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Abstract. Recall that a C∗-algebra A has the SP-property if every non-zero
hereditary C∗-subalgebra of A has a non-zero projection. Let 1 ∈ A ⊂ B be a
pair of unital C∗-algebras. In this paper we investigate a sufficient condition
for B to have the SP-property, given that A has it. In particular, if there
exists a faithful conditional expectation E from B to A of index-finite type in
the sense of Watatani, then B has the SP-property under the condition that
A is simple with the SP-property. As an application, we have the structure
theory of purely infinite simple C∗-algebras.
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1. INTRODUCTION

A C∗-algebra A has the SP-property if every non-zero hereditary C∗-subalgebra of
A has a non-zero projection. This concept has been studied by several mathemati-
cians. For example, this concept is weaker than the real rank zero condition, which
means that every hereditary C∗-subalgebra of A has an approximate identity of
projections ([2], [19], and [9]). When A is a simple unital C∗-algebra, Jeong and
the author ([13]) in the case of the integer group, and Kishimoto and Kumjian
([16]) in the case of a general discrete group G, proved that the reduced crossed
product A×αr G has the SP-property if A has the SP-property and α is a homo-
morphism from G into the set of automorphisms on A such that αg is outer for all
g ∈ G. In the case that G is finite, Jeong and the author ([14]) proved that any
crossed product algebra A×αG has the SP-property when A has the SP-property.
As an application, we showed that any crossed product algebra A ×α G has the
cancellation property under the additional condition that A has stable rank one,
that is, the set of invertible elements in A is dense in it. Moreover, under the same
condition if a given crossed product algebra has real rank zero, it also has stable
rank one. Unfortunately, however, we do not know if a crossed product algebra of
a UHF-algebra by Z2 has stable rank one, in general. Note that Elliott presented
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an example of a crossed product algebra of this type which does not have real rank
zero ([8]).

In this paper, we consider a general condition for a pair of unital C∗-algebras
with the same unit to have the SP-property. In particular, we consider this problem
in the case of a conditional expectation from B to A of index-finite type in the
sense of Watatani ([25]).

Our main theorem (Theorem 5.1) is that if there exists a faithful conditional
expectation E from B to A of index-finite type, then B has the SP-property
provided that A is simple with the SP-property. Before giving a proof of it, we
consider the case that A is a purely infinite simple C∗-algebra in Section 4. There,
we point out the existence of one pair of elements as a quasi-basis for E, and show
that B is a direct sum of purely infinite simple C∗-algebras. This is a proof of
an announcement by Izumi at the Fields Institute in 1995. We believe that our
observation will be helpful in determining the stable rank of the crossed product
algebra A ×α G of a simple unital C∗-algebra A with stable rank one by a finite
group G.

2. THE SP-PROPERTY

In this section we present a sufficient condition for B to have the SP-property,
given that A has it.

The argument in Lemma 10 of [16] gives the following general result.

Theorem Let 1 ∈ A ⊂ B be a pair of C∗-algebras. Suppose that A has the
SP-property and there is a faithful conditional expectation E from B to A. If for
any non-zero positive element x in B and an arbitrary positive number ε > 0 there
is an element y in A such that

‖y∗(x− E(x))y‖ < ε, ‖y∗E(x)y‖ > ‖E(x)‖ − ε

then B has the SP-property. Moreover, every non-zero hereditary C∗-subalgebra
of B has a projection which is equivalent to some projection in A in the sense of
Murray-von Neumann.

Proof. Set a = y∗E(x)y. Consider the continuous functions f and g defined
by

f(t) = max(0, t− (1− ε)‖a‖), g(t) = min(t, (1− ε)‖a‖).
Note that fg = (1− ε)‖a‖f .

Since A has the SP-property, there is a non-zero projection p in f(a)Af(a).
Then, there is an element d1 ∈ f(a)A such that ‖p − f(a)d1‖ < 1

3 . So, ‖p −
d∗1f(a)2d1‖ < 1, and ‖p − pd∗1f(a)2d1p‖ < 1. So, pd∗1f(a)2d1p is invertible in
pAp. Hence, there is an element d2 ∈ pAp such that p = d∗2pd

∗
1f(a)2d1pd2. Set

w = d∗2pd
∗
1f(a)

1
2 . Then, w in f(a)Af(a) such that p = wf(a)w∗.

