SP-PROPERTY FOR A PAIR OF C^{*}-ALGEBRAS

HIROYUKI OSAKA

Communicated by William B. Arveson

Abstract

Recall that a C^{*}-algebra A has the SP-property if every non-zero hereditary C^{*}-subalgebra of A has a non-zero projection. Let $1 \in A \subset B$ be a pair of unital C^{*}-algebras. In this paper we investigate a sufficient condition for B to have the SP-property, given that A has it. In particular, if there exists a faithful conditional expectation E from B to A of index-finite type in the sense of Watatani, then B has the SP-property under the condition that A is simple with the SP-property. As an application, we have the structure theory of purely infinite simple C^{*}-algebras.

Keywords: C^{*}-index theory, SP-property, conditional expectation.
MSC (2000): Primary 46L05; Secondary 46L35.

1. INTRODUCTION

A C^{*}-algebra A has the SP-property if every non-zero hereditary C^{*}-subalgebra of A has a non-zero projection. This concept has been studied by several mathematicians. For example, this concept is weaker than the real rank zero condition, which means that every hereditary C^{*}-subalgebra of A has an approximate identity of projections ([2], [19], and [9]). When A is a simple unital C^{*}-algebra, Jeong and the author ([13]) in the case of the integer group, and Kishimoto and Kumjian ([16]) in the case of a general discrete group G, proved that the reduced crossed product $A \times_{\alpha \mathrm{r}} G$ has the SP-property if A has the SP-property and α is a homomorphism from G into the set of automorphisms on A such that α_{g} is outer for all $g \in G$. In the case that G is finite, Jeong and the author ([14]) proved that any crossed product algebra $A \times{ }_{\alpha} G$ has the SP-property when A has the SP-property. As an application, we showed that any crossed product algebra $A \times{ }_{\alpha} G$ has the cancellation property under the additional condition that A has stable rank one, that is, the set of invertible elements in A is dense in it. Moreover, under the same condition if a given crossed product algebra has real rank zero, it also has stable rank one. Unfortunately, however, we do not know if a crossed product algebra of a UHF-algebra by \mathbb{Z}_{2} has stable rank one, in general. Note that Elliott presented
an example of a crossed product algebra of this type which does not have real rank zero ([8]).

In this paper, we consider a general condition for a pair of unital C^{*}-algebras with the same unit to have the SP-property. In particular, we consider this problem in the case of a conditional expectation from B to A of index-finite type in the sense of Watatani ([25]).

Our main theorem (Theorem 5.1) is that if there exists a faithful conditional expectation E from B to A of index-finite type, then B has the SP-property provided that A is simple with the SP-property. Before giving a proof of it, we consider the case that A is a purely infinite simple C^{*}-algebra in Section 4. There, we point out the existence of one pair of elements as a quasi-basis for E, and show that B is a direct sum of purely infinite simple C^{*}-algebras. This is a proof of an announcement by Izumi at the Fields Institute in 1995. We believe that our observation will be helpful in determining the stable rank of the crossed product algebra $A \times{ }_{\alpha} G$ of a simple unital C^{*}-algebra A with stable rank one by a finite group G.

2. THE SP-PROPERTY

In this section we present a sufficient condition for B to have the SP-property, given that A has it.

The argument in Lemma 10 of [16] gives the following general result.
Theorem Let $1 \in A \subset B$ be a pair of C^{*}-algebras. Suppose that A has the SP-property and there is a faithful conditional expectation E from B to A. If for any non-zero positive element x in B and an arbitrary positive number $\varepsilon>0$ there is an element y in A such that

$$
\left\|y^{*}(x-E(x)) y\right\|<\varepsilon, \quad\left\|y^{*} E(x) y\right\| \geqslant\|E(x)\|-\varepsilon
$$

then B has the SP-property. Moreover, every non-zero hereditary C^{*}-subalgebra of B has a projection which is equivalent to some projection in A in the sense of Murray-von Neumann.

Proof. Set $a=y^{*} E(x) y$. Consider the continuous functions f and g defined by

$$
f(t)=\max (0, t-(1-\varepsilon)\|a\|), \quad g(t)=\min (t,(1-\varepsilon)\|a\|)
$$

Note that $f g=(1-\varepsilon)\|a\| f$.
Since A has the SP-property, there is a non-zero projection p in $\overline{f(a) A f(a)}$. Then, there is an element $d_{1} \in f(a) A$ such that $\left\|p-f(a) d_{1}\right\|<\frac{1}{3}$. So, $\| p-$ $d_{1}^{*} f(a)^{2} d_{1} \|<1$, and $\left\|p-p d_{1}^{*} f(a)^{2} d_{1} p\right\|<1$. So, $p d_{1}^{*} f(a)^{2} d_{1} p$ is invertible in $p A p$. Hence, there is an element $d_{2} \in p A p$ such that $p=d_{2}^{*} p d_{1}^{*} f(a)^{2} d_{1} p d_{2}$. Set $w=d_{2}^{*} p d_{1}^{*} f(a)^{\frac{1}{2}}$. Then, w in $\overline{f(a) A f(a)}$ such that $p=w f(a) w^{*}$.

