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Abstract. A general approach to well-behaved unbounded ∗-representations
of a ∗-algebra X is proposed. Let B be a normed ∗-algebra equipped with
a left action . of X on B such that (x . a)+b = a+(x+ . b) for a, b ∈ B and
x ∈ X . Then the pair (X ,B) is called a compatible pair. For any continuous
non-degenerate ∗-representation ρ of B there exists a closed ∗-representation
ρ′ of X such that ρ′(x)ρ(b) = ρ(x . b), where x ∈ X and b ∈ B. The
∗-representations ρ′ are called the well-behaved ∗-representations associated
with the compatible pair (X ,B). A number of examples illustrating this
concept are developed in detail.
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0. INTRODUCTION

Unbounded representations of general ∗-algebras in Hilbert space occur in
various branches of mathematics and mathematical physics such as representa-
tion theory of Lie algebras, algebraic quantum field theory, the theory of quantum
groups and quantum algebras. One of the natural questions is to ask for a descrip-
tion or classification of all ∗-representations of the corresponding ∗-algebra. But
it turns out that this is not a well-posed problem for general ∗-algebras. In order
to explain this, let X be the ∗-algebra C[x, y] of all polynomials in two commuting
hermitean indeterminates x and y or the ∗-algebra A(p, x) of two hermitean gener-
ators p and x satisfying the Heisenberg commutation relation px−xp = −i. In both
cases it seems to be impossible to classify in a reasonable way all ∗-representations
of X even if we assume that the images of the generators x, y respectively p, x are
essentially self-adjoint (see, for instance, [14], Chapter 9, and [13]). The large vari-
ety of such ∗-representations of the ∗-algebra C[x, y] is illustrated by the following
result ([14], Theorem 9.4.1): For any properly infinite von Neumann algebra N on
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a separable Hilbert space there exists a ∗-representation ρ of the polynomial alge-
bra C[x, y] such that the operators ρ(x) and ρ(y) are essentially self-adjoint and
the spectral projections of these operators generate the von Neumann algebra N .

In most situations it suffices to know some class of “nice” ∗-representations of
the ∗-algebra which is characterized by means of additional requirements in order
to exclude pathological behaviour of operators. In what follows we shall call these
∗-representations well-behaved. In earlier papers (see [14], Chapters 9 and 10, and
[15]) we have called them integrable representations because of the commonly used
terminology in representation theory of Lie algebras. For the ∗-algebras C[x, y]
and A(p, x) it is easy to guess how to define well-behaved ∗-representations. A
∗-representation ρ of C[x, y] is called well-behaved if ρ is self-adjoint (see [9] or [14]
for this notion) and if ρ(x) and ρ(y) are essentially self-adjoint operators such that
their spectral projections commute. In the case X = A(p, q) the latter condition
should be replaced by the requirement that P := ρ(p) and X := ρ(x) are self-
adjoint operators satisfying the Weyl relation eitP eisX = eisteisXeitP , s, t ∈ R.

Many papers of the mathematical physics literature dealing with unbounded
∗-representations claim to determine all ∗-representations of the ∗-algebra. How-
ever, a closer look at the proofs shows that often hidden additional assumptions are
used and that only a particular class of well-behaved ∗-representations is investi-
gated. For instance, for ∗-algebras related to the canonical commutation relations
or for q-oscillator algebras it is often required that a vacuum vector exists or that
certain operators have a complete set of eigenvectors.

There is no general method to select the well-behaved ∗-representations of
a given ∗-algebra. Also it is important to stress that the choice of well-behaved
∗-representations may depend on the aim of considerations. The examples de-
veloped in Section 4 show that for the same ∗-algebra there are various natural
candidates for the definition of well-behavedness. The additional conditions select-
ing well-behaved ∗-representations depend, generally speaking, on the underlying
∗-algebra.

In this paper we propose a general approach to the study of well-behaved
∗-representations. The idea is easily explained as follows: Let X be a ∗-algebra
and let B be a normed ∗-algebra equipped with a left action, written x . b, of X
on B satisfying the compatibility condition (x . a)+b = a+(x+ . b) for a, b ∈ B
and x ∈ X . We shall call such a pair (X ,B) compatible. Then, for any continuous
non-degenerate ∗-representation ρ of the normed ∗-algebra B there exists a closed
∗-representation ρ′ of X such that ρ′(x)ρ(b) = ρ(x . b), where x ∈ X and b ∈ B.
The ∗-representations ρ′ of X obtained in this way are called the well-behaved
∗-representations of X associated with the compatible pair (X ,B).

The main purpose of this paper is to develop a number of important examples
and show that they fit into this context. In Section 2 we discuss some compatible
pairs (X ,B) for the polynomial algebra X = C[x1, . . . , xn]. In Section 3 we treat
the G-integrable representations of the enveloping algebra E(g) of the Lie algebra g
of a Lie group G. Here B is the ∗-algebra C∞0 (G) with convolution multiplication.
In Section 4 we study various compatible pairs (X ,B) by using the Weyl calculus
of pseudodifferential operators. Among others, various classes of well-behaved ∗-
representations of the coordinate ∗-algebra X = O(R2

q) of the real quantum plane
are considered in this approach. In Section 5 we consider the quantum group
SUq(1, 1). The paper closes with a short outlook in Section 6.
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Let us collect some definitions and facts on unbounded operator algebras and
unbounded ∗-representations used in what follows. More details can be found in
the monograph [14]; see also [5].

