HILBERT C^{*}-MODULES WITH A PREDUAL

JÜRGEN SCHWEIZER

Communicated by William B. Arweson

Abstract

We extend Sakai's characterization of von Neumann algebras to the context of Hilbert C^{*}-modules. If A, B are C^{*}-algebras and X is a full Hilbert A - B-bimodule possessing a predual such that left, respectively right, multiplications are weak*-continuous, then $\mathrm{M}(A)$ and $\mathrm{M}(B)$ are W^{*}-algebras, the predual is unique, and X is selfdual in the sense of Paschke. For unital A, B the above continuity requirement is automatic.

We determine the dual Banach space X^{*} of a Hilbert A - B-bimodule X and show that Paschke's selfdual completion of X is isomorphic to the bidual $X^{* *}$, which is a Hilbert C^{*}-module in a natural way. We conclude with a new approach to multipliers of Hilbert C^{*}-bimodules.

Keywords: Hilbert W^{*}-module, Hilbert C^{*}-module, correspondence.
MSC (2000): 46L08.

In [8] Paschke observed that the C^{*}-algebra of adjointable operators $\mathcal{L}(E)$ on a Hilbert C^{*}-module E over a von Neumann algebra need not be a von Neumann algebra itself. However, he showed that, if one asks E to be selfdual in a sense analogous to the selfduality of Hilbert spaces, then $\mathcal{L}(E)$ is a von Neumann algebra. Selfdual Hilbert C^{*}-module have henceforth been used in the theory of Morita equivalence ([10]) and in index theory ([1]). In the present paper, we shall give a new approach to these modules in the spirit of Sakai's abstract characterization of von Neumann algebras ([11], [12]).

In Section 1 we shall recall some basic concepts and introduce our definition of Hilbert W^{*}-modules along with some examples. In particular, we shall see that the modules appearing in Rieffel's theory of Morita equivalence of von Neumann algebras are Hilbert W^{*}-modules, yielding a new proof of their selfduality which does not rely on an orthonormalization procedure. We shall also see that every correspondence in the sense of Connes ([3]) gives rise to a Hilbert W^{*}-module.

Section 2 contains our main result, Theorem 2.6, which states that every Hilbert W^{*}-module X over C^{*}-algebras A and B is selfdual, the multiplier algebras $\mathrm{M}(A), \mathrm{M}(B)$ are von Neumann algebras, the predual is unique, and the module operations are separately weak*-continuous. To achieve this, we characterize in Lemma 2.2 those bounded B-linear mappings $\rho: X \rightarrow B$ which can be obtained as $\rho=(\xi \mid \cdot)_{B}$ for an appropriate element $\xi \in X$. This leads to an elementary proof of the selfduality of finitely generated Hilbert C^{*}-modules (Proposition 2.3 and Remark 2.4). A converse of Theorem 2.6 is provided by Proposition 2.9, which gives various equivalent conditions for a Hilbert C^{*}-module over a von Neumann algebra to be a Hilbert W^{*}-module, simplifying some arguments in [5] and [1].

In Section 3, we shall show that the topological dual X^{*} of a Hilbert B module X is isomorphic to the projective tensor product of the dual B^{*} with X (or rather the adjoint module X^{o}), which implies that Paschke's selfdual completion of X is isomorphic to the enveloping Hilbert W^{*}-module of Section 1. Moreover, we shall see that the bounded module mappings into the coefficient C^{*}-algebras, extensively used in Section 2, can be thought of as one-sided multipliers of X and realized in $X^{* *}$, which permits to define the multiplier bimodule of X as the intersection of left and right multipliers, providing a new approach to the multiplier bimodule of Echterhoff and Raeburn ([4]).

Conventions. We shall denote the topological dual of a Banach space V by V^{*}. Whenever we apply a bilinear operation to sets, we shall mean the linear span of all possible products.

1. DEFINITIONS AND EXAMPLES

A Hilbert A - B-bimodule ($[2]$), or simply a Hilbert C^{*}-bimodule, is an A - B-bimodule X together with inner products ${ }_{A}(\cdot \mid \cdot): X \times X \rightarrow A$, and $(\cdot \mid \cdot)_{B}: X \times X \rightarrow B$ such that

$$
{ }_{A}(\xi \mid \eta) \zeta=\xi(\eta \mid \zeta)_{B}, \quad \text { for all } \xi, \eta, \zeta \in X
$$

We also require that X is complete with respect to the norm $\|\xi\|:=\left\|(\xi \mid \xi)_{B}\right\|$, $\xi \in X$, and note that $\left\|(\xi \mid \xi)_{B}\right\|=\left\|_{A}(\xi \mid \xi)\right\|$ for all $\xi \in X([2])$. By convention ${ }_{A}(\cdot \mid \cdot)$ is assumed to be A-linear in its first argument, whereas $(\cdot \mid \cdot)_{B}$ is B-linear in its second argument. We will often assume that X is full, i.e., the closed linear span of ${ }_{A}(X \mid X)$, and $(X \mid X)_{B}$ is all of A, and B, respectively. Full Hilbert A - B bimodules will be referred to as equivalence bimodules.

A right B-module E is a Hilbert B-module, or Hilbert C^{*}-module, if it possesses a B-valued inner product and is complete with respect to the corresponding norm ([6], [13]). Every such module gives rise to a Hilbert A - B-bimodule with $A=\mathcal{K}(E)$, the C^{*}-algebra of generalized compact operators, which is generated by the "rank one" operators $\theta_{\xi, \eta}, \xi, \eta \in E$ where $\theta_{\xi, \eta}(\zeta)=\xi(\eta \mid \zeta)_{B}, \zeta \in E$. The left handed inner product is then defined by $A_{A}(\xi \mid \eta):=\theta_{\xi, \eta}, \xi, \eta \in E$. Replacing B by the closed ideal generated by $(E \mid E)_{B}$, we obtain an equivalence bimodule. In the present article, we shall thus consider Hilbert C^{*}-modules as special cases of equivalence bimodules.
1.1. Definition. A Hilbert W^{*}-module over A and B is an equivalence bimodule X possessing a predual, i.e., $X=V^{*}$, where V^{*} is the topological dual of a Banach space V, such that the mappings $\xi \mapsto a \xi$ and $\xi \mapsto \xi b$ are weak*continuous for all $a \in A, b \in B$.
1.2. Remark. It will be useful to have the following reformulation of the continuity requirements of Definition 1.1. The topological dual X^{*} becomes a Banach B - A-module by setting $b f a:=f(a \cdot b), a \in A, b \in B$. Identifying V with its canonical image in X^{*}, the above continuity requirements are equivalent to asking V to be a $B-A$-submodule of X^{*}.

