HILBERT C^* -MODULES WITH A PREDUAL

JÜRGEN SCHWEIZER

Communicated by William B. Arweson

ABSTRACT. We extend Sakai's characterization of von Neumann algebras to the context of Hilbert C^* -modules. If A, B are C^* -algebras and X is a full Hilbert A-B-bimodule possessing a predual such that left, respectively right, multiplications are weak*-continuous, then M(A) and M(B) are W^* -algebras, the predual is unique, and X is selfdual in the sense of Paschke. For unital A, B the above continuity requirement is automatic.

We determine the dual Banach space X^* of a Hilbert *A-B*-bimodule X and show that Paschke's selfdual completion of X is isomorphic to the bidual X^{**} , which is a Hilbert C^* -module in a natural way. We conclude with a new approach to multipliers of Hilbert C^* -bimodules.

KEYWORDS: Hilbert W^* -module, Hilbert C^* -module, correspondence. MSC (2000): 46L08.

In [8] Paschke observed that the C^* -algebra of adjointable operators $\mathcal{L}(E)$ on a Hilbert C^* -module E over a von Neumann algebra need not be a von Neumann algebra itself. However, he showed that, if one asks E to be selfdual in a sense analogous to the selfduality of Hilbert spaces, then $\mathcal{L}(E)$ is a von Neumann algebra. Selfdual Hilbert C^* -module have henceforth been used in the theory of Morita equivalence ([10]) and in index theory ([1]). In the present paper, we shall give a new approach to these modules in the spirit of Sakai's abstract characterization of von Neumann algebras ([11], [12]).

In Section 1 we shall recall some basic concepts and introduce our definition of Hilbert W^* -modules along with some examples. In particular, we shall see that the modules appearing in Rieffel's theory of Morita equivalence of von Neumann algebras are Hilbert W^* -modules, yielding a new proof of their selfduality which does not rely on an orthonormalization procedure. We shall also see that every correspondence in the sense of Connes ([3]) gives rise to a Hilbert W^* -module. Section 2 contains our main result, Theorem 2.6, which states that every Hilbert W^* -module X over C^* -algebras A and B is selfdual, the multiplier algebras M(A), M(B) are von Neumann algebras, the predual is unique, and the module operations are separately weak*-continuous. To achieve this, we characterize in Lemma 2.2 those bounded B-linear mappings $\rho : X \to B$ which can be obtained as $\rho = (\xi | \cdot)_B$ for an appropriate element $\xi \in X$. This leads to an elementary proof of the selfduality of finitely generated Hilbert C^* -modules (Proposition 2.3 and Remark 2.4). A converse of Theorem 2.6 is provided by Proposition 2.9, which gives various equivalent conditions for a Hilbert C^* -module over a von Neumann algebra to be a Hilbert W^* -module, simplifying some arguments in [5] and [1].

In Section 3, we shall show that the topological dual X^* of a Hilbert *B*module *X* is isomorphic to the projective tensor product of the dual B^* with *X* (or rather the adjoint module X^o), which implies that Paschke's selfdual completion of *X* is isomorphic to the enveloping Hilbert W^* -module of Section 1. Moreover, we shall see that the bounded module mappings into the coefficient C^* -algebras, extensively used in Section 2, can be thought of as one-sided multipliers of *X* and realized in X^{**} , which permits to define the multiplier bimodule of *X* as the intersection of left and right multipliers, providing a new approach to the multiplier bimodule of Echterhoff and Raeburn ([4]).

CONVENTIONS. We shall denote the topological dual of a Banach space V by V^* . Whenever we apply a bilinear operation to sets, we shall mean the linear span of all possible products.

1. DEFINITIONS AND EXAMPLES

A Hilbert A-B-bimodule ([2]), or simply a Hilbert C^{*}-bimodule, is an A-B-bimodule X together with inner products $_A(\cdot | \cdot) : X \times X \to A$, and $(\cdot | \cdot)_B : X \times X \to B$ such that

$$_A(\xi|\eta)\zeta = \xi(\eta|\zeta)_B, \text{ for all } \xi, \eta, \zeta \in X.$$

We also require that X is complete with respect to the norm $\|\xi\| := \|(\xi|\xi)_B\|$, $\xi \in X$, and note that $\|(\xi|\xi)_B\| = \|_A(\xi|\xi)\|$ for all $\xi \in X$ ([2]). By convention $_A(\cdot|\cdot)$ is assumed to be A-linear in its first argument, whereas $(\cdot|\cdot)_B$ is B-linear in its second argument. We will often assume that X is *full*, i.e., the closed linear span of $_A(X|X)$, and $(X|X)_B$ is all of A, and B, respectively. Full Hilbert A-B-bimodules will be referred to as *equivalence bimodules*.

A right *B*-module *E* is a *Hilbert B*-module, or *Hilbert C*^{*}-module, if it possesses a *B*-valued inner product and is complete with respect to the corresponding norm ([6], [13]). Every such module gives rise to a *Hilbert A-B-bimodule* with $A = \mathcal{K}(E)$, the *C*^{*}-algebra of generalized compact operators, which is generated by the "rank one" operators $\theta_{\xi,\eta}$, $\xi, \eta \in E$ where $\theta_{\xi,\eta}(\zeta) = \xi(\eta|\zeta)_B$, $\zeta \in E$. The left handed inner product is then defined by $_A(\xi|\eta) := \theta_{\xi,\eta}, \xi, \eta \in E$. Replacing *B* by the closed ideal generated by $(E|E)_B$, we obtain an equivalence bimodule. In the present article, we shall thus consider Hilbert *C*^{*}-modules as special cases of equivalence bimodules.

