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1. INTRODUCTION

Recall ([13] and [16]) that a compact matrix quantum group is a pair G = (A, u) of
a unital C∗-algebra A and of a matrix system u of generators uij , i, j = 1, . . . , n,
that satisfies the following two axioms:

(1) there is a unital C∗-homomorphism Φ : A → A ⊗ A such that Φ(uij) =
n∑

k=1

uik ⊗ ukj for each i, j;

(2) the matrices u = (uij) and ut are invertible in Mn(C)⊗A.

In [3], [7] and [6], we constructed for each Q ∈ GL(n, C) two families Au(Q)
and Bu(Q) of compact matrix quantum groups in the sense of Woronowicz ([14]).
The compact quantum groups Au(Q) and Bu(Q) are defined in terms of generators
uij , i, j = 1, . . . n, by the relations

Au(Q) : u∗u = In = uu∗, utQuQ−1 = In = QuQ−1ut;

Bu(Q) : u∗u = In = uu∗, utQuQ−1 = In = QuQ−1ut,
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where u = (uij). The Au(Q)’s are universal in the sense that every compact matrix
quantum group is a quantum subgroup of Au(Q) for some Q > 0. Similarly, the
Bu(Q)’s are universal in the sense that every compact matrix quantum group
with self conjugate fundamental representation is a quantum subgroup of Bu(Q)
for some Q. The subscript u denotes “universality”. For Q > 0 (respectively, Q
with QQ ∈ RIn), Bănică determined in [2] (respectively [1]) the fusion rings of the
irreducible representations of the quantum group Au(Q) (respectively, Bu(Q)).
Note that he used Au(F ) (respectively, Ao(F )) to denote Au(Q) (respectively
Bu(Q)), where Q = F ∗F (respectively Q = F ∗). Although these quantum groups
are of a different nature from the well known quantum groups obtained from
ordinary Lie groups by deformation quantization ([4], [5], [4a] and [15]); they
share many properties of the ordinary Lie groups. Not only they are fundamental
objects in the framework of compact matrix quantum groups of Woronowicz ([13]),
they are also useful objects in the study of intrinsic quantum group symmetries,
such as ergodic quantum group symmetries on operator algebras and quantum
automorphism groups of noncommutative spaces (cf. [12], [10]). Although much
is known about Au(Q) and Bu(Q), some basic questions are still left unanswered
([9]). For instance, for different Q’s, how do the Au(Q)’s (respectively, Bu(Q)’s)
differ from each other? Do some of these quantum groups constitute building
blocks for the two families of quantum groups in an appropriate sense?

The purpose of this paper is to answer these questions. Recall that the
fundamental representation u of Au(Q) (respectively, Bu(Q)) is irreducible if and
only if Q is positive (respectively, QQ ∈ RIn); see [12] (respectively, [1]). When
these conditions are satisfied, we classify Au(Q) and Bu(Q) up to isomorphism,
and show that they are not free products or tensor products or crossed products
(see [6] and [8] for these constructions). We show that the general Au(Q)’s and
Bu(Q)’s for arbitrary Q are free products of these special Au(Q)’s and Bu(Q)’s,
and we give their explicit decompositions in terms of free products.

In the following, the word “morphisms” means morphisms between compact
quantum groups (cf. [6]).

1. THE QUANTUM GROUPS Au(Q) FOR POSITIVE Q

Let Q ∈ GL(n, C). Then Au(Q) = Au(cQ) for any nonzero number c. For a
positive matrix Q, we can normalize it so that Tr(Q) = Tr(Q−1).

Theorem 1.1. Let Q ∈ GL(n, C) and Q′ ∈ GL(n′, C) be positive matrices
normalized as above with eigenvalues q1 > q2 > · · · > qn and q′1 > q′2 > · · · > q′n′

respectively. Then:
(1) Au(Q) is isomorphic to Au(Q′) if and only if
(i) n = n′, and
(ii) (q1, q2, . . . , qn) = (q′1, q

′
2, . . . , q

′
n) or (q−1

n , q−1
n−1, . . . , q

−1
1 ) = (q′1, q

′
2, . . . , q

′
n).