We shall tacitly use the identification $V \subseteq X^{*}$, as well as the bimodule structure of V.

In the following examples the C^{*}-algebras A and B come naturally embedded in von Neumann algebras \mathcal{M}, \mathcal{N}, respectively. We shall thus also speak of Hilbert W^{*}-modules over \mathcal{M} and \mathcal{N}. Of course, the C^{*}-algebras are easily recovered as the closed linear span of the inner products. In general, A and B need not coincide with \mathcal{M} and \mathcal{N}. This is easily seen by considering an infinite dimensional Hilbert space \mathcal{H}, which is a Hilbert W^{*}-module over $\mathcal{K}(\mathcal{H}) \subseteq \mathcal{L}(\mathcal{H})$ and \mathbb{C}.
1.3. Concrete Hilbert W^{*}-modules. We let \mathcal{H} be a Hilbert space and $X \subseteq$ $\mathcal{L}(\mathcal{H})$ a weakly closed subspace such that $X X^{*} X \subseteq X$. Then X becomes a concrete Hilbert W^{*}-module over $A:=\overline{X X^{*}}, B:=\overline{X^{*} X}$, putting $a \cdot \xi \cdot b:=a \xi b$, and ${ }_{A}(\xi \mid \eta):=\xi \eta^{*},(\xi \mid \eta)_{B}:=\xi^{*} \eta$ for all $a \in A, b \in B, \xi, \eta \in X$. We shall see below (Remark 2.7) that every Hilbert W^{*}-module is isomorphic to a concrete one.

For a given Hilbert A - B-bimodule X, we shall need its adjoint $X^{o}:=\left\{\xi^{o}:\right.$ $\xi \in X\}$ which becomes a Hilbert B - A-module upon setting

$$
\left(\xi^{o} \mid \eta^{o}\right)_{A}:={ }_{A}(\xi \mid \eta), \quad{ }_{B}\left(\xi^{o} \mid \eta^{o}\right):=(\xi \mid \eta)_{B}, \quad \text { and } \quad b \xi^{o} a:=\left(a^{*} \xi b^{*}\right)^{o}
$$

as well as its linking algebra $L([2])$, which is defined by

$$
\begin{aligned}
L=\left\{\left(\begin{array}{cc}
a & \xi \\
\eta^{o} & b
\end{array}\right)\right. & \left.: a \in A, b \in B, \xi \in X, \eta^{o} \in X^{o}\right\} \\
\left(\begin{array}{ll}
a_{1} & \xi_{1} \\
\eta_{1}^{o} & b_{1}
\end{array}\right)\left(\begin{array}{cc}
a_{2} & \xi_{2} \\
\eta_{2}^{o} & b_{2}
\end{array}\right) & =\left(\begin{array}{cc}
a_{1} a_{2}+A_{A}\left(\xi_{1} \mid \eta_{2}\right) & a_{1} \xi_{2}+\xi_{1} b_{2} \\
\eta_{1}^{o} a_{2}+b_{1} \eta_{2}^{o} & \left(\eta_{1} \mid \xi_{2}\right)_{B}+b_{1} b_{2}
\end{array}\right), \\
\left(\begin{array}{cc}
a & \xi \\
\eta^{o} & b
\end{array}\right)^{*} & =\left(\begin{array}{cc}
a^{*} & \eta \\
\xi^{o} & b^{*}
\end{array}\right) .
\end{aligned}
$$

There is a unique norm turning L into a C^{*}-algebra ([2]). Setting $p:=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) \in$ $\mathrm{M}(L)$, and $q:=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right) \in \mathrm{M}(L)$, we obtain $A \cong p L p, B \cong q L q$, and $L \cong p L q$.

If \mathcal{M} is a von Neumann algebra and $p, q \in \mathcal{M}$ are projections, then $p \mathcal{M} q$ is a Hilbert W^{*}-module over $p \mathcal{M} p, q \mathcal{M} q$, using the product of \mathcal{M} and putting $p \mathcal{M} p(\xi \mid \eta):=\xi \eta^{*},(\xi \mid \eta)_{q \mathcal{M} q}:=\xi^{*} \eta$ for $\xi, \eta \in p \mathcal{M} q$. This observation is used in the following examples.
1.4. The enveloping Hilbert W^{*}-module. Let X be a Hilbert A - B-bimodule. Then its Banach space bidual $X^{* *}$ is a Hilbert W^{*}-module over the enveloping von Neumann algebras $A^{* *}, B^{* *}$ in a natural way. Indeed, embedding X in its linking algebra L, it is easy to see that $A^{* *} \cong p L^{* *} p, B^{* *} \cong q L^{* *} q$, and $X^{* *} \cong p L^{* *} q$, where $p, q \in \mathrm{M}(L)$ are the canonical projections. So that $X^{* *}$ inherits its structure of a Hilbert W^{*}-module from $L^{* *}$.