Let D be a dense linear subspace of a Hilbert space H. Then the vector space

L+(D) = {x ∈ EndD : D ⊆ D(x∗), x∗D ⊆ D}

is a unital ∗-algebra with operator product as multiplication and the restriction
x+ := x∗dD of the adjoint operator x∗ to D as involution. The set B(D) of all
bounded operator b on H such that bH ⊆ D and b∗H ⊆ D is obviously a ∗-algebra.
An O∗-algebra on the domain D is a ∗-subalgebra of L+(D) which contains the
identity map of D. By a ∗-representation of an abstract ∗-algebra A (without
unit in general) on a domain D we mean a ∗-homomorphism ρ of A into the
∗-algebra L+(D). The ∗-representation ρ of A is said to be closed if D is the
intersection of all domains D(ρ(a)), a ∈ A, where the bar refers to the closure
of the operator ρ(a). The representation ρ is called non-degenerate if ρ(A)D is
dense in the underlying Hilbert space H. If A is a normed ∗-algebra (that is, A is
equipped with a submultiplicative ∗-invariant norm ‖ · ‖), then a ∗-representation
ρ is called continuous if all operators are ρ(a), a ∈ A, are bounded and there exist
a positive constant C such that ‖ρ(a)‖ 6 C‖a‖ for all a ∈ A, where ‖ρ(a)‖ denotes
the operator norm of ρ(a).

1. COMPATIBLE PAIRS

Let X be a ∗-algebra with unit element 1 and let B be a ∗-algebra (without unit
in general). The involutions of X and B are denoted by x → x+ and b → b+,
respectively. Suppose that the vector space B is a left X -module with left action
denoted by ., that is, there exists a linear mapping φ : X ⊗ B → B, written as
φ(x⊗ b) = x.b, such that (xy).b = x. (y .b) and 1.b = b for x, y ∈ X and b ∈ B.

Proposition 1.1. Suppose that the left action of the ∗-algebra X on the
∗-algebra satisfies the condition

(1.1) (x . a)+b = a+(x+ . b) for all x ∈ X and a, b ∈ B.

Then, for any non-degenerate ∗-representation ρ of the ∗-algebra B there exists a
unique ∗-representation ρ̃ of the ∗-algebra X on the domain D(ρ̃) = ρ(B)D(ρ) such
that

(1.2) ρ̃(x)(ρ(b)ϕ) = ρ(x . b)ϕ, x ∈ X , b ∈ B, ϕ ∈ D(ρ).

Let ρ′ denote the closure of the ∗-representation ρ̃.

Proof. Let ζ =
∑
i

ρ(ai)ϕi and η =
∑
j

ρ(bj)ψj be vectors of the domain D(ρ̃),

where ai, bj ∈ B and ϕi, ψj ∈ D(ρ). Let x ∈ X . Using condition (1.1) and the
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assumption that ρ is a ∗-representation of the ∗-algebra B we compute

(1.3)

〈∑
i

ρ(x . ai)ϕi, η
〉

=
〈∑

i

ρ(x . ai)ϕi,
∑

j

ρ(bj)ψj

〉
=

∑
i,j

〈ϕi, ρ((x . ai)+bj)ψj〉

=
∑
i,j

〈ϕi, ρ(a+
i (x+ . bj))ψj〉 =

〈∑
i

ρ(ai)ϕi,
∑

j

ρ(x+ . bj)ψj

〉
=

〈
ζ,

∑
j

ρ(x+ . bj)ψj

〉
.

First we shall use relation (1.3) in order to show that equation (1.2) defines un-
ambignoulsy a linear operator ρ̃(x) on the domain D(ρ̃). In order to do so, it
suffices to check that ζ ≡

∑
i

ρ(ai)ϕi = 0 implies that
∑
i

ρ(x . ai)ϕi = 0. Indeed,

if ζ = 0, then it follows from (1.2) that
〈 ∑

i

ρ(x . ai)ϕi, η
〉

= 0 for all η ∈ D(ρ̃).

Since ρ is non-degenerate, D(ρ̃) is dense in the underlying Hilbert space and so∑
i

ρ(x . ai)ϕi = 0. Hence the operator ρ̃(x) is well-defined.

From the properties of a left action if follows at once that ρ̃ is an algebra
homomorphism of X into the linear operators acting on the domain D(ρ̃) and
leaving D(ρ̃) invariant. In order to prove that ρ̃ preserves the involution, we
combine equations (1.2) and (1.3) and conclude that 〈ρ̃(x)ζ, η〉 = 〈ζ, ρ̃(x+)η〉 for
all ζ, η ∈ D(ρ̃). Thus, ρ̃ is indeed a ∗-representation of the ∗-algebra X on the
domain D(ρ̃).

Definition 1.2. A compatible pair is a pair (X ,B) of a unital ∗-algebra
X and a normed ∗-algebra B equipped with a left action of X on B satisfying
condition (1.1).

Our guiding example of a compatible pair is the following

Example 1.3. Let X be an O∗-algebra on a dense domain D of a Hilbert
space and let B be a ∗-subalgebra of B(D) such that xb ∈ B for all x ∈ X and x ∈ B.
We equipp the ∗-algebra B with the operator norm. Then there is a left action .
of X on B defined by the operator product, that is, x . b := bx, x ∈ X , b ∈ B. It is
not difficult to show that (xb)+a = b+x+a for a, b ∈ B and x ∈ X . Hence (X ,B) is
a compatible pair. We call such a pair (X ,B) a compatible O∗-pair on the domain
D. In particular, (L+(D),B(D)) is a compatible O∗-pair, because xb ∈ B(D) for
x ∈ L+(D) and b ∈ B(D).

