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Abstract. Let M be any noncompact, connected, complete Riemannian
manifold with Riemannian distance function (from a fixed point) ρ. Consider
L = ∆ +∇V for some V ∈ C2(M) with dµ := eV dx a probability measure.
Define δ > 0 as the smallest possible constant such that for any K, ε > 0,
µ(exp[(δK + ε)ρ2]) <∞ implies the logarithmic Sobolev inequality (abbrev.
LSI) for any M and V with Ric-HessV > −K. It is shown in the paper that
δ ∈ [ 1

4
, 1

2
].

Moreover, some differential type conditions are presented for the LSI.
As a consequence, a result suggested by D. Stroock is proved: for V = −rρ2

with r > 0, the LSI holds provided the Ricci curvature is bounded below.

Keywords: Logarithmic Sobolev inequality, Riemannian manifold, Ricci cur-
vature.
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1. INTRODUCTION

Let M be a noncompact, connected, complete Riemannian manifold of dimension
d. We assume throughout the paper that M is convex for the case ∂M 6= ∅.
Consider the operator L = ∆ +∇V for some V ∈ C2(M) with Z =

∫
exp[V ] dx <

∞. Let dµ = Z−1 exp[V ] dx. We say that the logarithmic Sobolev inequality
(abbrev. LSI) holds for L (or for V ) if there exists α > 0 such that

(1.1) µ(f2 log f2) 6
2
α

µ(|∇f |2), µ(f2) = 1.

The largest possible constant (denoted also by α) is called the logarithmic Sobolev
constant.
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Fix a point o ∈ M and let ρ be the Riemannian distance function from o.
According to Herbst’s argument (see, e.g., [2]), if the LSI holds, then there exists
ε > 0 such that

(1.2) µ(eερ2
) < ∞.

Assume that there exists K > 0 such that Ric-HessV > −K, which means
that (Ric-HessV )(X, X) > −K for any X ∈ TM with |X| = 1. Let Pt denote the
semigroup of L (with reflecting boundary if ∂M 6= ∅). By [19] one has ‖Pt‖2→p <
∞ for some t > 0 and p > 2 provided

(1.3) µ(e(2K+ε)ρ2
) < ∞

for some ε > 0. Here, ‖·‖2→p denotes the operator norm from L2(dµ) to Lp(dµ). It
is well known from [11] that ‖Pt‖2→p < ∞ for some t > 0 and p > 2 is equivalent
to the defective LSI

(1.4) µ(f2 log f2) 6 c1µ(|∇f |2) + c2, µ(f2) = 1.

And according to [1], (1.4) is actually equivalent to the LSI in our present setting.
Therefore, (1.3) is a sufficient condition for the LSI (see also [4]).

We now have two integral conditions (1.2) and (1.3), which are respectively
necessary and sufficient for the LSI. The difference between them is that (1.2) is
curvature free but (1.3) is not. Our first aim is to show that for a sufficient integral
condition in this form, the dependence on curvature is necessary. This leads to
the following result which also contains a slight improvement of (1.3).

Theorem 1.1. Assume that Ric-HessV > −K for some K > 0. The LSI
holds provided there exists ε > 0 such that

(1.5) µ(e(K/2+ε)ρ2
) < ∞.

On the other hand, for any K > 0 and c < 1
4K, there exists an example with

Ric-HessV > −K, µ(ecρ2
) < ∞ but the LSI does not hold.

Let δ > 0 be the smallest possible constant such that for all K, ε > 0,
µ(e(δK+ε)ρ2

) < ∞ implies the LSI for any M and operator L with Ric-HessV >
−K. It then follows from Theorem 1.1 that δ ∈ [ 14 , 1

2 ].
Next, let us consider the differential conditions for the LSI. Let k(x) be a

continuous function such that (Ric-HessV )x > k(x). By Bakry-Emery’s criterion,
one has α > inf k and hence the LSI holds if inf k > 0. As an improvement, Chen
and Wang proved in [7] that the LSI holds provided o is a pole, the sectional
curvatures are nonpositive and

(1.6) lim
r→∞

inf
ρ(x)>r

k(x) > 0.

Our next result says that (1.6) is sufficient for the LSI without any other assump-
tion.

Theorem 1.2. The condition (1.6) implies the LSI.