In the following, we will consider X as a subset of $X^{* *}$. We note that the module operations of $X^{* *}$ are the unique separately weak*-continuous extensions of those of X.
1.5. Intertwiners and Morita equivalence. For two representations π_{i} : $A \rightarrow \mathcal{L}\left(\mathcal{H}_{i}\right), i \in\{1,2\}$ of a C^{*}-algebra A the space of intertwiners

$$
X=\left\{T \in \mathcal{L}\left(\mathcal{H}_{2}, \mathcal{H}_{1}\right): T \pi_{2}(a)=\pi_{1}(a) T \text { for all } a \in A\right\}
$$

is a Hilbert W^{*}-module over the commutants $\pi_{1}(A)^{\prime}$ and $\pi_{2}(A)^{\prime}$. Indeed, considering the direct sum representation $\pi_{1} \oplus \pi_{2}: A \rightarrow \mathcal{L}\left(\mathcal{H}_{1} \oplus \mathcal{H}_{2}\right)$ with canonical projections $p_{1}, p_{2} \in \mathcal{L}\left(\mathcal{H}_{1} \oplus \mathcal{H}_{2}\right)$, and setting $L:=\left(\pi_{1} \oplus \pi_{2}\right)(A)^{\prime}$, we obtain $\pi_{1}(A)^{\prime} \cong p_{1} L p_{1}, \pi_{2}(A)^{\prime} \cong p_{2} L p_{2}$, and $X \cong p_{1} L p_{2}$. The so obtained Hilbert W^{*}-module is a fundamental device in the theory of Morita equivalence of von Neumann algebras ([10]).
1.6. Correspondences. We let \mathcal{M}, \mathcal{N} be von Neumann algebras. A correspondence in the sense of Connes ([3]) is a Hilbert space \mathcal{H} which is a normal $\mathcal{M}-\mathcal{N}$ bimodule, or equivalently, which possesses a normal representation of $\mathcal{M} \otimes \mathcal{N}^{\text {opp }}$, where $\mathcal{N}^{\text {opp }}$ is the opposite algebra of \mathcal{N}. Every correspondence \mathcal{H} gives rise to a Hilbert W^{*}-module by comparing it to the identity correspondence over \mathcal{N}, which is simply given by the standard Hilbert space $L^{2}(\mathcal{N})$ for \mathcal{N} and the module multiplications $a \xi b:=a J b^{*} J \xi, a, b \in \mathcal{N}, \xi \in L^{2}(\mathcal{N})$, where J is Tomita's involution. Indeed, the space of bounded right module operators

$$
X:=\left\{T \in \mathcal{L}\left(L^{2}(\mathcal{N}), \mathcal{H}\right): T(\xi a)=T(\xi) a, a \in \mathcal{N}, \xi \in L^{2}(\mathcal{N})\right\}
$$

is a Hilbert W^{*}-module, which is most easily seen by letting π_{1}, π_{2} denote the right representations of $\mathcal{N}^{\text {opp }}$ on \mathcal{H} and $L^{2}(\mathcal{N})$, respectively, and observing that X is a special case of the previous example with $A=\mathcal{N}^{\text {opp }}$. Hence, X is a Hilbert W^{*}-module over $\pi_{1}\left(\mathcal{N}^{\text {opp }}\right)^{\prime} \supseteq \mathcal{M}$ and $\pi_{2}\left(\mathcal{N}^{\text {opp }}\right)^{\prime} \cong \mathcal{N}$.

2. MAIN RESULTS

Paschke calls a Hilbert B-module E selfdual ([8]) if for every bounded B-linear mapping $\rho: E \rightarrow B$ there is an element $\eta \in E$ such that $\rho=(\eta \mid \cdot)_{B}$. This terminology is somewhat misleading since it suggests that the space of all bounded B-linear mappings $\mathcal{B}_{B}(X, B)$ is a dual of E. In general, however, there is no natural way of constructing a B-valued inner product on $\mathcal{B}_{B}(X, B)$. So that, at least in the category of Hilbert C^{*}-modules, $\mathcal{B}_{B}(X, B)$ is not a dual of E. However, we shall stick to Paschke's terminology.

A Hilbert A - B-module X is said to be B-selfdual if it is selfdual as a Hilbert B-module. Correspondingly, we shall say that X is A-selfdual if, for every bounded A-linear mapping $\lambda: X \rightarrow A$, there is an element $\eta \in X$ such that $\lambda={ }_{A}(\cdot \mid \eta)$.
2.1. Definition. A bounded B-linear mapping $\rho: X \rightarrow B$ is said to vanish at infinity if, for every approximate identity $\left\{u_{\alpha}\right\} \subseteq A$,

$$
\left\|\rho\left(u_{\alpha} \cdot\right)-\rho\right\| \rightarrow 0
$$

with respect to the operator norm.
If $\left\{u_{\alpha}\right\} \subseteq A$ is an approximate unit, then $\left\|u_{\alpha} \xi-\xi\right\| \rightarrow 0$ for every $\xi \in X$. In the proof of the following lemma, we shall use a particular approximate unit $\left\{u_{\alpha}:=\sum_{i=1}^{n_{\alpha}} A\left(\eta_{i}^{\alpha} \mid \eta_{i}^{\alpha}\right)\right\}$ where $\left\{\eta_{i}^{\alpha}\right\} \subseteq X$ (cf. [2]).
2.2. Lemma. For a bounded B-linear mapping $\rho: X \rightarrow B$, the following conditions are equivalent:
(i) ρ vanishes at infinity;
(ii) there is $\eta \in X$ such that $\rho=(\eta \mid \cdot)_{B}$.

Proof. We assume that $\rho: X \rightarrow B$ vanishes at infinity. Putting $\eta_{\alpha}=$ $\sum_{i} \eta_{i}^{\alpha} \rho\left(\eta_{i}^{\alpha}\right)^{*}$, where $\left\{\eta_{i}^{\alpha}\right\} \subseteq X$ determines an approximate identity for A, we find that, for every $\xi \in X$,

$$
\left(\eta_{\alpha} \mid \xi\right)_{B}=\sum \rho\left(\eta_{i}^{\alpha}\right)\left(\eta_{i}^{\alpha} \mid \xi\right)_{B}=\rho\left(\sum \eta_{i}^{\alpha}\left(\eta_{i}^{\alpha} \mid \xi\right)_{B}\right)=\rho\left(\sum{ }_{A}\left(\eta_{i}^{\alpha} \mid \eta_{i}^{\alpha}\right) \xi\right)
$$

Thus, by assumption, $\left(\eta_{\alpha} \mid \cdot\right)_{B} \rightarrow \rho$ in norm. But as $\left\|\left(\eta_{\alpha} \mid \cdot\right)_{B}\right\|=\left\|\eta_{\alpha}\right\|$, we see that $\left\{\eta_{\alpha}\right\}$ is a Cauchy-net. Letting $\eta=\lim \eta_{\alpha}$, we thus obtain $\rho=(\eta \mid \cdot)_{B}$.