(2) Au(Q) is not a free product. That is, if Au(Q) = A ∗B is a free product
of Woronowicz C∗-algebras A and B, then either A = Au(Q) or B = Au(Q).

Proof. Clearly, we may assume n, n′ > 2.
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(1) Since Au(Q) is similar to Au(V QV −1) for V ∈ U(n) (cf. [3]), we may
assume up to isomorphism that Q and Q′ are in diagonal form, say,

Q = diag(q1, q2, . . . , qn), Q′ = diag(q′1, q
′
2, . . . , q

′
n′).

We claim that every non-trivial irreducible representation of the quantum group
Au(Q) other than u and u has a dimension greater than n.

In [2], the irreducible representations of the quantum group Au(Q) are pa-
rameterized by the free monoid N ∗ N with generators α and β and anti-multipli-
cative involution α = β (the neutral element is e with e = e). The classes of u and
u are α and β, respectively. Let dx be the dimension of irreducible representations
in the class x ∈ N ∗ N. By Theorem 1 of [2], we have the following dimension
formula:

dxdy =
∑

x=ag
gb=y

dab.

Hence dxαk+ly = dxαkdαly for k, l > 1. This identity prevails when we change α to
β. From these we see that apart from the trivial class e, the classes with smaller
dimensions are those words x in which the powers of α and β are equal to 1.
Moreover, we infer from [2] that for any word x, dx does not change when we
exchange α and β in x. Hence the minimal dimension is among dα, dαβ , dαβα, . . . ,
so we now concentrate on these numbers. Let f(1), f(2), f(3), . . . be this sequence
and let f(0) = 1 = de. Then applying the above dimension formula to dαβ···αβdα

and dαβ···αβαdβ , we get f(k + 1) = nf(k) − f(k − 1), k > 1, noting that f(1) =
dα = dβ = n. Since n > 2, we have

f(k+1)−f(k) = (n−1)f(k)−f(k−1) > f(k)−f(k−1) > · · · > f(1)−f(0) > 0.

Hence dα = dβ = n < dx for x 6= α, β, e. This proves our claim.
We introduced in [11] F -matrices for classes of irreducible representations

of a compact quantum group, based on Woronowicz ([13]). If v is an irreducible
representation with F -matrix Fv in the sense of [13], then the F -matrix F[v] for the
class [v] of v is the diagonal matrix with eigenvalues of Fv arranged in decreasing
order on the diagonal. This is an invariant of the class [v]. We have F[v] =
diag(λ−1

m , λ−1
m−1, . . . , λ

−1
1 ) if F[v] = diag(λ1, λ2, . . . , λm). (Warning: Fv = (F t

v)−1.)
Now for the quantum group Au(Q), we have F[u] = Fu = Qt = Q (cf. Re-

mark 1.5.(3) of [3]). Therefore, if the quantum groups Au(Q) and Au(Q′) are
isomorphic to each other, the F -matrices for the classes of the irreducible rep-
resentations u and u (of minimal dimension n) of Au(Q) correspond to those of
Au(Q′) (cf. Lemma 4.2 of [11]). Whence we have conditions (i) and (ii) in the
theorem. Conversely, assume conditions (i) and (ii) are satisfied. If Q = Q′, there
is nothing to prove. So we assume that (q−1

n , q−1
n−1, . . . , q

−1
1 ) = (q′1, q

′
2, . . . , q

′
n). As

F[u] = diag(q−1
n , q−1

n−1, . . . , q
−1
1 ), we can choose a unitary representation v in the

class [u] of u (non-unitary in general) so that Fv = F[u]. Then the entries of v
generate the same algebra Au(Q) as those of u and they satisfy the relations for
Au(Q′). It is now clear that Au(Q) and Au(Q′) are isomorphic to each other,