Let $z_{0}=(1-\varepsilon)^{-\frac{1}{2}}\|a\|^{-\frac{1}{2}} w f(a)^{\frac{1}{2}}$. Then $\left\|z_{0}\right\|=(1-\varepsilon)^{-\frac{1}{2}}\|a\|^{-\frac{1}{2}}$ and $z_{0} g(a) z_{0}^{*}=$ p. Since $g(a) \leqslant a$, we have $p=z_{0} g(a) z_{0}^{*} \leqslant z_{0} a z_{0}^{*}$. Thus, there exists an element $z \in p A$ such that

$$
z a z^{*}=p, \quad\|z\| \leqslant\left\|z_{0}\right\|=(1-\varepsilon)^{-\frac{1}{2}}\|a\|^{-\frac{1}{2}}
$$

Hence, we have

$$
\left\|z y^{*} x y z^{*}-p\right\|=\left\|z y^{*}(x-E(x)) y z^{*}\right\|<\frac{\varepsilon}{1-\varepsilon} \times \frac{1}{\|E(x)\|-\varepsilon}
$$

Note that the last inequality follows from the fact that

$$
\|a\|^{-1} \leqslant \frac{1}{\|E(x)\|-\varepsilon}
$$

We may assume that $\left\|z y^{*} x y z^{*}-p\right\|<1$. Since $z y^{*} x y z^{*} \in p B p, z y^{*} x y z^{*}$ is invertible in $p B p$; that is, there exists an element $z_{1} \in B$ such that $z_{1} y^{*} x y z_{1}^{*}=p$. Therefore, since $\overline{z_{1} y^{*} x^{\frac{1}{2}} B x^{\frac{1}{2}} y z_{1}^{*}} \cong \overline{x^{\frac{1}{2}} y z_{1}^{*} B z_{1} y^{*} x^{\frac{1}{2}}}$ by Section 1.4 of $[6], \overline{x B x}$ has a projection which is equivalent to a projection p in A. Indeed, $p=z_{1} y^{*} x y z_{1}^{*} \sim$ $x^{\frac{1}{2}} y z_{1}^{*} z_{1} y^{*} x^{\frac{1}{2}}$ in $\overline{x^{\frac{1}{2}} y z_{1}^{*} B z_{1} y^{*} x^{\frac{1}{2}}} \subseteq \overline{x B x}$.

Next, we consider the following stronger assumption on a conditional expectation E from B to A.

Definition Let $1 \in A \subset B$ be a pair of C^{*}-algebras. A conditional expectation E from B to A is called outer if for any element $x \in B$ with $E(x)=0$ and any non-zero hereditary C^{*}-subalgebra C of A,

$$
\inf \left\{\|c x c\|: c \in C^{+},\|c\|=1\right\}=0
$$

The following result comes from the same argument as in Lemma 3.2 of [15] and Theorem 2.1.

Corollary Let $1 \in A \subset B$ be a pair of C^{*}-algebras. Suppose that A has the SP-property and there is a faithful conditional expectation E from B to A. If E is outer, then B has the SP-property.

Proof. For the reader we write a sketch of the proof. Let x be a non-zero element in B, and let $\varepsilon>0$ be an arbitrary positive number. Consider a continuous function $f:[0,\|x\|] \rightarrow \mathbb{R}^{+}$given by

$$
f(t)= \begin{cases}1, & t \geqslant\|E(x)\| ; \\ \text { linear, } & \|E(x)\|-\varepsilon \leqslant t<\|E(x)\| ; \\ 0, & t<\|E(x)\|-\varepsilon\end{cases}
$$

Let C be a hereditary C^{*}-subalgebra of A generated by $f(E(x))$. Then, since $\|E(x) c-\| E(x)\|c\|<\varepsilon$, for any positive $c \in C$ with norm one, $\|c E(x) c\|>$ $\|E(x)\|-\varepsilon$. Indeed, since $\|c(E(x) c-\|E(x)\| c)\|<\varepsilon$, we have $\|c E(x) c-\| E(x)\left\|c^{2}\right\|<$ ε. Hence,

$$
\|E(x)\|=\| \| E(x)\left\|c^{2}\right\|=\|c E(x) c+\| E(x)\left\|c^{2}-c E(x) c\right\|<\|c E(x) c\|+\varepsilon
$$

From the outerness of E, for any arbitrary positive number $\varepsilon>0$ there is a positive element $y \in C$ with norm one such that

$$
\|y(x-E(x)) y\|<\varepsilon, \quad\|y E(x) y\|>\|E(x)\|-\varepsilon
$$

Hence, B has the SP-property by Theorem 2.1.
We present some examples of a pair of C^{*}-algebras with an outer conditional expectation.

Example ([15]) Let G be a discrete group and let α be a representation of G by automorphisms of a simple unital C^{*}-algebra A. Suppose α is outer. Then, the canonical conditional expectation from the reduced crossed product $A \times_{\alpha \mathrm{r}} G$ to A is outer.

Proof. Let $u_{g}, g \in G$ be the standard unitaries in the multiplier algebra of $A \times{ }_{\alpha \mathrm{r}} G$ implementing α. Let e be the identity of G. Let x be an element in $A \times{ }_{\alpha \mathrm{r}} G$ with $E(x)=0$. We approximate x by an element of the dense $*$-algebra spanned by $A u_{g}, g \in G$, and hence we may assume that $x=\sum_{i=1}^{n} c_{i} u_{g_{i}}$, where $c_{i} \in A$, and g_{1}, \ldots, g_{n} are distinct elements of $G \backslash\{e\}$.

By Lemma 3.2 of [15], for any $\varepsilon>0$ there is a positive element $c \in C$ such that $\|c\|=1$,

$$
\left\|c c_{i} u_{g_{i}} c\right\|<\frac{\varepsilon}{n}, \quad i=1, \ldots, n
$$

Hence,

$$
\|c x c\|=\left\|c\left(\sum_{i=1}^{n} c_{i} u_{g_{i}}\right) c\right\| \leqslant \sum_{i=1}^{n}\left\|c c_{i} u_{g_{i}} c\right\|<\varepsilon
$$

This completes the proof.
Example Let ρ be a corner endomorphism of a unital C^{*}-algebra A, and let E be the canonical conditional expectation from the crossed product $A \times{ }_{\rho} \mathbb{N}$ by ρ to A. Suppose that

$$
\widetilde{\mathbb{T}}(\rho)=\left\{\lambda \in \mathbb{T}: \widehat{\rho}(I)=I \text { for } \forall I \in \operatorname{Prime}\left(A \times_{\rho} \mathbb{N}\right)\right\}=\mathbb{T}
$$

Then E is outer.
Proof. This comes from the same argument as in Example 2.4 modifying Proposition 2.2 of [13].

We now have the structure theorem for the pure infiniteness of a simple crossed product algebra of a purely infinite simple C^{*}-algebra by a discrete group.