For the reverse implication, we observe that $\left(\eta \mid u_{\alpha} \cdot\right)_{B}=\left(u_{\alpha} \eta \mid \cdot\right)_{B}$ converges uniformly to $(\eta \mid \cdot)_{B}$ since $\left\|u_{\alpha} \eta-\eta\right\| \rightarrow 0$.

A Hilbert A - B-bimodule X is said to be finitely generated as a right B module if there is a finite set $\left\{\xi_{i}\right\}_{1 \leqslant i \leqslant n} \subseteq X$ such that $X=\sum_{i=1}^{n} \xi_{i} B$.
2.3. Proposition. Every Hilbert A-B-bimodule which is finitely generated as a right B-module is B-selfdual.

Proof. We have to show, by Lemma 2.2, that every bounded B-linear mapping $\rho: X \rightarrow B$ vanishes at infinity. By assumption, there is $\left\{\xi_{i}\right\}_{1 \leqslant i \leqslant n} \subseteq X$ such that the bounded B-linear mapping

$$
P: B^{n} \rightarrow X, \quad\left(b_{i}\right) \rightarrow \sum_{i=1}^{n} \xi_{i} b_{i}
$$

is surjective, hence, open by the open mapping theorem. There is thus a real constant $\gamma>0$ such that, for every $\xi \in X$, there is $\left(b_{i}\right) \in B^{n}$ with $P\left(\left(b_{i}\right)\right)=\xi$ and $\left\|\left(b_{i}\right)\right\| \leqslant \gamma\|\xi\|$. The latter condition implies that $\left\|b_{i}\right\| \leqslant \gamma\|\xi\|, 1 \leqslant i \leqslant n$. For an approximate identity $\left\{u_{\alpha}\right\} \subseteq A$ and $\xi=P\left(\left(b_{i}\right)\right)=\sum \xi_{i} b_{i} \in X$ we have

$$
\begin{aligned}
\left\|\rho(\xi)-\rho\left(u_{\alpha} \xi\right)\right\| & =\left\|\rho\left(\sum \xi_{i} b_{i}-\sum u_{\alpha} \xi_{i} b_{i}\right)\right\|=\left\|\sum \rho\left(\xi_{i}-u_{\alpha} \xi_{i}\right) b_{i}\right\| \\
& \leqslant \sum\|\rho\|\left\|\xi_{i}-u_{\alpha} \xi_{i}\right\|\left\|b_{i}\right\| \leqslant \gamma\|\xi\|\|\rho\| \sum\left\|\xi_{i}-u_{\alpha} \xi_{i}\right\|
\end{aligned}
$$

Hence, $\left\|\rho-\rho\left(\cdot u_{\alpha}\right)\right\| \rightarrow 0$ as desired.
2.4. Remark Using the adjoint X^{o} of the Hilbert A - B-bimodule X, it is clear that there are corresponding results for the left module structure of X. In particular, if X is finitely generated as an A-module, then it is A-selfdual.

For Theorem 2.6 below, we need to recall the relationship between multipliers of A, B and operators on an equivalence bimodule X over A and B.

We let $\mathrm{LM}(A)$, and $\mathrm{RM}(B)$, denote the Banach algebras of left, respectively right, multipliers of A, and $B([9])$. For every $a \in \mathrm{LM}(A)$ and approximate unit $\left\{u_{\alpha}\right\} \subseteq A$ it is easy to see that, for $\xi \in X,\left(\left(a u_{\alpha}\right) \xi\right)_{\alpha}$ is a Cauchy-net. We may thus define $\Lambda(a) \xi:=\lim \left(a u_{\alpha}\right) \xi$, which is independent of the choice of the approximate unit. This yields an isometric isomorphism $\Lambda: \operatorname{LM}(A) \rightarrow \mathcal{B}_{B}(X)$, where $\mathcal{B}_{B}(X)=$ $\mathcal{B}_{B}(X, X)$ denotes the Banach algebra of bounded B-linear operators on X. The inverse of Λ is obtained by observing that for $T \in \mathcal{B}_{B}(X)$, we have $T_{A}(\xi \mid \eta) \zeta=$ $T \xi(\eta \mid \zeta)_{B}={ }_{A}(T \xi \mid \eta) \zeta$. So that T gives rise to a right centralizer of A.

The isomorphism Λ takes the multiplier algebra $\mathrm{M}(A)$ onto the C^{*}-algebra of adjointable (with respect to $(\cdot \mid \cdot)_{B}$) operators $\mathcal{L}_{B}(X)$ (cf. [7]). Similarly, there is an isomorphism from $\operatorname{RM}(B)$ onto the Banach algebra of bounded A-linear mappings $\mathcal{B}_{A}(X)$, such that $\mathrm{M}(B)$ is mapped onto the C^{*}-algebra of adjointable (with respect to $A_{A}(\cdot \mid \cdot)$) operators $\mathcal{L}_{A}(X)$.
2.5. Lemma. Let X be a Hilbert C^{*}-module over the von Neumann algebra \mathcal{M}. If X possesses a predual such that all $(\cdot \mid \xi)_{\mathcal{M}}, \xi \in X$ are continuous on bounded subsets for the corresponding weak*-topologies, then X is \mathcal{M}-selfdual.