(2) Suppose Au(Q) = A ∗ B. By the classification of irreducible representa-
tions of the quantum groups A ∗B in [6], the representation u is a tensor product
of non-trivial irreducible representations of the quantum groups A and B. Also by
[6], each representation in this tensor product is also an irreducible representation
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of Au(Q). From the claim in the proof of (1) above, we deduce that Au(Q) has
no irreducible representation of dimension 1 other than the trivial one. Therefore
there is only one term in the tensor product. That is, u is a representation of the
quantum group A or B. Whence Au(Q) = A or Au(Q) = B.

Remarks 1.2. (i) As a corollary of the proof above, we have the following
rigidity result for Au(Q) (a similar result holds for Bu(Q) in the next section).
Let Q,Q′ ∈ GL(n, C) be positive, normalized as above. If Au(Q′) is a quantum
subgroup of Au(Q) given by a surjection π : Au(Q) → Au(Q′), then Q′ = V QV −1

or Q′ = V (Qt)−1V −1 for some V ∈ U(n) and hence π is an isomorphism. To see
this, first Su′S−1 = π(u) or SQ′1/2

u′Q′−1/2
S−1 = π(u) for some V ∈ U(n), which

satisfy the relations for Au(Q). The assertion follows from the irreducibility of the
representation u′.

(ii) By the same method, one can also prove that Au(Q) is neither a tensor
product, nor a crossed product (cf. [8]). This remark also applies to Bu(Q) blow.

(iii) Although Au(Q) is a universal analog of U(n) for compact quantum
groups ([7], [6] and [3]), the proof in the above shows that Au(Q) has no nontrivial
irreducible representations of dimension 1 when n > 2, a property in sharp contrast
to U(n). Further study of the irreducible representations of the quantum group
Au(Q) gives evidences that Au(Q) may be a simple compact quantum group in an
appropriate sense (work in progress).

2. THE QUANTUM GROUPS Bu(Q) WITH QQ ∈ RIn

The quantum group Bu(Q) has only one irreducible representation of minimal
dimension among the non-trivial ones (cf. [1]). If Bu(Q) is isomorphic to Bu(Q′),
then the fundamental representation of Bu(Q) corresponds to that of Bu(Q′) under
the isomorphism. Using the irreducibility of the fundamental representations along
with the defining relations for Bu(Q) and Bu(Q′) we immediately obtain part (1)
of the following theorem (we need not consider the F -matrices for this). The proof
of part (2) of the theorem is similar to the proof of part (2) of Theorem 1.1 above
and will be omitted.

Theorem 2.1. Let Q ∈ GL(n, C) and Q′ ∈ GL(n′, C) be matrices such that
QQ ∈ RIn and Q′Q′ ∈ RIn′ . Then:

(1) Bu(Q) is isomorphic to Bu(Q′) if and only if
(i) n = n′, and
(ii) there exist S ∈ U(n) and c ∈ C∗ such that Q = zStQ′S.

(2) Bu(Q) is not a free product. That is, if Bu(Q) = A ∗B is a free product
of Woronowicz C∗-algebras A and B, then either A = Bu(Q) or B = Bu(Q).

Explicit parametrization of the isomorphism classes of Bu(Q). Con-
trary to Theorem 1.1, Theorem 2.1 above does not give an explicit parametrization
of the isomorphism classes of the Bu(Q)’s. Assume the normalization Tr(QQ∗)
= Tr((QQ∗)−1) (or, equivalently, Tr(QQt) = Tr((QQt)−1)). Let λ1 > λ2 > · · · >
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λn be the eigenvalues of QQ∗ (therefore of QQt). Using the defining relations of
Bu(Q), we have that the antipode κ satisfies

κ2(u) = κ(Q−1utQ) = Q−1Qtu(Q−1)tQ,

where u is the fundamental representation of Bu(Q). Hence from the assumption
that QQ = cIn we get Fu = QQt (also cf. Remark 1.5.(3) of [3]). Since u =
Q∗uQ∗−1, one has F[u] = F[u] and hence

F[u] = (λ1, λ2, . . . , λn) = (λ−1
n , λ−1

n−1, . . . , λ
−1
1 ) = F[u].