But when the Ricci curvature is bounded below, the Riemannian volume of
the geodesic ball grows at most radius-exponentially fast. So, in terms of (1.2)
and (1.3), the LSI should essentially depend on the behavior of HessV rather than
the curvature. From this point of view, we have the following result.
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Theorem 1.3. Assume that the Ricci curvature is bounded below. The LSI
holds provided lim

ρ→∞
HessV < 0, while the LSI does not hold if lim

ρ→∞
HessV > 0.

Finally, we would like to mention a problem suggested by D. Stroock at the
workshop on logarithmic Sobolev inequality (IHP, Paris, May 1998): how can one
prove the LSI for e.g. V = −rρ2 (r > 0) which may be not smooth somewhere.
The next two results provide a way to solve this problem by using the Sobolev
inequality.

Theorem 1.4. Assume that W is a locally Lipschitz continuous function
such that the following Sobolev inequality holds for dν = eW dx and some c1, c2 >

0, v > 2:

(1.7)
{ ∫

f2v/(v−2) dν

}(v−2)/v

6 c1

∫
|∇f |2 dν + c2, f > 0,

∫
f2 dν = 1.

Next, assume that V is a locally Lipschitz continuous function on M such that
∆eV > eV η in the distribution sense for some η ∈ C(M), namely,

(1.8)
∫

eV ∆f dx >
∫

feV η dx, f > 0, f ∈ C∞
0 (M);

when ∂M 6= ∅, the function f is assumed to satisfy the Neumann boundary con-
dition. Let |∇V (x)| denote the local Lipschitz constant of V at x. Then the LSI
holds provided there exist λ, ε > 0 such that

(1.9)
∫

exp[λ(|∇W |2 + |∇V |2 − 2η) + (1 + ε)(W − V )] dµ < ∞.

Theorem 1.5. Assume that the Ricci curvature is bounded below by −K
for some K > 0. Let W = cρ for some c >

√
K(d− 1); then (1.7) holds for

v ∈ [d,∞) ∩ (2,∞).

Corollary 1.6. Assume that the Ricci curvature is bounded below. Let
V = −rρ2 with r > 0, then the LSI holds.

Proof. By Theorem 1.5, there exists c > 0 such that (1.7) holds for W = cρ
and some v > 2. It is well known that ρ2 is smooth except on the cut locus of o

whose measure is zero. Since the Ricci curvature is bounded below, there exists
c′ > 0 such that ∆ρ2 6 c′(1 + ρ) out of the cut locus. Therefore, following the
argument of Yau ( see [20], Appendix), we have (1.8) for η = |∇V |2 − c′r(1 + ρ).
Then (1.9) holds for large λ and small ε > 0.

Professor D. Stroock has pointed out to the author that Corollary 1.6 can
also be proved by showing the hypercontractivity of the corresponding semigroup.
To this end, one needs to prove first the existence and some properties of the
diffusion process. Refer to [16] for details.
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2. INTEGRAL CONDITIONS: PROOF OF THEOREM 1.1

Let ρ(x, y) be the Riemannian distance between x and y. By [19], for any f ∈
Cb(M), r > 1, t > 0 and x, y ∈ M , one has

(2.1) |Ptf(x)|r 6 Pt|f |r(y) exp
[

rKρ(x, y)2

2(r − 1)(1− e−2Kt)

]
.

For r > 2, let f > 0 be such that µ(fr) = 1; we then have

1 = µ(Ptf
r) > [Ptf(x)]r

∫
exp

[
− rKρ(x, y)2

2(r − 1)(1− e−2Kt)

]
µ(dy)

> [Ptf(x)]rµ(B(o, 1)) exp
[
− rK(ρ(x) + 1)2

2(r − 1)(1− e−2Kt)

]
.

Therefore, there exists c > 0 such that

(2.2) Ptf(x) 6 c exp
[

K(ρ(x) + 1)2

2(r − 1)(1− e−2Kt)

]
, t > 0, x ∈ M.

If (1.5) holds, then

µ((Ptf)r+ε′) 6 c

∫
exp

[
(r + ε′)K(ρ + 1)2

2(r − 1)(1− e−2Kt)

]
dµ < ∞

for small ε′ > 0 and large r and t. Let ε = r/2−1
r−1 ∈ (0, 1), and let p > 2 be such

that 1/p = ε + 1−ε
r+ε′ . Noting that Pt is contractive in L1(µ), by Riesz-Thorin’s

interpolation theorem (see e.g. [9], p. 3) we obtain ‖Pt‖2→p < ∞. This implies the
LSI as we have explained in the previous section. The proof of the first assertion
is then completed.