Proof. We let $\rho: X \rightarrow \mathcal{M}$ be a bounded \mathcal{M}-linear mapping and choose an approximate identity $\left\{u_{\alpha}\right\} \subseteq A:=\mathcal{K}(X)$. Since, for fixed $\alpha, \rho\left(u_{\alpha} \cdot\right)$ vanishes at infinity, there is $\eta_{\alpha} \in X$ such that $\rho\left(u_{\alpha} \cdot\right)=\left(\eta_{\alpha} \mid \cdot\right)_{B}$. Moreover, $\left\|\eta_{\alpha}\right\|=$ $\left\|\rho\left(u_{\alpha} \cdot\right)\right\| \leqslant\|\rho\|$. Since the unit ball of X is weak*-compact we can choose a subnet $\left\{\eta_{\alpha_{i}}\right\}$ with weak*-limit point $\eta \in X$. So that, for all $\xi \in X$,

$$
(\eta \mid \xi)_{B}=\lim _{i}\left(\eta_{\alpha_{i}} \mid \xi\right)_{B}=\lim _{i} \rho\left(u_{\alpha_{i}} \xi\right)=\rho(\xi)
$$

In what follows, we shall denote the projective tensor product of Banach spaces by $\widehat{\otimes}$. Its module version is obtained by an obvious quotient construction. We use the canonical identification $(X \widehat{\otimes} Y)^{*} \cong \mathcal{B}\left(X, Y^{*}\right)$, for Banach spaces X, Y.
2.6. Theorem. Let X be a Hilbert W^{*}-module, and let V denote a predual of X. Then X is A-selfdual and B-selfdual. Moreover, $M(A)$ and $M(B)$ are W^{*}-algebras with preduals $X \widehat{\otimes}_{B} V$ and $V \widehat{\otimes}_{A} X$, respectively. The predual V is unique, and the module multiplications and inner products are separately weak*continuous.

Proof. As $X \widehat{\otimes}_{B} V$ is a quotient of $X \widehat{\otimes} V$, there is an isometry $\Theta:\left(X \widehat{\otimes}_{B} V\right)^{*} \rightarrow$ $\mathcal{B}\left(X, V^{*}\right)=\mathcal{B}(X)$ such that, for all $F \in\left(X \widehat{\otimes}_{B} V\right)^{*}$,

$$
f(\Theta(F) \xi)=F\left(\xi \otimes_{B} f\right), \quad f \in V, \xi \in X
$$

The range of Θ actually coincides with the subset $\mathcal{B}_{B}(X)$ of bounded B-linear mappings. Indeed, it is clear that $\operatorname{im} \Theta \subseteq \mathcal{B}_{B}(X)$. On the other hand, every $T \in \mathcal{B}_{B}(X)$ defines a functional $F: \xi \otimes_{B} f \mapsto f(T \xi)$ such that $\Theta(F)=T$.

Similarly, we obtain $\left(V \widehat{\otimes}_{A} X\right)^{*} \cong \mathcal{B}_{A}(X) \cong \mathrm{RM}(B)$ with duality given by

$$
\left\langle f \otimes_{A} \xi, b\right\rangle=f(\xi b), \quad f \in V, \xi \in X, b \in \operatorname{RM}(B)
$$

Hence, $\operatorname{RM}(B)$ is a dual Banach space and carries thus a weak*-topology. Now observe that $(\eta \mid \cdot)_{B}, \eta \in X$, is continuous on bounded subsets with respect to the corresponding weak*-topologies. In fact, for $\sum f_{i} \otimes_{A} \xi_{i} \in V \widehat{\otimes}_{A} X$, we have

$$
\left\langle\sum f_{i} \otimes_{A} \xi_{i},(\eta \mid \cdot)_{B}\right\rangle=\sum f_{i}\left(\xi_{i}(\eta \mid \cdot)_{B}\right)=\sum f_{i}\left(A_{A}\left(\xi_{i} \mid \eta\right) \cdot\right) \in V
$$

Hence, by the same arguments as in the proof of Lemma $2.5, X$ is B-selfdual. It follows as in Hilbert space theory, that every bounded B-linear mapping is adjointable. Consequently, $\mathrm{M}(A) \cong \mathcal{L}_{B}(X)=\mathcal{B}_{B}(X)$ is a W^{*}-algebra.

Analogously, one obtains that X is A-selfdual and $\left(V \widehat{\otimes}_{A} X\right)^{*} \cong \mathrm{M}(B)$.
For the last assertion, we observe that the multiplier algebra $\mathrm{M}(L)$ of the linking algebra L is isomorphic to the Banach space dual of

$$
\left(\begin{array}{cc}
X \widehat{\otimes}_{B} V & V \\
V & V \widehat{\otimes}_{B} X
\end{array}\right)
$$

and hence a W^{*}-algebra. So that the remaining assertions follow from the wellknown theorems of Sakai.
2.7. Remark. Let X be a Hilbert W^{*}-module and L its linking algebra. We have seen in the proof of Theorem 2.6 that $\mathcal{M}=\mathrm{M}(L)$ is a W^{*}-algebra. Hence, every Hilbert W^{*}-module is a corner of a W^{*}-algebra.

Every faithful normal representation π of $\mathrm{M}(L)$ on a Hilbert space \mathcal{H} yields a realization of $X, \pi(X)$, which obviously satisfies $\pi(X) \pi(X)^{*} \pi(X) \subseteq \pi(X)$. So that X is isomorphic to a concrete Hilbert W^{*}-module.
2.8. Theorem. Let X be an equivalence bimodule over unital C^{*}-algebras A and B. If X possesses a predual, then it is a Hilbert W^{*}-module and A, B are von Neumann algebras.

Proof. By our assumtions, we have that $\operatorname{LM}(A)=A$ and $\operatorname{RM}(B)=B$. But we saw in the proof of Theorem 2.6 without using the continuity requirements of

Definition 1.1, that $\operatorname{LM}(A)$, and $\operatorname{RM}(B)$, are dual Banach spaces. Hence, A and B are von Neumann algebras.

Continuing as in the final paragraph of the proof of Theorem 2.6, we see that the linking algebra L of X is a W^{*}-algebra and A, B, X are corners in L. The weak*-continuity of $a \in A, b \in B$ as operators on X now follows from the corresponding theorems of Sakai.

Suppose we are given a Hilbert C^{*}-module over a von Neumann algebra. We may ask for further conditions which imply that it is a Hilbert W^{*}-module. The following proposition gives three such conditions. Its proof simplifies some arguments in [1] and [5], where the equivalence of conditions two and three is also proved.
2.9. Proposition. For a Hilbert C^{*}-module X over the von Neumann algebra \mathcal{M} the following conditions are equivalent:
(i) X possesses a predual V such that all $(\cdot \mid \xi)_{\mathcal{M}}, \xi \in X$ are continuous on bounded subsets for the corresponding weak*-topologies;
(ii) X is \mathcal{M}-selfdual;
(iii) the unit ball of X is complete with respect to the locally convex topology induced by the family of seminorms

$$
N=\left\{\left|\varphi\left((\cdot \mid \xi)_{\mathcal{M}}\right)\right|: \varphi \in \mathcal{M}_{*}, \xi \in X\right\}
$$

(iv) X is a Hilbert W^{*}-module.

