \in A \subseteq B$ be a pair of unital C*-algebras, and let Ebe a faithful conditional expectation from B on A of index-finite type. Suppose that A is simple. Let \widetilde{E} be the restriction of $(E \otimes id)^{**}$ to the multiplier algebra $M(B \otimes \mathbf{K})$ of $B \otimes \mathbf{K}$, where \mathbf{K} denotes a C*-algebra of compact operators on some separable infinite-dimensional Hilbert space. Then, \widetilde{E} is a conditional expectation from $M(B \otimes \mathbf{K})$ to $M(A \otimes \mathbf{K})$. Moreover, there exists an isometry W in $M(B \otimes \mathbf{K})$ such that $\{(\sqrt{\operatorname{Index}(E)}W^*, \sqrt{\operatorname{Index}(E)}W)\}$ is a quasi-basis for \widetilde{E} .

Proof. For completeness, we will give a sketch of the proof.

Let e_A be the projection on the right A-Hilbert module B_A defined by $e_A x = E(x)$. Then, $e_A \otimes id$ is a projection in the multiplier algebra $M(C^*(B, e_A) \otimes \mathbf{K})$ of $C^*(B, e_A) \otimes \mathbf{K}$. Since $C^*(B, e_A)$ is isomorphic to a full hereditary algebra of some matrix algebra over A (Lemma 3.1 (ii)), $C^*(B, e_A) \otimes \mathbf{K}$ is simple, so $e_A \otimes id$ is a full projection in $M(C^*(B, e_A) \otimes \mathbf{K})$. By Lemma 2.5 of [3] there is an isometry V in $M(C^*(B, e_A) \otimes \mathbf{K})$ such that $V^*V = 1$ and $VV^* = e_A \otimes id$.

Let E_B be the dual conditional expectation of E from $C^*(B, e_A)$ to B, and \widetilde{E}_B be the restriction of $(E_B \otimes \mathrm{id})^{**}$ to $M(C^*(B, e_A) \otimes \mathbf{K})$. Then, for any $x \in M(C^*(B, e_A) \otimes \mathbf{K})$ we have

$$(e_A \otimes \mathrm{id})\widetilde{E}_B((e_A \otimes \mathrm{id})x) = \frac{1}{\mathrm{Index}(E)}((e_A \otimes \mathrm{id})x).$$

Set $W = \sqrt{\operatorname{Index}(E)} \widetilde{E}_B(V)$. Then, $W \in M(B \otimes \mathbf{K})$, and $V = \sqrt{\operatorname{index}(E)} (e_A \otimes \operatorname{id})W$. Hence, we have

$$1 = V^* V = \operatorname{Index}(E) W^*(e_A \otimes \operatorname{id}) W.$$

Therefore $\{\sqrt{\operatorname{Index}(E)}W^*, \sqrt{\operatorname{Index}(E)}W\}$ is a quasi-basis for \widetilde{E} .

164

SP-property for a pair of C^* -algebras

However, in the case that A is purely infinite simple, we can find only one pair as a quasi-basis for E as follows:

LEMMA Let $1 \in A \subset B$ be a pair of C^* -algebras, and let E be a conditional expectation from B to A of index-finite type. Suppose that A is a purely infinite simple C^* -algebra. Then there is a co-isometry $\frac{1}{\sqrt{\operatorname{Index}(E)}}v$ such that the pair

 $\{v, v^*\}$ is a quasi-basis for E in B. That is, for any element x in B

 $x = E(xv)v^*.$

Proof. Let e_A be the projection on the right A-Hilbert module B_A defined by $e_A(x) = E(x)$. Then the basic extension $C^*(B, e_A)$ of B is isomorphic to a hereditary subalgebra of some matrix algebra over A. Since A is a purely infinite simple C^* -algebra, so is $C^*(B, e_A)$. Thus, there is a co-isometry w in $C^*(B, e_A)$ such that $w^*w \leq e_A$ and $ww^* = 1$ ([7]). Note that $we_A = w$.

Using a similar argument as in Lemma 1.2 of [20], there exists a non-zero element $v \in B$ such that $we_A = ve_A$. Then we have $ve_A v^* = 1$. Since $E_B(ve_Av^*) = \frac{1}{\operatorname{Index}(E)}vv^* = 1$, $\frac{1}{\sqrt{\operatorname{Index}(E)}}v$ is a co-isometry.