Corollary ([12], [16]) Let A be a purely infinite simple C^{*}-algebra, G a discrete group, and α an action of G on A. Suppose that α is outer. Then the reduced crossed product $A \times_{\alpha \mathrm{r}} G$ is a purely infinite simple C^{*}-algebra.

Proof. In the case of a countable abelian group G see [12], Corollary 3.3. In the case of a general discrete group G see [16], Lemma 10 .

3. C^{*}-INDEX THEORY

In this section, we summarize the C^{*}-index theory of Watatani ([25]).
Let $1 \in A \subseteq B$ be a pair of C^{*}-algebras, and let $E: B \rightarrow A$ be a faithful conditional expectation from B to A.

A finite family $\left\{\left(u_{1}, v_{1}\right), \ldots,\left(u_{n}, v_{n}\right)\right\}$ in $B \times B$ is called a quasi-basis for E if

$$
\sum_{i=1}^{n} u_{i} E\left(v_{i} b\right)=\sum_{i=1}^{n} E\left(b u_{i}\right) v_{i}=b \quad \text { for } b \in B
$$

We say that a conditional expectation E is of index-finite type if there exists a quasi-basis for E. In this case the index of E is defined by

$$
\operatorname{Index}(E)=\sum_{i=1}^{n} u_{i} v_{i}
$$

Note that $\operatorname{Index}(E)$ does not depend on the choice of a quasi-basis and every conditional expectation E of index-finite type on a C^{*}-algebra has a quasi-basis of the form $\left\{\left(u_{1}, u_{1}^{*}\right), \ldots,\left(u_{n}, u_{n}^{*}\right)\right\}$ (Lemma 2.1.6, [25]). Moreover, $\operatorname{Index}(E)$ is always contained in the centre of B, so that it is a scalar whenever B has a trivial centre, in particular when B is simple.

Let $E: B \rightarrow A$ be a faithful conditional expectation. Then $B_{A}(=B)$ is a pre-Hilbert module over A with an A-valued inner product

$$
\langle x, y\rangle=E\left(x^{*} y\right), \quad x, y \in B_{A}
$$

Let \mathcal{E} be the completion of B_{A} with respect to the norm on B_{A} defined by

$$
\|x\|_{B_{A}}=\left\|E\left(x^{*} x\right)\right\|_{A}^{\frac{1}{2}}, \quad x \in B_{A}
$$

Then \mathcal{E} is a Hilbert C^{*}-module over A. Since E is faithful, the canonical map $B \rightarrow \mathcal{E}$ is injective. Let $L_{A}(\mathcal{E})$ be the set of all (right) A-module homomorphisms $T: \mathcal{E} \rightarrow \mathcal{E}$ with an adjoint A-module homomorphism $T^{*}: \mathcal{E} \rightarrow \mathcal{E}$ such that

$$
\langle T \xi, \zeta\rangle=\left\langle\xi, T^{*} \zeta\right\rangle \quad \xi, \zeta \in \mathcal{E}
$$

Then $L_{A}(\mathcal{E})$ is a C^{*}-algebra with the operator norm $\|T\|=\sup \{\|T \xi\|:\|\xi\|=1\}$. There is an injective $*$-homomorphism $\lambda: B \rightarrow L_{A}(\mathcal{E})$ defined by

$$
\lambda(b) x=b x
$$

for $x \in B_{A}, b \in B$, so that B can be viewed as a C^{*}-subalgebra of $L_{A}(\mathcal{E})$. Note that the map $e_{A}: B_{A} \rightarrow B_{A}$ defined by

$$
e_{A} x=E(x), \quad x \in B_{A}
$$

is bounded and thus it can be extended to a bounded linear operator, denoted by e_{A} again, on \mathcal{E}. Then $e_{A} \in L_{A}(\mathcal{E})$ and $e_{A}=e_{A}^{2}=e_{A}^{*}$; that is, e_{A} is a projection in $L_{A}(\mathcal{E})$.

The (reduced) C^{*}-basic construction is a C^{*}-subalgebra of $L_{A}(\mathcal{E})$ defined to be

$$
C^{*}\left(B, e_{A}\right)={\overline{\operatorname{span}\left\{\lambda(x) e_{A} \lambda(y) \in L_{A}(\mathcal{E}): x, y \in B\right\}}}_{\|\cdot\|}^{\|}
$$

([25], Definition 2.1.2).
Then,

Lemma ([25], Lemma 2.1.4) (i) $e_{A} C^{*}\left(B, e_{A}\right) e_{A}=\lambda(A) e_{A}$.
(ii) $\psi: A \rightarrow e_{A} C^{*}\left(B, e_{A}\right) e_{A}, \psi(a)=\lambda(a) e_{A}$, is a*-isomorphism (onto).

Lemma ([25], Lemma 2.1.5) The following are equivalent:
(i) $E: B \rightarrow A$ is of index-finite type.
(ii) $C^{*}\left(B, e_{A}\right)$ has an identity and there exists a number c with $0<c<1$ such that

$$
E\left(x^{*} x\right) \geqslant c\left(x^{*} x\right), \quad x \in B
$$

The above inequality was shown first in [20] by Pimsner and Popa for the conditional expectation $E_{N}: M \rightarrow N$ from a type II_{1} factor M onto its subfactor $N(c$ can be taken as the inverse of the Jones index $[M: N])$.

The conditional expectation $E_{B}: C^{*}\left(B, e_{A}\right) \rightarrow B$ defined by

$$
E_{B}\left(\lambda(x) e_{A} \lambda(y)\right)=(\operatorname{Index}(E))^{-1} x y, \quad x, y \in B
$$

is called the dual conditional expectation of $E: B \rightarrow A$. If E is of index-finite type, so is E_{B} with a quasi-basis $\left\{\left(w_{i}, w_{i}^{*}\right)\right\}$, where $w_{i}=\sqrt{\operatorname{Index}(E)} u_{i} e_{A}$, and $\left\{\left(u_{i}, u_{i}^{*}\right)\right\}$ is a quasi-basis for E ([25], Proposition 2.3.4).