Now let (X ,B) be a compatible pair and let ρ be a continuous ∗-representation
of the normed ∗-algebra B on a Hilbert space H. Then it is clear that ρ̃(X ) is an
O∗-algebra on the domain D = ρ(B)H such that (ρ̃(X ), ρ(B)) is a compatible O∗-
pair on the domain D. That is, any continuous ∗-representation ρ of B gives raise
to a homomorphism of the (abstract) compatible pair (X ,B) to the compatible
O∗-pair (ρ̃(X ), ρ(B)).
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Remark 1.4. Let B(D) be the completion of the normed ∗-algebra
(B(D), ‖ · ‖). Obviously, the closure of the finite rank operators in B(D) is the
∗-algebra C(H) of compact operators on H. Thus C(H) is contained in the C∗-
algebra B(D). We call the quotient C∗-algebra

C∗(D) := B(D)/C(H)

the C∗-algebra associated with the domain D. It carries important information
about the infinite dimensional closed subspaces of H contained in D. As a sample,
we mention the following result which is stated here without proof:

Suppose that D is a commutatively dominated Frechet domain (see [14], p.
108, for the definition). Then the domain D contains an infinite dimensional closed
linear subspace of H if and only if C∗(D) is non-trivial, that is, C∗(D) 6= {0}.

2. WELL-BEHAVED REPRESENTATIONs

OF THE POLYNOMIAL ALGEBRA C[x1, . . . , xn]

In this section X denotes the ∗-algebra C[x1, . . . , xn] of all polynomials with
complex coefficients in n commuting hermitean indeterminates x1, . . . , xn.

Example 2.1. Let M be a closed subset of Rn and let B1 be the ∗-algebra
C0(Rn) of all compactly supported continuous functions on Rn with pointwise
multiplication (fg)(t) = f(t)g(t) and involution f+(t) = f(t). Let ‖f‖ be the
supremum of the function |f(t)| over M . It is obvious that the multiplication

(2.1) (p . f)(t1, . . . , tn) = p(t1, . . . , tn)f(t1, . . . , tn), p ∈ X , f ∈ B1,

defines a left action of X on B1 such that (X ,B1) is a compatible pair.
Now let ρ be a non-degenerate continuous ∗-representation of B1 on a Hilbert

space H. It is well-known that there exists a spectral measure E(λ), λ ∈ Rn, on
H supported in M such that ρ(f) =

∫
f(λ) dE(λ), f ∈ B1. Then

A1 :=
∫
λ1 dE(λ), . . . , An :=

∫
λn dE(λ)

are self-adjoint operators with commuting spectral projections and

ρ′(xj)ρ(f) = ρ(xj . f) =
∫
λjf(λ) dE(λ) =

∫
λj dE(λ)

∫
f(λ) dE(λ) = Ajρ(f)

for j = 1, . . . , n. Conversely, any spectral measure on H with support contained
in M gives a ∗-representation ρ′ as above.

We now specialize to the case where M = Rn. It is obvious that the operator
ρ′(p) is essentially self-adjoint on ρ(B1)H for any p = p+ ∈ X . Therefore, the ∗-
representation ρ′ (which is by definition the closure of its restriction to ρ(B1)H)
is integrable in the sense of [14], Chapter 9 (see Theorem 9.12). Conversely, any
integrable ∗-representation of X = C[x1, . . . , xn] is of this form. Thus, the ∗-
representations ρ′ associated with the compatible pair (X ,B1) for M = Rn are
precisely the integrable ∗-representations of the polynomial algebra C[x1, . . . , xn].
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Example 2.2. Suppose that K is a fixed compact subset Rn. Let B2 = X =
C[x1, . . . , xn] equipped with the supremum norm over the compact set K. With
the left action (2.1) of X on B2, (X ,B) is a compatible pair.

Let ρ be a continuous ∗-representation of B2 on a Hilbert space H. Since
ρ is ‖ · ‖-continuous, ρ extends to a ∗-representation of the C∗-algebra C(K).
Hence there exists a spectral measure E an H supported on the set K such that
ρ(p) =

∫
p(λ) dE(λ) for p ∈ B2. As in the preceding example, we obtain

ρ′(p) =
∫
K

p(λ) dE(λ), p ∈ X .

Thus, the ∗-representations ρ′ of X are precisely those bounded ∗-representation of
C[x1, . . . , xn] for which the joint spectrum of the self-adjoint operators ρ′(x1), . . .
. . . , ρ′(xn) is contained in the set K. Among others, this example shows that the
class of ∗-representations ρ′ essentially depends on the choice of the norm ‖ · ‖.

3. INTEGRABLE REPRESENTATIONS OF ENVELOPING ALGEBRAS

Throughout this example, G is a finite dimensional real Lie group with left Haar
measure µl and Lie algebra g and E(g) is the complex universal enveloping algebra
of g.