Moreover, we know that $\{v, v^*\}$ is a quasi-basis for E. Indeed, for any $b \in B$ $b = (ve_A v^*)(b) = vE(v^*b) = E(bv)v^*$.

4. THE STRUCTURE THEORY FOR PURELY INFINITE SIMPLE C^* -ALGEBRAS

At the end of Section 2, we claimed that if A is a purely infinite simple C^* -algebra and α is an outer action from a discrete group G on A, then the reduced crossed product $A \times_{\alpha r} G$ is also purely infinite simple. In this section, we consider the case of a pair of unital simple C^* -algebras $1 \in A \subseteq B$ with a finite C^* -index, and deduce the pure infiniteness of B under the condition that A is purely infinite, which was announced by Izumi at the Fields Institute in 1995. To conclude this result, we use the characterization of the simplicity of the corona algebra of a stable C^* -algebra by Rørdam ([24]).

First, we discuss a special case of the SP-property for a pair of C^* -algebras, which will help the reader to understand the general case.

PROPOSITION Let $1 \in A \subset B$ be a pair of C^* -algebras, and let E be a faithful conditional expectation from B to A of index-finite type. Suppose that A is a purely infinite simple C^* -algebra. Then B has the SP-property.

We need several lemmas.

LEMMA Let A be a unital C*-algebra with the SP-property. Let a be a nonzero, non-invertible positive element in A. Then for any positive number $\varepsilon > 0$ there is a projection e in A such that $||ea|| < \varepsilon$.

Proof. Choose a continuous function $f : [0, ||a||] \to \mathbf{R}^+$ so that f(t) = 0 if $t \ge \varepsilon$ and $f(a) \ne 0$. Since A has the SP-property, there is a non-zero projection e in the hereditary subalgebra $\overline{f(a)Af(a)}$. Then we have $||ea|| < \varepsilon$.

LEMMA ([18], [21]) Let $C^*(p,q)$ be the universal unital C^* -algebra generated by two projections.

(i) There is an isomorphism from $C^*(p,q)$ onto

$$D = \{ f \in C([0,1], M_2(\mathbf{C})) : f(0), f(1) \text{ are diagonal} \}$$

which carries the generating projections into the functions

$$p_D(t) = \begin{pmatrix} 1 & 0\\ 0 & 0 \end{pmatrix}, \quad q_D(t) = \begin{pmatrix} t & \sqrt{t(1-t)}\\ \sqrt{t(1-t)} & 1-t \end{pmatrix}.$$

(ii) The spectrum of $C^*(p,q)$ is homeomorphic to the quotient of two copies of [0,1] in which the corresponding points in (0,1) have been identified.

Proof of Proposition 4.1. Let x be a non-zero positive element in B with ||x|| = 1. Since A is purely infinite simple, there is an element $z \in A$ such that $E(z^*xz) = 1$. Set $y = z^*(x - E(x))z$.

From Lemma 3.4 there is a quasi-basis $\{v, v^*\}$ for E so that $b = E(bv)v^*$ for $b \in B$. So, there is $a \in A$ such that $y = av^*$, $a \in A$. Then a is not invertible in A. Indeed, if a is invertible, $v^* = a^{-1}y$, hence $E(v^*) = E(a^{-1}y) = 0$. On the contrary, $1 = E(v)v^* = 0$. This is a contradiction. Hence, either |a| or $|a^*|$ is not invertible.

Suppose that $|a^*|$ is not invertible. Let ε be an arbitrary positive number. Then, from Lemma 4.2, there is a projection e such that $||e|a^*||| < \frac{\varepsilon}{||v||}$. Write a = u|a| by a polar decomposition in A^{**} . Then

$$\|ea\| = \|e|a^*|u\| < \frac{\varepsilon}{\|v\|}.$$

So we have $||ey|| < \varepsilon$, hence $||ez^*(x - E(x))ze|| = ||eye|| < \varepsilon$. Since $||ez^*E(x)ze|| = ||e|| = 1 > ||E(x)|| - \varepsilon$, \overline{xBx} has a non-zero projection from the proof of Theorem 2.1.