Let z0 = (1−ε)− 1
2 ‖a‖− 1

2wf(a)
1
2 . Then ‖z0‖ = (1−ε)− 1

2 ‖a‖− 1
2 and z0g(a)z∗0 =

p. Since g(a) 6 a, we have p = z0g(a)z∗0 6 z0az
∗
0 . Thus, there exists an element

z ∈ pA such that

zaz∗ = p, ‖z‖ 6 ‖z0‖ = (1− ε)−
1
2 ‖a‖− 1

2 .
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Hence, we have

‖zy∗xyz∗ − p‖ = ‖zy∗(x− E(x))yz∗‖ < ε

1− ε
× 1
‖E(x)‖ − ε

.

Note that the last inequality follows from the fact that

‖a‖−1 6
1

‖E(x)‖ − ε
.

We may assume that ‖zy∗xyz∗ − p‖ < 1. Since zy∗xyz∗ ∈ pBp, zy∗xyz∗ is
invertible in pBp; that is, there exists an element z1 ∈ B such that z1y∗xyz∗1 = p.
Therefore, since z1y∗x

1
2Bx

1
2 yz∗1

∼= x
1
2 yz∗1Bz1y

∗x
1
2 by Section 1.4 of [6], xBx has

a projection which is equivalent to a projection p in A. Indeed, p = z1y
∗xyz∗1 ∼

x
1
2 yz∗1z1y

∗x
1
2 in x

1
2 yz∗1Bz1y

∗x
1
2 ⊆ xBx.

Next, we consider the following stronger assumption on a conditional expec-
tation E from B to A.

Definition Let 1 ∈ A ⊂ B be a pair of C∗-algebras. A conditional expec-
tation E from B to A is called outer if for any element x ∈ B with E(x) = 0 and
any non-zero hereditary C∗-subalgebra C of A,

inf{‖cxc‖ : c ∈ C+, ‖c‖ = 1} = 0.

The following result comes from the same argument as in Lemma 3.2 of [15]
and Theorem 2.1.

Corollary Let 1 ∈ A ⊂ B be a pair of C∗-algebras. Suppose that A has
the SP-property and there is a faithful conditional expectation E from B to A. If
E is outer, then B has the SP-property.

Proof. For the reader we write a sketch of the proof. Let x be a non-zero
element in B, and let ε > 0 be an arbitrary positive number. Consider a continuous
function f : [0, ‖x‖] → R+ given by

f(t) =

{
1, t > ‖E(x)‖;
linear, ‖E(x)‖ − ε 6 t < ‖E(x)‖;
0, t < ‖E(x)‖ − ε.

Let C be a hereditary C∗-subalgebra of A generated by f(E(x)). Then,
since

∥∥E(x)c− ‖E(x)‖c
∥∥ < ε, for any positive c ∈ C with norm one, ‖cE(x)c‖ >

‖E(x)‖−ε. Indeed, since
∥∥c(E(x)c−‖E(x)‖c)

∥∥ < ε, we have
∥∥cE(x)c−‖E(x)‖c2

∥∥ <
ε. Hence,

‖E(x)‖ =
∥∥ ‖E(x)‖c2

∥∥ =
∥∥cE(x)c+ ‖E(x)‖c2 − cE(x)c

∥∥ < ‖cE(x)c‖+ ε.

From the outerness of E, for any arbitrary positive number ε > 0 there is a
positive element y ∈ C with norm one such that

‖y(x− E(x))y‖ < ε, ‖yE(x)y‖ > ‖E(x)‖ − ε.

Hence, B has the SP-property by Theorem 2.1.

We present some examples of a pair of C∗-algebras with an outer conditional
expectation.
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Example ([15]) Let G be a discrete group and let α be a representation of
G by automorphisms of a simple unital C∗-algebra A. Suppose α is outer. Then,
the canonical conditional expectation from the reduced crossed product A×αr G to
A is outer.

