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Abstract. Let B(H) denote the algebra of all bounded linear operators on
some complex Hilbert space H. A unital subalgebra A ⊂ B(H) is said to
be strongly reductive if, whenever {Pλ} is a net of orthogonal projections in
B(H) such that ‖(1− Pλ)TPλ‖ → 0 for all T ∈ A, then the same holds true
for all T in the C∗-algebra generated by A in B(H). In this paper we prove
that the norm-closure of every strongly reductive algebra is selfadjoint.
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1. INTRODUCTION

Let H be a complex Hilbert space and let B(H) denote the algebra of all bounded
operators on H. A unital subalgebra A ⊂ B(H) is called strongly reductive if for
each net {Pλ} of orthogonal projections in B(H) such that ‖(1 − Pλ)TPλ‖ → 0
for all T ∈ A, the same holds true for all T in the C∗-algebra generated by A
in B(H). In other words, any net of almost invariant projections for A is almost
reducing. In the case when A is norm separable, the above definition is easily seen
to be equivalent with that obtained by replacing nets with sequences. An operator
T ∈ B(H) is said to be strongly reductive if the norm-closed algebra generated by
T in B(H) is strongly reductive.

Strongly reductive operators have been introduced by K.J. Harrison in [8],
who proved that if T is strongly reductive, then its spectrum σ(T ) has empty
interior and does not separate the plane. In [3], the authors obtain an invariant
subspace result for algebras generated by strongly reductive operators, under some
extra assumptions. In [1], C. Apostol, C. Foiaş and D. Voiculescu proved that every
strongly reductive operator is normal. This, together with the above mentioned
result of Harrison shows that the norm-closed algebra generated by a strongly
reductive operator is selfadjoint. In [2] the authors proved the more general result
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that the norm-closure of every commutative norm-separable strongly reductive
algebra is selfadjoint. The separability hypothesis was subsequently removed by
D. Hadwin ([6]). Further study of strongly reductive separable algebras has been
done in [5].

In this paper we prove the following general result:

Theorem 1.1. The norm-closure of every strongly reductive algebra is self-
adjoint.

In the proof of this theorem we shall make use of several known results about
strongly reductive algebras obtained in the above mentioned papers. Another basic
tool in the proof will be the Brown-Lomonosov lemma, which enables us to show
that A contains sufficiently many finite rank operators. This will make possible to
employ a certain result from [10] about reductive algebras with many finite rank
operators, to deduce that the weak closure of some restriction of A is selfadjoint.
A standard approximation procedure will then show that A contains all compact
operators from the C∗-algebra it generates, which will imply that A is indeed
self-adjoint.

2. SOME PRELIMINARY RESULTS

We will now introduce some notations and recall several results that will be used
in the proof of Theorem 1.1. Let K(H) denote the ideal of all compact operators
on H and let π : B(H) → B(H)/K(H) denote the Calkin projection. For any
operator T ∈ B(H), its essential (Calkin) norm will be denoted by ‖T‖e. For
any pair of vectors x, y ∈ H, the rank-one operator x ⊗ y ∈ K(H) is defined by
(x⊗ y)z = (z, y)x, for any z ∈ H. If 1 6 n 6 ∞, then H(n) is the orthogonal sum
of n copies of H, and if T ∈ B(H) then T (n) = T ⊕ T ⊕ · · · on H(n). If S ⊂ B(H)
then S(n) = {T (n) : T ∈ S}, and C∗(S) will denote the C∗-algebra generated by
S in B(H).

Two ∗-representations Φj : A → B(Hj), j = 1, 2, of a C∗-algebra A are
said to be approximately equivalent if there exists a sequence {Un}∞n=1 of unitary
operators from H1 onto H2 such that the operators UnΦ1(a)U∗n−Φ2(a) are compact
and converge in norm to 0, for every a ∈ A. Proofs of the following two results
can be found in [5].