Proof. The implication (i) \Rightarrow (ii) is Lemma 2.5.
(ii) \Rightarrow (iii) Let $\left\{\eta_{\alpha}\right\}$ be a N-Cauchy net in the unit ball of X. For every $\varphi \in \mathcal{M}_{*}$ and $\xi \in X$, the net $\left\{\varphi\left(\left(\eta_{\alpha} \mid \xi\right)_{\mathcal{M}}\right)\right\}$ is Cauchy and bounded by $\|\xi\|\|\varphi\|$. Hence $\varphi \mapsto \lim \varphi\left(\left(\eta_{\alpha} \mid \xi\right)_{\mathcal{M}}\right)$ defines a bounded functional on \mathcal{M}_{*}, and there is $\rho(\xi) \in \mathcal{M}$ such that $\mathrm{w}^{*}-\lim \left(\eta_{\alpha} \mid \xi\right)_{\mathcal{M}}=\rho(\xi)$ and $\|\rho(\xi)\| \leqslant\|\xi\|$. Clearly, ρ is \mathcal{M} linear and by assumption there is $\eta \in X$ with $\rho(\xi)=(\eta \mid \xi)_{\mathcal{M}}$. It follows that $N-\lim \eta_{\alpha}=\eta$.
(iii) \Rightarrow (iv) Let V denote the norm closure of the linear span of $\left\{\overline{\varphi\left((\cdot \mid \xi)_{\mathcal{M}}\right)}\right.$: $\left.\varphi \in \mathcal{M}_{*}, \xi \in X\right\}$ in X^{*}. The unit ball of X is still complete with respect to the weak topology induced by V. Note that V is a separating Banach space of functionals for X. We may thus consider the canonical embedding of X into V^{*}. This embedding is a homeomorphism with respect to the topologies induced by V, and the image of X is weak*-dense by the Hahn-Banach theorem. Consequently, the unit ball of X is weak*-complete in V^{*} and therefore weak*-closed. So is all of X by the Krein-Smulian theorem. Hence, $X=V^{*}$.

The continuity assertions follow immediately, taking $f=\sum \overline{\varphi_{i}\left(\left(\cdot \mid \xi_{i}\right)_{\mathcal{M}}\right)}$ and $a \in \mathcal{L}(X), b \in \mathcal{M}$, from

$$
\begin{aligned}
b f a & =\sum \overline{\left.\varphi_{i}\left((a \cdot b) \mid \eta_{i}\right)_{\mathcal{M}}\right)}=\sum \overline{\varphi_{i}\left(\left(b^{*}\left(\cdot \mid a^{*} \eta\right)_{\mathcal{M}}\right)\right.} \in V \quad \text { and } \\
\|b f a\| & =\|f(a \cdot b)\| \leqslant\|a\|\|b\|\|f\| .
\end{aligned}
$$

The remaining implication (iv) \Rightarrow (i) is part of Theorem 2.6.

3. THE ENVELOPING HILBERT C^{*}-MODULE AND MULTIPLIERS

For every $\varphi \in B^{*}$ and $\xi \in X, \varphi\left((\xi \mid \cdot)_{B}\right)$ yields a continuous functional on X, whose norm is bounded by $\|\varphi\|\|\xi\|$. Considering B^{*} as a B-bimodule, we thus obtain a bounded homomorphism of B - A-modules $\Theta: B^{*} \widehat{\otimes}_{B} X^{o} \rightarrow X^{o}, \varphi \otimes \xi^{o} \mapsto$ $\varphi\left((\xi \mid \cdot)_{B}\right)$, where the bimodule structure of X^{o} is given by $b \Phi a:=\Phi(a \cdot b), \Phi \in$ $X^{o}, a \in A, b \in B$, and similarly for B^{*}.

The following proposition shows that Θ is isometric and onto.
3.1. Proposition. For a Hilbert A-B-bimodule X the mapping $\varphi \otimes \xi^{o} \mapsto$ $\varphi\left((\xi \mid \cdot)_{B}\right)$ yields an isometric isomorphism of Banach B - A-modules, i.e.,

$$
B^{*} \widehat{\otimes}_{B} X^{o} \cong X^{*}
$$

Similarly, $\xi^{o} \otimes \varphi \mapsto \varphi\left(_{A}(\cdot \mid \xi)\right)$ yields an isometric isomorphism $X^{o} \widehat{\otimes}_{A} A^{*} \cong X^{*}$.
Proof. We shall show that the adjoint of $\Theta, \Theta^{*}: X^{* *} \rightarrow\left(B^{*} \widehat{\otimes}_{B} X^{o}\right)^{*}$ is a surjective isometry. Clearly, Θ itself will then be a surjective isometry.

Let us observe that for all $\eta \in X^{* *}, \Theta^{*}(\eta)\left(\varphi \otimes_{B} \xi\right)=\varphi\left((\xi \mid \eta)_{B^{* *}}\right)$, which is obvious for elements in X and follows for general elements by continuity. It will be convenient to identify $\left(B^{*} \widehat{\otimes}_{B} X^{o}\right)^{*}$ and $\mathcal{B}_{B}\left(X^{o}, B^{* *}\right)$ via

$$
\mathcal{B}_{B}\left(X^{o}, B^{* *}\right) \rightarrow\left(B^{*} \widehat{\otimes}_{B} X^{o}\right)^{*}, \quad f \mapsto\left(\varphi \otimes_{B} \xi \mapsto \varphi(f(\xi))\right) .
$$

Hence, $\Theta^{*}(\eta)=(\cdot \mid \eta)_{B^{* *}}$ for all $\eta \in X^{* *}$. To see the surjectivity of Θ^{*}, let $f \in \mathcal{B}_{B}\left(X^{o}, B^{* *}\right)$. Its weak*-continuous extension $\tilde{f}:\left(X^{o}\right)^{* *} \rightarrow B^{* *}$ is $B^{* *}$ linear, so that, by Theorem 2.6, there is $\eta \in X^{* *}$ such that, for all $\xi^{o} \in X^{o}$, $f\left(\xi^{o}\right)=\widetilde{f}\left(\xi^{o}\right)=(\xi \mid \eta)_{B^{* *}}=\Theta^{*}(\eta)\left(\xi^{o}\right)$.