Suppose that $|a^*|$ is invertible. Set $u^* = a^*|a^*|^{-1}$. Then, u is a co-isometry in A, and $a = |a^*|u$. Then, $y = |a^*|uv^*$. Set $p = u^*u$ and $q = \frac{1}{\text{Index}(E)}v^*v$. Then pand q are non-zero projections. Let π be a homomorphism from the C^* -algebra Din Lemma 4.3 (i) to a C^* -algebra $C^*(p,q)$ generated by p,q such that $\pi(p_D) = p$ and $\pi(q_D) = q$. From Lemma 4.3 (ii) we can write the spectrum \widehat{D} of D as follows:

t_0	t_1
•	•
0	 0
•	·
s_0	$s_1,$

where t_0, s_0, t_1 , and s_1 are end points of \widehat{D} .

We may assume that

Then, we consider two cases.

Case 1. $\ker(\pi) \not\supseteq t_0$.

166

Let $\eta > 0$ be an arbitrary positive number. Consider a continuous function $g: [0,1] \to [0,1]$ such that g(0) = 1, $g(t) = \eta$ for $t \ge \eta$, and linear on $[0,\eta]$. Define

$$T(t) = \begin{pmatrix} g(t) & 0\\ 0 & 0 \end{pmatrix}, \quad t \in p_D \widehat{D} p_D.$$

Then $T \in p_D D p_D$ and ||T|| = 1. Note that

$$p_D q_D p_D(t) = \begin{pmatrix} t & 0\\ 0 & 0 \end{pmatrix}, \quad t \in p_D \widehat{D} p_D.$$

Hence,

$$T(t)(p_D q_D p_D)(t) = \begin{pmatrix} g(t)t & 0\\ 0 & 0 \end{pmatrix}$$

and $||Tp_Dq_Dp_D|| \leq \eta$.

Set $c = \pi(T)$. Since $t_0 \notin \widehat{\ker(\pi)}$,

$$\|c\| = \|\pi(T)\| = 1.$$

Set $b = \alpha^{-1/2} c u^* |a^*|^{-1}$, where α is a positive number and $(aa^*)^{-1} \ge \alpha$. Then,

$$bb^* \ge cu^*uc = cpc = \pi(T^2)$$

so $||b|| \ge 1$. Note that $by = \alpha^{-1/2} cu^* |a^*|^{-1}y = \alpha^{-1/2} cu^* uv^* = \alpha^{-1/2} cpv^*$. Hence,

$$\|by\|^2 = \|byy^*b^*\| = \|\alpha^{-1}\operatorname{Index}(E)cpqpc\| \leqslant \alpha^{-1}\operatorname{Index}(E)\eta.$$

So, if we take η sufficiently small, then $\|byb^*\| < \varepsilon$. Hence, $\|bz^*(x - E(x))zb\| = \|byb^*\| < \varepsilon$. Since $\|bz^*E(x)zb^*\| = \|bb^*\| \ge 1 > \|E(x)\| - \varepsilon$, from the proof of Theorem 2.1 \overline{xBx} has a non-zero projection.

(Set $a = bz^*E(x)zb^* = bb^*$ in Theorem 2.1. Then, since bb^* is invertible in pBp and $\overline{f(p)Af(p)}$ has a non-zero projection, we know that $\overline{f(a)Bf(a)}$ has a non-zero projection. Note that $f(a) \ge \lambda f(p)$ for some $\lambda > 0$.)

Case 2. $\ker(\pi) \ni t_0$.

We may assume that z^*xz is not invertible.

Since $t_0 \in \ker(\pi)$, $pqp = \pi(p_D q_D p_D)$ is invertible in $pC^*(p,q)p$. So, there is a positive number λ such that $pqp \ge \lambda p$. Since $y = y^*$, we have

$$y^2 = yy^* = |a^*|upqpu^*|a^*| \ge \lambda |a^*|upu^*|a^*| = \lambda |a^*|(uu^*)^2|a^*| = \lambda |a^*|^2.$$

Hence y is invertible, since $|a^*|$ is invertible. Note that $||z^*xz|| \ge ||E(z^*xz)|| = 1$.

Claim. $1 \notin \sigma(z^*xz)$ (= the set of spectrum of z^*xz).

Suppose that $1 \in \sigma(z^*xz)$. Then, $z^*xz - 1$ is not invertible. So, $y = z^*(x - E(x))z = z^*xz - 1$ is not invertible. This is a contradiction to the fact that y is invertible.

So, since $||z^*xz|| \ge 1$ and $0 \in \sigma(z^*xz)$, there is a non-zero spectral projection $\chi(z^*xz)$ of z^*xz which is not equal to one. Then, $\chi(z^*xz) \in \overline{z^*xBxz}$. Since $\overline{z^*xBxz} \cong \overline{xzBz^*x}$ by [6], 1.4, \overline{xBx} has a non-zero projection.