Hilbert C^* -modules with a predual

1.1. DEFINITION. A Hilbert W^* -module over A and B is an equivalence bimodule X possessing a predual, i.e., $X = V^*$, where V^* is the topological dual of a Banach space V, such that the mappings $\xi \mapsto a\xi$ and $\xi \mapsto \xi b$ are weak^{*}continuous for all $a \in A, b \in B$.

1.2. REMARK. It will be useful to have the following reformulation of the continuity requirements of Definition 1.1. The topological dual X^* becomes a Banach *B*-*A*-module by setting $bfa := f(a \cdot b), a \in A, b \in B$. Identifying *V* with its canonical image in X^* , the above continuity requirements are equivalent to asking *V* to be a *B*-*A*-submodule of X^* .

We shall tacitly use the identification $V \subseteq X^*$, as well as the bimodule structure of V.

In the following examples the C^* -algebras A and B come naturally embedded in von Neumann algebras \mathcal{M}, \mathcal{N} , respectively. We shall thus also speak of *Hilbert* W^* -modules over \mathcal{M} and \mathcal{N} . Of course, the C^* -algebras are easily recovered as the closed linear span of the inner products. In general, A and B need not coincide with \mathcal{M} and \mathcal{N} . This is easily seen by considering an infinite dimensional Hilbert space \mathcal{H} , which is a Hilbert W^* -module over $\mathcal{K}(\mathcal{H}) \subseteq \mathcal{L}(\mathcal{H})$ and \mathbb{C} .

1.3. CONCRETE HILBERT W^* -MODULES. We let \mathcal{H} be a Hilbert space and $X \subseteq \mathcal{L}(\mathcal{H})$ a weakly closed subspace such that $XX^*X \subseteq X$. Then X becomes a concrete Hilbert W^* -module over $A := \overline{XX^*}$, $B := \overline{X^*X}$, putting $a \cdot \xi \cdot b := a\xi b$, and $A(\xi|\eta) := \xi\eta^*$, $(\xi|\eta)_B := \xi^*\eta$ for all $a \in A, b \in B, \xi, \eta \in X$. We shall see below (Remark 2.7) that every Hilbert W^* -module is isomorphic to a concrete one.

For a given Hilbert A-B-bimodule X, we shall need its *adjoint* $X^o := \{\xi^o : \xi \in X\}$ which becomes a Hilbert B-A-module upon setting

 $(\xi^{o}|\eta^{o})_{A} := {}_{A}(\xi|\eta), \quad {}_{B}(\xi^{o}|\eta^{o}) := (\xi|\eta)_{B}, \text{ and } b\xi^{o}a := (a^{*}\xi b^{*})^{o},$

as well as its *linking algebra* L ([2]), which is defined by

$$L = \left\{ \begin{pmatrix} a & \xi \\ \eta^o & b \end{pmatrix} : a \in A, b \in B, \xi \in X, \eta^o \in X^o \right\},$$
$$\begin{pmatrix} a_1 & \xi_1 \\ \eta_1^o & b_1 \end{pmatrix} \begin{pmatrix} a_2 & \xi_2 \\ \eta_2^o & b_2 \end{pmatrix} = \begin{pmatrix} a_1 a_2 + A(\xi_1 | \eta_2) & a_1 \xi_2 + \xi_1 b_2 \\ \eta_1^o a_2 + b_1 \eta_2^o & (\eta_1 | \xi_2)_B + b_1 b_2 \end{pmatrix},$$
$$\begin{pmatrix} a & \xi \\ \eta^o & b \end{pmatrix}^* = \begin{pmatrix} a^* & \eta \\ \xi^o & b^* \end{pmatrix}.$$

There is a unique norm turning L into a C^* -algebra ([2]). Setting $p := \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in M(L)$, and $q := \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \in M(L)$, we obtain $A \cong pLp$, $B \cong qLq$, and $L \cong pLq$. If \mathcal{M} is a von Neumann algebra and $p, q \in \mathcal{M}$ are projections, then $p\mathcal{M}q$

If \mathcal{M} is a von Neumann algebra and $p, q \in \mathcal{M}$ are projections, then $p\mathcal{M}q$ is a Hilbert W^* -module over $p\mathcal{M}p$, $q\mathcal{M}q$, using the product of \mathcal{M} and putting $_{p\mathcal{M}p}(\xi|\eta) := \xi\eta^*$, $(\xi|\eta)_{q\mathcal{M}q} := \xi^*\eta$ for $\xi, \eta \in p\mathcal{M}q$. This observation is used in the following examples. 1.4. THE ENVELOPING HILBERT W^* -MODULE. Let X be a Hilbert A-B-bimodule. Then its Banach space bidual X^{**} is a Hilbert W^* -module over the enveloping von Neumann algebras A^{**}, B^{**} in a natural way. Indeed, embedding X in its linking algebra L, it is easy to see that $A^{**} \cong pL^{**}p$, $B^{**} \cong qL^{**}q$, and $X^{**} \cong pL^{**}q$, where $p, q \in \mathcal{M}(L)$ are the canonical projections. So that X^{**} inherits its structure of a Hilbert W^* -module from L^{**} .

In the following, we will consider X as a subset of X^{**} . We note that the module operations of X^{**} are the unique separately weak*-continuous extensions of those of X.