The algebra E(g) is a ∗-algebra with involution determined by x+ = −x for
x ∈ g. Let X denote the ∗-algebra E(g). The vector space B = C∞0 (G) is a
∗-algebra with respect to the convolution multiplication

(3.1) (a · b)(g) =
∫
G

a(h)b(h−1g) dµl(h), a, b ∈ C∞0 (G),

and the involution

(3.2) a+(g) = m(g)−1a(g−1), a ∈ C∞0 (G),

where m denotes the modular function of the Lie group G. Since m is a C∞-
function on G (see [18]), a+ is again in C∞0 (G). We equip the ∗-algebra B with
the ∗-invariant submultiplicative norm

‖a‖ =
∫
G

|a(g)|dµl(g).

All these facts are well-known and can be found, for instance, in [7], Section 28.
The completion of (B, ‖ · ‖) is nothing but the Banach ∗-algebra L1(G).

Now we define the left action of X on B. Let x→ ex denote the exponential
map of g into G. Each element x of E(g) acts as a right-invariant differential
operator x̃ of G. For x ∈ g, the operator x̃ is given by

(3.3) (x̃a)(g) :=
d
dt

∣∣
t=0

a(e−txg), a ∈ C∞0 (G).

Using the formulas (3.1) and (3.3) and the left invariance of the measure µ one
easily verifies that

(3.4) x̃(a · b) = (x̃a) · b, a, b ∈ C∞0 (G),
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for x ∈ g. Since the map x → x̃ of E(g) into the differential operators on G is
an algebra homomorphism, (3.4) is valid for all x ∈ E(g). From the preceding we
conclude at once that

(3.5) x . a := x̃a, a ∈ C∞0 (G), x ∈ E(g),

defines a left action of the ∗-algebra X = E(g) on the ∗-algebra B = C∞0 (G).

Lemma 3.1. (X ,B) is a compatible pair.

Proof. Clearly, it suffices to verify the compatibility condition (1.1) for ele-
ments x of the Lie algebra g. From the analysis on locally compact groups it is
well-known (see [7], p. 376) that there is a right Haar measure µr on G such that

(3.6) dµl(g) = m(g) dµr(g), g ∈ G.
Using formulas (3.1), (3.2), (3.3), (3.5) and (3.6) and

(b+ · (x+ . a))(g) = −
∫
b+(h)(x̃a)(h−1g) dµl(h)

= − d
dt

∣∣∣
t=0

∫
m(h)−1b(h−1)a(e−txh−1g) dµl(h)

= − d
dt

∣∣∣
t=0

∫
b(h−1)a(e−txh−1g) dµr(h)

= − d
dt

∣∣∣
t=0

∫
b(etxk−1)a(k−1g) dµr(ke·tx)

= − d
dt

∣∣∣
t=0

∫
b(etxk−1)a(k−1g) dµr(k)

=
∫

(x̃b)(k−1)a(k−1g) dµr(k)

=
∫
m(k−1(x̃b)(k−1a(k−1g) dµl(k)

=
∫

(x . b)+(k)a(k−1g) dµl(k) = ((x . b)+ · a)(g)

for x ∈ g, a, b ∈ C∞0 (G) and g ∈ G. This proves that condition (1.1) is satisfied.

Next let us look at the corresponding ∗-representations. In order to do so, we
need to recall some facts on representation theory of Lie groups and Lie algebras
which can be found in [14], Chapter 10, or in [18]. Let U be a unitary representation
of the Lie group G on a Hilbert space H, that is, g → U(g) is a homomorphism
of G into the group of unitaries of H such that the map g → U(g)ϕ of G into H
is continuous for each vector ϕ ∈ H. Then there exists a unique ∗-representation
dU of the ∗-algebra E(g) on the domain D∞(U) of C∞-vectors for U . For x ∈ g,
the operator dU(x) acts as

(3.7) dU(x)ϕ =
d
dt

∣∣
t=0

U(etx)ϕ, ϕ ∈ D∞(U).

The linear span DG(U) of vectors

Uaϕ :=
∫
a(g)U(g)ϕ dµl(g), a ∈ C∞0 (G), ϕ ∈ H,
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is contained in the space D∞(U) of C∞-vectors. The vector space DG(U) is called
the G̊arding space of the unitary representation U . It was proved in [1] that the
G̊arding space DG(U) is equal to D∞(U), but we shall not need this deep result
here. For our purposes it is sufficient to know (see [14], Corollary 10.1.16) that the
G̊arding space is a core for all operators dU(x), x∈E(g). This implies that the ∗-
representation dU on the domain D∞(U) is the closure of its restriction to DG(U).

Suppose now that ρ is a non-degenerate ‖ · ‖-continuous ∗-representation of
the ∗-algebra B on the Hilbert space H. Note that all operators ρ(x), x ∈ B,
are bounded and defined on the whole Hilbert space H. Since B is ‖ · ‖-dense
in L1(G) and ρ is ‖ · ‖-continuous, ρ extends by continuity to a non-degenerate
∗-representation, denoted again by ρ, of the Banach ∗-algebra L1(G). It is well-
known ([7], Section 29, Theorem 1) that there exists a unique unitary represen-
taiton U of the Lie group G on the Hilbert space H such that

(3.8) Ua = ρ(a), a ∈ L1(G).