Proof. Let ug, g ∈ G be the standard unitaries in the multiplier algebra of
A×αrG implementing α. Let e be the identity of G. Let x be an element in A×αrG

with E(x) = 0. We approximate x by an element of the dense ∗-algebra spanned

by Aug, g ∈ G, and hence we may assume that x =
n∑

i=1

ciugi , where ci ∈ A, and

g1, . . . , gn are distinct elements of G \ {e}.
By Lemma 3.2 of [15], for any ε > 0 there is a positive element c ∈ C such

that ‖c‖ = 1,

‖cciugi
c‖ < ε

n
, i = 1, . . . , n.

Hence,

‖cxc‖ =
∥∥∥c( n∑

i=1

ciugi

)
c
∥∥∥ 6

n∑
i=1

‖cciugi
c‖ < ε.

This completes the proof.

Example Let ρ be a corner endomorphism of a unital C∗-algebra A, and
let E be the canonical conditional expectation from the crossed product A×ρ N by
ρ to A. Suppose that

T̃(ρ) = {λ ∈ T : ρ̂(I) = I for ∀ I ∈ Prime(A×ρ N)} = T.

Then E is outer.

Proof. This comes from the same argument as in Example 2.4 modifying
Proposition 2.2 of [13].

We now have the structure theorem for the pure infiniteness of a simple
crossed product algebra of a purely infinite simple C∗-algebra by a discrete group.

Corollary ([12], [16]) Let A be a purely infinite simple C∗-algebra, G a
discrete group, and α an action of G on A. Suppose that α is outer. Then the
reduced crossed product A×αr G is a purely infinite simple C∗-algebra.

Proof. In the case of a countable abelian group G see [12], Corollary 3.3. In
the case of a general discrete group G see [16], Lemma 10.
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3. C∗-INDEX THEORY

In this section, we summarize the C∗-index theory of Watatani ([25]).
Let 1 ∈ A ⊆ B be a pair of C∗-algebras, and let E : B → A be a faithful

conditional expectation from B to A.
A finite family {(u1, v1), . . . , (un, vn)} in B×B is called a quasi-basis for E if

n∑
i=1

uiE(vib) =
n∑

i=1

E(bui)vi = b for b ∈ B.

We say that a conditional expectation E is of index-finite type if there exists a
quasi-basis for E. In this case the index of E is defined by

Index(E) =
n∑

i=1

uivi.

Note that Index(E) does not depend on the choice of a quasi-basis and every
conditional expectation E of index-finite type on a C∗-algebra has a quasi-basis
of the form {(u1, u

∗
1), . . . , (un, u

∗
n)} (Lemma 2.1.6, [25]). Moreover, Index(E) is

always contained in the centre of B, so that it is a scalar whenever B has a trivial
centre, in particular when B is simple.

Let E : B → A be a faithful conditional expectation. Then BA(= B) is a
pre-Hilbert module over A with an A-valued inner product

〈x, y〉 = E(x∗y), x, y ∈ BA.

Let E be the completion of BA with respect to the norm on BA defined by

‖x‖BA
= ‖E(x∗x)‖

1
2
A, x ∈ BA.

Then E is a Hilbert C∗-module over A. Since E is faithful, the canonical map
B → E is injective. Let LA(E) be the set of all (right) A-module homomorphisms
T : E → E with an adjoint A-module homomorphism T ∗ : E → E such that

〈Tξ, ζ〉 = 〈ξ, T ∗ζ〉 ξ, ζ ∈ E .
Then LA(E) is a C∗-algebra with the operator norm ‖T‖ = sup{‖Tξ‖ : ‖ξ‖ = 1}.
There is an injective ∗-homomorphism λ : B → LA(E) defined by

λ(b)x = bx

for x ∈ BA, b ∈ B, so that B can be viewed as a C∗-subalgebra of LA(E). Note
that the map eA : BA → BA defined by

eAx = E(x), x ∈ BA

is bounded and thus it can be extended to a bounded linear operator, denoted by
eA again, on E . Then eA ∈ LA(E) and eA = e2A = e∗A; that is, eA is a projection
in LA(E).