1.5. INTERTWINERS AND MORITA EQUIVALENCE. For two representations π_i : $A \to \mathcal{L}(\mathcal{H}_i), i \in \{1, 2\}$ of a C^* -algebra A the space of intertwiners

$$X = \{T \in \mathcal{L}(\mathcal{H}_2, \mathcal{H}_1) : T\pi_2(a) = \pi_1(a)T \text{ for all } a \in A\}$$

is a Hilbert W^* -module over the commutants $\pi_1(A)'$ and $\pi_2(A)'$. Indeed, considering the direct sum representation $\pi_1 \oplus \pi_2 : A \to \mathcal{L}(\mathcal{H}_1 \oplus \mathcal{H}_2)$ with canonical projections $p_1, p_2 \in \mathcal{L}(\mathcal{H}_1 \oplus \mathcal{H}_2)$, and setting $L := (\pi_1 \oplus \pi_2)(A)'$, we obtain $\pi_1(A)' \cong p_1 L p_1, \ \pi_2(A)' \cong p_2 L p_2$, and $X \cong p_1 L p_2$. The so obtained Hilbert W^* -module is a fundamental device in the theory of Morita equivalence of von Neumann algebras ([10]).

1.6. CORRESPONDENCES. We let \mathcal{M}, \mathcal{N} be von Neumann algebras. A correspondence in the sense of Connes ([3]) is a Hilbert space \mathcal{H} which is a normal \mathcal{M} - \mathcal{N} -bimodule, or equivalently, which possesses a normal representation of $\mathcal{M} \otimes \mathcal{N}^{\text{opp}}$, where \mathcal{N}^{opp} is the opposite algebra of \mathcal{N} . Every correspondence \mathcal{H} gives rise to a Hilbert W^* -module by comparing it to the identity correspondence over \mathcal{N} , which is simply given by the standard Hilbert space $L^2(\mathcal{N})$ for \mathcal{N} and the module multiplications $a\xi b := aJb^*J\xi$, $a, b \in \mathcal{N}, \xi \in L^2(\mathcal{N})$, where J is Tomita's involution. Indeed, the space of bounded right module operators

$$X := \{T \in \mathcal{L}(L^2(\mathcal{N}), \mathcal{H}) : T(\xi a) = T(\xi)a, \ a \in \mathcal{N}, \ \xi \in L^2(\mathcal{N})\}$$

is a Hilbert W^* -module, which is most easily seen by letting π_1, π_2 denote the right representations of \mathcal{N}^{opp} on \mathcal{H} and $L^2(\mathcal{N})$, respectively, and observing that X is a special case of the previous example with $A = \mathcal{N}^{\text{opp}}$. Hence, X is a Hilbert W^* -module over $\pi_1(\mathcal{N}^{\text{opp}})' \supseteq \mathcal{M}$ and $\pi_2(\mathcal{N}^{\text{opp}})' \cong \mathcal{N}$.

HILBERT C^* -modules with a predual

2. MAIN RESULTS

Paschke calls a Hilbert *B*-module *E selfdual* ([8]) if for every bounded *B*-linear mapping $\rho : E \to B$ there is an element $\eta \in E$ such that $\rho = (\eta | \cdot)_B$. This terminology is somewhat misleading since it suggests that the space of all bounded *B*-linear mappings $\mathcal{B}_B(X, B)$ is a dual of *E*. In general, however, there is no natural way of constructing a *B*-valued inner product on $\mathcal{B}_B(X, B)$. So that, at least in the category of Hilbert *C*^{*}-modules, $\mathcal{B}_B(X, B)$ is not a dual of *E*. However, we shall stick to Paschke's terminology.

A Hilbert A-B-module X is said to be B-selfdual if it is selfdual as a Hilbert B-module. Correspondingly, we shall say that X is A-selfdual if, for every bounded A-linear mapping $\lambda : X \to A$, there is an element $\eta \in X$ such that $\lambda = {}_{A}(\cdot | \eta)$.

2.1. DEFINITION. A bounded *B*-linear mapping $\rho : X \to B$ is said to vanish at infinity if, for every approximate identity $\{u_{\alpha}\} \subseteq A$,

$$\|\rho(u_{\alpha}\cdot)-\rho\|\to 0$$

with respect to the operator norm.

If $\{u_{\alpha}\} \subseteq A$ is an approximate unit, then $||u_{\alpha}\xi - \xi|| \to 0$ for every $\xi \in X$. In the proof of the following lemma, we shall use a particular approximate unit $\left\{u_{\alpha} := \sum_{i=1}^{n_{\alpha}} {}_{A}(\eta_{i}^{\alpha}|\eta_{i}^{\alpha})\right\}$ where $\{\eta_{i}^{\alpha}\} \subseteq X$ (cf. [2]).

2.2. LEMMA. For a bounded B-linear mapping $\rho : X \to B$, the following conditions are equivalent:

- (i) ρ vanishes at infinity;
- (ii) there is $\eta \in X$ such that $\rho = (\eta | \cdot)_B$.

Proof. We assume that $\rho : X \to B$ vanishes at infinity. Putting $\eta_{\alpha} = \sum_{i} \eta_{i}^{\alpha} \rho(\eta_{i}^{\alpha})^{*}$, where $\{\eta_{i}^{\alpha}\} \subseteq X$ determines an approximate identity for A, we find that, for every $\xi \in X$,

$$(\eta_{\alpha}|\xi)_{B} = \sum \rho(\eta_{i}^{\alpha})(\eta_{i}^{\alpha}|\xi)_{B} = \rho\Big(\sum \eta_{i}^{\alpha}(\eta_{i}^{\alpha}|\xi)_{B}\Big) = \rho\Big(\sum {}_{A}(\eta_{i}^{\alpha}|\eta_{i}^{\alpha})\xi\Big).$$

Thus, by assumption, $(\eta_{\alpha}|\cdot)_B \to \rho$ in norm. But as $\|(\eta_{\alpha}|\cdot)_B\| = \|\eta_{\alpha}\|$, we see that $\{\eta_{\alpha}\}$ is a Cauchy-net. Letting $\eta = \lim \eta_{\alpha}$, we thus obtain $\rho = (\eta|\cdot)_B$.