Using formulas (3.7), (3.5) and (3.8), we obtain that

(3.9) ρ′(x)Ua = ρ′(x)ρ(a) = ρ(x . a) = ρ(x̃a) = Ux̃a = dU(x)Ua

for x ∈ E(g) and a ∈ C∞0 (G), where used the relation dU(x)Ua = Ux̃a ([14],
Lemma 10.1.12). Therefore, the ∗-representations ρ′ and dU of X = E(g) coincide
on the G̊arding space. Since ρ′ and dU are both the closures of their restriction
to ρ(B)H = DG(U), we conclude that ρ′ = dU .

Conversely, for any unitary representation U there exists a unique non-
degenerate ∗-representation ρ of L1(G) and so of B = C∞0 (G) such that (3.8)
holds. By the above reasoning, we then have ρ′ = dU .

Summarizing, we have shown that the ∗-representations of the ∗-algebra X
derived from the pair (X ,B) are precisely the G-integrable representations of the
∗-algebra E(g) (in the sense of [14], Chapter 10). That is, the ∗-representations ρ′

are the ∗-representations dU for unitary representations U of the Lie group G.

4. EXAMPLES RELATED TO THE WEYL CALCULUS

The Weyl calculus of pseudodifferential operators on Rn can be used to construct
further examples of compatible pairs. We restrict ourselves to the case n = 1 and
refer to the books [3] and [17] (see also [4]) for the notation and the facts on the
Weyl calculus needed in what follows.

Let P and Q be the self-adjoint operators and let W (s, t) be the unitary
operator on the Hilbert space L2(R) defined by

(Pf)(x) =
1

2πi
f ′(x), (Qf)(x) = xf(x), W (s, t) = e2πi(sQ+tP), s, t ∈ R.

To any measurable function a on R2 such that its Fourier transform

(4.1) â(x, y) =
∫∫

e−2πi(xs+yt)a(s, t) dsdt
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is in L1(R2), the Weyl calculus assigns an operator Op(a) on the Hilbert space
L2(R) by

(4.2) Op(a) =
∫∫

â(s, t)W (s, t) dsdt.

The integral is defined as a Bochner integral because â ∈ L1(R2). The adjoint
operator Op(a)∗ and the operator product Op(a)Op(b) (at least for “nice” symbols
a and b) are given by

(4.3) Op(a)∗ = Op(a+) and Op(a)Op(b) = Op(a#b),

where

(4.4) a+(x, y) := a(x, y),

(4.5)
(a#b)(x1, x2)

:=
∫∫∫∫

a(u1, u2)b(v1, v2)e4πi[(x1−u1)(x2−v2)−(x1−v1)(x2−u2)] du1 du2 dv1 dv2.

Because of the formulas (4.3) it is natural to expect that a vector space B of
sufficiently nice functions becomes a ∗-algebra with involution (4.4) and product
(4.5) provided that a+ ∈ B and a#b ∈ B when a, b ∈ B. An example of such a
∗-algebra is the Schwartz space S(R2). Another example is obtained as follows:
Let A(R2) denote the vector space of all holomorphic functions f on C2 such that
for all sj , cj , dj ∈ R, cj < dj , j = 1, 2, we have

sup

∞∫
−∞

∞∫
−∞

∣∣f(x1+iy1, x2+iy2)
∣∣2es1x1+s2x2 dx1 dx2 <∞,

where the supremum is taken over the set {(y1, y2) ∈ R2 : cj < yj < dj , j =
1, 2}. Then B1 := S(R2) and B2 := A(R2) are both ∗-algebras with product
and involution defined by (4.5) and (4.4), respectively. This was shown in [4],
Proposition 1, for B1 := S(R2) and in [16], Lemma 1.11, for B2 = A(R2).

For a ∈ Bj , j = 1, 2, the operator Op(a) is bounded. From the formulas (4.3)
it follows that the norm ‖ · ‖ on Bj defined by

‖a‖ := ‖Op(a)‖

is a submultiplicative and ∗-invariant. Therefore, B1 and B2 are normed ∗-algebras.
Let X1 be the unital algebra with two generators p and x and defining relation

px− xp = −i · 1.

Clearly, X1 is a ∗-algebra with involution determined by p+ = p and x+ = x. One
easily checks that there is a left action of the algebra X1 on B1 = S(R2) such that

(4.6) p . a :=
(

1
2i

∂

∂x1
+ 2πx2

)
a, x . a :=

(
x1 −

1
4πi

∂

∂x2

)
a.
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In terms of the operators Pj = 1
2πi

∂
∂xj

and Qj = xj on the Hilbert space L2(R2)
the latter can be rewritten as

(4.7) p = πP1 + 2πQ2, x = Q1 −
1
2
P2.

Suppose that q is a complex number of modulus one. Let X2 be the coor-
dinate ∗-algebra O(R2

q) of the real quantum plane. It is defined as follows (see,
for instance, [2] or [6]). As an algebra, O(R2

q) has two generators x and y with
defining relation

xy = qyx.

The involution is defined by the requirements x+ = x and y+ = y.
We write q = e2πiγ with a fixed real number γ and we take two real numbers

α and β such that αβ = γ. Then we define a left action of the algebra X2 on
B2 = A(R2) by

(4.8) (x.a)(x1, x2)=e2παx1a
(
x1, x2+i

α

2

)
, (y.a)(x1, x2)=e2πβx2a

(
x1−i

β

2
, x2

)
.