The (reduced) C∗-basic construction is a C∗-subalgebra of LA(E) defined to
be

C∗(B, eA) = span{λ(x)eAλ(y) ∈ LA(E) : x, y ∈ B}
‖·‖

([25], Definition 2.1.2).
Then,
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Lemma ([25], Lemma 2.1.4) (i) eAC
∗(B, eA)eA = λ(A)eA.

(ii) ψ : A→ eAC
∗(B, eA)eA, ψ(a) = λ(a)eA, is a ∗-isomorphism (onto).

Lemma ([25], Lemma 2.1.5) The following are equivalent:
(i) E : B → A is of index-finite type.
(ii) C∗(B, eA) has an identity and there exists a number c with 0 < c < 1

such that
E(x∗x) > c(x∗x), x ∈ B.

The above inequality was shown first in [20] by Pimsner and Popa for the
conditional expectation EN : M → N from a type II1 factor M onto its subfactor
N (c can be taken as the inverse of the Jones index [M : N ]).

The conditional expectation EB : C∗(B, eA) → B defined by

EB(λ(x)eAλ(y)) = (Index(E))−1xy, x, y ∈ B
is called the dual conditional expectation of E : B → A. If E is of index-finite
type, so is EB with a quasi-basis {(wi, w

∗
i )}, where wi =

√
Index(E)uieA, and

{(ui, u
∗
i )} is a quasi-basis for E ([25], Proposition 2.3.4).

Even if Index(E) is scalar, we do not know the relation between the number
of pairs in a quasi-basis and Index(E). Izumi, however, showed recently that if we
extend a conditional expectation E from σ-unital C∗-algebra D to a stable simple
C∗-algebra C with DC = D to the multiplier algebra M(D), then it has only one
pair as a quasi-basis. In the case that C and D are stable, we have the following
result.

Theorem ([11]) Let 1 ∈ A ⊆ B be a pair of unital C∗-algebras, and let E
be a faithful conditional expectation from B on A of index-finite type. Suppose
that A is simple. Let Ẽ be the restriction of (E ⊗ id)∗∗ to the multiplier algebra
M(B⊗K) of B⊗K, where K denotes a C∗-algebra of compact operators on some
separable infinite-dimensional Hilbert space. Then, Ẽ is a conditional expectation
from M(B⊗K) to M(A⊗K). Moreover, there exists an isometry W in M(B⊗K)
such that

{(√
Index(E)W ∗,

√
Index(E)W

)}
is a quasi-basis for Ẽ.

Proof. For completeness, we will give a sketch of the proof.
Let eA be the projection on the right A-Hilbert module BA defined by eAx =

E(x). Then, eA⊗ id is a projection in the multiplier algebra M(C∗(B, eA)⊗K) of
C∗(B, eA)⊗K. Since C∗(B, eA) is isomorphic to a full hereditary algebra of some
matrix algebra over A (Lemma 3.1 (ii)), C∗(B, eA)⊗K is simple, so eA ⊗ id is a
full projection in M(C∗(B, eA)⊗K). By Lemma 2.5 of [3] there is an isometry V
in M(C∗(B, eA)⊗K) such that V ∗V = 1 and V V ∗ = eA ⊗ id.

Let EB be the dual conditional expectation of E from C∗(B, eA) to B, and
ẼB be the restriction of (EB ⊗ id)∗∗ to M(C∗(B, eA) ⊗ K). Then, for any x ∈
M(C∗(B, eA)⊗K) we have

(eA ⊗ id)ẼB((eA ⊗ id)x) =
1

Index(E)
((eA ⊗ id)x).

Set W =
√

Index(E)ẼB(V ). Then, W ∈ M(B ⊗K), and V =
√

index(E)(eA ⊗
id)W . Hence, we have

1 = V ∗V = Index(E)W ∗(eA ⊗ id)W.

