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1. INTRODUCTION

Taylor and S lodkowski spectra were defined in [14] and [13] for commutative op-
erator families. When an operator family generates a finite dimensional solvable
Lie algebra, some analogs of Taylor and S lodkowski spectra were considered in
[1]–[3], [6], [11]. Spectra of such families are described by behavior of the finite
parametrized (on the character space of the finite dimensional Lie algebra) Koszul
complex. A spectral mapping theorem for Taylor spectrum σ of such families
was obtained in [6] by A.S. Fainshtein. More precisely, let a = (a1, . . . , an) be
a finite family in the algebra B(X) of bounded linear operators on a complex
Banach space X, and let a generates a finite dimensional nilpotent Lie algebra
E ⊆ B(X). Let us consider a finite family of polynomials p = (p1, . . . , pm) of
noncommuting variables a1, . . . , an, i.e., a finite family in the enveloping algebra
U(E) of E. Let P be a Lie subalgebra of U(E) generated by the family p, and
let p(a) = (p1(a), . . . , pn(a)). If P is finite dimensional (and in this case P is a
nilpotent Lie algebra), then σ(p(a)) = p(σ(a)) ([6]). But, often the Lie subalgebra
P is infinite dimensional, which implies that spectra of such families p should be
described by behavior of the infinite parametrized complexes.
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In this paper, we consider S lodkowski and Taylor spectra for infinite para-
metrized Banach complexes. It is generally assumed that complexes depend on
a parameter of some topological space Ω. Let (X,d) be a Banach complex para-
metrized on Ω. A family of so called S lodkowski spectra σπ,k of parametrized
Banach complexes will be defined. If (X,d) is the finite Koszul complex associated
with a commutative operator family or a family of operators generating a finite
dimensional solvable Lie algebra, then these spectra are reduced to the known
S lodkowski spectra of corresponding operator families ([13] and [2]). As a special
case of parametrized Banach complexes, we consider a Banach complex C(α)
generated by a Banach module (X,α) over a Banach Lie algebra F , where α :
F → B(X) is the bounded representation of F . This complex is parametrized on
the space ∆(F) (⊆ F∗) of bounded characters of F . Let σ be one of S lodkowski
spectra. The set σ(C(α)) is called S lodkowski spectrum of the representation α
and is denoted by σ(α). If S is the set of topological Lie generators of F , then
S lodkowski spectrum σ(α(S)) of the operator family α(S) is defined as the image
of σ(α) by the canonical projection ∆(F) → CS , λ 7→ (λ(s))s∈S .

Our main result is an infinite-dimensional version of Fainshtein’s result. We
prove the spectral mapping theorem

σ(r(a)) = r(σ(a))

for the family of limits of rational functions (in particular, polynomials, rational
functions) r = (ri)i∈I of noncommuting variables a1, . . . , an generated nilpotent
Lie algebra E, when r generates a weak quasinilpotent Banach-Lie algebra F (all
operators ad(ri) ∈ B(F) are quasinilpotent) and F is a projective Banach space.

The structure of the paper is the following. In Section 2 we recall the ultra-
power technique which is essentially used in the paper.

In Section 3, we prove that spectra σπ,k(X,d) are stable by taking the functor
hom(Y, · ), where Y is a projective Banach space, and by taking ultrapowers.

In Section 4, we define a cone Conβ(X,d) of a bounded endomorphism β
of a Banach complex (X,d) parametrized on Ω. The complex Conβ(X,d) is
parametrized on Ω × C. If Π : Ω × C → Ω is the canonical projection, then we
prove the projection theorem σπ,k(X,d) = Π(σπ,k(Conβ(X,d))), which plays the
central role in spectral mapping properties.

In Section 5, we consider S lodkowski spectra σπ,k(α) for a bounded repre-
sentation α of a Banach Lie algebra E. The sets σπ,k(α) are weak precompact as
subsets of the dual space E∗. It is known that for a finite dimensional commu-
tative Lie algebra E, the spectrum σπ,0(α) coincides with the approximate point
spectrum σap(α) of α. We show that it is not true for infinite dimensional Lie
algebra E. The difference is removed by taking ultrapowers of Banach spaces;
more precisely, we introduce ultraspectra σu

π,k(α) as a union of spectra σπ,k(αU )
by all nontrivial ultrafilters U , where αU is an ultrapower of the representation α.
It is proved that σu

π,0(α) = σap(α), and, if dim(E) < ∞, then σu
π,k(α) = σπ,k(α),

0 6 k 6 ∞.
In Section 6, we state some projection properties for spectra σπ,k(α) when

E is a quasinilpotent Banach Lie algebra. It is proved that if F is a closed ideal
of finite codimension in a quasinilpotent Banach Lie algebra E, and α[E,E] con-
sists of quasinilpotent operators, then σπ,k(α)|F = σπ,k(α|F ), where α|F is the
restriction of α to F , and σπ,k(α)|F consists of all restrictions of functionals from
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spectrum σπ,k(α) to F . For a finite-dimensional Lie subalgebra F of E, we also
prove that if E is a projective Banach space, then σπ,k(α)|F ⊆ σπ,k(α|F ).

In Section 7, we introduce the Banach algebra A of “limits of rational func-
tions” of variables generated nilpotent Lie algebra E, acting on an E-module. We
also provide examples for projective and weak quasinilpotent Banach-Lie subalge-
bras in A.

Sections 8–10 are devoted to spectral mapping properties for subalgebras of
the Banach algebra A.

2. PRELIMINARIES

As usual, N is the set of all positive integers, C is the field of complex numbers,
and `1(S) is the (Banach) space of all absolutely summable complex functions on
a set S. Let A,B,C, and D be arbitrary sets such that C ⊆ B ⊆ A, and let
f : B → D be a function. Then, f |C denotes the restriction of f on C, and if f
is extended up to a function g : A → D, then we write g = f |A. For any set of
functions L defined on B with values in D we set L|C = {f |C : f ∈ L}. For complex
normed spaces X and Y , the normed space of all bounded linear operators (with
operator norm) from X into Y is denoted by B(X,Y ). Set B(X) = B(X,X).
The kernel and the image of an operator T ∈ B(X,Y ) are denoted by N(T ) and
R(T ) respectively, and T ∗ ∈ B(Y ∗, X∗) denotes the dual operator. For a subset
M ⊆ A of an (associative) Banach algebra A with the identity element 1A, we set
Mn = {a1 · · · an : ai ∈M}. Then the union

⋃
n
Mn is the multiplicative semigroup

generated by M in A, denoted by SG(M). Let ‖M‖ = sup{‖a‖ : a ∈ M} for a
bounded set M and ρ(M) = lim

n
‖Mn‖1/n. The number ρ(M) is called the (joint)

spectral radius of the set M ([12]).
The associative hull of M in any topological algebra A with identity is de-

noted by P(M), i.e. P(M) is the set of all polynomials {p(M)} in A. We shall
use more general “functions” (on M) in A than polynomials. We define the set
of “rational functions” on M by follow Yu.V. Turovskii ([17]) as a collection of
expressions r(n)(M), n ∈ N, constructed as shown below. Let {r(0)(M)} be a
collection of all polynomials. If the collection {r(n−1)(M)} has been defined, then
we define an expression r(n)(M) as a polynomial of r(n−1)(M) and of r(n−1)(M)−1

if r(n−1)(M) is invertible. We say that a rational function of the form r(n)(M)
has order n. A subalgebra B ⊆ A is said to be a full subalgebra, if any invert-
ible element b ∈ B that is invertible in A is invertible in B. It is clear that full
subalgebras are stable by taking arbitrary intersections, and the set of all rational
functions R(M) =

⋃
n
{r(n)(M)} is the full subalgebra in A generated by M . The

closure of this subalgebra is called the closed full hull of M in A. For a homo-
morphism of unital topological algebras h : A → B one can easily observe that
h(r(M)) = r(h(M)) for any rational function r(M).

By a direct sum X⊕Y of Banach spaces X and Y we shall mean the `1-norm
sum with ‖(x, y)‖ = ‖x‖+ ‖y‖, (x, y) ∈ X ⊕ Y . The projective tensor product of
Banach spaces X and Y is denoted by X⊗̂Y . Let X be a Banach space and n ∈ N.
Assume that X⊗̂n is X⊗̂ · · · ⊗̂X (n-times), Sn is the group of all permutations
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of the set {1, . . . , n}, and ε(τ) is the sign of the permutation τ ∈ Sn. Let δτ ∈
B(X⊗̂n), δτ (x1⊗· · ·⊗xn) = xτ(1)⊗· · ·⊗xτ(n), τ ∈ Sn. We define the exterior power

ΛnX of X as the image of the projection An ∈ B(X⊗̂n), An = (n!)−1
∑
τ∈Sn

ε(τ)δτ .

Assume that x1∧· · ·∧xn = An(x1⊗· · ·⊗xn) and X⊗̂0 = Λ0X = C. One can easily
prove that, for a Banach space Y , there is an isometry between B(ΛnX,Y ) and the
space Cn(X,Y ) of all bounded skewsymmetric n-linear forms on X with values in
Y . All Banach complexes considered are assumed to be cochain and nonnegative,

i.e. a Banach complex (X,d) is a sequence 0 −→ X0 d 0

−→ X1 d1−→ · · · d
n−1

−→ Xn dn

−→
· · ·, where Xn is a Banach space and dn ∈ B(Xn, Xn+1), dn+1dn = 0, n > 0.
We omit the index n of dn if it is not cause confusion. (Semi)normed spaces of
cohomologies of the complex (X,d) are denoted by Hn(X,d), n > 0. Let Y be a
Banach space. Then B(Y, (X,d)):

0 −→ B(Y,X0)
β0

−→ B(Y,X1)
β1

−→ · · · β
n−1

−→ B(Y,Xn)
βn

−→ · · · ,

is a Banach complex, where βnT = dn · T , T ∈ B(Y,Xn). A Banach space
Y is called projective if the complex B(Y, (X,d)) is exact for any exact Banach
complex (X,d). The class of all projective Banach spaces is denoted by Proj. It
is easy to prove that Y ∈ Proj if and only if for an epimorphism of Banach spaces
T : X → Z and an operator ϕ ∈ B(Y, Z) there exist ψ ∈ B(Y,X) such that
T · ψ = ϕ. In particular, if Y1, Y2 ∈ Proj, then Y1 ⊕ Y2 ∈ Proj and Y1⊗̂Y2 ∈ Proj.
By Proposition 4.3 from [15], `1(S) ∈ Proj for arbitrary set S.

Lemma 2.1. Let Y ∈ Proj and n ∈ N, then ΛnY ∈ Proj.

Proof. It suffices to prove that for any epimorphism T : X → Z and an
n-form ω ∈ Cn(Y, Z) there exists an n-form ς ∈ Cn(Y,X) such that T · ς = ω. Let
us proceed by induction on n. For any y ∈ Y consider an (n− 1)-form

ωy ∈ Cn−1(Y, Z), ωy(y1, . . . , yn−1) = ω(y, y1, . . . , yn−1)

and an operator F ∈ B(Y,Cn−1(Y, Z)), F (y) = ωy. By induction hypothesis,
the operator Tn−1 : Cn−1(Y,X) → Cn−1(Y, Z), Tn−1h = T · h, is surjective.
Hence there exists an operator G ∈ B(Y,Cn−1(Y,X)) such that Tn−1 · G =

F . Let ς ∈ Cn(Y,X), ς(y1, . . . , yn) = n−1
n∑
i=1

(−1)i−1G(yi)(y1, . . . , ŷi, . . . , yn),

where ŷi means omission of the variable yi. Then we have (T · ς)(y1, . . . , yn) =

n−1
n∑
i=1

(−1)i−1Tn−1(G(yi))(y1, . . . , ŷi, . . . , yn) = ω(y1, . . . , yn).

Lemma 2.2. ([5], Lemma 1.2) Let X,Y, Z be Banach spaces and let S ∈
B(X,Y ), T ∈ B(Y, Z), such that TS = 0. Then, R(S) 6= N(T ) or R(T ) is not
closed, iff there exist bounded sequences {yn} ⊂ Y and {fn} ⊂ Y ∗ such that

lim
n
Tyn = 0, lim

n
S∗fn = 0, fn(yn) = 1.

Let us remind some assertions about ultrapower technique. Let S be an
infinite set and let U be a nontrivial (i.e.