Even if $\operatorname{Index}(E)$ is scalar, we do not know the relation between the number of pairs in a quasi-basis and $\operatorname{Index}(E)$. Izumi, however, showed recently that if we extend a conditional expectation E from σ-unital C^{*}-algebra D to a stable simple C^{*}-algebra C with $\overline{D C}=D$ to the multiplier algebra $M(D)$, then it has only one pair as a quasi-basis. In the case that C and D are stable, we have the following result.

Theorem ([11]) Let $1 \in A \subseteq B$ be a pair of unital C^{*}-algebras, and let E be a faithful conditional expectation from B on A of index-finite type. Suppose that A is simple. Let \widetilde{E} be the restriction of $(E \otimes \mathrm{id})^{* *}$ to the multiplier algebra $M(B \otimes \mathbf{K})$ of $B \otimes \mathbf{K}$, where \mathbf{K} denotes a C^{*}-algebra of compact operators on some separable infinite-dimensional Hilbert space. Then, \widetilde{E} is a conditional expectation from $M(B \otimes \mathbf{K})$ to $M(A \otimes \mathbf{K})$. Moreover, there exists an isometry W in $M(B \otimes \mathbf{K})$ such that $\left\{\left(\sqrt{\operatorname{Index}(E)} W^{*}, \sqrt{\operatorname{Index}(E)} W\right)\right\}$ is a quasi-basis for \widetilde{E}.

Proof. For completeness, we will give a sketch of the proof.
Let e_{A} be the projection on the right A-Hilbert module B_{A} defined by $e_{A} x=$ $E(x)$. Then, $e_{A} \otimes$ id is a projection in the multiplier algebra $M\left(C^{*}\left(B, e_{A}\right) \otimes \mathbf{K}\right)$ of $C^{*}\left(B, e_{A}\right) \otimes \mathbf{K}$. Since $C^{*}\left(B, e_{A}\right)$ is isomorphic to a full hereditary algebra of some matrix algebra over A (Lemma 3.1 (ii)), $C^{*}\left(B, e_{A}\right) \otimes \mathbf{K}$ is simple, so $e_{A} \otimes \mathrm{id}$ is a full projection in $M\left(C^{*}\left(B, e_{A}\right) \otimes \mathbf{K}\right)$. By Lemma 2.5 of [3] there is an isometry V in $M\left(C^{*}\left(B, e_{A}\right) \otimes \mathbf{K}\right)$ such that $V^{*} V=1$ and $V V^{*}=e_{A} \otimes \mathrm{id}$.

Let E_{B} be the dual conditional expectation of E from $C^{*}\left(B, e_{A}\right)$ to B, and \widetilde{E}_{B} be the restriction of $\left(E_{B} \otimes \mathrm{id}\right)^{* *}$ to $M\left(C^{*}\left(B, e_{A}\right) \otimes \mathbf{K}\right)$. Then, for any $x \in$ $M\left(C^{*}\left(B, e_{A}\right) \otimes \mathbf{K}\right)$ we have

$$
\left(e_{A} \otimes \mathrm{id}\right) \widetilde{E}_{B}\left(\left(e_{A} \otimes \mathrm{id}\right) x\right)=\frac{1}{\operatorname{Index}(E)}\left(\left(e_{A} \otimes \mathrm{id}\right) x\right)
$$

Set $W=\sqrt{\operatorname{Index}(E)} \widetilde{E}_{B}(V)$. Then, $W \in M(B \otimes \mathbf{K})$, and $V=\sqrt{\operatorname{index}(E)}\left(e_{A} \otimes\right.$ id) W. Hence, we have

$$
1=V^{*} V=\operatorname{Index}(E) W^{*}\left(e_{A} \otimes \mathrm{id}\right) W
$$

Therefore $\left\{\sqrt{\operatorname{Index}(E)} W^{*}, \sqrt{\operatorname{Index}(E)} W\right\}$ is a quasi-basis for \widetilde{E}.

However, in the case that A is purely infinite simple, we can find only one pair as a quasi-basis for E as follows:

Lemma Let $1 \in A \subset B$ be a pair of C^{*}-algebras, and let E be a conditional expectation from B to A of index-finite type. Suppose that A is a purely infinite simple C^{*}-algebra. Then there is a co-isometry $\frac{1}{\sqrt{\operatorname{Index}(E)}} v$ such that the pair $\left\{v, v^{*}\right\}$ is a quasi-basis for E in B. That is, for any element x in B

$$
x=E(x v) v^{*} .
$$

Proof. Let e_{A} be the projection on the right A-Hilbert module B_{A} defined by $e_{A}(x)=E(x)$. Then the basic extension $C^{*}\left(B, e_{A}\right)$ of B is isomorphic to a hereditary subalgebra of some matrix algebra over A. Since A is a purely infinite simple C^{*}-algebra, so is $C^{*}\left(B, e_{A}\right)$. Thus, there is a co-isometry w in $C^{*}\left(B, e_{A}\right)$ such that $w^{*} w \leqslant e_{A}$ and $w w^{*}=1([7])$. Note that $w e_{A}=w$.

Using a similar argument as in Lemma 1.2 of [20], there exists a nonzero element $v \in B$ such that $w e_{A}=v e_{A}$. Then we have $v e_{A} v^{*}=1$. Since $E_{B}\left(v e_{A} v^{*}\right)=\frac{1}{\operatorname{Index}(E)} v v^{*}=1, \frac{1}{\sqrt{\operatorname{Index}(E)}} v$ is a co-isometry.

Moreover, we know that $\left\{v, v^{*}\right\}$ is a quasi-basis for E. Indeed, for any $b \in B$ $b=\left(v e_{A} v^{*}\right)(b)=v E\left(v^{*} b\right)=E(b v) v^{*}$.