For the reverse implication, we observe that $(\eta | u_{\alpha} \cdot)_B = (u_{\alpha} \eta | \cdot)_B$ converges uniformly to $(\eta | \cdot)_B$ since $||u_{\alpha} \eta - \eta|| \to 0$.

A Hilbert A-B-bimodule X is said to be *finitely generated* as a right Bmodule if there is a finite set $\{\xi_i\}_{1 \leq i \leq n} \subseteq X$ such that $X = \sum_{i=1}^n \xi_i B$. 2.3. PROPOSITION. Every Hilbert A-B-bimodule which is finitely generated as a right B-module is B-selfdual.

Proof. We have to show, by Lemma 2.2, that every bounded *B*-linear mapping $\rho: X \to B$ vanishes at infinity. By assumption, there is $\{\xi_i\}_{1 \leq i \leq n} \subseteq X$ such that the bounded *B*-linear mapping

$$P: B^n \to X, \quad (b_i) \to \sum_{i=1}^n \xi_i b_i$$

is surjective, hence, open by the open mapping theorem. There is thus a real constant $\gamma > 0$ such that, for every $\xi \in X$, there is $(b_i) \in B^n$ with $P((b_i)) = \xi$ and $||(b_i)|| \leq \gamma ||\xi||$. The latter condition implies that $||b_i|| \leq \gamma ||\xi||$, $1 \leq i \leq n$. For an approximate identity $\{u_\alpha\} \subseteq A$ and $\xi = P((b_i)) = \sum \xi_i b_i \in X$ we have

$$\|\rho(\xi) - \rho(u_{\alpha}\xi)\| = \left\|\rho\left(\sum \xi_{i}b_{i} - \sum u_{\alpha}\xi_{i}b_{i}\right)\right\| = \left\|\sum \rho(\xi_{i} - u_{\alpha}\xi_{i})b_{i}\right\|$$
$$\leqslant \sum \|\rho\| \|\xi_{i} - u_{\alpha}\xi_{i}\| \|b_{i}\| \leqslant \gamma\|\xi\| \|\rho\|\sum \|\xi_{i} - u_{\alpha}\xi_{i}\|.$$

Hence, $\|\rho - \rho(\cdot u_{\alpha})\| \to 0$ as desired.

2.4. REMARK Using the adjoint X^o of the Hilbert A-B-bimodule X, it is clear that there are corresponding results for the left module structure of X. In particular, if X is finitely generated as an A-module, then it is A-selfdual.

For Theorem 2.6 below, we need to recall the relationship between multipliers of A, B and operators on an equivalence bimodule X over A and B.

We let $\operatorname{LM}(A)$, and $\operatorname{RM}(B)$, denote the Banach algebras of left, respectively right, multipliers of A, and B ([9]). For every $a \in \operatorname{LM}(A)$ and approximate unit $\{u_{\alpha}\} \subseteq A$ it is easy to see that, for $\xi \in X$, $((au_{\alpha})\xi)_{\alpha}$ is a Cauchy-net. We may thus define $\Lambda(a)\xi := \lim(au_{\alpha})\xi$, which is independent of the choice of the approximate unit. This yields an isometric isomorphism $\Lambda : \operatorname{LM}(A) \to \mathcal{B}_B(X)$, where $\mathcal{B}_B(X) = \mathcal{B}_B(X, X)$ denotes the Banach algebra of bounded B-linear operators on X. The inverse of Λ is obtained by observing that for $T \in \mathcal{B}_B(X)$, we have $T_A(\xi|\eta)\zeta = T\xi(\eta|\zeta)_B = {}_A(T\xi|\eta)\zeta$. So that T gives rise to a right centralizer of A.

The isomorphism Λ takes the multiplier algebra $\mathcal{M}(A)$ onto the C^* -algebra of adjointable (with respect to $(\cdot | \cdot)_B$) operators $\mathcal{L}_B(X)$ (cf. [7]). Similarly, there is an isomorphism from $\mathrm{RM}(B)$ onto the Banach algebra of bounded A-linear mappings $\mathcal{B}_A(X)$, such that $\mathcal{M}(B)$ is mapped onto the C^* -algebra of adjointable (with respect to $_A(\cdot | \cdot)$) operators $\mathcal{L}_A(X)$.

2.5. LEMMA. Let X be a Hilbert C^{*}-module over the von Neumann algebra \mathcal{M} . If X possesses a predual such that all $(\cdot|\xi)_{\mathcal{M}}, \xi \in X$ are continuous on bounded subsets for the corresponding weak^{*}-topologies, then X is \mathcal{M} -selfdual.

