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ABSTRACT. We show that the matricial norms of a non-unital operator al-
gebra determine those of the algebra obtained by adjoining a unit to it. As
applications, we classify two-dimensional unital operator algebras and show
that the algebra of bounded holomorphic functions on a strongly pseudocon-
vex domain has a contractive representation that is not completely contrac-
tive.
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1. INTRODUCTION

A (concrete) operator algebra on a Hilbert space H is a closed subalgebra of the
algebra B(H) of bounded operators on H. An operator algebra A on H is called
unital iff idyy € A. If A is an operator algebra on H, then the algebra M, (A)
of n X n-matrices with entries in .4 is an operator algebra on the Hilbert space
C™ ® H. The C*-norms on B(C™ @ H) therefore yield canonical norms || - ||, on
M, (A) for all n € N. We write Ball(M,,(A)) for the open unit ball of M, (A).

Two operator algebras A, B are called completely isometric iff there is an
algebra isomorphism ¢ : A — B such that the induced maps ¢,, : M,(A) — M, (B)
are isometric for all n € N.

A linear map ¢ : A — B is called completely contractive iff @, is contractive
for all n € N; a complete quotient map iff p,, is a quotient map for all n € N;
and completely isometric iff o, is isometric for all n € N. Finally, we define
lelln == |l@nll for n € N and ||¢||oo := sup ||¢||n. See [6] for this terminology.
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Let A C B(H) be a closed subalgebra with idy, ¢ A. Consider the corre-
sponding unital operator algebra

AT = {z+ X idy |z € A\ € C} C B(H).

We show that if ¢ : A — B is a complete isometry, then the unital extension
ot : AT — BT is also a complete isometry. That is, the norms on M, (A") do
not depend on the choice of a completely isometric representation of A. Moreover,
if o : A — B is completely contractive or a complete quotient map, then so is
et AT — BT,

The uniqueness of the matricial norms on A" has already been noticed by
Poon and Ruan ([8]) in the special case of operator algebras with a contractive ap-
proximate identity. However, this special case is quite restrictive and does not cover
the applications in Section 4 below. There we deal mainly with finite dimensional
operator algebras. It is easy to verify that a finite dimensional operator algebra
with a contractive approximate identity is automatically unital with ||1]| < 1.

The reason for the uniqueness of the matricial norms on A* is that the
domains ®(n) := Ball(M,,) have a large group of automorphisms. Certain auto-
morphisms of D(n) operate also on Ball(B3) for any unital operator algebra B. We
show that we get all of Ball(A™1) by applying these automorphisms to elements of
Ball(A). To make the computations more transparent, we define the positive cone
Cone(B) of a unital operator algebra B C B(H) to be the set of all € B for which
Rex := (z 4+ x*)/2 is positive and invertible. We show that functional calculus
with the rational function C(z) := (1 — z)/(1 + z) gives rise to a bijection between
Ball(B) and Cone(B5).

The last section contains several applications. Let A be a commutative, unital
operator algebra. Then a d — 1-contractive unital representation A — My is nec-
essarily completely contractive. In particular, a contractive unital representation
A — My is completely contractive. This generalizes a result of Agler ([1]).

If A is a 2-dimensional unital operator algebra, then A has a completely
isometric representation A — M.

Another simple case is B = I+ with Z-Z = 0. Then B is called a unital
zero algebra. These algebras occur as quotients of less trivial operator algebras
as follows. Let A be a commutative, unital operator algebra, Z C A a maximal
ideal, and J C A an ideal with Z-Z € J C Z. Then A/J is algebraically
isomorphic to (Z/J)*. It is shown in [2] that quotients of unital operator algebras
with the obvious matricial norms are again completely isometric to unital operator
algebras. Thus A/J = (Z/J)" completely isometrically, that is, .A/7 is a unital
zero algebra. We compute Z/.J in some cases where A = H°(M) is the algebra of
bounded holomorphic functions on a domain M C CF. If Z/J has a contractive,
not completely contractive representation, then this carries over to H>°(M). Using
this we reprove and extend a result of Paulsen ([7]): The operator algebra H> (M)
has a contractive, not completely contractive representation if M is an absolutely
convex domain with dim M > 5. Furthermore, such a representation exists if M
is a strongly pseudoconvex domain with dim M > 2.
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2. THE POSITIVE CONE OF A UNITAL OPERATOR ALGEBRA

Evidently, the rational function C(z) := (1 —z)/(1+ z) maps the domain C\ {—1}
into itself and satisfies CoC =id on C\ {—1}. Let

D :=Ball(B(H)) :={X € B(H) | | X]| < 1};
D, := Cone(B(H)) := {X € B(H) | Re X positive and invertible}.