⋂
M∈U

M = ∅) ultrafilter in S. The
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ultrafilter U is called to be ℵ0-incomplete (see [10] and [4]) if there exists a countable
partition {Sn : n ∈ N} of S such that Sn /∈ U for each n ∈ N. The filter of
complements of finite subsets in N is called the Fréchet filter. Any nontrivial
ultrafilter on N is ℵ0-incomplete because it is majorized by the Fréchet filter.
By [4], there exist ℵ0-incomplete ultrafilters in any infinite set S. In the sequel,
by an ultrafilter we will mean a nontrivial ℵ0-incomplete ultrafilter, if not said
otherwise. Let X be a Banach space and let `∞(S,X) a Banach space of all
bounded families (xs)s∈S from X with sup-norm. For an ultrafilter U on I, let
NU (X) be a closed subspace in `∞(S,X) which consists of all families (xs)s∈S
with lim

U
xs = 0. The ultrapower of X following U is called the quotient space

XU = `∞(S,X)/NU (X). The coset of (xs)s∈S ∈ `∞(S,X) in XU is denoted by
[xs]. One can easily check that the norm ‖[xs]‖ is lim

U
‖xs‖. The space X is

contained in XU as the subspace generated by constant families of `∞(S,X), and
XU = X iff X is finite dimensional space (see Proposition 7 from [4]). For a subset
C ⊆ X, the ultrapower of C following U is CU = {[cs] ∈ XU : cs ∈ C}. Let us
consider ultrafilters U and V on S and T respectively. LetAt = {s ∈ S : (s, t) ∈ A},
t ∈ T , and TA = {t ∈ T : At ∈ U} for A ⊆ S×T . The production U ×V is defined
as the family of subsets A ⊆ S×T for which TA ∈ V. By [4], U×V is an ultrafilter.

Lemma 2.3. ([4]) Let U and V be nontrivial ultrafilters on S and T , respec-
tively. If one of them is ℵ0-incomplete, then U × V is also ℵ0-incomplete. More-
over, the canonical operator XU×V → (XU )V , [x(s,t)](s,t)∈S×T 7→ [[x(s,t)]s∈S ]t∈T ,
is an isometric isomorphism.

An arbitrary operator T ∈ B(X,Y ) between Banach spaces is extended up
to TU ∈ B(XU , YU ), TU [xs] = [Txs] and ‖TU‖ = ‖T‖. The following assertion was
proved in Propositions 15, 16, 20, 22 from [4].

Lemma 2.4. Let T ∈ B(X,Y ). Then N(T )U ⊆ N(TU ), R(TU ) ⊆ R(T )U and
R(T ) = Y ∩ R(TU ). Moreover, the following statements are equivalent:

(i) R(T ) is closed;

(ii) R(TU ) is closed;

(iii) N(T )U = N(TU );

(iv) R(TU ) = R(T )U .



590 Anar Dosiyev

3. S LODKOWSKI SPECTRA

In this section we will introduce S lodkowski spectra for parametrized complexes
and prove that these spectra are stable by taking the functor hom(Y, · ) (where Y
is a projective Banach space) and by taking ultrapowers.

Let Ω be a topological space and X = {Xn : n > 0} be a collection of Banach
spaces. Suppose that there exists a collection of continuous maps d ={dn : n > 0},
dn : Ω → B(Xn, Xn+1), such that (X,d(λ)) is a Banach complex for each λ ∈ Ω,
where d(λ) = {dn(λ) : n > 0}. The collection of Banach complexes (X,d(λ)),
λ ∈ Ω, is called a Banach complex parametrized on Ω. Shortly, we say that an
Ω-Banach complex (X,d) is given. A morphism f : (X,d) → (Y,d′) of Ω-Banach
complexes is usually defined as a collection of continuous maps f ={fn : n > 0},
fn : Ω → B(Xn, Y n), such that f(λ) : (X,d(λ)) → (Y,d′(λ)) is a morphism of
Banach complexes. A short sequence of Ω-Banach complexes 0 −→ (X,d) f−→
(Y,d′)

g−→ (Z,d′′) −→ 0 is said to be exact if all sequences of Banach complexes

0 −→ (X,d(λ))
f(λ)−→ (Y,d′(λ))

g(λ)−→ (Z,d′′(λ)) −→ 0, λ ∈ Ω,

are exact. Let (X,d) be a Ω-Banach complex. For any integer p > 0, we define
the following set Σp(X,d) = {λ ∈ Ω : Hp(X,d(λ)) 6= {0}}, where Hp(X,d(λ)) is
the p-th cohomology space of (X,d(λ)). Let σπ,k(X,d) be the set of all λ ∈ Ω for

which λ ∈
k⋃
p=0

Σp(X,d) or R(dk(λ)) is not closed, where 0 6 k 6 ∞.

Definition 3.1. The collection of all σπ,k(X,d), 0 6 k 6 ∞, is called the
family of S lodkowski spectra of the Ω-Banach complex (X,d). The set σπ,∞(X,d) =
∞⋃
p=0

Σp(X,d) is called Taylor spectrum of (X,d).

In the sequel, σ(X,d) will denote one of spectra σπ,k(X,d), 0 6 k 6 ∞, if
not specified otherwise. If Y is a Banach space, then we have a new Ω-Banach
complex B(Y, (X,d(λ))) (with morphisms βp(λ)T = dp(λ) ·T ), λ ∈ Ω, denoted by
B(Y, (X,d)).

Theorem 3.2. If (X,d) is an Ω-Banach complex and Y is a Banach space,
then σ(X,d) ⊆ σ(B(Y, (X,d))). Moreover,

(3.1) σ(X,d) = σ(B(Y, (X,d)))

provided Y ∈ Proj.

Proof. Let λ ∈ σ(X,d). By Lemma 2.2, there exist bounded sequences
{xn} ⊂ Xp and {fn} ⊂ Xp∗ such that lim

n
dp(λ)xn = 0, lim

n
dp−1(λ)∗fn = 0,

fn(xn) = 1, for some p. Let f ∈ Y ∗, ‖f‖ = 1, and y ∈ Y, such that f(y) = 1.
Then the sequences {f ⊗ xn} ⊂ B(Y,Xp) and {Fn} ⊂ B(Y,Xp)∗ are bounded,
where Fn(u) = u∗(fn)y. Moreover, lim

n
βp(λ)f ⊗ xn = 0 and lim

n
βp−1(λ)∗Fn = 0.

Whence, λ ∈ σ(B(Y, (X,d))) by virtue of Lemma 2.2.
Let Y ∈ Proj and λ /∈ σ(X,d) = σπ,k(X,d). Thus the complex (X,d(λ))

is exact in the first k terms and R(dk(λ)) is closed. Then B(Y, (X,d(λ))) is also
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exact in the first k terms and R(βk(λ)) ⊆ B(Y,R(dk(λ))). Moreover, if T ∈
B(Y,R(dk(λ))), then there exists an operator G ∈ B(Y,Xk) such that dk(λ) ·G =
T . So, βk(λ)G = T , i.e. R(βk(λ)) = B(Y,R(dk(λ))) and R(βk(λ)) is closed. Thus,
λ /∈ σπ,k(B(Y, (X,d))) and we have proved (3.1).

Let (X,d) be an Ω-Banach complex, U an ultrafilter on an infinite set S and
let dnU (λ) = (dn(λ))U . Then we obtain a new Ω-Banach complex (XU ,dU ):

0 −→ X0
U
d0U (λ)−→ X1

U
d1U (λ)−→ · · ·

dn−1
U (λ)
−→ Xn

U
dn
U (λ)−→ · · · , λ ∈ Ω,

which we call an ultrapower of (X,d).

Lemma 3.3.

σπ,k(XU ,dU ) =
k⋃
p=0

Σp(XU ,dU ), 0 6 k 6 ∞.

Proof. By Definition 3.1,
k⋃
p=0

Σp(XU ,dU ) ⊆ σπ,k(XU ,dU ). For all p, 0 6 p 6

k, let λ /∈ Σp(XU ,dU ). Let us prove that R(dk(λ)U ) is closed and consequently
λ /∈ σπ,k(XU ,dU ). Indeed, N(dk(λ)U ) = R(dk−1(λ)U ), in particular R(dk−1(λ)U )
is closed. By Lemma 2.4, R(dk−1(λ)) is also closed and

R(dk−1(λ)) = Xk ∩ R(dk−1(λ)U ) = Xk ∩N(dk(λ)U ) = N(dk(λ)).

Further, N(dk(λ))U = R(dk−1(λ))U = R(dk−1(λ)U ) = N(dk(λ)U ). By using
Lemma 2.4 again, we obtain that R(dk(λ)U ) is closed.

Theorem 3.4.

σπ,k(X,d) = σπ,k(XU ,dU ), 0 6 k 6 ∞.

Proof. Let λ ∈ Σp(X,d) for some p. If R(dp−1(λ)) is not closed, then by
Lemma 2.4 R(dp−1(λ)U ) is also not closed, i.e. λ ∈ Σp(XU ,dU ). Thus, we can
assume that R(dp−1(λ)) is closed. Let x ∈ N(dp(λ)) \R(dp−1(λ)). By Lemma 2.4,
Xp ∩R(dp−1(λ)U ) = R(dp−1(λ)), thus x /∈ R(dp−1(λ)U ). But, x ∈ N(dp(λ))U and
N(dp(λ))U ⊆ N(dp(λ)U ), i.e., λ ∈ Σp(XU ,dU ).

Conversely, let λ ∈ σπ,k(XU ,dU ). By using Lemmas 2.4 and 3.3, we can as-
sume that λ ∈ Σp(XU ,dU ) and images R(dp−1(λ)U ), R(dp(λ)U ) are closed for some
p, 0 6 p 6 k. By Lemma 2.4, we have N(dp(λ))U = N(dp(λ)U ), R(dp−1(λ))U =
R(dp−1(λ)U ). Let [xs] ∈ N(dp(λ)U ) \ R(dp−1(λ)U ), where xs ∈ N(dp(λ)). Then
xs0 /∈ R(dp−1(λ)) for some s0 ∈ S. Thus, xs0 ∈ N(dp(λ)) \ R(dp−1(λ)), i.e.,
λ ∈ σπ,k(X,d).

Corollary 3.5. If 0 −→ (X,d) f−→ (Y,d′)
g−→ (Z,d′′) −→ 0 is a short

exact sequence of Ω-Banach complexes, then σ(Y,d′) ⊆ σ(X,d) ∪ σ(Z,d′′).

Proof. Let λ ∈ σπ,k(Y,d′). By using Theorem 3.4 and Lemma 3.3 we can
assume that λ ∈ Σi(YU ,d′U ) for some i, 0 6 i 6 k. Then Hi(YU ,d′U (λ)) 6= 0. It
remains to use the long exact sequence of cohomologies

· · · −→ Hi(XU ,dU (λ)) −→ Hi(YU ,d′U (λ)) −→ Hi(ZU ,d′′U (λ)) −→ · · ·
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induced by the short exact sequence of complexes

0 −→ (XU ,dU (λ))
f(λ)U−→ (YU ,d′U (λ))

g(λ)U−→ (ZU ,d′′U (λ)) −→ 0.

Then Hi(XU ,dU (λ)) 6= 0 or Hi(ZU ,d′′U (λ)) 6= 0.

4. THE PROJECTION PROPERTY

In this section, we prove a projection theorem for S lodkowski spectra of Ω-Banach
complexes.

Let (X,d) be a Ω-Banach complex and β = {βp ∈ B(Xp)} a bounded
endomorphism of (X,d) (i.e., dp(λ)βp = βp+1d

p(λ) for any λ ∈ Ω and p). Let
β − µ = {βp − µ ∈ B(Xp)}, µ ∈ C. The spectrum σ(β) of β is defined as the
union of ordinary spectra σ(βp). The Ω-Banach complex Con((X,d), β − µ) =
{Con((X,d(λ)), β−µ), λ ∈ Ω} is called a cone of the endomorphism β−µ, where
Con((X,d(λ)), β − µ) is the following Banach complex:

0 −→ X0 γ
0(λ,µ)−→ X1 ⊕X0 γ

1(λ,µ)−→ · · · γ
p−1(λ,µ)−→ Xp ⊕Xp−1 γ

p(λ,µ)−→ · · · ,

where, γp(λ, µ)(x, y) = (dp(λ)x,−dp−1(λ)y+ (βp−µ)x), (x, y) ∈ Xp⊕Xp−1. If Ω
reduces to one point, then this notion is reduced to the usual notion of cone of a
complex. The collection of Banach complexes Con((X,d(λ)), β−µ), (λ, µ) ∈ Ω×C
generates a Ω×C-Banach complex (where Ω×C is equipped with the direct product
topology) denoted by Conβ(X,d).

Lemma 4.1. Let U be an ultrafilter. Then Conβ(X,d)U = ConβU (XU ,dU ).

Proof. It is clear that the canonical linear operator

fp : (Xp ⊕Xp−1)U → Xp
U ⊕Xp−1

U , fp[(xs, ys)] = ([xs], [ys])

is an isometric morphism. It remains to check that fp+1γ
p(λ, µ)U = γpU (λ, µ)fp,

where γpU (λ, µ) is the differential of the complex Con((XU ,d(λ)U ), βU − µ).

Lemma 4.2. Assume that λ ∈ Σp(X,d) and R(dp−1(λ)) is closed. Then
there exists µ ∈ C such that λ ∈ Σp(Con((X,d), β − µ)) or R(γp(λ, µ)) is not
closed.