Let Q∗ = U |Q∗| = U
√

QQ∗ be the polar decomposition. We have that

cIn = QQ = |Q∗|U∗|Q∗|tU t.

Taking determinants of both sides of

cIn|Q∗|−1 = U∗|Q∗|tU t,

and using the relationship between the eigen values of F[u] and those of |Q∗|, we

get cn = 1. Note that c is real (cIn = QQ = QQ = QQ), we see that c = ±1 for
n even and c = 1 for n odd.

Conversely, we claim that QQ = cIn with c = ±1 for n even and c = 1 for
n odd implies that Tr(QQ∗) = Tr((QQ∗)−1). To see this, let r > 0 be such that
Tr(Q1Q

∗
1) = Tr((Q1Q

∗
1)

−1), where Q1 = rQ. Then the above analysis applied to
Bu(Q1) yields Q1Q1 = cIn, i.e. r2QQ = cIn. Hence r = 1.

Let us summarize this discussion in the following:

Proposition 2.2. Let Q ∈ GL(n, C) be a matrix such that QQ ∈ RIn.
Then the condition Tr(QQ∗) = Tr((QQ∗)−1) is equivalent to QQ = ±In for n
even and QQ = In for n odd.

It would be interesting to find an elementary proof of the above fact (i.e. a
proof without using quantum group theory).

Since Bu(rQ) = Bu(Q) for any non-zero r, we will assume the normalization
QQ = ±In below to find a parametrization of the equivalent classes of Bu(Q).
We note that if both Q and Q′ are so normalized and that Q′ = zStQS for some
non-zero complex number z, then a straightforward computation shows that z has
modulus 1. So we can restrict the z in Theorem 2.1 (1) to complex numbers of
modulus 1.

We will need the following easy lemma.

Lemma 2.3. Let Q′ = zStQS, where z is a number of modulus 1, S is a
unitary scalar matrix of the same size as Q. Let Q = U |Q| and Q′ = U ′|Q′| be the
polar decompositions of Q and Q′. Then |Q′| = S−1|Q|S and U ′ = zStUS.

Proof. The identity |Q′| = S−1|Q|S follows from Q′∗Q′ = S−1Q∗QS.
Now, on the one hand we have

Q′ = U ′|Q′| = U ′S−1|Q|S,

on the other hand we have

Q′ = zStQS = zStU |Q|S.

Hence U ′S−1|Q|S = zStU |Q|S, and U ′ = zStUS.
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From the analysis preceding Proposition 2.2, we can assume that the eigen-
values of |Q| are ordered either

µ1 > µ2 > · · · > µk > µ−1
k > · · · > µ−1

2 > µ−1
1

or
µ1 > µ2 > · · · > µk > 1 > µ−1

k > · · · > µ−1
2 > µ−1

1

according to n = 2k or n = 2k + 1. In virtue of Lemma 2.3 and Theorem 2.1 (1),
we can assume that either

|Q| = diag(µ1, µ2, . . . , µk, µ−1
k , . . . , µ−1

2 , µ−1
1 )

or
|Q| = diag(µ1, µ2, . . . , µk, 1, µ−1

k , . . . , µ−1
2 , µ−1

1 )

is in diagonal form. So Q = U diag(µ1, µ2, . . . , µ
−1
2 , µ−1

1 ). Then from the nor-
malization QQ = ±In and Lemma 2.3, we immediately obtain the following more
explicit form of Theorem 2.1 (1):