Lemma 2.1. (see [5], Corollary 4.6) If A ⊂ B(H) is a norm-separable strongly
reductive algebra then for any ∗-representation Φ : C∗(A) → B(H̃) which is ap-
proximately equivalent with the identity representation, the algebra Φ(A) is strongly
reductive.

Lemma 2.2. (see [5], Lemma 4.2) Let A ⊂ B(H) be a norm-separable strongly
reductive algebra acting on a separable Hilbert space. Then the norm-closure of its
image π(A) in the Calkin algebra is selfadjoint.
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The following result about strongly reductive algebras will be also used in
the proof of Theorem 1.1.

Lemma 2.3. Suppose A ⊂ B(H) is a norm-separable, strongly reductive al-
gebra acting on a separable Hilbert space, and let u, v ∈ H such that |(Tu, v)| 6

‖T‖e for any T ∈ A. Then the same holds true for all T ∈ C∗(A).

Proof. Let ϕ be a continuous functional on π(C∗(A)) with ‖ϕ‖ 6 1 such that
ϕ(π(T )) = (Tu, v) for every T ∈ A. It then follows from Wittstock’s Theorem
([12]) that there exist a separable Hilbert space H̃, vectors ξ, η ∈ H̃ with ‖ξ‖,
‖η‖ 6 1, and a ∗-representation Ψ : π(C∗(A)) → B(H̃) such that ϕ(π(T )) =
(Ψ(π(T ))ξ, η) for every T ∈ C∗(A). In particular, we have (Tu, v) = (Ψ(π(T ))ξ, η)
for every T ∈ A. Let Φ : C∗(A) → B(H ⊕ H̃) be the representation defined by
Φ(T ) = T ⊕Ψ(π(T )), for every T ∈ C∗(A).

If M0 = {Tu⊕Ψ(π(T ))ξ : T ∈ A} then its closure M is an invariant subspace
for Φ(A) and moreover, the vector v ⊕ (−η) is orthogonal on M. By Voiculescu’s
Theorem ([11]), Φ and the identity representation of C∗(A) are approximately
equivalent. By Lemma 2.1, Φ(A) is therefore strongly reductive. In particular,
the space M is reducing for Φ(A), therefore (Tu, v) = (Ψ(π(T ))ξ, η) for every
T ∈ C∗(A). From this, we immediately infer that |(Tu, v)| 6 ‖T‖e for every
T ∈ C∗(A). The proof of this lemma is finished.

The next result that will be used in the proof of Theorem 1.1 is a slightly
modified version of the Brown-Lomonosov Lemma ([4], [9]). Its proof is quite
similar to that given in the above mentioned papers.

Theorem 2.4. Let A ⊂ B(H) be a norm-closed unital subalgebra, and let
H0 ⊂ H be a closed invariant subspace for A. Let Ω ⊂ H0 be a closed ball such that
0 /∈ Ω. Then either there exist nonzero vectors u, v ∈ H0 such that |(Tu, v)| 6 ‖T‖e
for every T ∈ A, or there exist a vector x ∈ Ω and a finite rank idempotent F ∈ A
such that Fx = x.

Recall that a weakly closed unital subalgebra A of B(H) is called reductive
if every invariant subspace for A is also reducing. Obviously, the weak closure
of any strongly reductive algebra is reductive. Another result that we shall use
in the proof of Theorem 1.1 is the following theorem, due to E. Nordgren and
P. Rosenthal:

Theorem 2.5. (cf. [10]) Suppose A ⊂ B(H) is a reductive algebra such that
the linear span of the ranges of all finite rank operators in A is dense in H. Then
A is selfadjoint.
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3. PROOF OF THE MAIN THEOREM

We are now ready to prove our main result.