Proof. Let Tp ∈ B(Zp, Xp+1), Tpx∼ = dp(λ)x, where Zp = Xp/R(dp−1(λ)).
Then N(Tp) 6= 0 and βp+1Tp = Tpβ

∼
p , where β∼p ∈ B(Zp), β∼p x

∼ = (βpx)∼. Thus
the kernel N(Tp) is invariant under β∼p . By using that of the approximate point
spectrum σap(β∼p ) of β∼p is nonvoid, we see that there exist a number µ ∈ C and a
sequence of vectors x∼n ∈ N(Tp), ‖x∼n ‖ = 1, such that lim

n
(β∼p −µ)x∼n = 0. Then one

may find a sequence of vectors {yn} ⊂ Xp−1 such that lim
n

(βp−µ)xn−dp−1(λ)yn =
0. A direct calculation shows that

γp(λ, µ)(xn, yn) = (0, (βp − µ)xn − dp−1(λ)yn) → 0, n→∞.
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If λ /∈ Σp(Con((X,d), β−µ)), then N(γp(λ, µ)) = R(γp−1(λ, µ)) and for the norm
rn = ‖(xn, yn)∼‖ of (xn, yn)∼ ∈ Xp ⊕Xp−1/R(γp−1(λ, µ)) we have

rn = inf
(z,w)∈Xp−1⊕Xp−2

‖(xn, yn) + (dp−1(λ)z,−dp−2(λ)w + (βp−1 − µ)z)‖

> inf
z∈Xp−1

‖xn + dp−1(λ)z‖ = ‖x∼n ‖ = 1.

Thus, inf
n∈N

rn > 1 and lim
n
γp(λ, µ)(xn, yn) = 0, i.e., the image of the operator

Xp ⊕Xp−1/N(γp(λ, µ)) → Xp+1 ⊕Xp

induced by the operator γp(λ, µ) is not closed. Then the image of the operator
γp(λ, µ) is also not closed.

Theorem 4.3. Let (X,d) be a Ω-Banach complex and β be a bounded en-
domorphism of (X,d). If Π : Ω× C → Ω is the canonical projection, then

σ(X,d) = Π(σ(Con
β

(X,d))).

Proof. Let σ = σπ,i, where 0 6 i 6 ∞, and let U an ultrafilter. By Theo-
rem 3.4 and Lemma 4.1, we have σ(Conβ(X,d)) = σ(ConβU (XU ,dU )), and also

σ(Con
βU

(XU ,dU )) =
i⋃

p=0

Σp(Con
βU

(XU ,dU ))

by Lemma 3.3. Let (λ, µ) ∈ Σp(ConβU (XU ,dU )) for some p, 0 6 p 6 i. Then
λ ∈ Σp(Con((XU ,dU ), βU − µ)). By using the S lodkowski argument in the proof
of Theorem 1.7 from [13], infer Σp(Con((XU ,dU ), βU − µ)) ⊆ Σp−1(XU ,dU ) ∪
Σp(XU ,dU ). Now, by using Theorem 3.4 again, we obtain λ ∈ σ(X,d). Thus
Π(σ(Conβ(X,d))) ⊆ σ(X,d).

Let us prove the opposite inclusion. Let λ ∈ σ(X,d). By Theorem 3.4

and Lemma 3.3, σ(X,d) = σ(XU ,dU ) =
i⋃

k=0

Σk(XU ,dU ). Let p (0 6 p 6 i)

be the lowest number such that λ ∈ Σp(XU ,dU ). Then R(dp−1(λ)U ) is closed.
Indeed, if p = 0 then there is nothing to prove. Let p > 0 and R(dp−1(λ)U ) is
not closed. Then, by Definition 3.1, λ ∈ σπ,p−1(XU ,dU ) and, by Lemma 3.3,

λ ∈
p−1⋃
k=0

Σk(XU ,dU ), which contradicts to the choice of the number p. Now,

using Lemma 4.2 there exists a µ ∈ C, such that (λ, µ) ∈ σπ,p(ConβU (XU ,dU )) ⊆
σπ,i(ConβU (XU ,dU )). By Lemma 4.1 and Theorem 3.4, σπ,i(ConβU (XU ,dU )) =
σπ,i(Conβ(X,d)), i.e., (λ, µ) ∈ σπ,i(Conβ(X,d)).
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5. ULTRASPECTRA OF BANACH LIE ALGEBRA REPRESENTATIONS

In this section, we introduce the Banach complex generated by a Banach module
over a Banach Lie algebra, parametrized on the character space of this Lie algebra.
We obtain a condition of nonvoidness of spectra of this parametrized Banach
complex.

A Banach Lie algebra (shortly, a B-L algebra) E is a Banach space and a
Lie algebra with continuous Lie brackets [ · , · ] : E × E → E, (a, b) 7→ [a, b]. A
Banach module over a B-L algebra E (shortly, a Banach E-module) is a pair (X,α)
consisting of a Banach space X and a continuous representation α : E → B(X).
A functional λ ∈ E∗ is called a character of E if λ[E,E] = 0. The space of
all characters (with the weak topology) of a B-L algebra E is denoted by ∆(E)
(⊆ E∗). Let us consider the cochain Banach complex generated by the Banach
E-module (X,α):

C ·(α) : 0 → X
d 0

→ B(E,X) d1→ · · · d
n−1

→ B(ΛnE,X) d
n

→ · · · ,

with the differential

dnω(a1 ∧ · · · ∧ an+1) =
n+1∑
i=1

(−1)i+1α(ai)ω(a1 ∧ · · · ∧ âi ∧ · · · ∧ an+1)

+
∑
i<j

(−1)i+jω([ai, aj ] ∧ a1 ∧ · · · ∧ âi ∧ · · · ∧ âj ∧ · · · ∧ an+1),

where ω ∈ B(ΛnE,X), ai ∈ E. We denote the ∆(E)-Banach complex C ·(α −
λ), λ ∈ ∆(E), by C(α). If (X,α) and (Y, β) are Banach E-modules and ϕ :
(X,α) → (Y, β) is a bounded E-homomorphism (ϕ(α(a)x) = β(a)ϕ(x)), then for
each λ ∈ ∆(E) it is induced a morphism of Banach complexes ϕ·(λ) : C ·(α−λ) →
C ·(β − λ), ϕ·(λ)ω = ϕω, i.e., there is a morphism of ∆(E)-Banach complexes
ϕ◦ : C(α) → C(β), where ϕ◦ = {ϕ·(λ)}.

Lemma 5.1. Let 0 → (X,α)
ϕ−→ (Y, β)

ψ−→ (Z, γ) → 0 be an exact sequence
of Banach E-modules and E-homomorphisms which is a C-split sequence (i.e.,
N(ψ) is a complemented subspace). Then the sequence of ∆(E)-Banach complexes

0 → C(α)
ϕ◦−→ C(β)

ψ◦−→ C(γ) → 0

is exact.

Proof. By assumption, for each λ ∈ ∆(E) the sequence of Banach complexes

0 → C ·(α− λ)
ϕ·(λ)−→ C ·(β − λ)

ψ·(λ)−→ C ·(γ − λ) → 0 is exact. But, this means that
the required sequence of ∆(E)-Banach complexes is exact.
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Definition 5.2. Let (X,α) be a Banach E-module and σ(C(α)) be one of
spectra σπ,k(C(α)), 0 6 k 6 ∞. We call this set a S lodkowski spectrum (the Taylor
spectrum, if k = ∞) of the representation α and denote it by σ(α).

The point spectrum σp(α) (approximate point spectrum σap(α)) of a rep-
resentation α : E → B(X) is defined (see [11] and [17]) as the set of functions
λ : E → C for which there exists x ∈ X, such that, α(a)x = λ(a)x (there exists
a net (xγ) ⊆ X, ‖xγ‖ = 1, such that, (α(a) − λ(a))xγ → 0) for all a ∈ E, i.e.,
σp(α) = Σ0(C(α)). If λ ∈ σap(α), then λ ∈ E∗ and λ(a) ∈ σ(α(a)), a ∈ E. More-
over, α([a, b])xγ → 0 for all a, b ∈ E, i.e. λ ∈ ∆(E). For any S ⊆ B(X), we define
σp(S) and σap(S) as the corresponding spectra of the identical representation of
the closed Lie subalgebra in B(X) generated by S. It is clear that σp(α(E)) ·α =
σp(α), σap(α(E)) · α = σap(α) and σp(α) ⊆ σπ,0(α) ⊆ σap(α). If E is finite-
dimensional, then σπ,0(α) = σap(α). In general, σπ,0(α) 6= σap(α). Indeed, let
us consider the space `1 = `1(N) with canonical base {fn} as a commutative B-L
algebra and a bounded representation α : `1 → B(H), α(fn) = Pn, in a separable
Hilbert space H, where Pn is an orthogonal projection on the linear hull of the
first n vectors of the canonical base {em} of H. Then lim

m
Pnem = 0, n > 1, i.e.,

0 ∈ σap(α). But 0 /∈ σπ,0(α). Indeed, take x =
∞∑
m=1

amem ∈ H. Then

‖d 0x‖ = sup
n∈N

‖(d 0x)fn‖H = sup
n∈N

‖Pnx‖H = sup
n∈N

( n∑
m=1

|am|2
)1/2

> ‖x‖H ,

where d 0 : H → B(`1,H), (d 0x)fn = Pnx, is the differential of the complex C ·(α).
Thus R(d 0) is closed, i.e., 0 /∈ σπ,0(α).

Now, let U be an ultrafilter, and let XU be the corresponding ultrapower
of the Banach space X. Then the representation α : E → B(X) induces the
representation αU : E → B(XU ), αU (a) = α(a)U , i.e., (XU , αU ) is also Banach
E-module.

Definition 5.3. Let (X,α) be a Banach E-module and let σ be a S lodkowski
spectrum. We define the ultraspectrum σu(α) of the representation α as the union
of spectra σ(αU ) by all ultrafilters U , and we write σu(α) = σu

π,k(α), if σ = σπ,k.
The union of all Σ0(C(αU )) is called the ultrapoint spectrum σup(α) .

Lemma 5.4. If dim(E) <∞, then C ·(α)U = C ·(αU ) and σu(α) = σ(α).

Proof. Let ϕn : B(ΛnE,X)U → B(ΛnE,XU ), (ϕn[ωi])u = [ωi(u)], u ∈ ΛnE,
be a linear operator. If dnU is the differential of the complex C ·(αU ), then one
can easily check that ϕn+1(dn)U = dnUϕn. It remains to note that the condition
dim(E) <∞ implies that ϕn is an isometriy for all n (see [10]).

Theorem 5.5. Let E be a B-L algebra and (X,α) a Banach E-module.
Then

σu
π,0(α) = σup(α) = σap(α).

Proof. It is clear that σup(α) ⊆ σu
π,0(α)∩σap(α). Let us prove that σap(α) ⊆

σup(α). Let λ ∈ σap(α(E)). We have to prove that λα ∈ σup(α). There exists a
family of vectors {xs}s∈S ⊆ X, such that ‖xs‖ = 1 and lim

F
(T − λ(T ))xs = 0 for
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any T ∈ α(E), where F is some filter on the index set S. If U is an ultrafilter
in S majorizing F , then lim

U
(T − λ(T ))xs = 0, T ∈ α(E). If U is a trivial filter,

then there exists a joint eigenvector x ∈ X, ‖x‖ = 1, (T − λ(T ))x = 0, T ∈ α(E).
Then, for an ℵ0-incomplete ultrafilter V, (α(a)V − λ(α(a)))[x] = 0, a ∈ E, i.e.,
d 0
V(λα)[x] = 0, where d 0

V(λα) is the differential of the complex C ·(αV − λα), or
λα ∈ Σ0(C(αV)).

Now, suppose U is nontrivial (not necessarily ℵ0-incomplete) ultrafilter. Then
S is an infinite set. Let us replace U with an ℵ0-incomplete ultrafilter. Let V be an
ℵ0-incomplete ultrafilter in N. By Lemma 2.3, U×V is ℵ0-incomplete. Now assume
that x(s,n) = xs, n ∈ N. Then, for any T ∈ α(E), we have lim

U×V
(T−λ(T ))x(s,n) = 0,

i.e., (TU×V − λ(T ))[x(s,n)] = 0 and λα ∈ σup(α).
It remains to prove that σu

π,0(α) ⊆ σup(α). Let λ ∈ σπ,0(αU ) \ Σ0(C(αU )),
where U is an ultrafilter in some set S. Then there exists a sequence {[xns ]} ⊂
XU , ‖[xns ]‖ = 1, such that lim

n
[(α(a) − λ(a))xns ] = 0. Let V be an ultrafilter in

N majorizing the Fréchet filter. It is clear that lim
V

[(α(a) − λ(a))xns ] = 0. Let

us consider the representation (αU )V : E → B((XU )V). By Lemma 2.3 XU×V =
(XU )V and αU×V = (αU )V . Let [[xns ]] ∈ XU×V . Then ‖[[xns ]]‖ = lim

V
‖[xns ]‖ = 1

and

‖[[(α(a)− λ(a))xns ]]‖ = lim
U×V

‖(α(a)− λ(a))xns ‖ = lim
V
‖[(α(a)− λ(a))xns ]‖ = 0.

Thus d 0
U×V(λ)[[xns ]] = 0 or λ ∈ Σ0(C(αU×V)).

Corollary 5.6. Let E be a solvable B-L algebra and (X,α) be a Banach
E-module. Then the ultraspectrum σu(α) is nonvoid.