Theorem 2.4. The isomorphism classes of Bu(Q) are given by

(U, (µ1, µ2, . . . , µk)), µ1 > µ2 > · · · > µk > 1,

where U ∈ U(n) is a solution of the equation

U diag(µ1, µ2, . . . , µk, µ−1
k , . . . , µ−1

2 , µ−1
1 )

= c · diag(µ−1
1 , µ−1

2 , . . . , µ−1
k , µk, . . . , µ2, µ1)U t,

or the equation

U diag(µ1, µ2, . . . , µk, 1, µ−1
k , . . . , µ−1

2 , µ−1
1 )

= diag(µ−1
1 , µ−1

2 , . . . , µ−1
k , 1, µk, . . . , µ2, µ1)U t

according to n = 2k, where c = ±1, or n = 2k + 1. The pairs (U, (µ1, µ2, . . . , µk))
and (U ′, (µ′

1, µ
′
2, . . . , µ

′
k)) represent the same class if and only if (µ1, µ2, . . . , µk) =

(µ′
1, µ

′
2, . . . , µ

′
k) and U ′ = zStUS for a z ∈ T and a stabilizing unitary matrix S:

S diag(µ1, µ2, . . . , µ
−1
2 , µ−1

1 )S−1 = diag(µ1, µ2, . . . , µ
−1
2 , µ−1

1 ).

We can now easily recover the classification in [12] for SUq(2) from the above.

First we note that C(SUq(2)) = Bu(Q) with normalized Q =

[
0 −s

√
|q|

−1√
|q| 0

]
,

where s = q−1|q| (cf. Section 5 of [1] or [6]). In this case Q = U |Q| with

|Q| =

[ √
|q|

−1
0

0
√
|q|

]
, U =

[
0 −s
1 0

]
.

So the parametrization for C(SUq(2)) in terms of Theorem 2.4 is
(
U,

√
|q|

−1)
,

which is equivalent to saying that they are non-isomorphic to each other for q ∈
[−1, 1]\{0} (cf. Theorem 3.1 of [11]).

Our work in progress shows that the quantum groups Bu(Q) are simple when
QQ ∈ RIn.
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3. THE QUANTUM GROUPS Au(Q) AND Bu(Q) FOR ARBITRARY Q

In the following, h will denote the Haar measure of the ambient quantum group.
Note that Au(Q) = C(T) and Bu(Q) = C∗(Z/2Z) for Q ∈ GL(1, C).

Theorem 3.1. Let Q ∈ GL(n, C). Let

u = S diag(m1w1,m2w2, . . . ,mkwk) · S−1

be a decomposition of u of Au(Q) into unitary isotypical components mjwj, j =
1, . . . , k, for some S ∈ U(n). Let Qj be the positive matrix h(wt

jwj). Then

Au(Q) ∼= Au(Q1) ∗Au(Q2) ∗ · · · ∗Au(Qk).

Proof. Let E = StQS. Then the second set of relations for Au(Q) becomes

wtEwE−1 = In = EwE−1wt, i.e. wtEw = E,

where w = diag(v1, v2, . . . , vk), vj = mjwj , j = 1, . . . , k. Block decompose E
according to w, say, E = (Eij)k

i,j=1. Then the above set of relations becomes
vt

iEijvj = Eij where i, j = 1, . . . , k. By Lemma 1.2 of [3], (vt
i)

−1 = Q̃iviQ̃
−1
i ,

where Q̃i = diag(Qi, . . . , Qi) (mi copies). Hence Q̃−1
i Eijvj = viQ̃

−1
i Eij . Since

the wi’s are mutually inequivalent irreducible representations, we deduce that
Eij = 0 for i 6= j, and that Ejj is a matrix of the form (cj

rsQj)
mj

r,s=1 for some
complex scalars cj

rs. From these, a computation shows that the entries of the
matrix ũ = S diag(m1u1,m2u2, . . . ,mkuk)S−1 satisfy the defining relations for
Au(Q), where uj is the fundamental representation of Au(Qj), j = 1, . . . , k. Hence
there is a surjection π from Au(Q) to Au(Q1) ∗ Au(Q2) ∗ · · · ∗ Au(Qk) such that
π(u) = ũ. That is π(wj) = uj , j = 1, . . . , k.