To prove the second assertion, we recall Ledoux’s isoperimetric inequality for
the LSI (see [15]). Define

κ1 = inf
µs(∂A)
µ(A)

, κ2 = inf
µs(∂A)

µ(A)
√
− log µ(A)

,

where A runs over all open smooth connected domains with µ(A) 6 1/2, and
µs(∂A) denotes the area of ∂A induced by µ.

Theorem 2.1. (Ledoux) Assume that Ric-HessV is bounded below. Then
there exist c1, c2 > 0 such that

κ2
1

4
6 λ1 6 c1(κ2

1 + κ1),
κ2

2

c2
6 α 6 c2(κ2

2 + κ2),

where λ1 denotes the spectral gap of L.

We remark that the above result was proved by Ledoux ([15]) for compact
manifolds with an argument also valid for our present case. Actually, the key point
of his proof is the gradient estimate

‖∇Ptf‖∞ 6
c(t0)√

t
‖f‖∞, t ∈ (0, t0).

This estimate remains true whenever Ric-HessV is bounded below (see e.g. [18]
for detailed estimates).



Logarithmic Sobolev inequalities 187

Corollary 2.2. Under the assumption of Theorem 2.1, we have:
(i) If λ1 > 0, then there exist c1, c2 > 0 such that µ(ρ > r) 6 c1e−c2r, r > 0.

(ii) If α > 0, then there exist c1, c2 > 0 such that µ(ρ > r) 6 c1e−c2r2
, r > 0.

In particular, for one-dimensional case, we may assume that M = R or
[0,∞). Define F (r) = min{µ(r,∞), 1− µ(r,∞)}. We then have:

(iii) λ1 > 0 if and only if there exists c > 0 such that eV > cF.
(iv) α > 0 if and only if there exists c > 0 such that eV > cF

√
− log F .

Proof. We only prove (ii) and (iv) since the proofs of (i) and (iii) are similar.
By Theorem 2.1, α > 0 implies κ2 > 0. Let f(r) = µ(ρ > r), then µs(Sr) = −f ′(r).
Choose r0 > 0 such that f(r0) = 1/2, we have

−f ′(r)
f(r)

√
− log f(r)

> κ2 > 0, r > r0.

This proves (ii) immediately.
Next, for the one-dimensional case, assume that eV > cF

√
− log F for some

c > 0. Let A = (a, b) ⊂ M with µ(A) 6 1/2. Take r− < r+ be such that
µ(r−, r+) > 1

2 . If a or b is in (r−, r+), then µs(∂A) > inf
(r−,r+)

Z−1eV := c1 > 0. But

µ(a)
√
− log µ(A) 6 sup

(0,1/2)

r
√
− log r = 1/

√
2e.

We obtain
µs(∂A)

µ(A)
√
− log µ(A)

> c1

√
2e > 0.

On the other hand, if a, b /∈ (r−, r+), without loss of generality, assume that
a, b > r+ (noting that µ(r−, r+) > 1/2 > µ(A)). We have µ(A) 6 F (a) and
µ(A)

√
− log µ(A) 6 F (a)

√
− log F (a) since the function r

√
− log r is increasing

in (0, 1/2). Then by (iv),

µs(∂A)
µ(A)

√
− log µ(A)

>
eV (a)

ZF (a)
√
− log F (a)

>
c

Z
> 0.

Therefore, κ2 > 0 and equivalently, the LSI holds. Finally, the necessity follows
directly from Theorem 2.1 since µs(∂A) = Z−1eV (r) for A = (r,∞) or for (when
M = R) A = (−∞, r).

We now turn to prove the second assertion of Theorem 1.1 by constructing
some proper counterexamples. For simplicity, we consider the case when M =
[0,∞) (the full line case is similar). By Corollary 2.2, for any K > 0 and c ∈
(0, 1

4K), it suffices to construct V ∈ C2[0,∞) such that V ′′ 6 K,

(2.3)

∞∫
0

eV (r)+cr2
dr < ∞,

and

(2.4) lim
r→∞

inf
r′>r

eV (r′)

µ(r′,∞)
√
− log µ(r′,∞)

= 0.
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For any ε > 0, choose nonnegative h ∈ C∞[0, 2] such that h(0) = h(2) = 1,
h(1) = 0, |h(r)− |1− r| | 6 ε, |h′| 6 1 + ε, h′(r) 6 0 for r ∈ [0, 1] and h′(r) > 0 for
r ∈ [1, 2]. Let c(ε) = ‖h′′‖∞. Next, for m � σ � 1, define

g(r) =


1, if r /∈

∞⋃
n=2

(mn, (2 + σ)mn);

h( r−mn

σmn )(1−m1−n) + m1−n, if r ∈ (mn, (1 + σ)mn);
h( r−σmn

mn )(1−m1−n) + m1−n, if r ∈ [(1 + σ)mn, (2 + σ)mn), n > 2.