Proof. Indeed, by assumption, α(E) is a solvable Lie algebra of operators.
By [7], σap(α(E)) 6= ∅. Then, also, σap(α) 6= ∅. According to Theorem 5.5,
σu
π,0(α) = σap(α). It remains to note that σu

π,0(α) ⊆ σu(α).

Theorem 5.7. Let (X,α) be a Banach E-module. There exists an ultrafilter
U , such that

σp(αU ) = σπ,0(αU ) = σap(α).

In particular, σu
π,0(α) = σπ,0(αU ).

Proof. Let S be the set of pairs s = (N,n−1), where N is a finite subset in E
and n ∈ N. Assume s1 6 s2, if N1 ⊆ N2 and n1 6 n2, where si = (Ni, n−1

i ). Then
(S,6) is a partially ordered set and for any s1, s2 ∈ S, there exists s3 ∈ S, such that
sup{s1, s2} 6 s3. Thus the set of all sections Γ(s), s ∈ S (Γ(s) = {γ ∈ S : s 6 γ}),
generates a filter base in S. Let U be an ultrafilter majorizing this filter base. Then
U is ℵ0-incomplete. Indeed, let Sn = {s ∈ S : s = (N,n−1)}, n ∈ N. Undoubtedly,
S =

⋃
n
Sn and Sn ∩ Γ(sn) = ∅ for any n ∈ N, where sn = (N, (n + 1)−1), i.e.,

Sn /∈ U .
Let us prove that σap(α) ⊆ σp(αU ). Let 0 ∈ σap(α). By definition, for

every finite subset N ⊂ E and n ∈ N, there exists a vector x ∈ X, ‖x‖ = 1,
such that ‖α(N)x‖ < n−1. Assume xs = x, where s = (N,n−1). Then for each
a ∈ E, α(a)xs → 0 following by the section filter in S. Then lim

U
α(a)xs = 0 or
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α(a)U [xs] = 0, a ∈ E, and ‖[xs]‖ = 1, i.e. 0 ∈ σp(αU ). Thus σap(α) = σp(αU ).
By Theorem 5.5, σπ,0(αU ) = σu

π,0(α).

6. QUASINILPOTENT B-L ALGEBRAS

In this section, we establish projection properties of spectra σπ,k(α), 0 6 k 6 ∞,
of a representation α of a quasinilpotent B-L algebra E. A Banach-Lie algebra E
with quasinilpotent operators ad(a) ∈ B(E), ad(a)b = [a, b] (a ∈ E) of the adjoint
representation of E is called a quasinilpotent B-L algebra (see [18]). In the sequel,
we shall use B-L algebras for which σ(ad(a)) = 0 not for all a ∈ E but only
for elements a ∈ S in some set S of Lie topological generators of E (i.e., the Lie
subalgebra generated by S is dense in E). We call such algebras weak quasinilpotent
B-L algebras. In practice, it is convenient to check weak quasinilpotentness than
its quasinilpotentness, especially for finitely generated Banach Lie algebras (see
Examples 7.7, 7.8).

For a B-L algebra E and for any n > 0, the space ΛnE is the Banach E-

module via the representation Tn : E → B(ΛnE), (Tna)(b1 ∧ · · · ∧ bn) =
n∑
i=1

b1 ∧

· · · ∧ bi−1 ∧ ad(a)bi ∧ bi+1 ∧ · · · ∧ bn. Moreover, if (X,α) is a Banach E-module,
then the space B(ΛnE,X) is also a Banach E-module via the representation θn :
E → B(B(ΛnE,X)), θn(a) = Lα(a) −RTn(a), where Lα(a) and RTn(a) are the left
and right multiplication operators.

Lemma 6.1. Let E be a B-L algebra. If σ(ad(a)) = {0} for some a ∈ E, then
σ(Tn(a)) = {0}. Moreover, σ(θn(a)) = σ(α(a)) for a Banach E-module (X,α).

Proof. Let adi(a) = 1 ⊗ · · · ⊗ 1 ⊗ ad(a) ⊗ 1 ⊗ · · · ⊗ 1 ∈ B(E⊗̂n), 1 6 i 6 n,

where ad(a) is in the i-th place, and let Sn(a) =
n∑
i=1

adi(a), a sum of mutually

commuting operators. By assumption, σ(adi(a)) = {0}. Then σ(Sn(a)) = {0}.
One can easily check that AnSn(a) = Sn(a)An, where An is the projection on
ΛnE defined in Section 2. Moreover, Tn(a) is the restriction of the operator Sn(a)
to the invariant subspace ΛnE. Consequently, σ(Tn(a)) = {0}.

Let (X,α) be a Banach E-module. Since [Lα(a), RTn(a)] = 0 and RTn(a) is a
quasinilpotent operator, it follows that σ(θn(a)) = σ(Lα(a)) = σ(α(a)) by virtue
of the spectral (for instance, Taylor spectrum of commuting families) mapping
theorem.

It is well known that (see 3.1 of [8]) the following formulas

dnθn(a) = θn+1(a)dn,(6.1)
dn−1in(a) + in+1(a)dn = θn(a),(6.2)

θn−1(a)in(b)− in(b)θn(a) = in([a, b])(6.3)

are true, where dn is the differential of the complex C ·(α) and in(a) : B(ΛnE,X) →
B(Λn−1E,X), is defined by (in(a)ω)b = ω(a ∧ b), which is a homotopic operator.
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Lemma 6.2. Let E be a quasinilpotent B-L algebra. If λ ∈ σ(α), then λ(a) ∈
σ(α(a)), a ∈ E. In particular, the spectrum σ(α) is precompact.

Proof. By Lemma 6.1, σ(θn(a)) = σ(α(a)), n > 0. If λ(a) /∈ σ(α(a)), then

λ(a) /∈
∞⋃
n=0

σ(θn(a)). By (6.2), we have dn−1(λ)in(a)+in+1(a)dn(λ) = θn(a)−λ(a),

where dn(λ) is the differential of the complex C ·(α − λ). Since θn(a) − λ(a) is
invertible, so λ /∈ Σn(C(α)) by (6.1). This led to a contradiction, since λ ∈ σ(α).
Thus λ(a) ∈ σ(α(a)) for every a ∈ E. In particular, σ(α) is identified with the
subset of

∏
a∈E

σ(α(a)), i.e., σ(α) is a weak precompact subset in E∗.

Lemma 6.3. Let E be a B-L algebra and let (X,α) be a Banach E-module.
Assume F is a closed ideal in E of codimension one and e ∈ E \ F . Then
Cn(E,X) = Cn(F,X) ⊕ Cn−1(F,X) for n > 0. The subspace Cn(F,X) is in-
variant under the operator θn(e) and

C ·(α) = Con(C ·(α|F ), θ(e)),

where θ(e) = {θn(e)}.

Proof. By assumption, E = C e⊕ F . We define a bounded linear operator

fn : Cn(E,X) → Cn(F,X)⊕ Cn−1(F,X), fn(χ) = (χ|F , (in(e)χ)|F ),

where χ|F and (in(e)χ)|F are restrictions of the corresponding forms to F . It is
clear that N(fn) = {0}. Let (ω, υ) ∈ Cn(F,X)⊕ Cn−1(F,X) and

χ(c1e+ u1, . . . , cne+ un) = ω(u1, . . . , un) +
n∑
i=1

(−1)i+1ciυ(u1, . . . ûi, . . . , un),

where ui ∈ F, ci ∈ C. One can easily check that χ ∈ Cn(E,X) and χ|F = ω,
(in(e)χ)|F = υ. Thus Cn(F,X) is identified with a complemented subspace in
Cn(E,X). Let us prove that Cn(F,X) is invariant under the operator θn(e).
Take ω ∈ Cn(F,X) and let

ξ(u1, . . . , un) = α(e)ω(u1, . . . , un) +
n∑
i=1

(−1)i+1ω([e, ui], u1, . . . , un).

It is clear that ξ ∈ Cn(F,X) and, if χ = f−1
n (ω, 0), then (θn(e)χ)|F = ξ. Assume

that θn(e)ω = ξ. Let d and d′ be the differentials of complexes C ·(α) and C ·(α|F ),
correspondingly. It is clear that (dχ)|F = d′(χ|F ), and by (6.1) d′θn(e)(χ|F ) =
θn(e)d′(χ|F ), χ ∈ Cn(E,X), i.e. θ(e) = {θn(e)} is an endomorphism of the
complex C ·(α|F ). By (6.2),

(in+1(e)dχ)|F = (θn(e)χ)|F − (din(e)χ)|F = θn(e)(χ|F )− d′(in(e)χ|F ).

Thus, fn+1dχ = (d′(χ|F ), −d′(in(e)χ|F ) + θn(e)(χ|F )) = γfnχ, where γ is the
differential of the cone Con(C ·(α|F ), θ(e)), i.e., the family {fn} implements an
isomorphisms of the required complexes.
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Remark 6.4. We can identify Cn(E,X) = Cn(F,X)⊕Cn−1(F,X) for each
n. Then Cn(F,X) is invariant under operators θn(a), a ∈ E, i.e. Cn(F,X) is a
closed E-submodule in Cn(E,X). One may prove that Cn−1(F,X) is also E-
submodule. Indeed, if υ ∈ Cn−1(F,X), then there exists χ ∈ Cn(E,X) such
that χ|F = 0 and υ = (in(e)χ)|F . By using (6.3) we obtain that θn−1(a)υ =
(θn−1(a)in(e)χ)|F = (in(e)θn(a)χ)|F + (in([a, e])χ)|F = (in(e)θn(a)χ)|F ([a, e] ∈
F ), for each a ∈ E.

Theorem 6.5. Let E be a quasinilpotent B-L algebra and F a closed ideal
in E of finite codimension, and let (X,α) be a Banach E-module. Then σ(α)|F ⊆
σ(α|F ) and if α[E,E] consists of quasinilpotent operators, then σ(α)|F = σ(α|F ).

Proof. It is clear that E/F is a quasinilpotent B-L algebra and, by Engel
theorem (see 1.3.7 of [8]), it is a finite dimensional nilpotent Lie algebra. Thus
we may suppose that the codimension of F is one. Let λ ∈ σ(α) and e ∈ E \ F .
By Lemma 6.3, C ·(α − λ) = Con(C ·((α − λ)|F ), θ(e) − λ(e)). Then, λ|F ∈ ∆(F )
and (λ|F , λ(e)) ∈ σ(Conθ(e)(C(α|F ))). By Theorem 4.3, λ|F ∈ σ(C(α|F )), i.e.
λ|F ∈ σ(α|F ).

Conversely, let µ ∈ σ(α|F ) and α[E,E] consist of quasinilpotent operators.
Since [E,E] ⊆ F and F is a quasinilpotent B-L algebra, so by Lemma 6.2, µ(a) = 0
for all a ∈ [E,E]. Then any linear extension of the functional µ up to E is a
character of E. By Theorem 4.3, (µ, c) ∈ σ(Conθ(e)C(α|F )) for some c ∈ C. Let
λ(ze+ u) = zc+ µ(u), z ∈ C, u ∈ F . By Lemma 6.3, λ ∈ σ(α) and λ|F = µ.

Now, we prove the inclusion σ(α)|F ⊆ σ(α|F ) for finite-dimensional Lie sub-
algebras F of E. We start with necessary lemmas.

Lemma 6.6. Let E be a B-L algebra, (X,α) a Banach module and let Y ∈
Proj. Then, σ(Lα) = σ(α), where Lα : E → B(B(Y,X)), Lα(a) = Lα(a), is the
left regular representation.

Proof. By assumption, there exists a canonical isomorphism between Banach
complexes C ·(Lα) and B(Y,C·(α)). It remains to use Theorem 3.2.

Lemma 6.7. Let E be a quasinilpotent B-L algebra, F a finite dimensional
Lie subalgebra in E, and let (X,α) be a Banach E-module. If E ∈ Proj, then
σ(θn|F ) = σ(α|F ) for all n.

Proof. By Engel theorem, F is a nilpotent Lie algebra. First, demonstrate
that σ(θn|F ) = σ(Lα|F ). Let δ1 = Lα|F and δ2 = −RTn

|F be the left and
right regular representations of the Lie algebra F in the space B(B(ΛnE,X)).
Since [δ1(a), δ2(b)] = 0 for any a, b ∈ F , then the linear operator δ : F × F →
B(B(ΛnE,X)), δ(a, b) = δ1(a)+δ2(b), is a representation of the Lie algebra F×F .
Let M = {(a, a) : a ∈ F} be a Lie subalgebra in F × F and let ι : F →M, ι(a) =
(a, a), be a canonical isomorphism of Lie algebras. We also have a Lie subalgebra
F × {0} ⊆ F × F and a canonical isomorphism ε : F → F × {0}, ε(a) = (a, 0). It
is clear that θn|F = δ|M · ι and δ1 = δ|F×{0} · ε.