4. THE STRUCTURE THEORY FOR PURELY
 INFINITE SIMPLE C^{*}-ALGEBRAS

At the end of Section 2, we claimed that if A is a purely infinite simple C^{*}-algebra and α is an outer action from a discrete group G on A, then the reduced crossed product $A \times_{\alpha r} G$ is also purely infinite simple. In this section, we consider the case of a pair of unital simple C^{*}-algebras $1 \in A \subseteq B$ with a finite C^{*}-index, and deduce the pure infiniteness of B under the condition that A is purely infinite, which was announced by Izumi at the Fields Institute in 1995. To conclude this result, we use the characterization of the simplicity of the corona algebra of a stable C^{*}-algebra by Rørdam ([24]).

First, we discuss a special case of the SP-property for a pair of C^{*}-algebras, which will help the reader to understand the general case.

Proposition Let $1 \in A \subset B$ be a pair of C^{*}-algebras, and let E be a faithful conditional expectation from B to A of index-finite type. Suppose that A is a purely infinite simple C^{*}-algebra. Then B has the SP-property.

We need several lemmas.
Lemma Let A be a unital C^{*}-algebra with the SP-property. Let a be a nonzero, non-invertible positive element in A. Then for any positive number $\varepsilon>0$ there is a projection e in A such that $\|e a\|<\varepsilon$.

Proof. Choose a continuous function $f:[0,\|a\|] \rightarrow \mathbf{R}^{+}$so that $f(t)=0$ if $t \geqslant \varepsilon$ and $f(a) \neq 0$. Since A has the SP-property, there is a non-zero projection e in the hereditary subalgebra $\overline{f(a) A f(a)}$. Then we have $\|e a\|<\varepsilon$.

Lemma ([18], [21]) Let $C^{*}(p, q)$ be the universal unital C^{*}-algebra generated by two projections.
(i) There is an isomorphism from $C^{*}(p, q)$ onto

$$
D=\left\{f \in C\left([0,1], M_{2}(\mathbf{C})\right): f(0), f(1) \text { are diagonal }\right\}
$$

which carries the generating projections into the functions

$$
p_{D}(t)=\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right), \quad q_{D}(t)=\left(\begin{array}{cc}
t & \sqrt{t(1-t)} \\
\sqrt{t(1-t)} & 1-t
\end{array}\right) .
$$

(ii) The spectrum of $C^{*}(p, q)$ is homeomorphic to the quotient of two copies of $[0,1]$ in which the corresponding points in $(0,1)$ have been identified.

Proof of Proposition 4.1. Let x be a non-zero positive element in B with $\|x\|=1$. Since A is purely infinite simple, there is an element $z \in A$ such that $E\left(z^{*} x z\right)=1$. Set $y=z^{*}(x-E(x)) z$.

From Lemma 3.4 there is a quasi-basis $\left\{v, v^{*}\right\}$ for E so that $b=E(b v) v^{*}$ for $b \in B$. So, there is $a \in A$ such that $y=a v^{*}, a \in A$. Then a is not invertible in A. Indeed, if a is invertible, $v^{*}=a^{-1} y$, hence $E\left(v^{*}\right)=E\left(a^{-1} y\right)=0$. On the contrary, $1=E(v) v^{*}=0$. This is a contradiction. Hence, either $|a|$ or $\left|a^{*}\right|$ is not invertible.

Suppose that $\left|a^{*}\right|$ is not invertible. Let ε be an arbitrary positive number. Then, from Lemma 4.2, there is a projection e such that $\left\|e\left|a^{*}\right|\right\|<\frac{\varepsilon}{\|v\|}$. Write $a=u|a|$ by a polar decomposition in $A^{* *}$. Then

$$
\|e a\|=\left\|e\left|a^{*}\right| u\right\|<\frac{\varepsilon}{\|v\|}
$$

So we have $\|e y\|<\varepsilon$, hence $\left\|e z^{*}(x-E(x)) z e\right\|=\|e y e\|<\varepsilon$. Since $\left\|e z^{*} E(x) z e\right\|=$ $\|e\|=1>\|E(x)\|-\varepsilon, \overline{x B x}$ has a non-zero projection from the proof of Theorem 2.1.

Suppose that $\left|a^{*}\right|$ is invertible. Set $u^{*}=a^{*}\left|a^{*}\right|^{-1}$. Then, u is a co-isometry in A, and $a=\left|a^{*}\right| u$. Then, $y=\left|a^{*}\right| u v^{*}$. Set $p=u^{*} u$ and $q=\frac{1}{\operatorname{Index}(E)} v^{*} v$. Then p and q are non-zero projections. Let π be a homomorphism from the C^{*}-algebra D in Lemma 4.3 (i) to a C^{*}-algebra $C^{*}(p, q)$ generated by p, q such that $\pi\left(p_{D}\right)=p$ and $\pi\left(q_{D}\right)=q$. From Lemma 4.3 (ii) we can write the spectrum \widehat{D} of D as follows:

t_{0}	
\cdot	t_{1}
\cdot	-----------
\cdot	\cdot
\cdot	\cdot
s_{0}	s_{1},

where t_{0}, s_{0}, t_{1}, and s_{1} are end points of \widehat{D}.
We may assume that

Then, we consider two cases.
Case 1. $\widehat{\operatorname{ker}(\pi)} \not \supset t_{0}$.