Proof. We let $\rho : X \to \mathcal{M}$ be a bounded \mathcal{M} -linear mapping and choose an approximate identity $\{u_{\alpha}\} \subseteq A := \mathcal{K}(X)$. Since, for fixed α , $\rho(u_{\alpha} \cdot)$ vanishes at infinity, there is $\eta_{\alpha} \in X$ such that $\rho(u_{\alpha} \cdot) = (\eta_{\alpha}| \cdot)_{B}$. Moreover, $\|\eta_{\alpha}\| = \|\rho(u_{\alpha} \cdot)\| \leq \|\rho\|$. Since the unit ball of X is weak*-compact we can choose a subnet $\{\eta_{\alpha_{i}}\}$ with weak*-limit point $\eta \in X$. So that, for all $\xi \in X$,

$$(\eta|\xi)_B = \lim_i (\eta_{\alpha_i}|\xi)_B = \lim_i \rho(u_{\alpha_i}\xi) = \rho(\xi). \quad \blacksquare$$

Hilbert C^* -modules with a predual

In what follows, we shall denote the projective tensor product of Banach spaces by $\hat{\otimes}$. Its module version is obtained by an obvious quotient construction. We use the canonical identification $(X \hat{\otimes} Y)^* \cong \mathcal{B}(X, Y^*)$, for Banach spaces X, Y.

2.6. THEOREM. Let X be a Hilbert W^{*}-module, and let V denote a predual of X. Then X is A-selfdual and B-selfdual. Moreover, M(A) and M(B) are W^{*}-algebras with preduals $X \widehat{\otimes}_B V$ and $V \widehat{\otimes}_A X$, respectively. The predual V is unique, and the module multiplications and inner products are separately weak^{*}continuous.

Proof. As $X \widehat{\otimes}_B V$ is a quotient of $X \widehat{\otimes} V$, there is an isometry $\Theta : (X \widehat{\otimes}_B V)^* \to \mathcal{B}(X, V^*) = \mathcal{B}(X)$ such that, for all $F \in (X \widehat{\otimes}_B V)^*$,

$$f(\Theta(F)\xi) = F(\xi \otimes_B f), \quad f \in V, \xi \in X.$$

The range of Θ actually coincides with the subset $\mathcal{B}_B(X)$ of bounded *B*-linear mappings. Indeed, it is clear that im $\Theta \subseteq \mathcal{B}_B(X)$. On the other hand, every $T \in \mathcal{B}_B(X)$ defines a functional $F : \xi \otimes_B f \mapsto f(T\xi)$ such that $\Theta(F) = T$.

Similarly, we obtain $(V \widehat{\otimes}_A X)^* \cong \mathcal{B}_A(X) \cong \mathrm{RM}(B)$ with duality given by

 $\langle f \otimes_A \xi, b \rangle = f(\xi b), \quad f \in V, \xi \in X, b \in \text{RM}(B).$

Hence, $\operatorname{RM}(B)$ is a dual Banach space and carries thus a weak*-topology. Now observe that $(\eta|\cdot)_B$, $\eta \in X$, is continuous on bounded subsets with respect to the corresponding weak*-topologies. In fact, for $\sum f_i \otimes_A \xi_i \in V \widehat{\otimes}_A X$, we have

$$\left\langle \sum f_i \otimes_A \xi_i, (\eta | \cdot)_B \right\rangle = \sum f_i(\xi_i(\eta | \cdot)_B) = \sum f_i(A(\xi_i | \eta) \cdot) \in V.$$

Hence, by the same arguments as in the proof of Lemma 2.5, X is B-selfdual. It follows as in Hilbert space theory, that every bounded B-linear mapping is adjointable. Consequently, $M(A) \cong \mathcal{L}_B(X) = \mathcal{B}_B(X)$ is a W^* -algebra.

Analogously, one obtains that X is A-selfdual and $(V \widehat{\otimes}_A X)^* \cong M(B)$.

For the last assertion, we observe that the multiplier algebra M(L) of the linking algebra L is isomorphic to the Banach space dual of

$$\begin{pmatrix} X \widehat{\otimes}_B V & V \\ V & V \widehat{\otimes}_B X \end{pmatrix},$$

and hence a $W^*\mbox{-algebra}.$ So that the remaining assertions follow from the well-known theorems of Sakai. \blacksquare

2.7. REMARK. Let X be a Hilbert W^* -module and L its linking algebra. We have seen in the proof of Theorem 2.6 that $\mathcal{M} = \mathcal{M}(L)$ is a W^* -algebra. Hence, every Hilbert W^* -module is a corner of a W^* -algebra.

Every faithful normal representation π of M(L) on a Hilbert space \mathcal{H} yields a realization of X, $\pi(X)$, which obviously satisfies $\pi(X)\pi(X)^*\pi(X) \subseteq \pi(X)$. So that X is isomorphic to a concrete Hilbert W^* -module.

2.8. THEOREM. Let X be an equivalence bimodule over unital C^* -algebras A and B. If X possesses a predual, then it is a Hilbert W^* -module and A, B are von Neumann algebras.

Proof. By our assumptions, we have that LM(A) = A and RM(B) = B. But we saw in the proof of Theorem 2.6 without using the continuity requirements of

Definition 1.1, that LM(A), and RM(B), are dual Banach spaces. Hence, A and B are von Neumann algebras.

Continuing as in the final paragraph of the proof of Theorem 2.6, we see that the linking algebra L of X is a W^* -algebra and A, B, X are corners in L. The weak*-continuity of $a \in A$, $b \in B$ as operators on X now follows from the corresponding theorems of Sakai.

Suppose we are given a Hilbert C^* -module over a von Neumann algebra. We may ask for further conditions which imply that it is a Hilbert W^* -module. The following proposition gives three such conditions. Its proof simplifies some arguments in [1] and [5], where the equivalence of conditions two and three is also proved.