LEMMA 2.1. If X € ® then the spectrum of X is contained in the open disk
{ze€C||z| < 1}. If X € D, then the spectrum of X is contained in the right half
plane {z € C| Rez > 0}. Consequently, C(X) is well-defined for X e DU D .

X — C(X) is a bijection ® — D4 with inverse C.

Proof. 1t is well-known that the spectrum of X € ® is contained in the open
unit ball. If Rez < 0, X € ©4, then X — 2z € ©, as well. Hence if we show that
all X € ©, are invertible, it follows that X — z is invertible for all X € ®, and
Rez < 0. That is, the spectrum of X is contained in the right half plane. To
invert X € ©_, first conjugate X by the invertible operator (Re X)~'/2 to reduce
to the case Re X = 1. Then X =1+ iS with S self-adjoint. Such an operator is
evidently invertible.

It remains to prove C(®) C ©4 and C(D1) C D. The computation

ReC(X) = %(1 + X)) -X)A+ X+ 1+ X)) - X))+ X))t
=1+X)M1-XxX)(1+x%)t

shows that ReC(X) is positive and invertible for X € ©. That is, C(D) C D.
Similarly,

1= CXC(X) = 4(1 + X) " Re(X)(1 + X*) !
is positive and invertible for X € ©,, so that C(D4) CD. 1

THEOREM 2.2. Let A be a unital operator algebra, let n € N, and let X €

M, (A). The following assertions are equivalent:
(i) X = C(Y) for some Y € Ball(M,,(A));
i

(ii) 1+ X is invertible in M, (A) and ||C(X)] < 1;
(ill) pn(X) € D4 for all n-contractive unital representations p : A — B(H);
(iv) pn(X) € D4 for at least one n-isometric unital representation p : A —

B(H).

DEFINITION 2.3. The set of elements satisfying one of these equivalent con-
ditions is called the (positive) cone Cone(M,,(A)) of M, (A).

Proof. Replacing A by M, (A), if necessary, reduce to the case n = 1, that
is, X € A. Since A is complete, all elements of 1 + Ball(.A) are invertible in .4, so
that C(Y") is defined and lies in A for all Y € Ball(A). Thus the equivalence of (i)
and (ii) follows easily from C o C = id. If p is a unital contractive representation
and X = C(Y) with Y € Ball(A), then p(X) = C(p(Y)) € D4 by Lemma 2.1.
Hence (i) implies (iii). (iii) trivially implies (iv). It remains to show that (iv)
implies (ii).

Let p : A — B(H) be any isometric unital representation. Suppose that
p(X) € ©4. We will show below that 1 + X is invertible in 4. Taking this for
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granted, we get that C(X) is a well-defined element of .A. Furthermore, p(C(X)) =
C(p(X)) € ® by Lemma 2.1. Since p is isometric, [|C(X)|| < 1 as desired.

It remains to show that if p(X) € D4, then 1+ X is invertible in A. By
Lemma 2.1, the spectrum of p(X) is contained in the simply connected domain
{# € C | Rez > 0}. Thus the function z — 1/(1 + z) can be approximated by
polynomials uniformly on the spectrum of p(X). The inverse of 14 p(X) therefore
lies in p(A) because p(A) is closed. Hence 1+ X is invertible in A. 1

Consequently, the matricial norms on a wnital operator algebra A C B(H)
can equally well be described by the collection of sets Cone(M,,(.A)), n € N.

Theorem 2.2 implies that a unital homomorphism ¢ : A — B is n-contractive
iff it maps Cone(M,,.A) into Cone(M,,5).

3. ADJOINING A UNIT TO AN OPERATOR ALGEBRA

If A is a not necessarily unital algebra, let A* be the algebra obtained by adjoining
a unit to A. If p: A — B is a homomorphism of algebras, let p™ : AT — B be
the unital homomorphism extending p.