Since x . (y . a) = qy . (x . a) as easily verified, the latter gives a well-defined left
action of X2 on B2. The operator e2πcP , c ∈ R, acts on functions of its domain as(

e2πcPf
)
(x) = f(x− ci);

see Lemma 1.1 in [15] for a precise statement. Using this fact, formula (4.8) means
that

(4.9) x = e2παQ1 ⊗ e−παP2 , y = eπβP1 ⊗ e2πβQ2 .

Lemma 4.1. (X1,B1) and (X2,B2) are compatible pairs.

Proof. It suffices to check (1.1) for the generators p, x and x, y, respectively.
By (4.7), for the generators p and x condition (1.1) means that

(P1a+ 2Q2a)+#b = a+#(P1b+ 2Q2b), (2Q1a−P2a)+#b = a+#(2Q1b−P2b).

Both relations are easily derived from the definition (4.5) of the twisted product
# using partial integration. Note that the corresponding boundary terms vanish
because the functions a and b are in S(R2). We omit the details. For the generators
x and y of X2 formula (1.1) says that

(e2παQ1e−παP2a)+#b = a+#(e2παQ1e−παP2b),

(eπβ/2P1e2πβQ2a)+#b = a+#(epβP1e2πβQ2b).

Both identities follow at once from the formulas stated in [16], Lemma 11, com-
bined with the fact that (ecPja)+ = e−cPja+ for c ∈ R and a ∈ A(R2).

Now we turn to ∗-representations. If K is a Hilbert space, then it obvious
from (4.3) that the formula

(4.10) ρ0(a) = Op(a)⊗ I, a ∈ Bj ,

defines a continuous ∗-representation of the normed ∗-algebra Bj on the Hilbert
space L2(R)⊗K.
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Lemma 4.2. Any continuous ∗-representation of the normed ∗-algebra Bj,
j = 1, 2, is unitarily equivalent to a ∗-representation ρ0.

This assertion is probably known, but we could not find it explicitely in the
literature. Thus we include a sketch of proof.

Sketch of proof. Suppose that ρ is a continuous ∗-representation of the
normed ∗-algebra Bj on a Hilbert space G. Since ρ is a direct sum of cyclic ∗-
representation, we can assume without loss of generality that ρ is cyclic. Let
ϕ ∈ G be a cyclic vector for ρ. For a ∈ Bj and s, t ∈ R, we set

(4.11) as,0(x1, x2) := e2πisx1a
(
x1, x2−

s

2

)
, a0,t(x1, x2) := e2πtx2a

(
x1+

t

2
, x2

)
.

Since a+
s,0#as,0 = a+#a as easily computed, we have

‖ρ(as,0)ϕ‖2 = 〈ρ(as,0)ϕ, ρ(as,0)ϕ〉 = 〈ρ(a+
s,0#as,0)ϕ,ϕ〉

= 〈ρ(a+#a)ϕ,ϕ〉 = 〈ρ(a)ϕ, ρ(a)ϕ〉 = ‖ρ(a)ϕ‖2.
Hence there is an isometric map U(s) of ρ(Bj)ϕ onto itself such that U(s)ρ(a)ϕ =
ρ(as,0)ϕ, a ∈ Bj . Obviously, U(s1+s2) = U(s1)U(s2) for s1, s2 ∈ R and U(0) = I.
Moreover, ‖as,0 − a‖0 → 0 as s→ 0 and hence U(s)ψ → ψ in G for ψ ∈ ρ(Bj)ϕ as
s → 0 by the continuity of ρ. Since ρ(Bj)ϕ is dense in G, U(s) extends to a uni-
tary operator on G and s→ U(s) is a strongly continuous one-parameter unitary
group on G. Similarly, there is another strongly continuous one-parameter unitary
group t → V (t) on G such that V (t)ρ(a)ϕ = ρ(a0,t)ϕ. From their definitions we
immediately derive that the unitary groups U and V satisfy the Weyl relation

V (t)U(s) = e2πistU(s)V (t), s, t ∈ R.
Therefore, by the Stone-von Neumann uniqueness theorem for the canonical com-
mutation relation (see e.g. [10]), there exists a Hilbert space K and a unitary map
T of G onto L2(R)⊗K such that
(4.12) T−1U(s)T = W (s, 0)⊗ I, T−1V (t)T = W (0, t)⊗ I for s, t ∈ R.
Let us abbreviate W̃ (s, t) := e−πistU(s)V (t) and ρ̃(a) :=

∫∫
â(s, t)W̃ (s, t) dsdt,

where a ∈ Bj . Since

(4.13) W (s, t) = eπistW (s, 0)W (0, t), s, t ∈ R,
it follows from (4.12) that T−1W̃ (s, t)T = W (s, t)⊗ I and hence
(4.14) T−1ρ̃(a)T = Op(a)⊗ I = ρ0(a), a ∈ Bj .

On the other hand, from the definition of Op(a) one derives that
W (s, 0)Op(a) = Op(as,0) and W (0, t)Op(a) = Op(a0,t).