2.9. PROPOSITION. For a Hilbert C^* -module X over the von Neumann algebra \mathcal{M} the following conditions are equivalent:

(i) X possesses a predual V such that all $(\cdot | \xi)_{\mathcal{M}}, \xi \in X$ are continuous on bounded subsets for the corresponding weak*-topologies;

(ii) X is \mathcal{M} -selfdual;

(iii) the unit ball of X is complete with respect to the locally convex topology induced by the family of seminorms

$$N = \{ |\varphi((\cdot | \xi)_{\mathcal{M}})| : \varphi \in \mathcal{M}_*, \, \xi \in X \};$$

(iv) X is a Hilbert W^* -module.

Proof. The implication (i) \Rightarrow (ii) is Lemma 2.5.

(ii) \Rightarrow (iii) Let $\{\eta_{\alpha}\}$ be a *N*-Cauchy net in the unit ball of *X*. For every $\varphi \in \mathcal{M}_{*}$ and $\xi \in X$, the net $\{\varphi((\eta_{\alpha}|\xi)_{\mathcal{M}})\}$ is Cauchy and bounded by $\|\xi\| \|\varphi\|$. Hence $\varphi \mapsto \lim \varphi((\eta_{\alpha}|\xi)_{\mathcal{M}})$ defines a bounded functional on \mathcal{M}_{*} , and there is $\rho(\xi) \in \mathcal{M}$ such that w*-lim $(\eta_{\alpha}|\xi)_{\mathcal{M}} = \rho(\xi)$ and $\|\rho(\xi)\| \leq \|\xi\|$. Clearly, ρ is \mathcal{M} -linear and by assumption there is $\eta \in X$ with $\rho(\xi) = (\eta|\xi)_{\mathcal{M}}$. It follows that *N*-lim $\eta_{\alpha} = \eta$.

(iii) \Rightarrow (iv) Let V denote the norm closure of the linear span of $\{\varphi((\cdot|\xi)_{\mathcal{M}}): \varphi \in \mathcal{M}_*, \xi \in X\}$ in X^* . The unit ball of X is still complete with respect to the weak topology induced by V. Note that V is a separating Banach space of functionals for X. We may thus consider the canonical embedding of X into V^* . This embedding is a homeomorphism with respect to the topologies induced by V, and the image of X is weak*-dense by the Hahn-Banach theorem. Consequently, the unit ball of X is weak*-complete in V^* and therefore weak*-closed. So is all of X by the Krein-Smulian theorem. Hence, $X = V^*$.

The continuity assertions follow immediately, taking $f = \sum \overline{\varphi_i((\cdot | \xi_i)_{\mathcal{M}})}$ and $a \in \mathcal{L}(X), b \in \mathcal{M}$, from

$$bfa = \sum \overline{\varphi_i((a \cdot b)|\eta_i)_{\mathcal{M}}} = \sum \overline{\varphi_i((b^*(\cdot |a^*\eta)_{\mathcal{M}})} \in V \text{ and}$$
$$\|bfa\| = \|f(a \cdot b)\| \leqslant \|a\| \|b\| \|f\|.$$

The remaining implication (iv) \Rightarrow (i) is part of Theorem 2.6.

3. THE ENVELOPING HILBERT C^* -MODULE AND MULTIPLIERS

For every $\varphi \in B^*$ and $\xi \in X$, $\varphi((\xi|\cdot)_B)$ yields a continuous functional on X, whose norm is bounded by $\|\varphi\| \|\xi\|$. Considering B^* as a B-bimodule, we thus obtain a bounded homomorphism of B-A-modules $\Theta : B^* \widehat{\otimes}_B X^o \to X^o, \varphi \otimes \xi^o \mapsto$ $\varphi((\xi|\cdot)_B)$, where the bimodule structure of X^o is given by $b\Phi a := \Phi(a \cdot b), \Phi \in$ $X^o, a \in A, b \in B$, and similarly for B^* .

The following proposition shows that Θ is isometric and onto.

3.1. PROPOSITION. For a Hilbert A-B-bimodule X the mapping $\varphi \otimes \xi^{o} \mapsto \varphi((\xi | \cdot)_{B})$ yields an isometric isomorphism of Banach B-A-modules, i.e.,

$$B^* \widehat{\otimes}_B X^o \cong X^*.$$

Similarly, $\xi^o \otimes \varphi \mapsto \varphi(A(\cdot | \xi))$ yields an isometric isomorphism $X^o \widehat{\otimes}_A A^* \cong X^*$.

Proof. We shall show that the adjoint of Θ , $\Theta^* : X^{**} \to (B^* \widehat{\otimes}_B X^o)^*$ is a surjective isometry. Clearly, Θ itself will then be a surjective isometry.

Let us observe that for all $\eta \in X^{**}$, $\Theta^*(\eta)(\varphi \otimes_B \xi) = \varphi((\xi|\eta)_{B^{**}})$, which is obvious for elements in X and follows for general elements by continuity. It will be convenient to identify $(B^* \widehat{\otimes}_B X^o)^*$ and $\mathcal{B}_B(X^o, B^{**})$ via

$$\mathcal{B}_B(X^o, B^{**}) \to (B^* \widehat{\otimes}_B X^o)^*, \quad f \mapsto (\varphi \otimes_B \xi \mapsto \varphi(f(\xi))).$$

Hence, $\Theta^*(\eta) = (\cdot |\eta)_{B^{**}}$ for all $\eta \in X^{**}$. To see the surjectivity of Θ^* , let $f \in \mathcal{B}_B(X^o, B^{**})$. Its weak*-continuous extension $\tilde{f} : (X^o)^{**} \to B^{**}$ is B^{**-} linear, so that, by Theorem 2.6, there is $\eta \in X^{**}$ such that, for all $\xi^o \in X^o$, $f(\xi^o) = \tilde{f}(\xi^o) = (\xi|\eta)_{B^{**}} = \Theta^*(\eta)(\xi^o)$.