Let A be a not necessarily unital operator algebra. We show that the norms
on M, (A) can be extended to M,,(A™) in a unique way so as to obtain a unital op-
erator algebra. The proof uses certain natural automorphisms of Cone(M,,(AT)).

The domain @4 (n) := Cone(M,,) is one of the classical symmetric domains.
If S € M, is invertible and T € M, satisfies ReT = 0, then

(3.1) Ggp: X — SXS*"+T

defines a bijection from ®,(n) onto itself. The inverse is ®g-1 7 with T" :=
—S~1T(S71)*. These maps ®g 1 form a subgroup G of the automorphism group
of ©4(n). It operates transitively on D, (n) because any X € D4 (n) is of the
form ®g (1) with S := (Re X)'/2, T :=Tm X.

If B is a unital operator algebra, let ®g ¢ operate on Cone(M,,(B)) by the
same formula (3.1), considering M,, C M, (B) via the inclusion X — X ® 13.
Evidently, ®g r maps Cone(M,,(B)) into itself. Consequently, the map Co®groC
is a bijection Ball(M,(B)) — Ball(M,,(B)).

THEOREM 3.1. Let B be a unital operator algebra and let A C B be a 1-
codimensional ideal. Thus algebraically B = A™T.

Then'Y € Cone(M,,(B)) iff Y = ®g1 o C(X) for some X € Ball(M,,(A))
and some ®g 1 € G. Hence

(3.2) Ball(M,,(B)) = C(Cone(M,,B)) = |_J Co® o C(Ball(M,A)).
deG

As a result, the norm on M, (A) uniquely determines the norm on M, (B).

Proof. Since C maps Ball(M,,(B)) onto Cone(M,(8)) and ®s; maps
Cone(M,,(B)) into itself it is clear that elements of the form ®gr o C(X) are
in Cone(M,,(B)). Conversely, let Y € Cone(M,(B)).

Let m : B — C be the character with kerm = A, (1) = 1. It is well-known
that characters are completely contractive. Thus m,(Y) € Cone(M,,) = D (n).



ADJOINING A UNIT TO AN OPERATOR ALGEBRA 285

Since G operates transitively on D4 (n) we have ®g (1) = m,(Y) for some
P51 € G. Put X :=Co®g(Y), then &5 0C(X) =Y as desired. Theorem 2.2
yields X € Ball(M,,(B)). In addition, X € M, (.A) because

Tn(X) =Co®glom,(Y) =Co®gh 0 ®sr(l) =C(1) = 0.

This yields the desired description of Cone(M,(B)). Equation (3.2) and the last
assertion follow immediately. &

COROLLARY 3.2. There are unique matricial norms on AT for which At is
a unital operator algebra with ||1|] < 1 and the injection A — AT is completely
1sometric.

Proof. Uniqueness is dealt with by Theorem 3.1. Existence is easy. Choose a
completely isometric representation p : A — B(H). If it happens that idy € p(A),
replace p by the degenerate representation p @ 0 on H @ C. Thus we may assume
that idy ¢ p(A). Then pt(z + x) := 2 -idy + p(z) for 2 € C, z € A defines a
representation of A1 having the desired properties. 1

If A itself is a unital operator algebra, then A" is completely isometric to
the orthogonal direct sum A @ C because the latter is a unital operator algebra
containing A as a 1-codimensional ideal.

COROLLARY 3.3. Let ¢ : A — B be a homomorphism between operator
algebras and let n € N. ¢ is n-contractive if and only if p* is n-contractive. @ is
n-isometric if and only if ot is n-isometric. ¢ is an n-quotient map if and only
if T is.

Proof. The naturality of the automorphisms ®gr implies ¢} o Pgr =
(I)S,T o QDTJIF

If ¢ is n-contractive, then ¢, maps Ball(M,,(A)) into Ball(M,,(B)). Thus
(¢")n maps Ball(M,(A")) into Ball(M,(B*)) by Theorem 3.1. This means
that ¢ is n-contractive. Conversely, if o is n-contractive, so is ¢ as the re-
striction of T to A. The remaining assertions are proved similarly. &

4. APPLICATIONS

Let A be a unital operator algebra and let Z C A be a 1-codimensional ideal.
Then A = Z+. Thus the study of A can be reduced to the study of Z. In this
section, we give some applications of this idea.