Therefore
{√

Index(E)W ∗,
√

Index(E)W
}

is a quasi-basis for Ẽ.
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However, in the case that A is purely infinite simple, we can find only one
pair as a quasi-basis for E as follows:

Lemma Let 1 ∈ A ⊂ B be a pair of C∗-algebras, and let E be a conditional
expectation from B to A of index-finite type. Suppose that A is a purely infinite
simple C∗-algebra. Then there is a co-isometry 1√

Index(E)
v such that the pair

{v, v∗} is a quasi-basis for E in B. That is, for any element x in B

x = E(xv)v∗.

Proof. Let eA be the projection on the right A-Hilbert module BA defined
by eA(x) = E(x). Then the basic extension C∗(B, eA) of B is isomorphic to a
hereditary subalgebra of some matrix algebra over A. Since A is a purely infinite
simple C∗-algebra, so is C∗(B, eA) . Thus, there is a co-isometry w in C∗(B, eA)
such that w∗w 6 eA and ww∗ = 1 ([7]). Note that weA = w.

Using a similar argument as in Lemma 1.2 of [20], there exists a non-
zero element v ∈ B such that weA = veA. Then we have veAv

∗ = 1. Since
EB(veAv

∗) = 1
Index(E)vv

∗ = 1, 1√
Index(E)

v is a co-isometry.

Moreover, we know that {v, v∗} is a quasi-basis for E. Indeed, for any b ∈ B
b = (veAv

∗)(b) = vE(v∗b) = E(bv)v∗.

4. THE STRUCTURE THEORY FOR PURELY

INFINITE SIMPLE C∗-ALGEBRAS

At the end of Section 2, we claimed that if A is a purely infinite simple C∗-algebra
and α is an outer action from a discrete group G on A, then the reduced crossed
product A ×αr G is also purely infinite simple. In this section, we consider the
case of a pair of unital simple C∗-algebras 1 ∈ A ⊆ B with a finite C∗-index, and
deduce the pure infiniteness of B under the condition that A is purely infinite,
which was announced by Izumi at the Fields Institute in 1995. To conclude this
result, we use the characterization of the simplicity of the corona algebra of a
stable C∗-algebra by Rørdam ([24]).

First, we discuss a special case of the SP-property for a pair of C∗-algebras,
which will help the reader to understand the general case.

Proposition Let 1 ∈ A ⊂ B be a pair of C∗-algebras, and let E be a faithful
conditional expectation from B to A of index-finite type. Suppose that A is a purely
infinite simple C∗-algebra. Then B has the SP-property.

We need several lemmas.

Lemma Let A be a unital C∗-algebra with the SP-property. Let a be a non-
zero, non-invertible positive element in A. Then for any positive number ε > 0
there is a projection e in A such that ‖ea‖ < ε.

Proof. Choose a continuous function f : [0, ‖a‖] → R+ so that f(t) = 0 if
t > ε and f(a) 6= 0. Since A has the SP-property, there is a non-zero projection e
in the hereditary subalgebra f(a)Af(a). Then we have ‖ea‖ < ε.
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Lemma ([18], [21]) Let C∗(p, q) be the universal unital C∗-algebra generated
by two projections.

(i) There is an isomorphism from C∗(p, q) onto

D = {f ∈ C([0, 1],M2(C)) : f(0), f(1) are diagonal}
which carries the generating projections into the functions

pD(t) =
(

1 0
0 0

)
, qD(t) =

(
t

√
t(1− t)√

t(1− t) 1− t

)
.

(ii) The spectrum of C∗(p, q) is homeomorphic to the quotient of two copies
of [0, 1] in which the corresponding points in (0, 1) have been identified.

Proof of Proposition 4.1. Let x be a non-zero positive element in B with
‖x‖ = 1. Since A is purely infinite simple, there is an element z ∈ A such that
E(z∗xz) = 1. Set y = z∗(x− E(x))z.

From Lemma 3.4 there is a quasi-basis {v, v∗} for E so that b = E(bv)v∗ for
b ∈ B. So, there is a ∈ A such that y = av∗, a ∈ A. Then a is not invertible
in A. Indeed, if a is invertible, v∗ = a−1y, hence E(v∗) = E(a−1y) = 0. On the
contrary, 1 = E(v)v∗ = 0 . This is a contradiction. Hence, either |a| or |a∗| is not
invertible.