Further, if λ ∈ σ(δ), then by [11] and by Lemma 6.1, λ(0, a) ∈ σ(δ(0, a)) =
−σ(Tn(a)) = {0}, a ∈ F . Then for each pair (a, b) ∈ F×F , λ(a, b) = λ(a, 0). Thus
λ|F×{0} · ε = λ|M · ι. By using Theorem 5 from [2] and Proposition 3.1 from[6],
we have σ(θn|F ) = σ(δ|M ) · ι = σ(δ)|M · ι = {λ|M · ι : λ ∈ σ(δ)} = {λ|F×{0} · ε :
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λ ∈ σ(δ)}= σ(δ|F×{0}) · ε = σ(δ1), i.e. σ(θn|F ) = σ(Lα|F ). But, by Lemma 2.1,
ΛnE ∈ Proj, n > 0. Then by Lemma 6.6, σ(Lα|F ) = σ(α|F ).

Theorem 6.8. Let E be a quasinilpotent B-L algebra, and let F be a finite
dimensional Lie subalgebra in E. If E ∈ Proj, then σ(α)|F ⊆ σ(α|F ).

Proof. It suffices to prove that if 0 ∈ σ(α), then 0 ∈ σ(α|F ). Let U be an
ultrafilter on a set S. The following diagram

...
...

β↑ β↑
· · · εU→ Cq(F,Cn−1(E,X)U ) εU→ Cq(F,Cn(E,X)U ) εU→ · · ·

β↑ β↑
· · · εU→ Cq−1(F,Cn−1(E,X)U ) εU→ Cq−1(F,Cn(E,X)U ) εU→ · · ·

β↑ β↑
...

...

is commutative, where εU (Φ) = dUΦ,Φ ∈ Cq(F,Cn(E,X)U ) (dU is the differential
of C ·(α)U ) and β is the differential of the complex C ·((θn|F )U ). It is a bicomplex
B with rows B(ΛqF,C ·(α)U ), q > 0, and columns C ·((θn|F )U ), n > 0. Since F is
a finite dimensional Lie algebra,

HnB(ΛqF,C ·(α)U ) = B(ΛqF,HnC ·(α)U ).

Let β : Cn(E,X)U → B(F,Cn(E,X)U ), (β[ωs])a = [θn(a)ωs], be the differential
of the n-th column of B, and let [ωs] ∈ Cn(E,X)U such that dU [ωs] = 0. If
In−1 ∈ B(F,Cn−1(E,X)U ), In−1(a) = in(a)U [ωs], then by (6.2), we deduce

[θn(a)ωs] = [din(a)ωs] + [in+1(a)dωs] = dU in(a)U [ωs] + in+1(a)UdU [ωs]

= dU in(a)U [ωs] = εU (In−1)(a),

i.e., the induced operator of cohomologies

β∼ : Hn(C ·(α)U ) → B(F,Hn(C ·(α)U ))

is trivial for all n, n > 0. Let σ = σπ,k for some k, 0 6 k 6 ∞. Then

0 ∈
k⋃
p=0

Σp(C(α)U ) by Lemma 3.3 and Theorem 3.4. Let i, 0 6 i 6 k, be

the lowest integer such that 0 ∈ Σi(C(α)U ). Now we use the method of “di-
agonal search” (see, for instance, the proof of Lemma 1.8 from [6]). Then, we
have 0 ∈ Σj(C((θn|F )U )) for some n and j, 0 6 j 6 i. Thus 0 ∈ σ((θn|F )U )
for some n, and, by Lemma 5.4, σ((θn|F )U ) = σ(θn|F ). Then, by Lemma 6.7,
σ(θn|F ) = σ(α|F ), i.e., 0 ∈ σ(α|F ).

Let E be a closed subspace in B(X) generated by a family of mutually
commuting operators T ′ = {Tα : α ∈ Λ}, i.e., E is a commutative B-L algebra.
If T ′ is the bounded family, then there exists a bounded linear representation
ε : `1(Λ) → B(X), ε(

∑
aαeα) =

∑
aαTα, where {eα : α ∈ Λ} is the canonical

base of the Banach space `1(Λ). Let us consider the injective maps E∗ → CΛ,
λ 7→ (λ(Tα)), and `1(Λ)∗ → CΛ, λ 7→ (λ(eα)). We denote by σ(T ′) and `1-σ(T ′),
correspondingly, the images of the spectra of the identical representation of E and
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the representation ε by means of these maps. By Lemma 6.2, the spectra σ(T ′)
and `1-σ(T ′) are precompact in CΛ. Let σu(T ′) (`1-σu(T ′)) be the union of σ(T ′U )
(`1-σ(T ′U )) by all ultrafilters U , where T ′U = {TαU : α ∈ Λ}. By Corollary 5.6,
σu(T ′) 6= ∅ and `1-σu(T ′U ) 6= ∅.

Corollary 6.9. Let T ′ = {Tα : α ∈ Λ} and T = {Tα : α ∈ Ξ}, where
Ξ ⊆ Λ has finite complement Λ \ Ξ = {α1, . . . , αn}. Then

σ(T ) = σ(T ′)|Ξ, σu(T ) = σu(T ′)|Ξ,
`1-σ(T ) = `1-σ(T ′)|Ξ, `1-σu(T ) = `1-σu(T ′)|Ξ.

Moreover, `1-σu(T ′)|Λ\Ξ ⊆ σ(Tα1 , . . . , Tαn
).

Proof. It suffices to note that a closed subspace in E generated by the family
T has finite codimension, and to use Theorems 6.5 and 6.8.

If T ′ is a finite family, then σ(T ′) = `1-σ(T ′) = σu(T ′) = `1-σu(T ′) and
the projection property for Taylor and S lodkowski spectra of a finite commutative
operator family are known ([14] and [13]).

7. DOMINATED BANACH ALGEBRAS

Everywhere in the sequel, E is a finite-dimensional nilpotent Lie algebra, U(E) is
the universal enveloping algebra of E and (X,α) is a Banach E-module. In this
section, we introduce some Banach algebras A of limits of rational functions on E
acting on X, and we use Lie subalgebras in A which are B-L algebras with respect
to some norm ‖ · ‖ > ‖ · ‖A. We call such algebras B-L subalgebras in A.

Definition 7.1. Let A be a Banach algebra with identity, containing E as
Lie subalgebra. Assume that the full subalgebra in A generated by E is dense, i.e.,
R(E) = A. We say that A dominates the module (X,α) if there exists a bounded
unital algebra homomorphism θ̃ : A→ B(B(ΛE,X)) such that θ̃|E = θ.

We shall use the notation A � (X,α) if A dominates the E-module (X,α).
It is clear that X makes into a Banach A-module if A � (X,α). We denote the
corresponding bounded representation A → B(X) by α̃. Thus α̃|E = α. The
elements of R(E) are called rational functions in A.

Lemma 7.2. Let A � (X,α) and let U be an ultrafilter. Then A � (XU , αU ).

Proof. By Definition 7.1, we have a continuous map θ̃U : A→ B(B(ΛE,X)U ),
θ̃U (a) = θ̃(a)U . But B(ΛE,X)U = B(ΛE,XU ) and for each u ∈ E, θ̃U (u) =
θ̃(u)U = θ(u)U . It remains to note that θ(u)U = (Lα(u) − RT (u))U = LαU (u) −
RT (u) = θU (u) and θ̃U = θ̃U .

Lemma 7.3. If A � (X,α), then C ·(α) is a complex of Banach A-modules.

Proof. A member Cp(E,X) of the complex C ·(α) is a closed E-submodule
in B(ΛE,X) with respect to the representation θ. By (6.1), dθ̃(a) = θ̃(a)d for
each a ∈ R(E). Using Definition 7.1, infer that the latter is valid for each a ∈ A.
It means that C ·(α) is a complex of Banach A-modules.
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To explain our notion of dominated Banach algebra, we consider an algebra
of convergent power series of a basis of E. Let e = {e1, . . . , en} be a basis of E such
that the adjoint representation of E is reduced to the strictly triangular form. It is
clear that for any tuple r = (r1, . . . , rn) of positive real numbers, the basis r−1e =
{r−1

1 e1, . . . , r
−1
n en} has the same property. Let us consider different monomials

of the form v = ei1 · · · eis ∈ U(E). Each element u ∈ U(E) is represented as a
linear combination of different monomials u = a1v1 + · · ·+anvm. We introduce the
degree of a monomial in the following way. Set deg(ei) = max{k : ei ∈ Ek}, where
E1 = E,Ek = [E,Ek−1]. The degree deg(v) of v = ei1 · · · eis is defined as the sum
of degrees of multipliers. Let Uk be the set of elements of U(E) presented as a sum
of monomials of degree at least k. Using [Ek, Em] ⊆ Ek+m and nilpotentness of
E, we obtain that UkUm ⊆ Uk+m and dim(Uk/Uk+1) < ∞. For each u ∈ U(E),
we set

(7.1) ‖u‖ = inf{|a1|+ · · ·+ |am| : u = a1v1 + · · ·+ anvm},

where the least lower bound is taken over all representations of u of indicated form.
Moreover, in these representations of u, it suffices to consider only monomials with
bounded (by a constant depending of u and n) degrees. Since the number of such
different monomials is finite, the equality ‖u‖ = 0 is possible iff u = 0. Thus, the
algebra U(E) with ‖ · ‖ is a normed algebra. Let A(e) be its completion. For a
basis r−1e, we get another Banach algebra A(r−1e).

Lemma 7.4. Let B be a Banach algebra and let α : E → B be a Lie homo-
morphism. If the semigroup SG(r−1α(e)) is bounded for some tuple r, then α is
extended up to a bounded algebra homomorphism α̃ : A(r−1e) → B.

Proof. Let C = ‖SG(r−1α(e))‖, and let α|U(E) be the canonical exten-
sion α. Then ‖α|U(E)(v)‖ 6 C for a monomial v = r−1

i1
ei1 · · · r−1

is
eis ∈ U(E).

Whence, ‖α|U(E)(u)‖ 6 C‖u‖ for each u ∈ U(E), by vitue of (7.1). Thus
α|U(E) : U(E) → B is a bounded algebra homomorphism and it is extended
up to a bounded homomorphism α̃ = α|A(r−1e).

In particular, the extension α|A(r−1e) is possible if ρ(r−1α(e))<1 or ‖r−1α(e)‖
6 1. Let m = dim(E/[E,E]), r∗ = (r1, . . . , rm), t =(t1, . . . , tm), and let N(r∗) ={
u =

∑
atz

t : ‖u‖r∗ =
∑
|at|rt∗ < ∞

}
be a Banach subalgebra of the alge-

bra of holomorphic functions defined on the polydisk in Cm of multiradius r∗
centered at zero. Since {em+1, . . . , en} is a basis of [E,E], there is a Lie homo-
morphism α : E → N(r∗), α(ei) = zi, 1 6 i 6 m, α(ej) = 0, j > m. It is
clear that ‖r−1α(e)‖r∗ 6 1. By Lemma 7.4 we have a bounded homomorphism
A(r−1e) → N(r∗),

∑
ake

k 7→
∑
atz

t. But N(r∗) is semisimple and A(r−1e) is
commutative module the Jacobson radical RadA(r−1e) by [16], therefore the ker-
nel of the latter homomorphism coincides with RadA(r−1e).

Lemma 7.5. Let (X,α) be a Banach E-module. If ρ(r−1α(e)) < 1 for some
tuple r of positive numbers, then A(r−1e) � (X,α).

Proof. Let e′ = r−1e. By Lemma 7.4 and Definition 7.1, it suffices to prove
that ρ(θ(e′)) < 1. As θ(u) = Lα(u) −RT (u) and [Lα(u), RT (v)] = 0 for all u, v ∈ E,
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one can easily check that ρ(θ(e′)) 6 ρ(Lα(e′)) + ρ(RT (e′)) 6 ρ(α(e′)) + ρ(T (e′)).
By Lemma 6.1, T (E) is a nilpotent Lie algebra consisting of nilpotent operators
which act on a finite-dimensional space ΛE. By Engel theorem, T (E) generates
a nilpotent algebra in B(ΛE). Then T (e′)k = 0 for sufficiently large k. Thus,
ρ(T (e′)) = 0 and ρ(θ(e′)) < 1.

Now, we give examples of B-L subalgebras in A(r−1e) which are projective
and weak quasinilpotent. They will satisfy conditions of our main result on spectral
mapping theorem to be proved in Section 10.