To establish that Θ^{*} is isometric, we need to show that $(\cdot \mid \eta)_{B^{* *}}$ attains its norm $\|\eta\|$ on the subspace $X \subseteq X^{* *}$. To this end we shall work in the linking algebra L of X. We identify X and $X^{* *}$ with the subspaces $p L q \subseteq L$ and $p L^{* *} q \subseteq$ $L^{* *}$, respectively. It is a consequence of Kaplansky's density theorem that $p L_{1} q$ is weak ${ }^{*}$-dense in $p L_{1}^{* *} q$. Choosing a state $\psi \in L^{*}$ such that $\psi\left(\|\eta\|^{-1} \eta^{*} \eta\right)=\|\eta\|$, there is thus, for every $\varepsilon>0$, an element $\xi \in X_{1}$ with

$$
\|\eta\|-\varepsilon \leqslant\left|\psi\left(\xi^{*} \eta\right)\right| \leqslant\left\|(\xi \mid \eta)_{B^{* *}}\right\| \leqslant\left\|\Theta^{*}(\eta)\right\| .
$$

In [8] Paschke showed that, for a Hilbert B-module $X, \mathcal{B}_{B}\left(B^{* *} \otimes_{B} X^{o}, B^{* *}\right)$ can be equipped with a $B^{* *}$-valued inner product turning it into a $B^{* *}$-selfdual Hilbert C^{*}-module, which, as X can be isometrically embedded in $\mathcal{B}_{B}\left(B^{* *} \otimes_{B}\right.$ $\left.X^{o}, B^{* *}\right)$, was called the selfdual completion by him. Using that $\mathcal{B}_{B}\left(B^{* *} \otimes_{B}\right.$ $\left.X^{o}, B^{* *}\right)$ is canonically isomorphic to $\mathcal{B}_{B}\left(X^{o}, B^{* *}\right)$, we obtain the following corollary.
3.2. Corollary. The selfdual completion $\mathcal{B}_{B}\left(X^{o}, B^{* *}\right)$ of a Hilbert $A-B$ bimodule X is isomorphic to the enveloping Hilbert W^{*}-module $X^{* *}$. Similarly, we have $\mathcal{B}_{A}\left(X^{o}, A^{* *}\right) \cong X^{* *}$.
3.3. Definition. For a Hilbert A - B-bimodule X we put

$$
\begin{aligned}
\operatorname{RM}(X) & =\left\{\eta \in X^{* *}:(X \mid \eta)_{B^{* *}} \subseteq B\right\}, \\
\operatorname{LM}(X) & =\left\{\eta \in X^{* *}:{ }_{A^{* *}}(\eta \mid X) \subseteq A\right\}, \\
\mathrm{M}(X) & =\operatorname{LM}(X) \cap \operatorname{RM}(X) .
\end{aligned}
$$

Clearly, the isomorphism $\Theta^{*}: X^{* *} \rightarrow \mathcal{B}_{B}\left(X^{o}, B^{* *}\right), \eta \mapsto(\cdot \mid \eta)_{B^{* *}}$ from the proof of Proposition 3.1 maps $\operatorname{RM}(X)$ onto $\mathcal{B}_{B}\left(X^{o}, B\right)$, and the corresponding map $X^{* *} \rightarrow \mathcal{B}_{A}\left(X^{o}, A^{* *}\right)$ takes $\mathrm{LM}(X)$ onto $\mathcal{B}_{A}\left(X^{o}, A\right)$. So that $\mathrm{RM}(X)=X$, respectively $\operatorname{LM}(X)=X$, if and only if X is B-selfdual, respectively, A-selfdual.
3.4. Proposition. For a Hilbert A - B-bimodule X, we have

$$
M(X)=\left\{\eta \in X^{* *}: A \eta+\eta B \subseteq X\right\} \cong \mathcal{L}_{A}\left(X^{o}, A\right) \cong \mathcal{L}_{B}\left(X^{o}, B\right)
$$

Proof. Let $\eta \in X^{* *}$ be such that $A \eta+\eta B \subseteq X$. For every $\xi \in X$ and each approximate identity $\left\{u_{\alpha}\right\} \subseteq A$, we have

$$
(\xi \mid \eta)_{B^{* *}}=\lim _{\alpha}\left(u_{\alpha} \xi \mid \eta\right)_{B^{* *}}=\lim _{\alpha}\left(\xi \mid u_{\alpha} \eta\right)_{B^{* *}} \subseteq B
$$

Similarly, $A^{* *}(\eta \mid X) \subseteq A$. Hence, $\eta \in \mathrm{M}(X)$. For the reverse inclusion, we note that every $\eta \in \mathrm{M}(X)$ and $a \in A$ defines a bounded B-linear mapping $\rho=(\cdot \mid a \eta)_{B^{* *}}=$ $\left(a^{*} \cdot \mid \eta\right)_{B^{* *}}: X^{o} \rightarrow B$, which obviously vanishes at infinity. By Lemma 2.2 there is $\zeta^{o} \in X^{o}$ such that $(\cdot \mid a \eta)_{B^{* *}}=(\cdot \mid \zeta)_{B}=(\cdot \mid \zeta)_{B^{* *}}$, whence $a \eta=\zeta \in X$. Similarly, we have $\eta B \subseteq X$ using Remark 2.4.

If $\eta \in \mathrm{M}(X)$, then an adjoint of $A^{* *}(\eta \mid \cdot): X^{o} \rightarrow A, \xi^{o} \mapsto{ }_{A^{* *}}(\eta \mid \xi)$ is given by $A \rightarrow X^{o}, a \mapsto \eta^{o} a$. Hence, $\Lambda(\eta):={ }_{A^{* *}}(\eta \mid \cdot) \in \mathcal{L}_{A}\left(X^{o}, A\right)$, and Λ is an A - B-linear isometry. Surjectivity of Λ is clear from Definition 3.3 and the remark thereafter.