REMARK In Proposition 4.1, since A is simple and E is of index-finite type, we know that B is a direct sum of finitely simple C^* -algebras B_i by the next lemma. So, if we conclude that the last projection $\chi(z^*xz)$ is infinite, then we could conclude that each simple C^* -algebra B_i is purely infinite. In fact, in the case that B is a crossed product algebra of A by a finite group, we can conclude that any non-zero hereditary C^* -subalgebra of B has a non-zero projection that is equivalent to some projection in $M_n(A)$ for some n, using the same method as in Theorem 1.1 ([13], Theorem 4.2).

LEMMA ([11]) Let $1 \in A \subset B$ be a pair of C^* -algebras, and let E be a faithful conditional expectation from B to A of index-finite type.

(i) If A is simple, then B can be written as a finite direct sum of simple C^* -algebras.

(ii) If B is simple, then A can be written as a finite direct sum of simple C^* -algebras.

Proof. We have only to show case (i). Case (ii) can be deduced from the fact that A is isomorphic to a corner hereditary C^* -subalgebra of $C^*(B, e_A)$, by Lemma 3.1 (ii).

Let J be a non-zero closed two-sided ideal of B, and $\{u_{\lambda}\}$ be an approximate identity for J. Then $\{u_{\lambda}\}$ converges strongly to a positive element z in the centre of B^{**} . We claim that $z \in B$. Let E^{**} be a faithful conditional expectation from B^{**} to A^{**} , which is derived from E. Note that $\operatorname{Index}(E^{**}) = \operatorname{Index}(E)$. Then $E(u_{\lambda})$ converges strongly to $E^{**}(z)$ in the centre of A^{**} . Set $c = \sup\{\|E(u_{\lambda})\| : \lambda\}$. Since A is simple, $c = E^{**}(z)$. In fact, assume that $c \neq E^{**}(z)$. Then, for an arbitrary positive number ε there exists a non-zero projection r in the centre of A^{**} such that

$$rE^{**}(z) < (c-\varepsilon)r.$$

Since A is simple, $||E(u_{\lambda})r|| = ||E(u_{\lambda})||$, hence $||rE^{**}(z)|| = c$, which is a contradiction.

Set $Q(A) = \{\varphi \in A_+^* : \|\varphi\| = 1\}$. Then Q(A) is weak*-compact. Since $\varphi(c - E(u_\lambda))$ converges to 0 for $\varphi \in Q(A)$, $c - E(u_\lambda)$ converges uniformly to 0 by Dini's Theorem. Hence,

$$||E(u_{\lambda}) - E^{**}(z)|| \longrightarrow 0, \quad \lambda \nearrow.$$

On the contrary, since $E^{\ast\ast}$ is of index-finite type, there is a positive number d such that

$$E^{**}(x) \geqslant dx, \quad x \in B_+^{**}$$

from Lemma 3.2 (ii). Since $||E^{**}(u_{\lambda} - z)||$ converges to 0 uniformly, $||u_{\lambda} - z||$ converges uniformly to 0. Hence z is in the centre of B, and J = zB. Since the centre of B is finite-dimensional by Proposition 2.7.3 of [25], B can be written as a direct sum of finitely simple C^* -algebras.

A proof of the following theorem is given more directly by Theorem 4.5 of [13] in the case that B is a crossed product algebra of A by a finite group.

168

THEOREM ([10]) Let $1 \in A \subseteq B$ be a pair of separable C^{*}-algebras, and let E be a faithful conditional expectation from B to A of index-finite type. Suppose that A is a purely infinite simple C^{*}-algebra. Then B is a finite direct sum of purely infinite simple C^{*}-algebras.

Proof. By Lemma 4.5 (i), B is a finite direct sum of simple C^* -algebras B_i . Take central projections p_i in B such that $p_i B = B_i$. Then there are conditional expectations F_i of index-finite type : $B_i \to p_i A p_i$. Since each $p_i A p_i$ is purely infinite simple, we may assume that B is simple.