Again by Lemma 1.2 of [3] and the properties of free product Woronowicz
C∗-algebras ([6]), there is a surjection ρ from Au(Q1) ∗ Au(Q2) ∗ · · · ∗ Au(Qk) to
Au(Q) such that ρ(uj) = wj , j = 1, . . . , k. This is the inverse of π.

Corollary 3.2. (i) Let Q = diag(eiθ1P1, eiθ2P2, . . . , eiθkPk), with positive
matrices Pj and distinct angles 0 6 θj < 2π, (j = 1, . . . , k, k > 1). (Note that
every normal matrix is unitarily equivalent to one such, unique up to permutation
of the indices j.) Then

Au(Q) ∼= Au(P1) ∗Au(P2) ∗ · · · ∗Au(Pk).

(ii) If Q ∈ GL(2, C) is a non-normal matrix, then Au(Q) = C(T).
(iii) For Q ∈ GL(2, C), Au(Q) is either isomorphic to C(T), or C(T)∗C(T),

or Au(diag(1, q)) with 0 < q 6 1.

Proof. (i) Let S and E be as in the proof of Theorem 3.1. Since we do not
have an explicit formula for the Haar measure of Au(Q), we must determine the
matrices Qj in Theorem 3.1 by other means.

We have an evident surjection

π : Au(Q) → Au(P1) ∗Au(P2) ∗ · · · ∗Au(Pk)

such that (π(uij)) = diag(u1, . . . , uk), where u = (uij) is the fundamental represen-
tation of Au(Q) and uj is the fundamental representation of Au(Pj), j = 1, . . . , k.
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That is, the free product quantum group of the Au(Pj)’s is a quantum subgroup
of Au(Q) (cf. [6] for the terminology). Since the uj ’s are mutually inequivalent
representations (cf. Theorem 3.10 of [6]), the multiplicities of the irreducible con-
stituents of u are all equal to one and the matrix E in the proof of Theorem 3.1
is of the form

E = diag(c1Q1, . . . , clQl)

for some l 6 k, c1, . . . , cl ∈ C∗, Q1, . . . , Ql > 0. Since the angles θj are distinct and
E is unitarily equivalent to Q, we must have l = k, |cj |Qj = Pj and cj |cj |−1 = eiθj

after a possible permutation of the indices j. (Note that permutation of the indices
j does not change the quantum group Bu(T1) ∗ · · · ∗ Bu(Tk).) We conclude the
proof by noting that Au(Qj) = Au(|cj |Qj) = Au(Pj).

(ii) Since Q is not positive, the fundamental representation u of Au(Q) is
reducible (cf. 3.1 of [1]). Since Q is not normal, we deduce from (i) and the
proof of Theorem 3.1 that u is equivalent to a representation of the form 2w1 (i.e.
m1 = 2), where w1 is an irreducible representation of dimension 1.

(iii) This follows from (i) and (ii) (cf. also Theorem 1.1).

Theorem 3.3. Let Q ∈ GL(n, C). Then the fundamental representation u
of Bu(Q) has a unitary isotypical decomposition of the form

u = S diag(m1w1,m1w̃1,m2w2,m2w̃2, . . .

. . . , mkwk,mkw̃k,m′
1w

′
1,m

′
2w

′
2, . . . ,m

′
lw

′
l)S

−1

for some S ∈ U(n), where the wi’s are not self-conjugate, w̃i = P
1/2
i wiP

−1/2
i ,

Pi = h(wt
iwi), the w′

j’s are self-conjugate, i = 1, . . . , k, j = 1, . . . , l, k, l > 0. Let
Qj be such that w′

j = Q∗
jw

′
jQ

∗
j
−1. Then the QjQj’s are nonzero scalar matrices

and

Bu(Q) ∼= Au(P1) ∗Au(P2) ∗ · · · ∗Au(Pk) ∗Bu(Q1) ∗Bu(Q2) ∗ · · · ∗Bu(Ql).