Then g ∈ C∞[0,∞) and lim
r→∞

inf
r′>r

g(r′) = 0.

Let β > 0 to be determined, and define V and F by
∞∫

r

eV = F (r) = exp
[
− β

( r∫
0

g

)2]
, r > 0.

Then
eV

F (r)
√
− log F (r)

= 2
d
dr

√
− log F (r) = 2

√
βg(r)

and hence (2.4) holds.

We now estimate V ′′. It is easy to see that V = log[2βg(
r∫
0

g)F (r)] and we

then obtain

V ′ =
g′

g
+

g
r∫
0

g

− 2βg

r∫
0

g, V ′′ =
g′′

g
+

g′

r∫
0

g

− g′
2

g2
− g2

(
r∫
0

g)2
− 2βg′

r∫
0

g − 2βg2.

Then V ′′ 6 −2β < 0 outside of
⋃

n>2

(mn, (2 + σ)mn). For r ∈ (mn, (2 + σ)mn),

we have g > m1−n,
r∫
0

g > mn − (2 + σ)mn−1, |g′′| 6 c(ε)
m2n , − 1+ε

σmn 6 g′ 6 0

on [mn, (1 + σ)mn], 0 6 g′ 6 1+ε
mn on [(1 + σ)mn, (2 + σ)mn] and

(1+σ)mn∫
0

g 6

(1 + σ
2 + σε + σm1−n)mn. Then

V ′′ 6
c(ε)

mn+1
+

1 + ε

m2n(1− 2+σ
m )

+
β(1 + ε)(2 + σ + 2εσ + 2σm1−n)

σ
.

Therefore, we have V ′′ 6 K choosing β (recall that n > 2) to be

(2.5) β =
σ

(1 + ε)(2 + σ + 2εσ + 2σm−1)

[
K − c(ε)

m3
− 1 + ε

m4(1− 2+σ
m )

]
.

We remark that

(2.6) lim
ε→0

lim
σ→∞

lim
m→∞

β = K.
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Finally, it remains to show (2.3). To this end, it suffices to prove

(2.7) β inf
r>0

( r∫
0

g
)2

r2
> c

for some ε, m, σ. For r ∈ (mn, (1 + σ)mn), we have

1
r

r∫
0

g >
1
r

(
mn − (1 + 2σ)mn−1 +

r∫
mn

(
1− s−mn

σmn

)
ds

)
− ε.

Noting that the right hand side is decreasing in r, we obtain

(2.8)

1
r

r∫
0

g >
1

(1 + σ)mn

(
mn

(
1− 1 + 2σ

m

)
+

(1+σ)mn∫
mn

(
1− s−mn

σmn

)
ds

)
− ε

=
1

1 + σ

(
1− 1 + 2σ

m
+

σ

2

)
− ε := c(m,σ, ε).

On the other hand, for r ∈ [(1 + σ)mn, (2 + σ)mn), it follows that

(2.9)
1
r

r∫
0

g >
1

(2 + σ)mn

(1+σ)mn∫
0

g >
1 + σ

2 + σ
c(m,σ, ε).

Now, for any r > m2, let s(r) = sup{s 6 r : s ∈ (mn, (2+σ)mn) for some n >
2}. Then

1
r

r∫
0

g =
r − s(r) +

s(r)∫
0

g

r
>

1
s(r)

s(r)∫
0

g.

By combining this with (2.8) and (2.9), we obtain

β inf
r>0

(
r∫
0

g)2

r2
>

β(1 + σ)2

(2 + σ)2
[
c(m,σ, ε)+

]2
which goes to 1

4K by first letting m → ∞, then σ → ∞ and finally ε → 0.
Therefore, there exists ε > 0 and m � σ � 1 such that (2.7) holds. The proof is
then completed.

By an argument as in [7], we have the following consequence.
Corollary 2.3. Assume that o is a pole and the sectional curvatures of M

are nonpositive. The condition (1.5) in Theorem 1.1 can be replaced by
(1.5)′ µ

(
exp[(ε− lim inf

ρ→∞
k/2)ρ2]

)
< ∞.