Let $\eta>0$ be an arbitrary positive number. Consider a continuous function $g:[0,1] \rightarrow[0,1]$ such that $g(0)=1, g(t)=\eta$ for $t \geqslant \eta$, and linear on $[0, \eta]$. Define

$$
T(t)=\left(\begin{array}{cc}
g(t) & 0 \\
0 & 0
\end{array}\right), \quad t \in{\widehat{p_{D}}}^{\widehat{D p}_{D}}
$$

Then $T \in p_{D} D p_{D}$ and $\|T\|=1$. Note that

$$
p_{D} q_{D} p_{D}(t)=\left(\begin{array}{ll}
t & 0 \\
0 & 0
\end{array}\right), \quad t \in \widehat{p_{D} \hat{D p}_{D}}
$$

Hence,

$$
T(t)\left(p_{D} q_{D} p_{D}\right)(t)=\left(\begin{array}{cc}
g(t) t & 0 \\
0 & 0
\end{array}\right)
$$

and $\left\|T p_{D} q_{D} p_{D}\right\| \leqslant \eta$.
Set $c=\pi(T)$. Since $t_{0} \notin \widehat{\operatorname{ker}(\pi)}$,

$$
\|c\|=\|\pi(T)\|=1
$$

Set $b=\alpha^{-1 / 2} c u^{*}\left|a^{*}\right|^{-1}$, where α is a positive number and $\left(a a^{*}\right)^{-1} \geqslant \alpha$. Then,

$$
b b^{*} \geqslant c u^{*} u c=c p c=\pi\left(T^{2}\right)
$$

so $\|b\| \geqslant 1$. Note that $b y=\alpha^{-1 / 2} c u^{*}\left|a^{*}\right|^{-1} y=\alpha^{-1 / 2} c u^{*} u v^{*}=\alpha^{-1 / 2} c p v^{*}$. Hence,

$$
\|b y\|^{2}=\left\|b y y^{*} b^{*}\right\|=\left\|\alpha^{-1} \operatorname{Index}(E) c p q p c\right\| \leqslant \alpha^{-1} \operatorname{Index}(E) \eta .
$$

So, if we take η sufficiently small, then $\left\|b y b^{*}\right\|<\varepsilon$. Hence, $\left\|b z^{*}(x-E(x)) z b\right\|=$ $\left\|b y b^{*}\right\|<\varepsilon$. Since $\left\|b z^{*} E(x) z b^{*}\right\|=\left\|b b^{*}\right\| \geqslant 1>\|E(x)\|-\varepsilon$, from the proof of Theorem $2.1 \overline{x B x}$ has a non-zero projection.
(Set $a=b z^{*} E(x) z b^{*}=b b^{*}$ in Theorem 2.1. Then, since $b b^{*}$ is invertible in $p B p$ and $\overline{f(p) A f(p)}$ has a non-zero projection, we know that $\overline{f(a) B f(a)}$ has a non-zero projection. Note that $f(a) \geqslant \lambda f(p)$ for some $\lambda>0$.)

Case 2. $\widehat{\operatorname{ker}(\pi)} \ni t_{0}$.
We may assume that $z^{*} x z$ is not invertible.
Since $t_{0} \in \widehat{\operatorname{ker}(\pi)}$, $p q p=\pi\left(p_{D} q_{D} p_{D}\right)$ is invertible in $p C^{*}(p, q) p$. So, there is a positive number λ such that $p q p \geqslant \lambda p$. Since $y=y^{*}$, we have

$$
y^{2}=y y^{*}=\left|a^{*}\right| u p q p u^{*}\left|a^{*}\right| \geqslant \lambda\left|a^{*}\right| u p u^{*}\left|a^{*}\right|=\lambda\left|a^{*}\right|\left(u u^{*}\right)^{2}\left|a^{*}\right|=\lambda\left|a^{*}\right|^{2}
$$

Hence y is invertible, since $\left|a^{*}\right|$ is invertible. Note that $\left\|z^{*} x z\right\| \geqslant\left\|E\left(z^{*} x z\right)\right\|=1$.
Claim. $1 \notin \sigma\left(z^{*} x z\right)$ ($=$ the set of spectrum of $z^{*} x z$).
Suppose that $1 \in \sigma\left(z^{*} x z\right)$. Then, $z^{*} x z-1$ is not invertible. So, $y=z^{*}(x-$ $E(x)) z=z^{*} x z-1$ is not invertible. This is a contradiction to the fact that y is invertible.

So, since $\left\|z^{*} x z\right\| \geqslant 1$ and $0 \in \sigma\left(z^{*} x z\right)$, there is a non-zero spectral projection $\frac{\chi\left(z^{*} x z\right)}{z^{*} x B} \sim \overline{z^{*} x z}$ which is not equal to one. Then, $\chi\left(z^{*} x z\right) \in \overline{z^{*} x B x z}$. Since $\overline{z^{*} x B x z} \cong \overline{x z B z^{*} x}$ by [6], 1.4, $\overline{x B x}$ has a non-zero projection.

Remark In Proposition 4.1, since A is simple and E is of index-finite type, we know that B is a direct sum of finitely simple C^{*}-algebras B_{i} by the next lemma. So, if we conclude that the last projection $\chi\left(z^{*} x z\right)$ is infinite, then we could conclude that each simple C^{*}-algebra B_{i} is purely infinite. In fact, in the case that B is a crossed product algebra of A by a finite group, we can conclude that any non-zero hereditary C^{*}-subalgebra of B has a non-zero projection that is equivalent to some projection in $M_{n}(A)$ for some n, using the same method as in Theorem 1.1 ([13], Theorem 4.2).

Lemma ([11]) Let $1 \in A \subset B$ be a pair of C^{*}-algebras, and let E be a faithful conditional expectation from B to A of index-finite type.
(i) If A is simple, then B can be written as a finite direct sum of simple C^{*}-algebras.
(ii) If B is simple, then A can be written as a finite direct sum of simple C^{*}-algebras.

Proof. We have only to show case (i). Case (ii) can be deduced from the fact that A is isomorphic to a corner hereditary C^{*}-subalgebra of $C^{*}\left(B, e_{A}\right)$, by Lemma 3.1 (ii).