Proof. Note that the fundamental representation u of Bu(Q) is self-conjugate:
u = Q∗uQ∗−1. Hence, in the isotypical decomposition of u, if an irreducible com-
ponent is not self-conjugate, then its conjugate representation also appears (with
the same multiplicity as the former). By Lemma 1.2 of [3], we deduce that each
P

1/2
i wiP

−1/2
i is a unitary representation. Hence u has a decomposition as stated

in the theorem. Since the w′
j ’s are irreducible, QjQj are scalar matrices as in [1].

Let E = StQS. Then the second set of relations for Bu(Q) becomes

wtEwE−1 = In = EwE−1wt, i.e. wtEw = E,

where
w = diag(v1, ṽ1, v2, ṽ2, . . . , vk, ṽk, v′1, v

′
2, . . . , v

′
l),

vi = miwi, ṽi = miw̃i, v′j = m′
jw

′
j , i = 1, . . . , k, j = 1, . . . , l. Block decompose E

according to w, we find that E is of the form

E = diag
([

0 X1

Y1 0

]
,

[
0 X2

Y2 0

]
, . . . ,

[
0 Xk

Yk 0

]
, Z1, Z2, . . . , Zl

)
,
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and the above set of relations takes the form

vt
iXiṽi = Xi, ṽ t

i Yivi = Yi, v′tj Zjvj = Zj .

By the assumptions in Theorem 3.3, we have that (cf. proof of Theorem 3.1)

(wt
i)

−1 = PiwiP
−1
i , (w̃ t

i )−1 = P
−1/2

i wiP
1/2

i , (w′ t
j )−1 = Qjw

′
jQ

−1
j .

Hence we have

Xi = (xi
rsP

1/2
i )mi

r,s=1, Yi = (yi
rsP

−1/2

i )mi
r,s=1, Zj = (zj

rsQj)
m′

j

r,s=1

for xi
rs, y

i
rs, z

j
rs ∈ C. From these, a computation then shows that the entries of the

matrix

ũ = S diag(m1u1,m1ũ1,m2u2,m2ũ2, . . . ,mkuk,mkũk,m′
1u

′
1,m

′
2u

′
2, . . . ,m

′
lu

′
l)S

−1

satisfy the defining relations for Bu(Q), where ui (respectively u′
j) is the funda-

mental representation of Au(Pi) (respectively Bu(Qj)) and ũi = P
1/2
i uiP

−1/2
i ,

i = 1, . . . , k, j = 1, . . . , l. Hence there is a surjection π from Bu(Q) onto Au(P1) ∗
Au(P2) ∗ · · · ∗Au(Pk) ∗Bu(Q1) ∗Bu(Q2) ∗ · · · ∗Bu(Ql), such that π(u) = ũ. That
is, π(wi) = ui and π(w′

j) = u′
j , i = 1, . . . , k, j = 1, . . . , l. As in the proof of

Theorem 3.1, π is an isomorphism.

corollary 3.4. (i) Let Q = diag(T1, T2, . . . , Tk) be a matrix such that
TjT j = λjInj

, where the λj’s are distinct non-zero real numbers (the sizes nj

need not be different), j = 1, . . . , k, k > 1. Then

Bu(Q) ∼= Bu(T1) ∗Bu(T2) ∗ · · · ∗Bu(Tk).

(ii) Let Q =
[

0 T
qT

−1
0

]
, where T ∈ GL(n, C) and q is a complex but non-

real number. Then Bu(Q) is isomorphic to Au(|T |2) under the map π which sends
the entries of the fundamental representation u of Bu(Q) to the entries of the
matrix diag(u1, u2), where u1 is the fundamental representation of Au(|T |2) and
u2 = |T |u1|T |−1, the unitary representation equivalent of u1.