At first, we state the uniqueness of the expansion in a power series by e.
For brevity, we assume that E is Heisenberg algebra with basis e = {h, f, l}

such that [h, f ] = l and [h, l] = [f, l] = 0. By using exact finite-dimensional
representations of E, we may assume that E is a Lie subalgebra of nilpotent
operators in B(V ) for some finite-dimensional space V ; moreover, the following
conditions are fulfilled: l2 = hl = fl = 0, and there exist linearly independent
vectors x, z ∈ V such that x ∈ N(f) ∩N(l), z ∈ N(h) ∩N(l), h(x) = x′, f(z) = z′,
x′, z′ ∈ N(h) ∩ N(f) and x′, z′ are linearly independent. Let Vm = V ⊗̂m, m > 0,

v⊗m = v⊗· · ·⊗v, and let ςm : U(E) → B(Vm), ςm(u) =
m∑
i=1

1⊗· · ·⊗u⊗· · ·⊗1, u ∈ E

(u is situated in the i-th place), be a representation. We consider the following
tensors wtks = x⊗t ⊗ z⊗k ⊗ y⊗s, where t, k, s > 0, y ∈ V such that y′ = l(y) 6= 0.
If we replace in wtks one of the vectors x, z, y by x′, z′, y′ respectively, then we
shall denote obtained tensors by wt′ks, wtk′s, wtks′ respectively. If m = t + k + s,
then one can easily check that ςm(ls)wtks = s!wtks′ and ςm(ls+1)wtks = 0 as
l2 = 0. Similarly, we can prove that ςm(hpfqls)wtks = t!k!s!wt′k′s′ if p = t,
q = k, and ςm(hpfqls)wtks = 0 if p > t or q > k. Now let pδ =

∑
t+k=δ

atkh
tfk

be a nonzero homogeneous polynomial of degree δ. If m = δ + s and φδs =∑
t+k=δ

atkwtks, then ςm(pδls)(φδs) = s!
( ∑
t+k=δ

t!k!|atk|2x′⊗t ⊗ z′⊗k
)
⊗ y′⊗s. By

assumption, x′, z′ are independent vectors. Then the tensor situated in brackets
is nonzero. Thus, ςm(pδls)(φδs) 6= 0. In general case, we present any polynomial
p ∈ U(E) of variables h, f as a sum of homogeneous members p =

∑
γ>δ

pγ , where

pδ is the nonzero homogeneous polynomial of least degree δ presented in p. Then,
ςm(pls)(φδs) = ςm(pδls)(φδs) 6= 0.

Let r = (r1, r2, r3) be a tuple of positive numbers. Let Sm = ςm(r−1e) be
the set of nilpotent operators. Then there exists a norm ‖ · ‖m in Vm such that
the operator norm ‖Sm‖m is less or equal to 1. Let X = (`1)

⊕
m>0

Vm be the `1-

norm sum of Banach spaces. If ς : U(E) → B(X), ς(u)(xm) = (ςm(u)xm), is a
representation, then for u = ar−1

1 h + br−1
2 f + cr−1

3 l ∈ E, we have ‖ς(u)(xm)‖ 6∑
m

(|a|+ |b|+ |c|)‖Sm‖m‖xm‖m 6 (|a|+ |b|+ |c|)‖(xm)‖, i.e. ‖ς(u)‖ 6 |a|+ |b|+ |c|.

Then ‖r−1ς(e)‖ 6 1. By Lemma 7.4, exists a bounded extension ς̃ : A(r−1e) →
B(X).
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Lemma 7.6. Let u ∈ A(r−1e). If u has an expansion u =
∑
atksh

tfkls as
an absolutely convergent power series then such expansion is unique.

Proof. It suffices to show that if u =
∑
atksh

tfkls = 0, then all atks = 0. If
l is absent in the expansion of u, then u defines usual holomorphic function v(z) =∑
atkz

t
1z
k
2 on the polydisk in C2 by means of the homomorphism A(r−1e) →

N(r∗), and v(z) = 0 on this polydisk. So, all alk = 0. Thus we can assume
that u ∈ RadA(r−1e) = U(E)l, i.e. u =

∑
atksh

tfkls, s > 1. Assume that not
all atks are equal to zero. Let s be the least degree of l in the expansion of u

and let un =
∑
t,k

atknh
tfkln. Then u =

∑
n>s

un and us = lim
N

( N∑
i=δ

pi

)
ls, where

pi =
∑

t+k=i

atkh
tfk is a homogeneous polynomial having degree i, and δ is the

least degree of nonzero polynomials pi. Let x = (xm) ∈ X such that xδ+s = φδs,

xm = 0 if m 6= δ + s. Then yδ+s = ςδ+s

(( N∑
i=δ

pi

)
ls

)
xδ+s = ςδ+s(pδls)xδ+s 6= 0

and if y = (ym) ∈ X (ym = 0,m 6= δ + s), then ς̃(us)x = lim
N
ς
( N∑
i=δ

pil
s
)
x = y.

But ς(ls+i)x = 0, i > 1. Thus ς̃(us+i)x = 0 and ς̃(u)x = y 6= 0, a contradiction.

Example 7.7. Let E be a Heisenberg algebra with a basis e = {h, f, l} and
consider the polynomials p1 = ht (t > 1) and p2 = hf . One can easily check
that (ad(p2))np1 = (−t)np1l

n and the Lie subalgebra P in U(E) generated by

{p1, p2} consists of all linear combinations of the form
N∑

n=−1
anp1l

n = a−1p2 +

a0p1 +
N∑
n=1

anp1l
n, an ∈ C, n > −1. Thus P is an infinite dimensional Lie algebra.

Let F be the subspace in A(r−1e) of all absolutely convergent series of the form

u =
∞∑

n=−1
anp1l

n. Set ‖u‖1 =
∞∑

n=−1
‖anp1l

n‖ < ∞. Then ‖ · ‖1 is norm in F

by virtue of Lemma 7.6. Undoubtedly, ‖ · ‖1 > ‖ · ‖ and F furnished with the
norm ‖ · ‖1 is isomorphic to the space `1. Moreover, F is a B-L subalgebra in

A(r−1e) with Lie generators p1, p2. Indeed, [u, v] =
∞∑
n=0

t(anb−1 − a−1bn)p1l
n+1

for u =
∞∑

n=−1
anp1l

n and v =
∞∑

n=−1
bnp1l

n from F , and since [p1l
n, p2] = tp1l

n+1,

so

‖[u, v]‖1 6 2|b−1| ‖p2‖
∞∑
n=0

|an| ‖p1l
n‖+ 2|a−1| ‖p2‖

∞∑
n=0

|bn| ‖p1l
n‖ 6 2‖u‖1 ‖v‖1.

Further,

(ad(p1))2 = 0 and (ad(p2))m
( ∞∑
n=−1

anp1l
n
)

= (−t)m
∞∑
n=0

anp1l
n+m.

Then ‖(ad(p2))m(u)‖1 6 ‖(tl)m‖ ‖u‖1, u ∈ F . Since l ∈ RadA(r−1e), then

‖(ad(p2))m‖1/m1 6 ‖(tl)m‖1/m → 0, m→∞.
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Thus F is a weak quasinilpotent B-L algebra isomorphic to the space `1.

Example 7.8. Now let the polynomials p1 = h2, p2 = f2 of the base of
Heisenberg algebra E and P be a Lie subalgebra in U(E) generated by {p1, p2}.

Note that P comprises all linear combinations
N∑
n=0

Sn, where Sn = a2np1l
2n +

b2np2l
2n + c2n+1ql

2n+1, a2n, b2n, c2n+1 ∈ C, q = 2hf − l. Let F be a subspace in

A(r−1e) of all series u =
∞∑
n=0

Sn such that ‖u‖1 =
∞∑
n=0

(‖a2np1l
2n‖+ ‖b2np2l

2n‖+

‖c2n+1ql
2n+1‖) <∞. As in Example 7.7 we can prove that F is a B-L subalgebra

A(r−1e) isomorphic to the space `1. Moreover, (ad(p1))3 = (ad(p2))3 = 0. Thus,
F is a weak quasinilpotent B-L algebra.

8. THE FORWARD SPECTRAL MAPPING PROPERTY

By follow R. Harte ([9]), we say that a joint spectrum σ has the forward spectral
mapping property for generators a of a nilpotent Lie algebra and polynomials p
if there is the inclusion p(σ(a)) ⊆ σ(p(a)). If the opposite inclusion is satisfied,
then we say that σ has the backward spectral mapping property. In this section
we prove the forward spectral mapping property for limits of rational functions
generated a projective B-L algebra.

Lemma 8.1. Let A � (X,α). Then σ(θ̃(a)) = σ(α̃(a)) for all a ∈ A.

Proof. Let M be a Lie algebra generated by the multiplication operators
Lα(u), RT (u) ∈ B(B(ΛE,X)), u ∈ E, and let B = R(M). Since E is a nilpotent
Lie algebra, so M is also nilpotent. By [16], the algebra B is commutative module
the Jacobson radical RadB. Then, RT (u) ∈ RadB for all u ∈ E. If p = p(E) is a
polynomial in A, then θ̃(p) = Lα̃(p) +Q, where Q belongs to the ideal generated by
RT (u), u ∈ E, i.e. Q ∈ RadB. If p is invertible in A, then θ̃(p−1)−Lα̃(p−1) ∈ RadB.
Thus θ̃(r(1))−Lα̃(r(1)) ∈ RadB for any rational function r(1) = r(1)(E) of first order
in A. By induction on n one may easily prove that θ̃(r(n))− Lα̃(r(n)) ∈ RadB for
each rational functions r(n) of n-th order in A. Take a ∈ A, then a = lim rm
is a limit of rational functions. Hence θ̃(a) − Lα̃(a) ∈ RadB. It follows that the
spectrum σB(θ̃(a)) with respect to the subalgebra B is equal to σB(Lα̃(a)). Thus
σ(θ̃(a)) = σB(θ̃(a)) = σ(α̃(a)).

Lemma 8.2. Let A � (X,α), λ ∈ σπ,∞(α) and let d(λ) be the differential of
the complex C ·(α−λ). If ω ∈ N(d(λ))\R(d(λ)), then (θ̃(r)−r(λ(E)))ω ∈ R(d(λ))
for any rational function r in A.

Proof. By using (6.1) and (6.2), we obtain that (θ̃(p)− p(λ(E)))ω ∈ R(d(λ))
for any polynomial p in A. By (6.1), (θ̃(p−1) − p(λ(E))−1)ω ∈ R(d(λ)) if p is
invertible in A. It follows that (θ̃(r) − r(λ(E)))ω ∈ R(d(λ)) for each rational
function r = r(1)(E) of order 1.
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Now, let r = r(n)(E) be a rational function in A of order n. We proceed
by induction on n. Then r = p(ri, r−1

j ) is a polynomial of rational functions
ri, r

−1
j (i, j ∈ Λ) of (n − 1)-th order and its inverses. By induction hypothesis

(θ̃(ri) − ri(λ(E)))ω ∈ R(d(λ)), i ∈ Λ. If rj is invertible, then using again the
same argument, we obtain that (θ̃(r−1

j ) − rj(λ(E))−1)ω ∈ R(d(λ)). Whence,
(θ̃(r)− r(λ(E)))ω ∈ R(d(λ)) by virtue of (6.1) and (4.2).

Lemma 8.3. Let A � (X,α) and λ ∈ σπ,∞(α). Then r(λ(E)) ∈ σ(α̃(r)) for
any rational function r in A.

Proof. By assumption, there exists ω ∈ Ck(E,X) such that d(λ)ω = 0 and
ω /∈ R(d(λ)), where d(λ) is the differential of the complex C ·(α − λ). Let r be a
rational function in A. By Lemma 8.2, (θ̃(r)− r(λ(E)))ω ∈ R(d(λ)). If r(λ(E)) /∈
σ(θ̃(r)), then by (6.1) we would obtain that ω ∈ R(d(λ)). Thus r(λ(E)) ∈ σ(θ̃(r)).
By Lemma 8.1, r(λ(E)) ∈ σ(α̃(r)).

Lemma 8.4. Let A � (X,α) and λ ∈ σπ,∞(α). There exists a character λ|A
of A such that λ|A|E = λ.

Proof. Given a rational function r = r(E) in A, we set λ|A(r) = r(λ(E)).
By Lemma 8.3, λ|A(r) ∈ σ(α̃(r)). Thus λ|A : R(E) → C, λ|A(r) = r(λ(E)), is a
multiplicative linear functional. Moreover, |λ|A(r)| 6 ‖α̃‖ ‖r‖, r ∈ R(E), i.e., λ|A
is a bounded map.

For a S lodkowski spectrum σ, we denote σ(α)|A = {λ|A : λ ∈ σ(α)}.
Now, let F be a B-L subalgebra in A. By Definition 7.1, the space B(ΛE,X)

(in particular X) makes into a Banach F-module. For any integer p > 0 and
any ideal I ⊆ E, the space Cp(I,X) is a closed F-submodule in B(ΛE,X)(see
Remark 6.4). Set θ̃p,I(u) = θ̃(u)|Cp(I,X), u ∈ A, and θ̃p,E = θ̃p.

Lemma 8.5. Let A � (X,α) and F be a B-L subalgebra in A. Then

σ(θ̃p,I |F ) ⊆ σ(α̃|F ).

Proof. We proceed by induction on the pair (p,dim(I)). Let J be an ideal
in E such that J ⊆ I and dim(I/J) = 1. Let u ∈ I \ J . If p = 0, then there is
nothing to prove. For p > 1, we use isomorphism

Cp(I,X) → Cp(J,X)⊕ Cp−1(J,X), ω 7→ (ω|J , (ip(u)ω)|J),

defined in Lemma 6.3. If M is the kernel of the A-homomorphism Cp(I,X) →
Cp(J,X), ω 7→ ω|J , then the map ϕ : M → Cp−1(J,X), ϕ(ω) = (ip(u)ω)|J , is
an A-isomorphism. Indeed, it suffices to prove that ϕ(θ(a)ω) = θ(a)ϕ(ω) for all
ω ∈M and a ∈ E. By using (6.3), we obtain that

ϕ(θ(a)ω) = (θ(a)ip(u)ω)|J + (ip([u, a])ω)|J = θ(a)ϕ(ω).