Suppose that |a∗| is not invertible. Let ε be an arbitrary positive number.
Then, from Lemma 4.2, there is a projection e such that ‖e|a∗|‖ < ε

‖v‖ . Write
a = u|a| by a polar decomposition in A∗∗. Then

‖ea‖ = ‖e|a∗|u‖ < ε

‖v‖
.

So we have ‖ey‖ < ε, hence ‖ez∗(x−E(x))ze‖ = ‖eye‖ < ε. Since ‖ez∗E(x)ze‖ =
‖e‖ = 1 > ‖E(x)‖ − ε, xBx has a non-zero projection from the proof of Theo-
rem 2.1.

Suppose that |a∗| is invertible. Set u∗ = a∗|a∗|−1. Then, u is a co-isometry
in A, and a = |a∗|u. Then, y = |a∗|uv∗. Set p = u∗u and q = 1

Index(E)v
∗v. Then p

and q are non-zero projections. Let π be a homomorphism from the C∗-algebra D
in Lemma 4.3 (i) to a C∗-algebra C∗(p, q) generated by p, q such that π(pD) = p

and π(qD) = q. From Lemma 4.3 (ii) we can write the spectrum D̂ of D as follows:

t0 t1
· ·
◦ − − − − − − − − − − −− ◦
· ·
s0 s1,

where t0, s0, t1, and s1 are end points of D̂.
We may assume that

̂pDDpD ⊂
t0 t1
· ·
◦ − − − − − − − − − − −− ◦

Then, we consider two cases.
Case 1. ̂ker(π) 63 t0.
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Let η > 0 be an arbitrary positive number. Consider a continuous function
g : [0, 1] → [0, 1] such that g(0) = 1, g(t) = η for t > η, and linear on [0, η]. Define

T (t) =
(
g(t) 0
0 0

)
, t ∈ ̂pDDpD.

Then T ∈ pDDpD and ‖T‖ = 1. Note that

pDqDpD(t) =
(
t 0
0 0

)
, t ∈ ̂pDDpD.

Hence,

T (t)(pDqDpD)(t) =
(
g(t)t 0

0 0

)
and ‖TpDqDpD‖ 6 η.

Set c = π(T ). Since t0 6∈ ̂ker(π),

‖c‖ = ‖π(T )‖ = 1.

Set b = α−1/2cu∗|a∗|−1, where α is a positive number and (aa∗)−1 > α. Then,

bb∗ > cu∗uc = cpc = π(T 2),

so ‖b‖ > 1. Note that by = α−1/2cu∗|a∗|−1y = α−1/2cu∗uv∗ = α−1/2cpv∗. Hence,

‖by‖2 = ‖byy∗b∗‖ = ‖α−1Index(E)cpqpc‖ 6 α−1Index(E)η.

So, if we take η sufficiently small, then ‖byb∗‖ < ε. Hence, ‖bz∗(x − E(x))zb‖ =
‖byb∗‖ < ε. Since ‖bz∗E(x)zb∗‖ = ‖bb∗‖ > 1 > ‖E(x)‖ − ε, from the proof of
Theorem 2.1 xBx has a non-zero projection.

(Set a = bz∗E(x)zb∗ = bb∗ in Theorem 2.1. Then, since bb∗ is invertible
in pBp and f(p)Af(p) has a non-zero projection, we know that f(a)Bf(a) has a
non-zero projection. Note that f(a) > λf(p) for some λ > 0.)

Case 2. ̂ker(π) 3 t0.
We may assume that z∗xz is not invertible.
Since t0 ∈ ̂ker(π), pqp = π(pDqDpD) is invertible in pC∗(p, q)p. So, there is

a positive number λ such that pqp > λp. Since y = y∗, we have

y2 = yy∗ = |a∗|upqpu∗|a∗| > λ|a∗|upu∗|a∗| = λ|a∗|(uu∗)2|a∗| = λ|a∗|2.

Hence y is invertible, since |a∗| is invertible. Note that ‖z∗xz‖ > ‖E(z∗xz)‖ = 1.

Claim. 1 6∈ σ(z∗xz) (= the set of spectrum of z∗xz).