Proof. According to [7], under the assumption there exists W ∈ C2(M) such
that ‖V −W‖∞ < ∞ and

Ric-HessW > lim inf
ρ→∞

k − ε

2
:= −KW .

By (1.5′) and Theorem 1.1, the LSI holds for W and hence it also holds (with a
different constant) for V .
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3. DIFFERENTIAL CONDITIONS: PROOFS OF THEOREMS 1.2 AND 1.3

We first prove some lemmas.

Lemma 3.1. If either the Ricci curvature is bounded below by −K 6 0 and
lim

r→∞
inf
ρ>r

Hess−V > 0 or lim
r→∞

inf
ρ>r

k > 0, then for any r > 1, there exist c1, c2, λ > 0

such that

Pt|P1f |r(x) 6 Pt+1|f |r(y) exp
[
c1 + c2 exp[−λt]ρ(x, y)2

]
holds for all t > 0, f ∈ Cb(M) and x, y ∈ M .

Proof. Choose λ > 0 such that

(3.1) max
{

lim
r→∞

inf
ρ>r

k, lim
r→∞

inf
ρ>r

Hess−V

}
> 2λ.

For any x, y ∈ M , let (xt, yt) be the coupling by parallel displacement with x0 = x
and y0 = y, see [18] for the construction of this coupling (see also [13] for the
original argument). Then (see [18]) the martingale part of ρ(xt, yt) disappears
and the remainder is the same as that for the coupling by reflection constructed
in [14] and [8]. Therefore (see e.g. [6] and [17]),

(3.2) dρ(xt, yt) 6

{
2
√

K(d− 1) +

ρ(xt,yt)∫
0

HessV (Us, Us) ds

}
dt

and

(3.3) dρ(xt, yt) 6 −
{ ρ(xt,yt)∫

0

(Ric-HessV )(Us, Us) ds

}
dt,

where Us|[0, ρ(xt, yt)] is the unit tangent vector field along a minimal geodesic from
xt to yt with length ρ(xt, yt). We note that the above formulae remain true even
when xt is in the cut locus of yt, see e.g. [6] and [17]. Therefore, by combining
(3.1) with (3.2) and (3.3), we obtain

(3.4) dρ(xt, yt) 6 [c− λρ(xt, yt)] dt

for some c > 0. This implies

(3.5) ρ(xt, yt) 6
c

λ
+ ρ(x, y) exp[−λt].

On the other hand, by (2.1), there exists c(r) > 0 such that

|P1f |r(xt) 6 P1|f |r(yt) exp
[
c(r)ρ(xt, yt)2

]
.

By this and (3.5) we obtain

Pt|P1f |r(x) = E|P1f |r(xt)

6 EP1|f |r(yt) exp
[
c(r)(c/λ + exp[−λt]ρ(x, y))2

]
6 Pt+1|f |r(y) exp

[
c1 + c2 exp[−λt]ρ(x, y)2

]
for some c1, c2 > 0.



Logarithmic Sobolev inequalities 191

Lemma 3.2 If (1.6) holds, then there exists ε > 0 such that (1.2) holds.

Proof. Under the polar coordinates at o ∈ M , we have x = (r, ξ) ∈ [0,∞)×
Sd−1, where r = ρ(x) and d is the dimension of M . Let g(r, ξ) be such that
dx = g(r, ξ) dξ dr. Then

(3.6) ∆ρ(x) =
∂

∂r
log g(r, ξ)|r=ρ(x), x /∈ cut(o).

If (1.6) holds, then there exist r0 > 1 and σ > 0 such that k(x) > σ for ρ(x) > r0.
For any x /∈ cut(o) with ρ(x) > r0, let l(·) : [0, ρ] → M be the minimal geodesic
from o to x. Define Ts = dl(s)

ds and let {Ui}d−1
i=1 be Jacobi fields along l such that

Ui(0) = 0 and {Ui(ρ), Tρ : 1 6 i 6 d − 1} is an orthonormal basis of TxM . We
then have

∆ρ =
d−1∑
i=1

ρ∫
0

(
|∇T Ui|2 − 〈R(Ui, T )T,Ui〉

)
,

where R denotes the curvature tensor and the integral is taken along l. Choose
f ∈ C∞[0,∞) such that 1 > f > 0, f(0) = 0, f(r) = 1 for r > r0 and |f ′| 6 1. Let
{Wi}d−1

i=1 be parallel vector fields along l such that Ui(ρ) = Wi(ρ). By the index
lemma, we have

∆ρ 6
d−1∑
i=1

ρ∫
0

(
|∇T (fWi)|2−〈R(fWi, T )T, fWi〉

)
= (d−1)

ρ∫
0

(f ′)2−
ρ∫

0

f2Ric(T, T ).