Proof. (i) Let S and E be as in the proof of Theorem 3.3. We have an
evident surjection from Bu(Q) onto the free product Bu(T1)∗Bu(T2)∗ · · · ∗Bu(Tk)
sending the matrix entries of the fundamental representation u of Bu(Q) to entries
of diag(u1, . . . , uk), where uj is the fundamental representation of Bu(Tj), j =
1, . . . , k. Since the uj ’s are mutually inequivalent self-conjugate representations
and none of them is conjugate to another (cf. Theorem 3.10 of [6]), Theorem 3.3
implies that the pieces Au(Pi) do not appear in the decomposition of Bu(Q) and
that the multiplicities m′

j = 1. Therefore, the matrix E in the proof of Theorem 3.3
has the form

E = diag(Z1, Z2, . . . , Zl)

for some l 6 k, where Zj = zjQj , zj ∈ C∗, and the QjQj ’s are scalar matrices
with j = 1, . . . , l. Hence,

EE = diag(c1In′
1
, . . . , clIn′

l
)
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for some cj ∈ C∗, where n′
j is the size of the matrix Qj , j = 1, . . . , l. From the

unitary equivalence

EE = StQQS = St diag(λ1In1 , . . . , λkInk
)S

and the fact that the λj ’s are distinct, we must have l = k, cj = λj and n′
j = nj ,

up to a possible permutation of the indices j. Now EE = StQQS takes the form

diag(c1In1 , . . . , clInk
) = St diag(c1In1 , . . . , clInk

)S.

Then from the assumption that the cj ’s are distinct we deduce again that S is a
block diagonal matrix S = diag(S1, . . . , Sk) with Sj ∈ U(nj), j = 1, . . . , k. Hence

E = StQS = diag(St
1T1S1, . . . , S

t
kTkSk),

and therefore Zj = zjQj = St
jTjSj , j = 1, . . . , k. Hence by Theorem 2.1, Bu(Qj)

is isomorphic to Bu(Tj). The proof is finished by appealing to Theorem 3.3.
(ii) Let T = U |T | be the polar decomposition of T . Then

Q =
[

0 T
qT

−1
0

]
=

[
U 0
0 1

] [
0 |T |

q|T |
−1

0

] [
U t 0
0 1

]
.

By Theorem 2.1, we can assume T > 0 from now on. Then

(Q∗)−1 =
[

0 T−1

q−1T 0

]
.

Let u = diag(u1, u2), where u1 and u2 are the unitary representations as given in
the statement of Corollary 3.4. Then, a quick computation shows that

Q∗u(Q∗)−1 = u,

that is, u−1 = u∗ = Q−1utQ. Hence we have a surjection π from Bu(Q) onto
Au(T 2) as in the statement of Corollary 3.4 (ii). Then Theorem 3.10 of [6] and
Theorem 3.3 above implies that Bu(Q) is isomorphic to Au(P1) for some P1 > 0.
Now the rigidity of Au(P1) (see Remark (1.2) in Section 1) implies that Au(P1),
and therefore Bu(Q), is isomorphic to Au(T 2).

Concluding Remarks. 3.5. (i) Using Theorem 1.1 (respectively Theo-
rem 2.1 along with [6], one can show that the decomposition in Theorem 3.1
(respectively Theorem 3.3) is unique in the evident sense.

(ii) Theorems 1.2, 2.1, 3.1 and 3.3 solve Problem 1.1 of [9].

(iii) Using the same method as in Theorems 3.1 and 3.3, we see that inter-
sections of quantum groups of the form Au(Q) (respectively Bu(Q)) in the sense of
[9] does not give rise to non-trivial finite quantum groups. This solves Problem 2.4
of [9].
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