Suppose that 1 ∈ σ(z∗xz). Then, z∗xz − 1 is not invertible. So, y = z∗(x−
E(x))z = z∗xz − 1 is not invertible. This is a contradiction to the fact that y is
invertible.

So, since ‖z∗xz‖ > 1 and 0 ∈ σ(z∗xz), there is a non-zero spectral projection
χ(z∗xz) of z∗xz which is not equal to one. Then, χ(z∗xz) ∈ z∗xBxz. Since
z∗xBxz ∼= xzBz∗x by [6], 1.4, xBx has a non-zero projection.
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Remark In Proposition 4.1, since A is simple and E is of index-finite type,
we know that B is a direct sum of finitely simple C∗-algebras Bi by the next
lemma. So, if we conclude that the last projection χ(z∗xz) is infinite, then we
could conclude that each simple C∗-algebra Bi is purely infinite. In fact, in the
case that B is a crossed product algebra of A by a finite group, we can conclude
that any non-zero hereditary C∗-subalgebra of B has a non-zero projection that
is equivalent to some projection in Mn(A) for some n, using the same method as
in Theorem 1.1 ([13], Theorem 4.2).

Lemma ([11]) Let 1 ∈ A ⊂ B be a pair of C∗-algebras, and let E be a faithful
conditional expectation from B to A of index-finite type.

(i) If A is simple, then B can be written as a finite direct sum of simple
C∗-algebras.

(ii) If B is simple, then A can be written as a finite direct sum of simple
C∗-algebras.

Proof. We have only to show case (i). Case (ii) can be deduced from the
fact that A is isomorphic to a corner hereditary C∗-subalgebra of C∗(B, eA), by
Lemma 3.1 (ii).

Let J be a non-zero closed two-sided ideal of B, and {uλ} be an approximate
identity for J . Then {uλ} converges strongly to a positive element z in the centre of
B∗∗. We claim that z ∈ B. Let E∗∗ be a faithful conditional expectation from B∗∗

to A∗∗, which is derived from E. Note that Index(E∗∗) = Index(E). Then E(uλ)
converges strongly to E∗∗(z) in the centre of A∗∗. Set c = sup{‖E(uλ)‖ : λ}. Since
A is simple, c = E∗∗(z). In fact, assume that c 6= E∗∗(z). Then, for an arbitrary
positive number ε there exists a non-zero projection r in the centre of A∗∗ such
that

rE∗∗(z) < (c− ε)r.

Since A is simple, ‖E(uλ)r‖ = ‖E(uλ)‖, hence ‖rE∗∗(z)‖ = c, which is a contra-
diction.

Set Q(A) = {ϕ ∈ A∗
+ : ‖ϕ‖ = 1}. Then Q(A) is weak∗-compact. Since

ϕ(c−E(uλ)) converges to 0 for ϕ ∈ Q(A), c−E(uλ) converges uniformly to 0 by
Dini’s Theorem. Hence,

‖E(uλ)− E∗∗(z)‖ −→ 0, λ↗ .

On the contrary, since E∗∗ is of index-finite type, there is a positive number
d such that

E∗∗(x) > dx, x ∈ B∗∗
+

from Lemma 3.2 (ii). Since ‖E∗∗(uλ − z)‖ converges to 0 uniformly, ‖uλ − z‖
converges uniformly to 0. Hence z is in the centre of B, and J = zB. Since the
centre of B is finite-dimensional by Proposition 2.7.3 of [25], B can be written as
a direct sum of finitely simple C∗-algebras.

A proof of the following theorem is given more directly by Theorem 4.5 of
[13] in the case that B is a crossed product algebra of A by a finite group.
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Theorem ([10]) Let 1 ∈ A ⊆ B be a pair of separable C∗-algebras, and let
E be a faithful conditional expectation from B to A of index-finite type. Suppose
that A is a purely infinite simple C∗-algebra. Then B is a finite direct sum of
purely infinite simple C∗-algebras.

Proof. By Lemma 4.5 (i), B is a finite direct sum of simple C∗-algebras Bi.
Take central projections pi in B such that piB = Bi. Then there are conditional
expectations Fi of index-finite type : Bi → piApi. Since each piApi is purely
infinite simple, we may assume that B is simple.