By the defnition of W̃ (s, 0) = U(s) and W̃ (0, t) = V (t), the latter implies that

W̃ (s, t)ρ(b)ϕ = ρ(Op−1(W (s, t)Op(b)))ϕ
and so

ρ̃(a)ρ(b)ϕ = ρ

(
Op−1

(( ∫∫
â(s, t)W (s, t) dsdt

)
Op(b)

))
ϕ

= ρ(Op−1(Op(a)Op(b)))ϕ = ρ(Op−1(Op(a#b)))ϕ = ρ(a)ρ(b)ϕ
for a, b ∈ Bj . Since ρ(Bj)ϕ is dense in G, we obtain ρ̃(a) = ρ(a). Thus, by (4.14)
we have T−1ρ(a)T = ρ0(a) which completes the proof of Lemma 4.2.
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Finally, let us describe the ∗-representation ρ′0 of the ∗-algebra Xj derived
from the ∗-representation ρ0 of Bj . First let j = 1. Since W (s, 0) = e2πisQ and
W (0, t) = e2πitP , it follows from (4.11) and (4.13) by differentation at s = 0 and
t = 0, respectively, that

QOp(a) = Op
(
x1a−

1
4πi

∂a

∂x2

)
, POp(a) = Op

( 1
2i

∂a

∂x1
+ 2πx2a

)
.

Combining the latter with (4.6) we conclude that

ρ′0(x)ρ0(a) = ρ0(x . a) = Op(x . a)⊗ I = QOp(a)⊗ I = (Q⊗ I)ρ0(a)

and similarly ρ′0(p)ρ0(a) = (P ⊗ I)ρ0(a) for a ∈ B1, so that

ρ′0(x) = Q⊗ I and ρ′0(p) = P ⊗ I.

That is, up to unitary equivalence the ∗-representations ρ′0 of X1 are precisely the
orthogonal direct sums of the Schrödinger representation of the ∗-algebra X1 with
domain S(R) on the Hilbert space L2(R).

Now let j = 2. From the formulas in [16], Lemma 1.9, we then have

(4.15) e2παQOp(a) = Op(x . a), e2πβPOp(a) = Op(y . a),

where x . a and y . a are defined by (4.8). From (4.15) and (1.2) we obtain

ρ′0(x) = e2παQ ⊗ I, ρ′0(y) = e2πβP ⊗ I.

This ∗-representation ρ0 appears (in a slighty different notation) in the work by
M. Rieffel ([12]) on the quantum plane.

We illustrate the preceding considerations by three other closely related ex-
amples. Let B3 be the normed ∗-algebra B2 ⊕B2 ⊕B2 ⊕B2. There is a left action
of X2 on B3 such that

x . (a1, a2, a3, a4) = (x . a1, x . a2,−x . a3,−x . a4),

y . (a1, a2, a3, a4) = (y . a1,−y . a2, y . a3,−y . a4)

for a1, a2, a3, a4 ∈ B2, where y.a and y.a are defined by (4.9). Obviously, (X2,B3)
is a compatible pair.

For arbitrary ε1, ε2 ∈ {+,−}, there is a ∗-representation ρ′ε1ε2
of X2 derived

from a continuous ∗-representation ρε1ε2 of B3 such that

ρ′ε1ε2
(x) = ε1e2παQ ⊗ I, ρ′ε1ε2

(y) = ε2e2πβP ⊗ I.

It is easily seen that the ∗-representation ρ′ of X2 associated with the pair (X2,B3)
are precisely the orthogonal direct sums of some ∗-representations ρ′++, ρ

′
+−,

ρ′−+, ρ
′
−−.

Finally, let B4 the ∗-algebra B2 ⊗M2(C) ∼= M2(B2) equipped with the C∗-
matrix norm derived from the C∗-norm of B2. We suppose now that α and β are
real numbers such that

(4.16) αβ = γ +
1
2
.

Then there exists a left action of the algebra X2 on B4 given by

x .
(
a1 a2

a3 a4

)
=

(
x . a1 x . a2

−x . a3 −x . a4

)
, y .

(
a1 a2

a3 a4

)
=

(
y . a3 y . a4

y . a1 y . a2

)
,
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where

x . a := e2παQ1 ⊗ e−παP2a, y . eπβP1 ⊗ e2πβQ2a.

Note that the latter formula coincides with (4.9), but now we have assumed αβ =
γ + 1

2 rather than αβ = γ. Using the fact that (X2,B2) is a compatible pair, a
straightforward computation shows that (X2,B4) is also a compatible pair.

For a Hilbert space G, there is a continuous ∗-representation ρ0 of B4 on the
Hilbert space L2(R)⊗ C2 ⊗ G such that

ρ0(a⊗m) = Op(a)⊗m⊗ I, B2,m ∈M2(C).

From Lemma 4.2 it follows immediately that any continuous ∗-representation of

B4 is unitarily equivalent to such a ∗-representation ρ0. Using the facts that
Op(x . a) = e2παQOp(a), Op(y . a) = e2πβPOp(a), we derive that the closures of
the operators ρ′0(x) and ρ′0(y) are the self-adjoint operator matrices

ρ′0(x) =
(

e2παQ ⊗ I 0
0 −e2παQ ⊗ I

)
, ρ′0(y) =

(
0 e2πβP ⊗ I

e2πβP ⊗ I 0

)
.

Finally, we consider a ∗-algebra and their representations in the above context

which was used by S.L. Woronowicz in his approach to the quantum ax+ b-group

([20]). Let X3 denote the ∗-algebra generated by three hermitean elements x, y, χ

and defining relations

xy = qyx, xχ = χx, yχ = −χy, χ2 = 1.

Then there is a left action of X3 on the ∗-algebra B4 = B2 ⊗M2(C) defined by

x .

(
a1 a2

a3 a4

)
=

(
x . a1 x . a2

x . a3 x . a4

)
,

y .