Let J be a non-zero closed two-sided ideal of B, and $\left\{u_{\lambda}\right\}$ be an approximate identity for J. Then $\left\{u_{\lambda}\right\}$ converges strongly to a positive element z in the centre of $B^{* *}$. We claim that $z \in B$. Let $E^{* *}$ be a faithful conditional expectation from $B^{* *}$ to $A^{* *}$, which is derived from E. Note that $\operatorname{Index}\left(E^{* *}\right)=\operatorname{Index}(E)$. Then $E\left(u_{\lambda}\right)$ converges strongly to $E^{* *}(z)$ in the centre of $A^{* *}$. Set $c=\sup \left\{\left\|E\left(u_{\lambda}\right)\right\|: \lambda\right\}$. Since A is simple, $c=E^{* *}(z)$. In fact, assume that $c \neq E^{* *}(z)$. Then, for an arbitrary positive number ε there exists a non-zero projection r in the centre of $A^{* *}$ such that

$$
r E^{* *}(z)<(c-\varepsilon) r .
$$

Since A is simple, $\left\|E\left(u_{\lambda}\right) r\right\|=\left\|E\left(u_{\lambda}\right)\right\|$, hence $\left\|r E^{* *}(z)\right\|=c$, which is a contradiction.

Set $Q(A)=\left\{\varphi \in A_{+}^{*}:\|\varphi\|=1\right\}$. Then $Q(A)$ is weak*-compact. Since $\varphi\left(c-E\left(u_{\lambda}\right)\right)$ converges to 0 for $\varphi \in Q(A), c-E\left(u_{\lambda}\right)$ converges uniformly to 0 by Dini's Theorem. Hence,

$$
\left\|E\left(u_{\lambda}\right)-E^{* *}(z)\right\| \longrightarrow 0, \quad \lambda \nearrow
$$

On the contrary, since $E^{* *}$ is of index-finite type, there is a positive number d such that

$$
E^{* *}(x) \geqslant d x, \quad x \in B_{+}^{* *}
$$

from Lemma 3.2 (ii). Since $\left\|E^{* *}\left(u_{\lambda}-z\right)\right\|$ converges to 0 uniformly, $\left\|u_{\lambda}-z\right\|$ converges uniformly to 0 . Hence z is in the centre of B, and $J=z B$. Since the centre of B is finite-dimensional by Proposition 2.7.3 of [25], B can be written as a direct sum of finitely simple C^{*}-algebras.

A proof of the following theorem is given more directly by Theorem 4.5 of [13] in the case that B is a crossed product algebra of A by a finite group.

Theorem ([10]) Let $1 \in A \subseteq B$ be a pair of separable C^{*}-algebras, and let E be a faithful conditional expectation from B to A of index-finite type. Suppose that A is a purely infinite simple C^{*}-algebra. Then B is a finite direct sum of purely infinite simple C^{*}-algebras.

Proof. By Lemma 4.5 (i), B is a finite direct sum of simple C^{*}-algebras B_{i}. Take central projections p_{i} in B such that $p_{i} B=B_{i}$. Then there are conditional expectations F_{i} of index-finite type : $B_{i} \rightarrow p_{i} A p_{i}$. Since each $p_{i} A p_{i}$ is purely infinite simple, we may assume that B is simple.

Consider a conditional expectation \widetilde{E} of index-finite type from $M(B \otimes \mathbf{K})$ to $M(A \otimes \mathbf{K})$. Then there is a conditional expectation F of index-finite type from $M(B \otimes \mathbf{K}) /(B \otimes \mathbf{K})$ to a C^{*}-algebra $\{x+B \otimes \mathbf{K}: x \in M(A \otimes \mathbf{K})\}(=D)$. Since A is purely infinite simple, $M(A \otimes \mathbf{K}) /(A \otimes \mathbf{K})$ is simple by Theorem 3.2 of [24]. So, $M(A \otimes \mathbf{K}) /(A \otimes \mathbf{K})$ is isomorphic to D. Since F is of index-finite type, $M(B \otimes \mathbf{K}) /(B \otimes \mathbf{K})$ is a direct sum of some simple C^{*}-algebras by Lemma 4.5 (i).

We claim that $M(B \otimes \mathbf{K}) /(B \otimes \mathbf{K})$ is simple. Indeed, since B is a separable simple C^{*}-algebra with the SP-property by Proposition 4.1, this corona algebra is prime by Theorem 2.7 of [17]. So it should be simple. Again, by Theorem 3.2 of [24], B is purely infinite.

5. MAIN THEOREM

In this section we present the main theorem. The proof is almost the same as in Proposition 4.1 using Theorem 3.3.

Theorem Let $1 \in A \subset B$ be a pair of unital C^{*}-algebras, and let E be a faithful conditional expectation from B to A of index-finite type. Suppose that A is simple and has the SP-property. Then B has the SP-property.

Note that in the case that $B=A \times{ }_{\alpha} G$ is a crossed product algebra of A by a finite group G, Jeong and Osaka concluded the statement more directly ([13], Theorem 4.2).

Proof. We show that $B \otimes \mathbf{K}$ has the SP-property, where \mathbf{K} denotes a C^{*} algebra of compact operators on some separable infinite-dimensional Hilbert spaces. From Theorem 3.3 there is a conditional expectation \widetilde{E} from $M(B \otimes \mathbf{K})$ to $M(A \otimes$ $\mathbf{K})$, and an isometry W in $M(B \otimes \mathbf{K})$ such that $\left\{\left(\sqrt{\operatorname{Index}(E)} W^{*}, \sqrt{\operatorname{Index}(E)} W\right)\right\}$ is a quasi-basis for \widetilde{E}. Set $v=\sqrt{\operatorname{Index}(E)} W^{*}$.

Take $x \in(B \otimes \mathbf{K})_{+}$with $\|x\|=1$. As in the proof of Theorem 2.1 there is a continuous function $f:[0,1] \rightarrow[0,1]$ such that $\overline{f(\widetilde{E}(x))(A \otimes \mathbf{K}) f(\widetilde{E}(x))}$ has a non-zero projection r and $z \in \overline{r(A \otimes \mathbf{K}) f(\widetilde{E}(x))}$ such that $z \widetilde{E}(x) z^{*}=r$. Set $y=z(x-\widetilde{E}(x)) z^{*}$. Then, $\widetilde{E}(y)=0$ and $r y=y=y r$. So, $y \in r(B \otimes \mathbf{K}) r$. Write $y=\widetilde{E}(y v) v^{*}=a v^{*}$. Since

$$
r a=r \widetilde{E}(y v)=\widetilde{E}(r y v)=\widetilde{E}(y v)=a,
$$

$\left|a^{*}\right| \in r(A \otimes \mathbf{K}) r$. Note that $r(A \otimes \mathbf{K}) r$ has the SP-property.
Let ε be an arbitrary positive number.