Consider a conditional expectation E of index-finite type from $M(B \otimes \mathbf{K})$ to $M(A \otimes \mathbf{K})$. Then there is a conditional expectation F of index-finite type from $M(B \otimes \mathbf{K})/(B \otimes \mathbf{K})$ to a C^* -algebra $\{x + B \otimes \mathbf{K} : x \in M(A \otimes \mathbf{K})\}$ (= D). Since A is purely infinite simple, $M(A \otimes \mathbf{K})/(A \otimes \mathbf{K})$ is simple by Theorem 3.2 of [24]. So, $M(A \otimes \mathbf{K})/(A \otimes \mathbf{K})$ is isomorphic to D. Since F is of index-finite type, $M(B \otimes \mathbf{K})/(B \otimes \mathbf{K})$ is a direct sum of some simple C^* -algebras by Lemma 4.5 (i).

We claim that $M(B \otimes \mathbf{K})/(B \otimes \mathbf{K})$ is simple. Indeed, since B is a separable simple C^* -algebra with the SP-property by Proposition 4.1, this corona algebra is prime by Theorem 2.7 of [17]. So it should be simple. Again, by Theorem 3.2 of [24], B is purely infinite.

5. MAIN THEOREM

In this section we present the main theorem. The proof is almost the same as in Proposition 4.1 using Theorem 3.3.

THEOREM Let $1 \in A \subset B$ be a pair of unital C^* -algebras, and let E be a faithful conditional expectation from B to A of index-finite type. Suppose that A is simple and has the SP-property. Then B has the SP-property.

Note that in the case that $B = A \times_{\alpha} G$ is a crossed product algebra of A by a finite group G, Jeong and Osaka concluded the statement more directly ([13], Theorem 4.2).

Proof. We show that $B \otimes \mathbf{K}$ has the SP-property, where \mathbf{K} denotes a C^* -algebra of compact operators on some separable infinite-dimensional Hilbert spaces. From Theorem 3.3 there is a conditional expectation \widetilde{E} from $M(B \otimes \mathbf{K})$ to $M(A \otimes \mathbf{K})$, and an isometry W in $M(B \otimes \mathbf{K})$ such that $\{(\sqrt{\operatorname{Index}(E)}W^*, \sqrt{\operatorname{Index}(E)}W)\}$ is a quasi-basis for \widetilde{E} . Set $v = \sqrt{\operatorname{Index}(E)}W^*$.

Take $x \in (B \otimes \mathbf{K})_+$ with ||x|| = 1. As in the proof of Theorem 2.1 there is a continuous function $f: [0,1] \to [0,1]$ such that $\overline{f(\widetilde{E}(x))}(A \otimes \mathbf{K})f(\widetilde{E}(x))$ has a non-zero projection r and $z \in \overline{r(A \otimes \mathbf{K})}f(\widetilde{E}(x))$ such that $z\widetilde{E}(x)z^* = r$. Set $y = z(x - \widetilde{E}(x))z^*$. Then, $\widetilde{E}(y) = 0$ and ry = y = yr. So, $y \in r(B \otimes \mathbf{K})r$. Write $y = \widetilde{E}(yv)v^* = av^*$. Since

$$ra = r\widetilde{E}(yv) = \widetilde{E}(ryv) = \widetilde{E}(yv) = a,$$

 $|a^*| \in r(A \otimes \mathbf{K})r$. Note that $r(A \otimes \mathbf{K})r$ has the SP-property. Let ε be an arbitrary positive number. Suppose that $|a^*|$ is not invertible. Then, since $r(A \otimes \mathbf{K})r$ is a unital C^* algebra with the SP-property, from Lemma 4.2 there is a projection e in $r(A \otimes \mathbf{K})r$ such that $||e|a^*| || < \frac{\varepsilon}{||v||}$. So we can conclude that $\overline{x(B \otimes \mathbf{K})x}$ has a non-zero
projection, by the same argument as in Proposition 4.1.
Suppose that $|a^*|$ is invertible. Then using Lemma 4.3 we can conclude

Suppose that $|a^*|$ is invertible. Then using Lemma 4.3 we can conclude that $\overline{x(B \otimes \mathbf{K})x}$ has a non-zero projection, by the same steps in the proof of Proposition 4.1.

Therefore, $B \otimes \mathbf{K}$ has the SP-property, and so has B.

COROLLARY Let $1 \in A \subset B$ be a pair of simple unital C*-algebras, and let E be a conditional expectation from B to A of index-finite type. Then A has the SP-property if and only if B has the SP-property.

Proof. Suppose that B has the SP-property. Consider the basic construction:

$$1 \in A \subset B \subset C^*(B, e_A).$$

Since A is simple, $C^*(B, e_A)$ is simple from Corollary 2.2.14 in [25]. So we know that $C^*(B, e_A)$ has the SP-property from Theorem 5.1. Hence from Lemma 3.1 (ii) we know that A has the SP-property.