(
a1 a2

a3 a4

)
=

(
y . a1 y . a2

−y . a3 −y . a4

)
,

χ .

(
a1 a2

a3 a4

)
=

(
a3 a4

a1 a2

)
,

where x . a and y . a are given by (4.9). It is not difficult to check that (X3,B4)
is a compatible pair and that for the corresponding ∗-representation ρ′0 of X3 we

have

ρ′0(x) =
(

e2παQ ⊗ I 0
0 e2παQ ⊗ I

)
, ρ′0(y) =

(
e2πβP ⊗ I 0

0 −e2πβP ⊗ I

)
,

where αβ = γ.
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5. ANOTHER EXAMPLE: QUANTUM SUq(1, 1) GROUP

Suppose that q is a real number such that q > 0, q 6= 1. Let X denote the coordi-
nate ∗-algebra O(SUq(1, 1)) of the quantum group SUq(1, 1) (see, for instance, [2],
[6] or [19]). That is, X is the ∗-algebra with two generators a and c and defining
relations

ac = qca, ac+ = qc+a, cc+ = c+c, a+a− c+c = 1, aa+ − q2c+c = 1.

Let B be the ∗-algebra generated by the ∗-algebra C0(C) of compactly supported
continuous functions on the complex plane C with usual algebraic structure and a
single generator v satisfying the relations vf(z) = f(qz)v, f ∈ C0(C), z ∈ C, and
vv+ = v+v = 1. We consider B as ∗-subalgebra of bounded operators acting on
the Hilbert space L2(C) equipped with the operator norm.

Then there is a left action of X on B defined by

a . vkf(z) = vk+1
√

1 + q−2k|z|2 f(z),
c . vkf(z) = q−2kvkzf(z), f ∈ C0(C), k ∈ Z.

One easily checks that (X ,B) is a compatible pair.
Let ρ be a non-degenerate continuous ∗-representation of B on a Hilbert space

H. It is not difficult to show that there exists a spectral measure E(z), z ∈ C, and
a unitary operator u on H satisfying uE(z)u−1 = E(qz), z ∈ C, such that

ρ(vkf) = uk

∫
f(z) dE(z), f ∈ C0(C), k ∈ Z.

The operators ρ′(a) and ρ′(c) of the associated ∗-representation ρ′ of X act as

ρ′(a) = u
√

1 + (z)2 and ρ′(c) = z.

These are precisely the ∗-representations of the ∗-algebra X = O(SUq(1, 1)) con-
sidered in [19], p. 79.

6. OUTLOOK

In the preceding sections we have investigated a variety of examples of compatible
pairs (X ,B) and the corresponding well-behaved ∗-representations. Here we add
some remarks on these concepts and on possible modifications.

1. First, let us emphasize that the above approach does not solve the problem
of selecting the well-behaved ∗-representations of a given ∗-algebra. As mentioned
in the introduction, this essentially depends on the specific structure of the ∗-
algebra and on the aim of the considerations. The notion of a compatible pair
is only a proposal of a general concept in order to treat appearently different
examples in the same general context.

2. For a compatible pair (X ,B), let τ denote the locally convex topology on
B defined by the family of seminous px(b) = ‖x . b‖, x ∈ X , b ∈ B. In all above
examples, B[τ ] is a metrizable ∗-algebra with jointly continuous multiplication.
Therefore, the completion B̃ of B[τ ] is a Frechet ∗-algebra and the action of X
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on B extends by continuity to an action on B̃ which also satisfies the compati-
bility condition (1.1). Thus, another possible approach might be to replace the
(uncomplete) normed ∗-algebra (B, ‖ · ‖) by the Frechet ∗-algebra B̃[τ ].

3. The reason why we have defined compatible pairs by means of condi-
tion (1.1) is that it seems to be the weakest requirement on the left action .
which ensures that a non-degenerate ∗-representation of B yields a well-defined ∗-
representation of X by means of formula (1.2). However, for compatible O∗-pairs
(Example 1.3) and for all compatible pairs occuring in this paper we have much
more structure: In all theses cases the ∗-algebras X and B are ∗-subalgebras of
a larger ∗-algebra A and the left action x . b is just the product x · b of x ∈ X
and b ∈ B in the algebra A. It is obvious that the ∗-algebra axioms imply that
condition (1.1) is fulfilled.

4. Let X be a ∗-algebra with unit and let . be a left action of X on another
∗-algebra B. On the direct sum A := X ⊕B of vector spaces X and B we define a
product

(x+ a)(y + b) := xy + (y∗ . a∗)∗ + x . b+ ab, x, y ∈ X , a, b ∈ B,
and an involution (x + a)∗ := x∗ + a∗. With these structures, A is a ∗-algebra if
and only if conditions (1.1) and

(x . a)b = x . (ab) and (x . (y . a)∗)∗ = y . (x . a∗)∗, x, y ∈ X , a, b ∈ B,
are fulfilled. If this is true, then X and B are ∗-subalgebras of A and the left
action . of X on B is the product in the algebra A. Such a ∗-algebra A has been
used as “function algebra” on the quantum quarter plane in [16].

5. Let (X ,B) be a compatible pair. The elements x ∈ B can be interpreted as
multipliers of the algebra B. The representation ρ′ of X derived from the represen-
tation ρ of B (see Proposition 1.1) can be considered as the induced representation
of ρ in the sense of M. Rieffel ([11]). We shall discuss these aspects elsewhere.
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