Suppose that $\left|a^{*}\right|$ is not invertible. Then, since $r(A \otimes \mathbf{K}) r$ is a unital C^{*} algebra with the SP-property, from Lemma 4.2 there is a projection e in $r(A \otimes \mathbf{K}) r$ such that $\left\|e\left|a^{*}\right|\right\|<\frac{\varepsilon}{\|v\|}$. So we can conclude that $\overline{x(B \otimes \mathbf{K}) x}$ has a non-zero projection, by the same argument as in Proposition 4.1.

Suppose that $\left|a^{*}\right|$ is invertible. Then using Lemma 4.3 we can conclude that $\overline{x(B \otimes \mathbf{K}) x}$ has a non-zero projection, by the same steps in the proof of Proposition 4.1.

Therefore, $B \otimes \mathbf{K}$ has the SP-property, and so has B.
Corollary Let $1 \in A \subset B$ be a pair of simple unital C^{*}-algebras, and let E be a conditional expectation from B to A of index-finite type. Then A has the SP-property if and only if B has the SP-property.

Proof. Suppose that B has the SP-property. Consider the basic construction:

$$
1 \in A \subset B \subset C^{*}\left(B, e_{A}\right)
$$

Since A is simple, $C^{*}\left(B, e_{A}\right)$ is simple from Corollary 2.2.14 in [25]. So we know that $C^{*}\left(B, e_{A}\right)$ has the SP-property from Theorem 5.1. Hence from Lemma 3.1 (ii) we know that A has the SP-property.

Acknowledgements. The author is grateful to Ja A. Jeong for fruitful discussion and useful suggestions by electronic mail.

REFERENCES

1. B. Blackadar, Comparison theory for simple C^{*}-algebras, in Operator Algebras and Applications, London Math. Soc. Lecture Notes Ser., vol. 135, Cambridge Univ. Press, Cambridge 1988.
2. B. Blackadar, A. Kumjian, Skew products of relations and the structure of simple C^{*}-algebras, Math. Z. 189(1985), 55-63.
3. L.G. Brown, Stable isomorphism of hereditary subalgebras of C^{*}-algebras, Pacific J. Math. 71(1977), 335-348.
4. L.G. Brown, G.K. Pedersen, C^{*}-algebras of real rank zero, J. Funct. Anal. 99 (1991), 131-149.
5. L.G. Brown, G.K. Pedersen, On the geometry of the unit ball of a C^{*}-algebra, J. Reine Angew. Math. 469(1995), 113-147.
6. J. Cuntz, The structure of multiplication and addition in simple C^{*}-algebras, Math. Scand. 40(1977), 215-233.
7. J. Cuntz, K-theory for certain C^{*}-algebras, Ann. of Math. 113(1981), 181-197.
8. G.A. Elliott, A classification of certain simple C^{*}-algebras, in Quantum and NonCommutative Analysis, Kluwer Academic Publishers, Dordrecht 1993, pp. 373-385.
9. K.R. Goodearl, Notes on a class of simple C^{*}-algebras with real rank zero, Publ. Mat. 36(1992), 637-654.
10. M. Izumi, Index theory of simple C^{*}-algebras, Workshop "Subfactors and their applications", The Fields Institute, March 1995.
11. M. Izumi, Lecture at Tokyo Metropolitan University, 1997.
12. J.A. Jeong, K. Kodaka, H. Osaka, Purely infinite simple C^{*}-crossed products. II, Canad. Math. Bull. 39(1996), 203-210.
13. J.A. Jeong, H. Osaka, Extremally rich C^{*}-crossed products and cancellation property, J. Austral. Math. Soc. Ser. A 64(1998), 285-301.
14. J.A. Jeong, H. Osaka, Cancellation of crossed products, submitted.
15. A. Kishimoto, Outer automorphisms and reduced crossed products of simple $C^{*}-$ algebras, Comm. Math. Phys. 81(1981), 429-435.
16. A. Kishimoto, A. Kumjian, Crossed products of Cuntz algebras by quasi-free automorphisms, in Operator Algebras and Their Applications (Waterloo, ON, 1994/1995), Fields Inst. Commun., vol. 13, Amer. Math. Soc., Providence, RI, 1997, pp. 173-192.
17. H. Lin, S. Zhang, Certain simple C^{*}-algebras with nonzero real rank whose corona algebras have real rank zero, Houston J. Math. 18(1992), 57-71.
18. G.K. Pedersen, Measure theory in C^{*}-algebras. II, Math. Scand. 22(1968), 63-74.
19. G.K. Pedersen, The linear span of projections in simple C^{*}-algebras, J. Operator Theory 4(1980), 289-296.
20. M. Pimsner, S. Popa, Entropy and index for subfactors, Ann. Sci. École Norm. Sup. (4) 19(1986), 57-106.
21. I. Raeburn, A.M. Sinclair, The C^{*}-algebra generated by two projections, Math. Scand. 65(1989), 278-290.
22. M.A. Rieffel, Actions of finite groups on C^{*}-algebras, Math. Scand. 47(1980), 157-176.
23. M.A. Rieffel, Dimension and stable rank in the K-theory of C^{*}-algebras, Proc. London Math. Soc. 46(1983), 301-333.
24. M. RøRDAm, Ideals in the multiplier algebra of a stable C^{*}-algebra, J. Operator Theory 25(1991), 283-298.
25. Y. Watatani, Index for C^{*}-algebras, Mem. Amer. Math. Soc. 83(1990), no. 424.

HIROYUKI OSAKA

Department of Mathematical Sciencees
Ritsumeikan University
Kusatsu, Shiga 525-8577
JAPAN
E-mail: osaka@se.ritsumei.ac.jp