Noting that

〈∇V,∇ρ〉 =

ρ∫
0

d
ds

(f2〈∇V, T 〉) =

ρ∫
0

(f2)′(TV ) +

ρ∫
0

f2HessV (T, T ),

we obtain

Lρ 6 (d− 1)

ρ∫
0

(f ′)2 −
ρ∫

0

f2(Ric-HessV )(T, T ) +

ρ∫
0

(f2)′(TV )

6 (d− 1)r0 + 2r0 sup
B(o,r0)

|∇V | − σ(ρ− r0) := c− σρ.

Combining this with (3.6), we obtain

∂

∂r

[
log g(r, ξ) + V (r, ξ)

]
6 c− σr, r > r0.

This then implies that
g(r, ξ)eV (r,ξ) 6 c1ecr−σr2/2

for some c1 > 0 and all r > 0. Therefore,

µ(eερ2
) 6 Z−1c1

∫
Sd−1

dξ

∞∫
0

exp[cr − (σ/2− ε)r2] dr < ∞, ε <
σ

2
.
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Proof of Theorem 1.2. For any f > 0 with µ(f2) = 1 and any p ∈ (2, 4), by
Lemma 3.1 there exist c1, c2, λ > 0 such that

µ((Pt+1f)p) 6
∫

M×M

[Pt+1f(x)]p/2·[Pt+1f
2(y)]p/4 exp[c1 + c2e−λtρ(x, y)2]µ(dx)µ(dy)

6 c(4−p)/4

( ∫
(Pt+1f(x))2Pt+1f

2(y)µ(dx)µ(dy)
)p/4

6 c(4−p)/p,

where

c =
∫

exp
[ 4
4− p

(c1 + c2e−λtρ(x, y)2)
]
µ(dx)µ(dy).

By Lemma 3.2, c < ∞ and hence ‖Pt+1‖2→p < ∞ for big t > 0.

Lemma 3.3. Assume that Ric > −K for some K > 0. Let |B(x, r)| be the
Riemannian volume of the geodesic ball B(x, r). We have

|B(x, r1)|
|B(x, r2)|

6
rd
1

rd
2

exp
[√

K(d− 1)(r1 − r2)
]
, r1 > r2 > 0.

Proof. Fix x ∈ M and consider the polar coordinates at x. For any r > 0,
let Qr = {ξ ∈ Sd−1 : ρ(x, expx[rξ]) = r, (r, ξ) := exp[rξ] /∈ ∂M ∪ cut(x)}. Then
Qr is decreasing in r (recall that M is convex). By [5], proof of Proposition 4.1,
|B(x,r)|
|B(r)| is decreasing in r, where

|B(r)| = |Sd−1|
r∫

0

sinhd−1
(√

K/(d− 1)s
)

ds

which is the volume of a geodesic ball with radius r in the d-dimensional space
form with constant sectional curvature −K/(d−1). The proof is then completed.

Proof of Theorem 1.3. If lim
r→∞

sup
ρ>r

HessV < 0, we have V 6 c− σρ2 for some

c, σ > 0. Since the Ricci curvature is bounded below, by the volume comparison
theorem we have µ(eερ2

) < ∞ for ε < σ. Then the proof of the LSI is similar to
that of Theorem 1.2.

On the other hand, if lim
r→∞

inf
ρ>r

HessV > 0, then for any ε > 0, there exists

c > 0 such that V > −c − ε
2ρ2. Next, by Lemma 3.3 with r1 = ρ(x) + 1 and

r2 = 1/2, we obtain |B(x, 1/2)| > c1 exp[−c2ρ(x)] for some c1, c2 > 0 and all
x ∈ M . Choose {xn} ⊂ M such that ρ(xn) = n. We have

µ(eερ2
) >

∫
exp[−c + ερ2/2] dx >

∑
n

exp[−c + ε(n− 1)2/2]|B(xn, 1/2)| = ∞.

This means that there is no ε > 0 such that (1.2) holds, hence the LSI does not
hold.
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4. LSI DEDUCED FROM SOBOLEV INEQUALITIES:

PROOFS OF THEOREMS 1.4 AND 1.5

Lemma 4.1. Let Vi ∈ C2(M) and denote by P
(i)
t the semigroup of Li =

∆ +∇Vi (i = 1, 2). If ‖∇(V1 − V2)‖∞ := B < ∞, then for any f ∈ Cb(M) and
r > 1,

|P (2)
t f |r 6 (P (1)

t |f |r) exp
[
B2rt/4(r − 1)

]
.