To establish that Θ^* is isometric, we need to show that $(\cdot |\eta)_{B^{**}}$ attains its norm $||\eta||$ on the subspace $X \subseteq X^{**}$. To this end we shall work in the linking algebra L of X. We identify X and X^{**} with the subspaces $pLq \subseteq L$ and $pL^{**}q \subseteq$ L^{**} , respectively. It is a consequence of Kaplansky's density theorem that pL_1q is weak*-dense in $pL_1^{**}q$. Choosing a state $\psi \in L^*$ such that $\psi(||\eta||^{-1}\eta^*\eta) = ||\eta||$, there is thus, for every $\varepsilon > 0$, an element $\xi \in X_1$ with

$$\|\eta\| - \varepsilon \leqslant |\psi(\xi^*\eta)| \leqslant \|(\xi|\eta)_{B^{**}}\| \leqslant \|\Theta^*(\eta)\|.$$

In [8] Paschke showed that, for a Hilbert *B*-module X, $\mathcal{B}_B(B^{**} \otimes_B X^o, B^{**})$ can be equipped with a B^{**} -valued inner product turning it into a B^{**} -selfdual Hilbert C^* -module, which, as X can be isometrically embedded in $\mathcal{B}_B(B^{**} \otimes_B X^o, B^{**})$, was called the *selfdual completion* by him. Using that $\mathcal{B}_B(B^{**} \otimes_B X^o, B^{**})$ is canonically isomorphic to $\mathcal{B}_B(X^o, B^{**})$, we obtain the following corollary.

3.2. COROLLARY. The selfdual completion $\mathcal{B}_B(X^o, B^{**})$ of a Hilbert A-Bbimodule X is isomorphic to the enveloping Hilbert W^{*}-module X^{**}. Similarly, we have $\mathcal{B}_A(X^o, A^{**}) \cong X^{**}$.

3.3. DEFINITION. For a Hilbert A-B-bimodule X we put $BM(X) = \{n \in X^{**} : (X|n)_{Back} \subset B\}$

$$\operatorname{LM}(X) = \{\eta \in X^{**} : (X|\eta)B^{**} \subseteq D\},\$$
$$\operatorname{LM}(X) = \{\eta \in X^{**} : {}_{A^{**}}(\eta|X) \subseteq A\},\$$
$$\operatorname{M}(X) = \operatorname{LM}(X) \cap \operatorname{RM}(X).$$

Clearly, the isomorphism $\Theta^* : X^{**} \to \mathcal{B}_B(X^o, B^{**}), \eta \mapsto (\cdot | \eta)_{B^{**}}$ from the proof of Proposition 3.1 maps $\operatorname{RM}(X)$ onto $\mathcal{B}_B(X^o, B)$, and the corresponding map $X^{**} \to \mathcal{B}_A(X^o, A^{**})$ takes $\operatorname{LM}(X)$ onto $\mathcal{B}_A(X^o, A)$. So that $\operatorname{RM}(X) = X$, respectively $\operatorname{LM}(X) = X$, if and only if X is B-selfdual, respectively, A-selfdual.

3.4. PROPOSITION. For a Hilbert A-B-bimodule X, we have

$$M(X) = \{\eta \in X^{**} : A\eta + \eta B \subseteq X\} \cong \mathcal{L}_A(X^o, A) \cong \mathcal{L}_B(X^o, B).$$

Proof. Let $\eta \in X^{**}$ be such that $A\eta + \eta B \subseteq X$. For every $\xi \in X$ and each approximate identity $\{u_{\alpha}\} \subseteq A$, we have

$$(\xi|\eta)_{B^{**}} = \lim(u_{\alpha}\xi|\eta)_{B^{**}} = \lim(\xi|u_{\alpha}\eta)_{B^{**}} \subseteq B.$$

Similarly, $_{A^{**}}(\eta|X) \subseteq A$. Hence, $\eta \in M(X)$. For the reverse inclusion, we note that every $\eta \in M(X)$ and $a \in A$ defines a bounded *B*-linear mapping $\rho = (\cdot |a\eta)_{B^{**}} = (a^* \cdot |\eta)_{B^{**}} : X^o \to B$, which obviously vanishes at infinity. By Lemma 2.2 there is $\zeta^o \in X^o$ such that $(\cdot |a\eta)_{B^{**}} = (\cdot |\zeta)_B = (\cdot |\zeta)_{B^{**}}$, whence $a\eta = \zeta \in X$. Similarly, we have $\eta B \subseteq X$ using Remark 2.4.

If $\eta \in \overline{\mathcal{M}}(X)$, then an adjoint of $_{A^{**}}(\eta | \cdot) : X^o \to A, \xi^o \mapsto _{A^{**}}(\eta | \xi)$ is given by $A \to X^o, a \mapsto \eta^o a$. Hence, $\Lambda(\eta) := _{A^{**}}(\eta | \cdot) \in \mathcal{L}_A(X^o, A)$, and Λ is an A-B-linear isometry. Surjectivity of Λ is clear from Definition 3.3 and the remark thereafter. Similarly, $\mathcal{M}(X) \cong \mathcal{L}_B(X^o, B)$.