Similarly, $\mathrm{M}(X) \cong \mathcal{L}_{B}\left(X^{o}, B\right)$.
3.5. Remark. In [4] Echterhoff and Raeburn introduced multiplier bimodules in the following way. A double centralizer $\left(m_{A}, m_{B}\right)$ is a pair consisting of A-linear and B-linear mappings $m_{A}: A \rightarrow X, m_{B}: B \rightarrow X$, respectively, such that the compatibility relation

$$
m_{A}(a) b=a m_{B}(b), \quad a \in A, b \in B
$$

is satisfied. Boundedness of such mappings follows as in the C^{*}-algebra case. The multiplier bimodule is defined as the set of all double centralizers of X.

Let us briefly show that this definition coincides with ours. Of course, each $\xi \in \mathrm{M}(X)$ defines a double centralizer via

$$
(a \mapsto a \xi, b \mapsto \xi b)
$$

If, on the other hand, $\left(m_{A}, m_{B}\right)$ is a double centralizer, we put $\eta=m_{A}^{* *}(1)$, $\eta^{\prime}=m_{B}^{* *}(1)$ and observe that the compatibility of m_{A} and m_{B} implies that

$$
a \eta b=a m_{A}^{* *}(1) b=m_{A}(a) b=a m_{B}(b)=a \eta^{\prime} b, \quad a \in A, b \in B
$$

Using weak*-continuity we find that $\eta=\eta^{\prime}$. Consequently, $A \eta+\eta B=m_{A}(A)+$ $m_{B}(B) \subseteq X$, whence $\eta \in \mathrm{M}(X)$.

The following proposition is contained in [4]. We give an alternative proof.
3.6. Proposition. The multiplier bimodule $M(X)$ is the unique Hilbert $M(A)-M(B)$-bimodule satisfying the following properties:
(i) $A M(X)+M(X) B \subseteq X$;
(ii) if M is another A-B-bimodule which contains X and satisfies (i), then there exists a unique A-B-linear mapping $M \rightarrow M(X)$ which is the identity on X.

Proof. We shall first show that $\mathrm{M}(X)$ is a Hilbert $\mathrm{M}(A)-\mathrm{M}(B)$-bimodule. Let $\xi, \eta \in \mathrm{M}(X)$. Then $B(\xi \mid \eta)_{B^{* *}}+(\xi \mid \eta)_{B^{* *}} B=(\xi B \mid \eta)_{B^{* *}}+(\xi \mid \eta B)_{B^{* *}} \subseteq B$. Hence, $(\mathrm{M}(X) \mid \mathrm{M}(X))_{B^{* *}} \subseteq \mathrm{M}(B)$, and similarly, $A^{* *}(\mathrm{M}(X) \mid \mathrm{M}(X)) \subseteq \mathrm{M}(A)$. The inclusion $\mathrm{M}(A) \mathrm{M}(X)+\mathrm{M}(X) \mathrm{M}(B) \subseteq \mathrm{M}(X)$ follows immediately from the characterization of multipliers given in Proposition 3.4.

Statement (i) is part of Proposition 3.4. Suppose that M is another $A-B$ bimodule with $X \subseteq M$ and $A M+M B \subseteq X$. Every $m \in M$ defines a double centralizer ($a \mapsto a m, b \mapsto m b$), hence, using the preceding remark, an element in $\mathrm{M}(X)$. It is straightforward to check that this mapping has the required properties.

Suppose now that $\Phi, \Psi: M \rightarrow \mathrm{M}(X)$ are two module mappings fixing X. Then $(\Phi(m)-\Psi(m)) b=\Phi(m b)-\Psi(m b)=m b-m b=0$ with $m \in M, b \in B$. Consequently, $\Phi(m)=\Psi(m), m \in M$.

The uniqueness of $\mathrm{M}(X)$ follows from the usual universality considerations.

Acknowledgements. The results in this paper are part of the author's doctoral thesis "Interplay between Noncommutative Topology and Operators on C^{*}-algebras" written at the University of Tübingen under the supervision of M. Mathieu.

REFERENCES

1. M. Baillet, Y. Denizeau, J.-F. Havet, Indice d'une ésperance conditionelle, Composito Math. 66(1988), 199-236.
2. L.G. Brown, J.A. Mingo, N.-T. Shen, Quasi-multipliers and embeddings of Hilbert C^{*}-bimodules, Canad. J. Math. 46(1994), 1150-1174.
3. A. Connes, Noncommutative Geometry, Academic Press, San Diego 1994.
4. S. Echterhoff, I. Raeburn, Multipliers of imprimitivity bimodules and Morita equivalence of crossed products, Math. Scand. 76(1995), 289-309.
5. M. Frank, Self-duality and C^{*}-reflexivity of Hilbert C^{*}-moduli, Z. Anal. Anwendungen 9(1990), 165-176.
6. E.C. Lance, Hilbert C^{*}-Modules - A Toolkit for Operator Algebraists, London Math. Soc. Lecture Notes Ser., vol. 203, Cambridge Univ. Press, Cambridge 1995.
7. H. Lin, Bounded module maps and pure completely positive maps, J. Operator Theory 26(1991), 121-138.
8. W. Paschke, Inner product modules over B^{*}-algebras, Trans. Amer. Math. Soc. 182(1973), 443-468.
9. G.K. Pedersen, C^{*}-Algebras and their Automorphism Groups, Academic Press, London 1979.
10. M.A. Rieffel, Morita equivalence for C^{*}-algebras and W^{*}-algebras, J. Pure Appl. Algebra 5(1974), 51-96.
11. S. SAKAI, A characterization of W^{*}-algebras, Pacific J. Math. 6(1956), 763-773.
12. S. Sakai, C^{*}-Algebras and W^{*}-Algebras, reprint edition, Springer-Verlag, Berlin 1998.
13. N.E. Wegge-Olsen, K-Theory and C^{*}-Algebras, Oxford Univ. Press, Oxford 1993.

JÜRGEN SCHWEIZER
Mathematisches Institut
Universität Tübingen
Auf der Morgenstelle 10
72076 Tübingen
GERMANY
E-mail: juergen.schweizer@uni-tuebingen.de

Received July 15, 2000.