Acknowledgements. The author is grateful to Ja A. Jeong for fruitful discussion and useful suggestions by electronic mail.

REFERENCES

- B. BLACKADAR, Comparison theory for simple C*-algebras, in Operator Algebras and Applications, London Math. Soc. Lecture Notes Ser., vol. 135, Cambridge Univ. Press, Cambridge 1988.
- B. BLACKADAR, A. KUMJIAN, Skew products of relations and the structure of simple C*-algebras, Math. Z. 189(1985), 55–63.
- L.G. BROWN, Stable isomorphism of hereditary subalgebras of C^{*}-algebras, Pacific J. Math. 71(1977), 335–348.
- L.G. BROWN, G.K. PEDERSEN, C^{*}-algebras of real rank zero, J. Funct. Anal. 99 (1991), 131–149.
- L.G. BROWN, G.K. PEDERSEN, On the geometry of the unit ball of a C*-algebra, J. Reine Angew. Math. 469(1995), 113–147.
- 6. J. CUNTZ, The structure of multiplication and addition in simple C*-algebras, Math. Scand. 40(1977), 215–233.
- 7. J. CUNTZ, K-theory for certain C*-algebras, Ann. of Math. 113(1981), 181–197.
- G.A. ELLIOTT, A classification of certain simple C^{*}-algebras, in Quantum and Non-Commutative Analysis, Kluwer Academic Publishers, Dordrecht 1993, pp. 373–385.
- K.R. GOODEARL, Notes on a class of simple C*-algebras with real rank zero, Publ. Mat. 36(1992), 637–654.
- 10. M. IZUMI, Index theory of simple C^* -algebras, Workshop "Subfactors and their applications", The Fields Institute, March 1995.
- 11. M. IZUMI, Lecture at Tokyo Metropolitan University, 1997.
- J.A. JEONG, K. KODAKA, H. OSAKA, Purely infinite simple C*-crossed products. II, Canad. Math. Bull. 39(1996), 203–210.

SP-property for a pair of C^* -algebras

- J.A. JEONG, H. OSAKA, Extremally rich C*-crossed products and cancellation property, J. Austral. Math. Soc. Ser. A 64(1998), 285–301.
- 14. J.A. JEONG, H. OSAKA, Cancellation of crossed products, submitted.
- A. KISHIMOTO, Outer automorphisms and reduced crossed products of simple C^{*}algebras, Comm. Math. Phys. 81(1981), 429–435.
- A. KISHIMOTO, A. KUMJIAN, Crossed products of Cuntz algebras by quasi-free automorphisms, in *Operator Algebras and Their Applications* (Waterloo, ON, 1994/1995), Fields Inst. Commun., vol. 13, Amer. Math. Soc., Providence, RI, 1997, pp. 173–192.
- 17. H. LIN, S. ZHANG, Certain simple C*-algebras with nonzero real rank whose corona algebras have real rank zero, *Houston J. Math.* **18**(1992), 57–71.
- 18. G.K. PEDERSEN, Measure theory in C*-algebras. II, Math. Scand. 22(1968), 63-74.
- G.K. PEDERSEN, The linear span of projections in simple C*-algebras, J. Operator Theory 4(1980), 289–296.
- M. PIMSNER, S. POPA, Entropy and index for subfactors, Ann. Sci. École Norm. Sup. (4) 19(1986), 57–106.
- I. RAEBURN, A.M. SINCLAIR, The C*-algebra generated by two projections, Math. Scand. 65(1989), 278–290.
- M.A. RIEFFEL, Actions of finite groups on C*-algebras, Math. Scand. 47(1980), 157–176.
- M.A. RIEFFEL, Dimension and stable rank in the K-theory of C*-algebras, Proc. London Math. Soc. 46(1983), 301–333.
- M. RØRDAM, Ideals in the multiplier algebra of a stable C*-algebra, J. Operator Theory 25(1991), 283–298.
- 25. Y. WATATANI, Index for C*-algebras, Mem. Amer. Math. Soc. 83(1990), no. 424.

HIROYUKI OSAKA Department of Mathematical Sciencees Ritsumeikan University Kusatsu, Shiga 525–8577 JAPAN E-mail: osaka@se.ritsumei.ac.jp

Received January 11, 1999; revised September 11, 2000.