Proof of Theorem 1.1. Let us fix a strongly reductive algebra A ⊂ B(H). First
of all, we may assume that both A and H are separable in norm. The general
(nonseparable) case follows from this particular one exactly as in the proof of [6,
Theorem 8.4]. Moreover, we may and shall assume that A is norm-closed. By
Lemma 2.2, the norm-closure of π(A) is selfadjoint, therefore in order to prove the
theorem it suffices to show that A contains all compact operators from C∗(A).
The proof of this assertion will be accomplished through a sequence of steps.

Step 1. Let us consider the C∗-algebra B = C∗(A)∩K(H). Then there exists
an orthogonal decomposition of H as H = H0 ⊕

∑
j>1

⊕H
(m(j))
j with 1 6 m(j) < ∞,

such that the C∗-algebra B can be written (up to a unitary equivalence) as the
direct sum B = {0} ⊕

∑
j>1

⊕(K(Hj))(m(j)). Moreover, any operator T ∈ C∗(A) can

be written as T = T0 ⊕
∑
j>1

⊕T
(m(j))
j with Tj ∈ B(Hj) for j > 0. Therefore, the

proof of the theorem will be finished once we show that A contains all operators
T ∈ B(H) of the form T = 0⊕ (· · · ⊕ 0⊕ T

(m(j))
j ⊕ 0⊕ · · ·) with Tj ∈ K(Hj) and

j > 1.

Step 2. Let j > 1, let 1 6 k 6 m(j), and let Hj,k = {x = x1 ⊕ · · · ⊕ xm(j) ∈
H

(m(j))
j : xi = 0 for i 6= k}. We will show that for any vector x ∈ Hj,k and

any ε > 0, there exist y ∈ Hj,k with ‖x − y‖ < ε and a finite rank idempotent
F ∈ A such that Fy = y. Assume that the above assertion is false. It then
follows from Theorem 2.4, applied to the invariant subspace Hj,k ⊂ H, that there
exist nonzero vectors u, v ∈ Hj,k such that |(Tu, v)| 6 ‖T‖e for every T ∈ A.
According to Lemma 2.3, the same holds true for every T ∈ C∗(A). This implies
that (Tu, v) = 0 for every T ∈ K(Hj), hence either u = 0 or v = 0. This finishes
the proof of Step 2.

Step 3. The previous step shows that the linear span of the ranges of all
finite-rank operators in A is dense in H 	 H0. Applying Theorem 2.5, we infer
that the weak closure of the restriction of A to H 	H0 is selfadjoint. Let us now
fix j > 1. According to Step 2, there exist a non-zero vector y ∈ Hj and a finite
rank idempotent F ∈ A such that F ỹ = ỹ, where ỹ = y⊕0⊕· · · ∈ H

(m(j))
j . It then

follows immediately that F (y ⊗ y)(m(j)) = (y ⊗ y)(m(j)). Since (y ⊗ y)(m(j)) ∈
C∗(A), there exists a net {Tλ}λ in A such that T ∗λ → (y ⊗ y)(m(j)) strongly on
H 	 H0. Since F has finite rank, the net {FTλ}λ converges to (y ⊗ y)(m(j)) in
norm on the whole space H, therefore (y ⊗ y)(m(j)) ∈ A. Since the restriction
of A to Hj,1 has no nontrivial invariant subspaces, a standard argument shows
that for any j > 1, A contains all compact operators T ∈ B(H) of the form
T = 0⊕ (· · · ⊕ 0⊕ T

(m(j))
j ⊕ 0⊕ · · ·) with Tj ∈ K(Hj). The proof of the theorem

is complete.
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Theorem 1.1 together with Theorem 9 and Corollary 10 from [7] imply the
following characterization of selfadjoint operator algebras:

Corollary 3.1. Let H be a complex Hilbert space and let A ⊂ B(H) be a
unital subalgebra. Suppose that if {xλ} and {yλ} is any pair of bounded nets of
vectors from H such that (Txλ, yλ) → 0 for any T ∈ A, then (T ∗xλ, yλ) → 0 for
any T ∈ A. Then the norm-closure of A is selfadjoint.
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REFERENCES
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