THEOREM 4.1. Let A be a commutative unital operator algebra, d € N. Then
any d — 1-contractive unital homomorphism p : A — My is completely contractive.

Proof. Let B := p(A), let J be a maximal ideal in B, and let Z := p~1(J).
Then A=7Z",B=J%, and p = (p|Z)*. By Corollary 3.3, it suffices to show that
p|Z is completely contractive.

There is a vector x € C?\ {0} that is annihilated by all elements of 7,
because J is a non-unital, commutative subalgebra of M. The same reasoning
yields a vector y € C?\ {0} annihilated by all adjoints T of elements T € J.
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Thus elements of J can be viewed as operators from C% & z to C? © v,
with & denoting the orthogonal complement. This yields a completely isometric
linear representation ¢ : J — My_1. Since op|Z is a d— 1-contractive linear map
to My_1, Theorem 5.1 of [6] yields that ¢ o p|Z is completely contractive. Thus
p|T is completely contractive. 1

In particular, if A is a commutative unital operator algebra, then any con-
tractive unital representation A — My is completely contractive. For certain
representations of function algebras, this was observed by Agler in his proof of
Lempert’s theorem ([1]) and later by Salinas ([9]) and Chu ([3]).

4.1. TWO-DIMENSIONAL UNITAL OPERATOR ALGEBRAS. For ¢ € [0, 1], let

Te= (0 \/1;762>

Clearly, ||T.|| = 1 and T? = ¢T.. Thus the linear span Q. of 1 and T is a unital
subalgebra of M.

THEOREM 4.2. Let A be a two-dimensional unital operator algebra. Then A
is completely isometric to Q. for a unique ¢ € [0,1] and thus has a completely
isometric unital representation by 2 X 2-matrices.

Proof. Let A C B(H) be a 2-dimensional unital operator algebra. A is
necessarily commutative and thus contains a maximal ideal Z. Choose T' € A
with ||T|| = 1. We have T2 = ¢ - T for some ¢ € C. Rescaling T by some constant
of modulus 1, we can achieve ¢ > 0. Actually, ¢ € [0,1] because ¢ = ||cT|| =
I72] < |71 = 1. Let z € My, then le & 7| = llz] - | 71| = [l2l|- | 72]| = llz @ T2 .
Thus the homomorphism ¢ : 7 — My defined by T +— T, is completely isometric.
By Corollary 3.3, it follows that ¢ : A — Q. C My is completely isometric. It
is elementary to verify that c¢ is unique, that is, the algebras Q. are not isometric
for different values of c¢. &

If p: Q. — Qg is a homomorphism, then ||p||sc = ||p||- This peculiarity was
first observed by Holbrook ([4]) and can be established by direct computations
in Mg.

4.2. UNITAL ZERO ALGEBRAS. A unital operator algebra A is called a unital zero
algebra iff it is obtained by adjoining a unit to an algebra with zero multiplication.
A unital operator algebra A is a unital zero algebra iff there is a 1-codimensional
ideal Z C A with Z-Z = 0. The ideal 7 is the only maximal ideal of .4 and thus
uniquely determined. Any unital homomorphism Z+ — J T between unital zero
algebras is of the form p™ for some linear map p: 7 — J.

If V. C B(H) is an operator space, then V endowed with the zero multiplica-
0 =z
0 0
multiplicative representation of V on B(H @& H). More generally, any linear rep-
resentation p : V. — B(H') yields a multiplicative representation V.— B(H' & H’)
and thus a unital, multiplicative representation p: VT — B(H’' @& H’). If V has
badly behaved linear representations, say, contractive representations that are not
completely contractive, then this carries over to VT by Corollary 3.3. We can in-
deed prove the following strengthening of Corollary 3.3 that is only true for unital
zero algebras.

tion is an operator algebra. The map x +— defines a completely isometric
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THEOREM 4.3. Let 'V and W be operator spaces, let p: V — W be a linear
map, and let p™ : VT — W be its unital extension. Then, for all n € NU {oo},

(4.1) lp™ [l = max{L, [|pln}-

Proof. The inequality “>” is trivial. To prove “<”, assume C := ||p||, < o0.
If C < 1, the assertion follows from Theorem 3.1. Thus assume C > 1 and let
p:V — V be the map T +— CT. Then p = popu~topu, and |[popu=t], = 1.
Hence |p* o (u=)F||, < 1, so that it remains to prove ||u* || < C.