3.5. REMARK. In [4] Echterhoff and Raeburn introduced multiplier bimodules in the following way. A *double centralizer* (m_A, m_B) is a pair consisting of *A*-linear and *B*-linear mappings $m_A : A \to X$, $m_B : B \to X$, respectively, such that the compatibility relation

$$m_A(a)b = am_B(b), \quad a \in A, b \in B$$

is satisfied. Boundedness of such mappings follows as in the C^* -algebra case. The multiplier bimodule is defined as the set of all double centralizers of X.

Let us briefly show that this definition coincides with ours. Of course, each $\xi\in {\rm M}(X)$ defines a double centralizer via

$$(a \mapsto a\xi, b \mapsto \xi b).$$

If, on the other hand, (m_A, m_B) is a double centralizer, we put $\eta = m_A^{**}(1)$, $\eta' = m_B^{**}(1)$ and observe that the compatibility of m_A and m_B implies that

$$a\eta b = am_A^{**}(1)b = m_A(a)b = am_B(b) = a\eta'b, \quad a \in A, \ b \in B.$$

Using weak*-continuity we find that $\eta = \eta'$. Consequently, $A\eta + \eta B = m_A(A) + m_B(B) \subseteq X$, whence $\eta \in \mathcal{M}(X)$.

The following proposition is contained in [4]. We give an alternative proof.

HILBERT C^* -MODULES WITH A PREDUAL

3.6. PROPOSITION. The multiplier bimodule M(X) is the unique Hilbert M(A)-M(B)-bimodule satisfying the following properties:

(i) $AM(X) + M(X)B \subseteq X;$

(ii) if M is another A-B-bimodule which contains X and satisfies (i), then there exists a unique A-B-linear mapping $M \to M(X)$ which is the identity on X.

Proof. We shall first show that M(X) is a Hilbert M(A)-M(B)-bimodule. Let $\xi, \eta \in M(X)$. Then $B(\xi|\eta)_{B^{**}} + (\xi|\eta)_{B^{**}} B = (\xi B|\eta)_{B^{**}} + (\xi|\eta B)_{B^{**}} \subseteq B$. Hence, $(M(X)|M(X))_{B^{**}} \subseteq M(B)$, and similarly, $_{A^{**}}(M(X)|M(X)) \subseteq M(A)$. The inclusion $M(A)M(X) + M(X)M(B) \subseteq M(X)$ follows immediately from the characterization of multipliers given in Proposition 3.4.

Statement (i) is part of Proposition 3.4. Suppose that M is another A-B-bimodule with $X \subseteq M$ and $AM + MB \subseteq X$. Every $m \in M$ defines a double centralizer $(a \mapsto am, b \mapsto mb)$, hence, using the preceding remark, an element in M(X). It is straightforward to check that this mapping has the required properties.

Suppose now that $\Phi, \Psi : M \to M(X)$ are two module mappings fixing X. Then $(\Phi(m) - \Psi(m))b = \Phi(mb) - \Psi(mb) = mb - mb = 0$ with $m \in M, b \in B$. Consequently, $\Phi(m) = \Psi(m), m \in M$.

The uniqueness of M(X) follows from the usual universality considerations.

Acknowledgements. The results in this paper are part of the author's doctoral thesis "Interplay between Noncommutative Topology and Operators on C^* -algebras" written at the University of Tübingen under the supervision of M. Mathieu.

REFERENCES

- M. BAILLET, Y. DENIZEAU, J.-F. HAVET, Indice d'une ésperance conditionelle, Composito Math. 66(1988), 199–236.
- L.G. BROWN, J.A. MINGO, N.-T. SHEN, Quasi-multipliers and embeddings of Hilbert C*-bimodules, Canad. J. Math. 46(1994), 1150–1174.
- 3. A. CONNES, Noncommutative Geometry, Academic Press, San Diego 1994.
- S. ECHTERHOFF, I. RAEBURN, Multipliers of imprimitivity bimodules and Morita equivalence of crossed products, *Math. Scand.* 76(1995), 289–309.
- 5. M. FRANK, Self-duality and \hat{C}^* -reflexivity of Hilbert C^* -moduli, Z. Anal. Anwendungen **9**(1990), 165–176.
- E.C. LANCE, Hilbert C^{*}-Modules A Toolkit for Operator Algebraists, London Math. Soc. Lecture Notes Ser., vol. 203, Cambridge Univ. Press, Cambridge 1995.
- H. LIN, Bounded module maps and pure completely positive maps, J. Operator Theory 26(1991), 121–138.
- 8. W. PASCHKE, Inner product modules over B*-algebras, Trans. Amer. Math. Soc. 182(1973), 443–468.
- 9. G.K. PEDERSEN, C^{*}-Algebras and their Automorphism Groups, Academic Press, London 1979.
- M.A. RIEFFEL, Morita equivalence for C*-algebras and W*-algebras, J. Pure Appl. Algebra 5(1974), 51–96.
- 11. S. SAKAI, A characterization of W*-algebras, Pacific J. Math. 6(1956), 763-773.

12. S. SAKAI, C^* -Algebras and W^* -Algebras, reprint edition, Springer-Verlag, Berlin 1998.

13. N.E. WEGGE-OLSEN, K-Theory and C*-Algebras, Oxford Univ. Press, Oxford 1993.

JÜRGEN SCHWEIZER Mathematisches Institut Universität Tübingen Auf der Morgenstelle 10 72076 Tübingen GERMANY E-mail: juergen.schweizer@uni-tuebingen.de

Received July 15, 2000.