Proof. For positive f ∈ Cb(M), let φ(s) = log P
(1)
s (P (2)

t−sf)r, s ∈ [0, t]. We
have

φ′(s) =
1

P
(1)
s (P (2)

t−sf)r

{
P (1)

s L1(P
(2)
t−sf)r − rP (1)

s (P (2)
t−sf)r−1L2P

(2)
t−sf

}
=

r

P
(1)
s (P (2)

t−sf)r
P (1)

s (P (2)
t−sf)r

{
(r − 1)|∇ log P

(2)
t−sf |2

+ 〈∇(V1 − V2),∇ log P
(2)
t−sf〉

}
> − rB2

4(r − 1)
.

The proof is now completed by taking integral over s from 0 to t.

Proof of Theorem 1.4. We first assume that V is smooth with Z = 1. If (1.7)
holds, then (see e.g. [3], Section 4)

(4.1)
∫

g2 log g2 dν 6
v

2
log

(
c1

∫
|∇g|2 dν + c2

)
,

∫
g2 dν = 1.

For any f ∈ C∞
0 (M) with µ(f2) = 1. By (4.1) with g = fe(V−W )/2, we obtain

(4.2)

∫
f2 log f2 dµ 6

∫
(W − V )f2 dµ +

v

2
log

(
c2 + c1

∫
|∇(fe(V−W )/2)|2 dν

)
6 c(λ, ε) +

2λ

1 + ε

∫
|∇(fe(V−W )/2)|2 dν +

∫
(W − V )f2 dµ

for some c(λ, ε) > 0. By Green’s formula and (1.8), we have (assuming that f
satisfies the Neumann boundary condition if ∂M 6= ∅)∫

〈∇f2,∇eV 〉dx = −
∫

eV ∆f2 dx = −
∫

f2∆eV dx.

We then have∫
|∇(fe(V−W )/2)|2 dν 6 2

∫
|∇(feV/2)|2 dx + 2

∫
f2eV |∇e−W/2|2 dν

= 2µ(|∇f |2) +
1
2

∫
f2(|∇V |2 + |∇W |2) dµ +

∫
〈∇f2,∇eV 〉dx

6 2µ(|∇f |2) +
1
2
µ
(
f2[|∇V |2 + |∇W |2 − 2η]

)
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by (1.8). By combining this with (4.2) and using the inequality a · b 6 a log a + eb

for a > 0, b ∈ R, we obtain, for some c(λ, ε) > 0,

(4.3)
µ(f2 log f2) 6

4λ

1 + ε
µ(|∇f |2) + c(λ, ε) +

1
1 + ε

µ(f2 log f2)

+
∫

exp
[
λ(|∇W |2 + |∇V |2 − 2η) + (1 + ε)(W − V )] dµ.

This implies the defective LSI by (1.9) and hence the LSI holds by Aida’s assertion
(see [1]).

For locally Lipschitz continuous V , by Green-Wu approximation theorem
([11], Proposition 2.3), we may take V ′ ∈ C∞(M) such that |V −V ′| < 1, |∇V ′| 6
|∇V |+ 1 and ∆eV ′

> eV (η − 1). Applying (4.3) to V ′, we see that the LSI holds
for V ′ and hence also holds for V .

Proof of Theorem 1.5. By Green-Wu’s approximation theorem ([11], Propo-
sition 2.1), there exists ρ ∈ C∞(M) such that |ρ − ρ| < 1 and |∇ρ| < 2. For
c >

√
K(d− 1), let dη = ecρ dx. Then it suffices to prove (1.7) for η. Let P

(1)
t be

the semigroup of ∆ + c∇ρ. By [9], Corollary 2.4.3, (1.7) for η is equivalent to the
upper bound of P

(1)
t

(4.4) (P (1)
t f)2 6 c3t

−v/2, t ∈ (0, 1], η(f2) = 1.

Let P
(2)
t be the semigroup of ∆ and denote r = 21/3. By Lemma 4.1 and

applying (2.1) to P
(2)
t , we obtain for t ∈ (0, 1] and f > 0 with η(f2) = 1,

[P (1)
t f(x)]2 6 c4[P

(2)
t fr(x)]r

2
6 c4[P

(2)
t fr2

(y)]rec5ρ(x,y)2/t

6 c6P
(1)
t f2(y)ec5ρ(x,y)2/t, x, y ∈ M.