Therefore, consider V. C B(H) and represent V¥ C B(H @& H) as above.

Define ,
cl/? 0
S::( 0 01/2> eEBH®H).

Then p™(T) = STS™! for all T € VT because both sides of this equation are
unital maps that coincide on V. Thus ||u]|e < ||S| - [|S7Y]| = C as desired. &

Let M C CF be a domain and let x € M. Let A := H>®(M),
T={fcAlf(x)=0}, T:={feA|f(x)=0, Df(x)=0}

We have written D f for the derivative of f. We call Z/J = T M the cotangent
space of M at x. The axiomatic description of abstract operator spaces and
abstract unital operator algebras in [2] yields that Z/J is an operator space and
that A/J is a unital operator algebra. Theorem 3.1 implies A/J = (Z/J)"
completely isometrically, so that .4/7 is a unital zero algebra.

An element of M,,(Z/J) may be viewed as a linear function T, M — M,,. It
satisfies || f|| < 1iff f is the derivative of a holomorphic function f : M — Ball(M,,)
with f(z) =0.

If M is a balanced domain (that is, \y € M whenever y € M, A € C,
[A| € 1) and = 0, then Z/J can be computed precisely. If M is strongly
pseudoconvex instead, then Z/J can be computed approximately if z approaches
the boundary. In both cases, if the dimension of M is sufficiently big, then Z/J
has a contractive, but not completely contractive representation. Thus H (M)
has a contractive, but not completely contractive representation in the following
cases: If M is balanced and dim M > 5 (this is due to Paulsen ([7])); if M is a
strongly pseudoconvex domain and dim M > 2.

Let M be a balanced domain and let x := 0. Let f : T,M — M, be
a linear map. We view f as a function from M C T, M to M,,. Evidently, if
f(M) C Ball(M,,) then ||f]] < 1. The converse is also true: If f: M — Ball(M,,)

is a holomorphic function with f(0) = 0, Df(0) = f, then f(M) C Ball(M,,). This
follows from the Schwarz inequality applied to the restrictions of f to disks D -y
with y € OM. Hence we get a completely isometric embedding T:M — Cy(M).
Thus T M is completely isometric to MIN(V'), where V' is the normed space whose
unit ball is the polar M C C™ of M. The minimal and maximal operator space
structures MIN(V) and MAX(V') are defined in [7].

Let i : MIN(V) — MAX(V) be the identity map and let o := ||i||. Consider
the homomorphism

0 A— AJT = MIN(V)T — MAX(V)*.
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By Theorem 4.3, ¢ is contractive and ||¢]|c = @ > 1. Hence if M has the desirable
property that all contractive representations of A are completely contractive, then
necessarily & = 1. As Paulsen shows in [7], this fails for most normed spaces V.
It fails if dim V' > 5 or if V is a Hilbert space with dim V" > 2.

This negative result of Paulsen can be extended to strongly pseudoconvex
domains M (with C? boundary) with d = dim M > 2. Close to the boundary,
such a domain looks more and more like the unit ball D, of the Hilbert space ¢2 of
dimension d. This is made more precise by Ma ([5]). Theorem 3.3 and Lemma 3.4
of [5] imply that there are holomorphic maps f : Dy — M and g : M — Dy such
that f(0) =z, g(z) =0, and Dg(x) o Df(0) = (1 — ¢)id with € — 0 for z — OM.
It follows that g o f converges towards the identity map on Dy for £ — M.

Define the distance between two operator spaces by

distoo (V, W) := log(inf{[|p|lec - [[0 |ee | p: V — W invertible}).
It follows that diste (TEM, T{Dy) — 0 for x — OM. We have seen above that
TiDg = MIN(/2). Since MIN(¢2) # MAX(¢2) for d > 2, the operator space
T*M has a contractive representation that is not completely contractive if x is
sufficiently close to OM. Thus H°°(M) has a contractive representation that is
not completely contractive.
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