Thus we have an exact sequence of Banach A-modules (especially as F-
modules)

0 → Cp−1(J,X)
ϕ−1

−→ Cp(I,X) −→ Cp(J,X) → 0,
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which is C-split. By Lemma 5.1, the sequence of ∆(F)-Banach complexes

0 → C(θ̃p−1,J |F ) −→ C(θ̃p,I |F ) −→ C(θ̃p,J |F ) → 0

is exact. Then, by Corollary 3.5, σ(θ̃p,I |F ) ⊆ σ(θ̃p−1,J |F ) ∪ σ(θ̃p,J |F ) and by
induction hypothesis σ(θ̃p−1,J |F )∪σ(θ̃p,J |F ) ⊆ σ(α̃|F ), i.e. σ(θ̃p,I |F ) ⊆ σ(α̃|F ).

We introduce the bicomplex connected Banach complexes C ·(α̃|F − µ) with
µ ∈ ∆(F), and C ·(α|I − λ) with λ ∈ ∆(I), by means of complexes C ·(θ̃p,I |F − µ),
p > 0. The following diagram

...
βµ↑

· · · κλ→ Cq(F , Cp(I,X)) κλ→ · · ·
βµ↑

...

is commutative, where κλ(Φ) = dp(λ) · Φ, Φ ∈ Cq(F , Cp(I,X)) (dp(λ) is the
differential of the complex C ·(α|I − λ)) and βµ is the differential of the complex
C ·(θ̃p,I |F − µ). Thus the latter diagram is a bicomplex with rows Cq(F , C ·(α|I −
λ)), q > 0, and columns C ·(θ̃p,I |F − µ), p > 0, for which we use a notation
Bλ,µ(I,F , X). The corresponding total complex is denoted by Totλ,µ(I,F , X).
For any p, the bicomplex Bλ,µ(I,F , X) associates the cohomology complex

(8.1) 0 → Hp(C ·(α|I − λ))
β̇µ−→ · · · β̇µ−→ Hp(Cq(F , C ·(α|I − λ)))

β̇µ−→ · · · ,

where Hp(Cq(F , C ·(α|I − λ))), is the p-th cohomology space of the q-th row.

Theorem 8.6. Let A � (X,α), and let F be a B-L subalgebra in A. If
F ∈ Proj, then

σ(α)|A|F ⊆ σu(α̃|F ).

Proof. Let U be an ultrafilter on some set S, such that σp(αU ) = σπ,0(αU ) =
σap(α) (Theorem 5.7), σ = σπ,k, 0 6 k 6 ∞, λ ∈ σ(α), λ|A|F = µ and let i be
the lowest integer such that λ ∈ σπ,i(α). If i = 0, then λ ∈ σap(α). Consequently,
there exists a nonzero [xs] ∈ XU such that (αU (u)−λ(u))[xs] = 0, u ∈ E. By using
the density of R(E) in A, and Lemmas 7.2 and 8.4, infer (α̃U (f)−λ|A(f))[xs] = 0,
f ∈ A, i.e. µ ∈ σπ,0(α̃U |F ). But α̃U = α̃U by Lemma 7.2. Thus, µ ∈ σu(α̃|F ).

Let i > 0. By Lemma 5.4, σπ,i(α) = σπ,i(αU ), and, by Lemma 3.3, σπ,i(αU ) =
i⋃

p=0
Σp(C(αU )). Then Hi(C ·(αU − λ)) is a nontrivial Banach space (otherwise, by

Definition 3.1, λ ∈ σπ,i−1(αU ) = σπ,i−1(α), which contradicts the choice of i). Let
us consider the operator ˙βUµ

: Hi(C ·(αU − λ)) → Hi(C1(F , C ·(αU − λ))) of the
cohomology complex (8.1) for the bicomplex Bλ,µ(E,F , XU ). Let us prove that

˙βUµ
= 0. Take ω ∈ N(diU (λ)) \ R(di−1

U (λ)), where diU (λ) is the differential of the
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complex C ·(αU − λ). For each f ∈ F , f = lim
m
rn is a limit of rational functions

in A. By Lemma 8.2,

βUµ(ω)f = ((θ̃U )i(f)− µ(f))ω = lim
m

((θ̃U )i(rm)− λ|A(rm))ω

∈ R(di−1
U (λ)) = R(di−1

U (λ)),

where βUµ is the differential of the complex C ·((θ̃U )i|F − µ). By assumption,
F ∈ Proj. There exists an operator ξ ∈ B(F , Ci−1(E,XU )) such that di−1

U (λ) ·ξ =
βUµ(ω), i.e., ˙βUµ(ω) = 0.

From the condition λ /∈ σπ,i−1(αU ) it follows that λ /∈ σπ,i−1(Cq(F ,C(αU )))
for all q, by Theorem 3.2. Now we can use the method of “diagonal search” (see
Lemma 1.8 from [6]). Then µ ∈ Σj(C((θ̃U )p|F )) for some p and j, j 6 i, i.e.,
µ ∈ σπ,i((θ̃U )p|F ). By Lemma 8.5, σπ,i((θ̃U )p|F ) ⊆ σπ,i(α̃U |F ) = σπ,i(α̃U |F ).
Thus µ ∈ σu(α̃|F ).

9. SPECTRA OF THE PAIR OF REPRESENTATIONS

In this section, the projection properties are established for spectra of the pair
(α|I , α̃|F ) of representations, which is essentially used in the spectral mapping
theorem.

In Section 8 we have introduced ∆(I)×∆(F)-Banach complex Totλ,µ(I,F , X),
(λ, µ) ∈ ∆(I) × ∆(F), for which we use the denotation Tot(I,F , X). One can
identify topological spaces ∆(I × F) and ∆(I) × ∆(F) by means of the bijective
map τ 7→ (τI , τF ), where τI(u) = τ(u, 0), τF (f) = τ(0, f). Thus, Tot(I,F , X) is
a ∆(I ×F)-Banach complex.

Definition 9.1. Let σ(Tot(I,F , X)) be a S lodkowski spectrum of
Tot(I,F , X). We call this set a S lodkowski spectrum of the pair of representa-
tions (α|I , α̃|F ) denoted by σ(α|I , α̃|F ).

Let us consider the cohomology complex (8.1) for I = E. By Lemma 7.3,
N(dp(λ)) is a closed A (especially F)-submodule in Cp(E,X). The complex of
Banach F-modules generated by F-module (N(dp(λ)), θ̃|F − µ) is a subcomplex
of the p-th column of Bλ,µ(E,F , X). A F-module structure of this complex is
defined (see Section 6) by the representation

Θµ : F → B(B(ΛF ,N(dp(λ)))), Θµ(f) = L(θ̃−µ)(f) −RT (f),

and let Ip(f) be the homotopic operator of this complex. One can easily check
that the image R(κλ) of the row differential κλ of Bλ,µ(E,F , X) is invariant under
Θµ(f) and Ip(f). Thus the linear operators

Θ̇µ(f) : Hp(Cq(F , C ·(α−λ))) → Hp(Cq(F , C ·(α−λ))), Θ̇µ(f)Φ∼=(Θµ(f)Φ)∼,

İp(f) : Hp(Cq(F , C ·(α−λ))) → Hp(Cq−1(F , C ·(α−λ))), İp(f)Φ∼=(Ip(f)Φ)∼.
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are defined soundly. By using (6.1) and (6.2) for the complex generated by F-
module (N(dp(λ)), θ̃|F − µ) and passing to cohomologies, we obtain

β̇µΘ̇µ(f) = Θ̇µ(f)β̇µ,(9.1)

β̇µİp(f) + İp+1(f)β̇µ = Θ̇µ(f).(9.2)

Now let λ̃ be a character of A such that λ̃|E = λ.

Lemma 9.2. If F ∈ Proj and R(dp−1(λ)) is closed, then

Θ̇µ(f)Φ∼ = ((λ̃(f)− µ(f)−RT (f))Φ)∼.

Proof. By the definition of the operator Θ̇µ(f), it suffices to prove that
(Lθ̃(f)Φ)∼ = λ̃(f)Φ∼, Φ ∈ Cq(F ,N(dp(λ))). By using the same argument as in

the proof of Lemma 8.2, we infer that (L(θ̃−λ̃)(f)Φ)(a) ∈ R(dp−1(λ)) = R(dp−1(λ))
for each a ∈ ΛqF . By Lemma 2.1, there exists Ψ ∈ Cq(F , Cp−1(E,X)) such that
κλ(Ψ) = dp−1(λ) ·Ψ = L(θ̃−λ̃)(f)Φ or (L(θ̃−λ̃)(f)Φ)∼ = 0.

Theorem 9.3. Let A � (X,α), F be a B-L subalgebra in A, λ ∈ σπ,∞(α),
µ ∈ ∆(F), and let U be an ultrafilter. Assume that F ∈Proj and F is a weak
quasinilpotent B-L algebra. If λ|A|F 6= µ, then (λ, µ) /∈ σπ,∞(αU , α̃U |F ).

Proof. It suffices to prove that Totλ,µ(E,F , XU ) is exact if λ|A|F 6= µ. It is
well known (see, for instance, Lemma 1.7 of [6]) that the exactness of all cohomol-
ogy complexes (8.1) of the bicomplex Bλ,µ(E,F , XU ) imply the exactness of its
total complex.

By Lemma 5.4, λ ∈ σπ,∞(αU ). Let k be the lowest integer such that
λ ∈ Σk(C(αU )) and let dk−1

U (λ) be the differential of the complex C ·(αU ). Then
R(dk−1

U (λ)) is closed. Otherwise λ ∈ Σk−1(C(αU )) by Lemma 3.3 and this would
contradict the choice of k. Assume that λ|A|F 6= µ and let S be a set of Lie
generators of F such that σ(ad(f)) = {0} for all f ∈ S. Then λ|A(f) 6= µ(f) for
some f ∈ S. Let G(f) ∈ B(Cq(F , Cp(E,XU ))), G(f) = λ|A(f) − µ(f) − RTq(f).
It is clear that (κU )λG(f) = G(f)(κU )λ, where (κU )λ is the row differential of
Bλ,µ(E,F , XU ). It follows that if G(f) is invertible, then Θ̇µ(f) is also invertible
by Lemma 9.2. Then, by (9.1) and (9.2), we would obtain that all cohomology
complexes (8.1) are exact.

It remains to prove that G(f) is an invertible operator. By assumption,
ad(f) ∈ B(F) is quasinilpotent. By Lemma 6.1, σ(RTq(f)) = {0} for all q. Thus
G(f) is invertible.

Corollary 9.4. Let A � (X,α), and let τ ∈ σπ,k(αU |I , α̃U |F ), where F is
a B-L subalgebra in A. If F ∈Proj, then τI ∈ σπ,k+1(α|I). But, if dim(F) < ∞,
then τI ∈ σπ,k(α|I). Moreover, if F is a weak quasinilpotent B-L algebra and
τ ∈ σπ,k(αU , α̃U |F ), then τE |A|F = τF .

Proof. It suffices to prove that τI ∈ σπ,k+1(αU |I) (respectively, if dim(F) <
∞, τI ∈ σπ,k(αU |I)). If τI /∈ σπ,k+1(αU |I) (respectively τI /∈ σπ,k(αU |I)), then
C ·(αU |I − τI) is exact in first k + 1 (respectively k) terms. By Lemma 2.1,
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ΛqF ∈Proj for all q. Then all rows of BτI ,τF (I,F , XU ) are exact in first k + 1
(respectively k) terms. By using the method of “diagonal search”, we obtain that
the same is true for the total complex TotτI ,τF (I,F , XU ). By Definition 3.1, τ /∈
σπ,k(αU |I , α̃U |F ). If dim(F) < ∞, then TotτI ,τF (I,F , XU ) = TotτI ,τF (I,F , X)U
by Lemma 8 from [4]. By using Lemma 3.3 we obtain that τ /∈ σπ,k(αU |I , α̃U |F ).

Now, let F be a weak quasinilpotent B-L algebra and τ ∈ σπ,k(αU , α̃U |F ).
Then τE ∈ σπ,k+1(α) and, by Lemma 8.4, there exists a character τE |A of A such
that τE |A|E = τE . By using Theorem 9.3, we obtain that τE |A|F = τF .

The following lemma is a topological version of Lemma 5.2 in [6].

Lemma 9.5. Let A � (X,α), F be a B-L subalgebra in A, I and J ideals in
E such that J ⊆ I, dim(I/J) = 1, λ ∈ ∆(I) and µ ∈ ∆(F), and let u ∈ I\J . There
exists a bounded endomorphism δ(u) of the Banach complex Totλ|J ,µ(J,F , X) such
that

(9.3) Totλ,µ(I,F , X) = Con(Totλ|J ,µ(J,F , X), δ(u)− λ(u)).

Moreover, σ(δ(u)) = σ(α(u)).