Then

c6 = c6

∫
P

(1)
t f2(y)η(dy) > [P (1)

t f(x)]2
∫

e−c5ρ(x,y)2/tη(dy)

> [P (1)
t f(x)]2η

(
B

(
x,
√

t
))

e−c5 , x ∈ M.

From this we see that (4.4) follows from the volume lower bound

(4.5) η(B(x, r)) > c7r
v, r ∈ [0, 1], x ∈ M.

By Lemma 3.3, we have

|B(o, 1)|
|B(x, r)|

6
|B(x, ρ(x) + 1)|

|B(x, r)|
6

(ρ(x) + 1)d

rd
exp

[√
K(d− 1)(ρ(x) + 1)

]
, r ∈ [0, 1].

Noting that ρ > ρ− 1, we obtain

η(B(x, r)) > ec(ρ(x)−2)|B(x, r)| > c7r
d

for some c7 > 0 and all r ∈ [0, 1]. Therefore, (4.5) holds for v > d.
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5. A MORE GENERAL SETTING

The main aim of this section is to apply the argument in the proof of Theorem 1.4
to a more general setting. Let M be a separable Hausdorff space and denote by
B(M) its Borel σ-field. Let Pt be a diffusion semigroup which is symmetric w.r.t.
a σ-finite measure µ. Let L be the corresponding generator with domain D(L).
As usual, we write Γ(f, g) = 1

2 [L(fg) − fLg − gLf ]. By “diffusion property” we
mean that

Lh(f1, . . . , fn) =
n∑

i=1

(∂ih)Lfi +
1
2

n∑
i,j=1

(∂i∂jh)Γ(fi, fj)

holds for any n > 1, h ∈ C∞
0 (Rn) and fi ∈ D(L), (i = 1, . . . , n). Assume that A

is a subspace of D(L) which is dense in Lp(µ) for any p > 1 such that

(5.1) µ(Γ(f, g)) = −µ(fLg), g, f ∈ A.

Assume further that the following defective LSI holds:

(5.2) µ(f2 log f2) 6 c1µ(Γ(f, f)) + c2, µ(f2) = 1, f ∈ A.

As was shown by Aida ([1]), (5.2) is equivalent to the LSI when µ is a probability
measure and there exists t > 0 such that

inf{µ(1BPt1A) : A,B ∈ B(M), µ(A), µ(B) > ε} > 0

for any ε > 0.
Next, let F be such that µ(Γ(f2, eF )) = −µ(f2LeF ) for all f ∈ A, and

A is dense in Lp(dν) for all p > 1, where dν = e2F dµ. Then the proof of [1],
Lemma 4.1 implies that the defective LSI (5.2) holds for ν if there exists ε > 0
such that

(5.3) µ
(
ec1(1+ε)Γ(F,F ) + e−(2+ε)F

)
< ∞.

Below we present an alternative to the condition (5.3).

Theorem 5.1. Let µ, F and ν be as above. The defective LSI holds for ν if
there exists ε > 0 such that

(5.4) µ
(
exp[−2εF − (1 + ε)c1(Γ(F, F ) + LF )]

)
< ∞.

Proof. Let f ∈ A be such that ν(f2) = 1. By (5.2) with f replaced by feF ,
we obtain

(5.5) ν(f2 log f2) 6 c1µ(Γ(feF , feF )) + c2 − 2ν(Ff2).

Noting that (by the diffusion property and the assumption of F )

Γ(feF , feF ) = f2e2F Γ(F, F ) + e2F Γ(f, f) +
1
2
Γ(f2, e2F ),

µ(Γ(f2, e2F )) = −µ(f2Le2F ) = −2ν(f2LF )− 4ν(f2Γ(F, F )),

the remainder of the proof is then similar to that of Theorem 1.4.
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Obviously, (5.3) does not recover (5.4). For instance, let M = Rd and dµ =
π−d/2e−x2

dx. We have L = ∆−∇x2 and c1 = 1, c2 = 0. Next, let F (x) = rx2 for
r ∈ R. Then for any r there exists ε > 0 such that (5.4) holds, but (5.3) holds for
some ε > 0 if and only if r ∈ (− 1

2 , 1
2 ).
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Notes in Math. 1581(1994), 1–114.

4. D. Bakry, M. Ledoux, Z. Qian, Logarithmic Sobolev inequalities, Poincaré in-
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