Consider a conditional expectation Ẽ of index-finite type from M(B ⊗ K)
to M(A ⊗ K). Then there is a conditional expectation F of index-finite type
from M(B ⊗K)/(B ⊗K) to a C∗-algebra {x+ B ⊗K : x ∈ M(A⊗K)} (= D).
Since A is purely infinite simple, M(A⊗K)/(A⊗K) is simple by Theorem 3.2 of
[24]. So, M(A⊗K)/(A⊗K) is isomorphic to D. Since F is of index-finite type,
M(B⊗K)/(B⊗K) is a direct sum of some simple C∗-algebras by Lemma 4.5 (i).

We claim that M(B ⊗K)/(B ⊗K) is simple. Indeed, since B is a separable
simple C∗-algebra with the SP-property by Proposition 4.1, this corona algebra is
prime by Theorem 2.7 of [17]. So it should be simple. Again, by Theorem 3.2 of
[24], B is purely infinite.

5. MAIN THEOREM

In this section we present the main theorem. The proof is almost the same as in
Proposition 4.1 using Theorem 3.3.

Theorem Let 1 ∈ A ⊂ B be a pair of unital C∗-algebras, and let E be a
faithful conditional expectation from B to A of index-finite type. Suppose that A
is simple and has the SP-property. Then B has the SP-property.

Note that in the case that B = A×α G is a crossed product algebra of A by
a finite group G, Jeong and Osaka concluded the statement more directly ([13],
Theorem 4.2).

Proof. We show that B ⊗ K has the SP-property, where K denotes a C∗-
algebra of compact operators on some separable infinite-dimensional Hilbert spaces.
From Theorem 3.3 there is a conditional expectation Ẽ from M(B⊗K) to M(A⊗
K), and an isometry W in M(B⊗K) such that

{(√
Index(E)W ∗,

√
Index(E)W

)}
is a quasi-basis for Ẽ. Set v =

√
Index(E)W ∗.

Take x ∈ (B ⊗ K)+ with ‖x‖ = 1. As in the proof of Theorem 2.1 there

is a continuous function f : [0, 1] → [0, 1] such that f(Ẽ(x))(A⊗K)f(Ẽ(x)) has

a non-zero projection r and z ∈ r(A⊗K)f(Ẽ(x)) such that zẼ(x)z∗ = r. Set
y = z(x− Ẽ(x))z∗. Then, Ẽ(y) = 0 and ry = y = yr. So, y ∈ r(B ⊗K)r. Write
y = Ẽ(yv)v∗ = av∗. Since

ra = rẼ(yv) = Ẽ(ryv) = Ẽ(yv) = a,

|a∗| ∈ r(A⊗K)r. Note that r(A⊗K)r has the SP-property.
Let ε be an arbitrary positive number.
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Suppose that |a∗| is not invertible. Then, since r(A ⊗ K)r is a unital C∗-
algebra with the SP-property, from Lemma 4.2 there is a projection e in r(A⊗K)r
such that ‖e|a∗| ‖ < ε

‖v‖ . So we can conclude that x(B ⊗K)x has a non-zero
projection, by the same argument as in Proposition 4.1.

Suppose that |a∗| is invertible. Then using Lemma 4.3 we can conclude
that x(B ⊗K)x has a non-zero projection, by the same steps in the proof of
Proposition 4.1.

Therefore, B ⊗K has the SP-property, and so has B.

Corollary Let 1 ∈ A ⊂ B be a pair of simple unital C∗-algebras, and let
E be a conditional expectation from B to A of index-finite type. Then A has the
SP-property if and only if B has the SP-property.

Proof. Suppose that B has the SP-property. Consider the basic construction:

1 ∈ A ⊂ B ⊂ C∗(B, eA).

Since A is simple, C∗(B, eA) is simple from Corollary 2.2.14 in [25]. So
we know that C∗(B, eA) has the SP-property from Theorem 5.1. Hence from
Lemma 3.1 (ii) we know that A has the SP-property.
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