Proof. We denote the restriction of ω ∈ Cp(I,X) on ΛpJ by ω|J . The
following linear map

κp,q : Cq(F , Cp(I,X)) → Cq(F , Cp(J,X))⊕ Cq(F , Cp−1(J,X)),

κp,q(Φ) = (Φ|J , (i(u)Φ)|J),

implements a topological isomorphism by virtue of Lemma 6.3, where Φ|J(h) =
Φ(h)|J , (i(u)Φ)|J(h) = (i(u)Φ(h))|J , h ∈ ΛpF . By definition, the differential γλ,µ
of the complex Totλ,µ(I,F , X) is given by the rule

γλ,µ(Φ) = κλ(Φ) + (−1)pβµ(Φ), Φ ∈ Cq(F , Cp(I,X)).

Let us find the components of κp+1,q(κλ(Φ)) and κp,q+1((−1)pβµ(Φ)) in the cor-
responding decompositions. Let dλ be the differential of C ·(α|I − λ). Then,
κλ(Φ) = dλ · Φ and

(dλ · Φ)|J(h) = dλ(Φ(h))|J = dλ|J (Φ(h)|J) = (dλ|J (Φ|J))(h), h ∈ ΛpF ,

i.e., (dλ · Φ)|J = dλ|J (Φ|J). We use (6.2) to transform the second term in
κp+1,q(κλ(Φ)):

(i(u)(dλ · Φ))|J(h) = (i(u)dλΦ(h))|J = −dλ|J (i(u)Φ(h))|J + (θ − λ)(u)(Φ(h)|J).

Thus,

κp+1,q(κλ(Φ)) = (κλ|J (Φ|J),−κλ|J ((i(u)Φ)|J) + (θ − λ)(u)(Φ|J)).

Let us transform the components of κp,q+1(βµ(Φ)) = (βµ(Φ)|J , (i(u)βµ(Φ))|J):

βµ(Φ)|J(v1, . . . , vq+1) =
q+1∑
i=1

(−1)i+1(θ̃ − µ)(vi)Φ(v1, . . . , v̂i, . . . , vq+1)|J

+
∑
i<j

(−1)i+jΦ([vi, vj ], v1, . . . , v̂i, . . . , v̂j , . . . , vq+1)|J

= βµ(Φ|J)(v1, . . . , vq+1),
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i.e., βµ(Φ)|J = βµ(Φ|J). To transform the second term, we consider the operator
Γ : A → B(B(ΛI,X)), Γ(f) = [i(u), θ̃(f)]. Demonstrate that, if ω ∈ Cp(I,X)
such that ω|J = 0, then (Γ(f)ω)|J = 0 for all f ∈ A. Since R(E) is dense in A,
it suffices to prove the latter for rational functions r(n), n > 1. We proceed by
induction on n.

If f ∈ E, then Γ(f) = i([u, f ]) by (6.3), and [u, f ] ∈ J by nilpotentness
of E. Thus (i([u, f ])ω)|J = 0. Let f = p(e) be a polynomial in A of variables
e = {e1, . . . , en} ⊆ E. Assume firstly that f = esi

i , si > 1, 1 6 i 6 k. Then
(θ̃(esi−1

i )ω)|J = 0, and

(Γ(f)ω)|J = θ(ei)(Γ(esi−1
i )ω)|J + i([u, ei])(θ̃(esi−1

i )ω)|J = θ(ei)(Γ(esi−1
i )ω)|J .

By using induction on si, we obtain that (Γ(f)ω)|J = 0. When f is arbitrary
monomial of e, it suffices to use an induction on the length of f .

Let f = r(n−1) be a rational function of order n− 1 such that f is invertible
and (Γ(f)ω)|J = 0. It is obvious that (Γ(f−1)ω)|J = −(θ̃(f)−1Γ(f)θ̃(f)−1ω)|J . By
Remark 6.4, Cp(I,X) = Cp(J,X) ⊕ Cp−1(J,X) is the direct sum of A-invariant
subspaces. Since ω|J = 0, so ω ∈ Cp−1(J,X) and θ̃(f)−1ω ∈ Cp−1(J,X), i.e.,
(θ̃(f)−1ω)|J = 0. We proceed by induction on si. By induction (Γ(f)θ̃(f)−1ω)|J =
0. Then Γ(f)θ̃(f)−1ω ∈ Cp−1(J,X). By using Remark 6.4, we have

θ̃(f)−1(Γ(f)θ̃(f)−1ω) ∈ Cp−1(J,X),

i.e., (Γ(f−1)ω)|J = 0.
Let f = p(a) be a polynomial in A of variables a = {a1, . . . , ak}, where

ai = r(n−1) or ai = (r(n−1))−1 for some rational function r(n−1) of order (n− 1).
It suffices to assume that f = asi

i , si > 1, 1 6 i 6 k. Then ω and θ̃(asi−1
i )ω ∈

Cp−1(J,X), i.e. (θ̃(asi−1
i )ω)|J = 0. We proceed by induction on si. By induction

hypothesis Γ(asi−1
i )(θ̃(asi−1

i )ω)|J = 0. Then

(Γ(f)ω)|J = θ̃(ai)(Γ(asi−1
i )ω)|J+Γ(asi−1

i )(θ̃(asi−1
i )ω)|J = θ̃(ai)(Γ(asi−1

i )ω)|J = 0.

For Φ ∈ Cq(F , Cp(I,X)), we define the (q + 1)-form

(Γ ∧ Φ)(f1, . . . , fq+1) =
q+1∑
i=1

(−1)i+1Γ(fi)Φ(f1, . . . , f̂i, . . . , fq+1),

with Γ ∧ Φ ∈ Cq+1(F , Cp−1(I,X)). It follows that the correspondence

Cq(F , Cp(J,X)) → Cq+1(F , Cp−1(J,X)),Φ|J 7→ (−1)p(Γ ∧ Φ)|J ,
is a bounded linear operator denoted by Γp. Then

(i(u)βµ(Φ))|J(f1, . . . , fq+1)

=
q+1∑
i=1

(−1)i+1(i(u)(θ̃ − µ)(fi)Φ(f1, . . . , f̂i, . . . , fq+1))|J

+
∑
i<j

(−1)i+j(i(u)Φ([fi, fj ], f1, . . . , f̂i, . . . , f̂j , . . . , fq+1))|J

= βµ((i(u)Φ)|J)(f1, . . . , fq+1) + (Γ ∧ Φ)|J(f1, . . . , fq+1).
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Thus κp,q+1(βµ(Φ)) = (βµ(Φ|J), βµ((i(u)Φ)|J) + (−1)pΓp(Φ|J)) and for the dif-
ferential γλ,µ = κλ + (−1)pβµ of Totλ,µ(I,F , X) the following equality (up to an
isomorphism)

γλ,µ(Φ|J , (i(u)Φ)|J) = (γλ|J ,µ(Φ|J),−γλ|J ,µ((i(u)Φ)|J) + (δ(u)− λ(u))(Φ|J))

is valid, where δ(u) = Lθ(u) +
∑
p

Γp. The operator δ(u) has a triangular operator

matrix with diagonal elements which are equal to the same operator Lθ(u). Then
σ(δ(u)) = σ(θ(u)) = σ(α(u)) by Lemma 6.1. Moreover, it follows from the condi-
tion γ2

λ,µ = 0 that δ(u) is an endomorphism of the complex Totλ|J ,µ(J,F , X).

Theorem 9.6. Let A � (X,α), F be a B-L subalgebra in A, I and J ideals
in E, such that J ⊆ I, dim(I/J) = 1. If F ∈Proj, then σ(α|I , α̃|F )|J×F =
σ(α|J , α̃|F ). In particular, σ(α, α̃|F )|F = σ(α̃|F ).

Proof. By (9.3), σ(Tot(I,F , X)) ⊆ σ(Conδ(u)(Tot(J,F , X))), where u ∈
I \ J . Conversely, let (τ, c) ∈ σ(Conδ(u)(Tot(J,F , X))). By Theorem 4.3, τ ∈
σ(Tot(J,F , X)). By Definition 9.1, τ ∈ σ(α|J , α̃|F ). Then τJ ∈ σπ,∞(α|J), oth-
erwise we would obtain that all rows of BτJ ,τF (J,F , X) are exact (F ∈Proj), con-
sequently TotτJ ,τF (J,F , X) would be exact. Since α[I, I] consists of quasinilpo-
tent operators and [I, I] ⊆ J , so τJ [I, I] = 0 by virtue of projection property
(Corollary 5.5 of [6] and [11]). Thus any linear extension of τJ up to a func-
tional on I is a character. Let λ ∈ I∗, λ|J = τJ , λ(u) = c. By Lemma 9.5,
Totλ,τF (I,F , X) = Con(TotτJ ,τF (J,F , X), δ(u)− c), i.e., (τ, c) ∈ σ(Tot(I,F , X)).

By using Theorem 4.3 again, infer σ(α|I , α̃|F )|J×F = σ(α|J , α̃|F ).
Let E = I1 ⊃ I2 ⊃ · · · ⊃ In ⊃ In+1 = {0} be a chain of ideals in E such

that dim(Ii/Ii+1) = 1, 1 6 i 6 n. Then σ(α|Ii
, α̃|F )|Ii+1×F = σ(α|Ii+1 , α̃|F ) and

σ(α, α̃|F )|F = · · · = σ(α|In
, α̃|F )|F = σ(α̃|F ).

10. THE BACKWARD SPECTRAL MAPPING PROPERTY

In this section, we prove the backward spectral mapping property.

Theorem 10.1. Let A � (X,α) and let F be a weak quasinilpotent B-L
algebra in A such that F ∈ Proj. Then

(10.1) σπ,k(α)|A|F ⊆ σu
π,k(α̃|F ) ⊆ σπ,k+1(α)|A|F .

In particular, for the Taylor spectrum, we conclude that

(10.2) σπ,∞(α)|A|F = σu
π,∞(α̃|F ).

Moreover, if dim(F) <∞, then F is a nilpotent Lie algebra and

(10.3) σπ,k(α)|A|F = σπ,k(α̃|F ).

Proof. The first inclusion in (10.1) follows from Theorem 8.6. Let µ ∈
σπ,k(α̃U |F ) for some ultrafilter U . By Theorem 9.6, µ = τ |F for some τ ∈
σπ,k(αU , α̃U |F ). Then, τE ∈ σπ,k+1(α) and τE ∈ σπ,k(α) if dim(F) < ∞; more-
over τE |A|F = µ by Corollary 9.4. Thus, µ ∈ σπ,k+1(α)|A|F , i.e., (10.1) has been
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proved and (10.2) follows from (10.1). If dim(F) < ∞, then µ ∈ σπ,k(α)|A|F
and σu

π,k(α̃|F ) = σπ,k(α̃|F ) by Lemma 5.4. By [16], the algebra A is commuta-
tive modulo Rad(A). Then [F ,F ] ⊆ RadA and consequently F is a solvable Lie
algebra. Let S be a set of Lie generators such that σ(ad(s)) = {0} for all s ∈ S.
Then ad(S) generates a Lie algebra consisting of nilpotent operators, i.e., F is a
nilpotent Lie algebra.

Remark 10.2. Let A � (X,α) and let F be a finite-dimensional Lie subal-
gebra (not necessary weak quasinilpotent) in A. We have remarked in the proof of
Theorem 10.1 that F should be solvable Lie algebra. By using Cartan subalgebras
of F and (10.3), one can easily prove that an equality of the type (10.3) is also
true for spectrum introduced in [1].

To obtain the classical version (σ(r(a)) = r(σ(a))) of our spectral mapping
theorem (Theorem 10.1) we use the following. Let F be a B-L algebra, S a set of Lie
generators, and let (X,α) be a Banach E-module. There is an injective continuous
linear map Ŝ : ∆(F) → CS , Ŝ(λ) = (λ(s))s∈S . Set σ(α(S)) = Ŝ(σu

π,∞(α)).
We call this set the Taylor F-spectrum of the operator family α(S). Now let
u be a set of Lie generators of E, A � (X,α), F a B-L subalgebra in A with
a set of Lie generators r and let a = α(u), r(a) = α̃(r). There is a bounded
algebra homomorphism A→ C(σ(a)), f 7→ ϕf , where C(σ(a)) is the algebra of all
continuous functions on σ(a) and ϕf (û(λ)) = λ|A(f), λ ∈ σu

π,∞(α). We identify
ϕf with f . Under the assumptions of Theorem 10.1, we deduce

σ(r(a)) = r̂(σu
π,∞(α̃|F )) = r̂(σπ,∞(α)|A|F ) = {(λ|A(f))f∈r : λ ∈ σπ,∞(α)}

= {(f(µ))f∈r : µ ∈ σ(a)} = r(σ(a)).

Example 10.3. Let E be a Heisenberg algebra with a basis e = {h, f, l}
such that [h, f ] = l and [h, l] = [f, l] = 0, (X,α) a Banach E-module and let
a = α(h), b = α(f). If r = (r1, r2, r3) is a tuple of positive numbers such that
ρ(r−1α(e)) < 1, then A(r−1e) � (X,α) by Lemma 7.5. By using Examples 7.7,
7.8, and Theorem 10.1, we obtain the following equalities

σ(at, ab) = {(λt, λµ) : (λ, µ) ∈ σ(a, b)}, σ(a2, b2) = {(λ2, µ2) : (λ, µ) ∈ σ(a, b)}.
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