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JÜRGEN SCHWEIZER

Communicated by William B. Arweson

Abstract. We extend Sakai’s characterization of von Neumann algebras to
the context of Hilbert C∗-modules. If A, B are C∗-algebras and X is a full
Hilbert A-B-bimodule possessing a predual such that left, respectively right,
multiplications are weak*-continuous, then M(A) and M(B) are W ∗-algebras,
the predual is unique, and X is selfdual in the sense of Paschke. For unital
A, B the above continuity requirement is automatic.

We determine the dual Banach space X∗ of a Hilbert A-B-bimodule X
and show that Paschke’s selfdual completion of X is isomorphic to the bidual
X∗∗, which is a Hilbert C∗-module in a natural way. We conclude with a
new approach to multipliers of Hilbert C∗-bimodules.
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In [8] Paschke observed that the C∗-algebra of adjointable operators L(E) on a
Hilbert C∗-module E over a von Neumann algebra need not be a von Neumann
algebra itself. However, he showed that, if one asks E to be selfdual in a sense
analogous to the selfduality of Hilbert spaces, then L(E) is a von Neumann algebra.
Selfdual Hilbert C∗-module have henceforth been used in the theory of Morita
equivalence ([10]) and in index theory ([1]). In the present paper, we shall give a
new approach to these modules in the spirit of Sakai’s abstract characterization of
von Neumann algebras ([11], [12]).

In Section 1 we shall recall some basic concepts and introduce our definition
of Hilbert W ∗-modules along with some examples. In particular, we shall see that
the modules appearing in Rieffel’s theory of Morita equivalence of von Neumann
algebras are Hilbert W ∗-modules, yielding a new proof of their selfduality which
does not rely on an orthonormalization procedure. We shall also see that every
correspondence in the sense of Connes ([3]) gives rise to a Hilbert W ∗-module.
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Section 2 contains our main result, Theorem 2.6, which states that every
HilbertW ∗-moduleX over C∗-algebras A and B is selfdual, the multiplier algebras
M(A), M(B) are von Neumann algebras, the predual is unique, and the module
operations are separately weak*-continuous. To achieve this, we characterize in
Lemma 2.2 those bounded B-linear mappings ρ : X → B which can be obtained as
ρ = (ξ| · )B for an appropriate element ξ ∈ X. This leads to an elementary proof
of the selfduality of finitely generated Hilbert C∗-modules (Proposition 2.3 and
Remark 2.4). A converse of Theorem 2.6 is provided by Proposition 2.9, which
gives various equivalent conditions for a Hilbert C∗-module over a von Neumann
algebra to be a Hilbert W ∗-module, simplifying some arguments in [5] and [1].

In Section 3, we shall show that the topological dual X∗ of a Hilbert B-
module X is isomorphic to the projective tensor product of the dual B∗ with X (or
rather the adjoint module Xo), which implies that Paschke’s selfdual completion
of X is isomorphic to the enveloping Hilbert W ∗-module of Section 1. Moreover,
we shall see that the bounded module mappings into the coefficient C∗-algebras,
extensively used in Section 2, can be thought of as one-sided multipliers of X
and realized in X∗∗, which permits to define the multiplier bimodule of X as the
intersection of left and right multipliers, providing a new approach to the multiplier
bimodule of Echterhoff and Raeburn ([4]).

Conventions. We shall denote the topological dual of a Banach space V
by V ∗. Whenever we apply a bilinear operation to sets, we shall mean the linear
span of all possible products.

1. DEFINITIONS AND EXAMPLES

A Hilbert A-B-bimodule ([2]), or simply a Hilbert C∗-bimodule, is an A-B-bimodule
X together with inner products A( · | · ) : X ×X → A, and ( · | · )B : X ×X → B
such that

A(ξ|η)ζ = ξ(η|ζ)B , for all ξ, η, ζ ∈ X.

We also require that X is complete with respect to the norm ‖ξ‖ := ‖(ξ|ξ)B‖,
ξ ∈ X, and note that ‖(ξ|ξ)B‖ = ‖A(ξ|ξ)‖ for all ξ ∈ X ([2]). By convention
A( · | · ) is assumed to be A-linear in its first argument, whereas ( · | · )B is B-linear
in its second argument. We will often assume that X is full , i.e., the closed linear
span of A(X|X), and (X|X)B is all of A, and B, respectively. Full Hilbert A-B-
bimodules will be referred to as equivalence bimodules.

A right B-module E is a Hilbert B-module, or Hilbert C∗-module, if it pos-
sesses a B-valued inner product and is complete with respect to the corresponding
norm ([6], [13]). Every such module gives rise to a Hilbert A-B-bimodule with
A = K(E), the C∗-algebra of generalized compact operators, which is generated
by the “rank one” operators θξ,η, ξ, η ∈ E where θξ,η(ζ) = ξ(η|ζ)B , ζ ∈ E. The
left handed inner product is then defined by A(ξ|η) := θξ,η, ξ, η ∈ E. Replacing B
by the closed ideal generated by (E|E)B , we obtain an equivalence bimodule. In
the present article, we shall thus consider Hilbert C∗-modules as special cases of
equivalence bimodules.
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1.1. Definition. A Hilbert W ∗-module over A and B is an equivalence
bimodule X possessing a predual, i.e., X = V ∗, where V ∗ is the topological dual
of a Banach space V , such that the mappings ξ 7→ aξ and ξ 7→ ξb are weak*-
continuous for all a ∈ A, b ∈ B.

1.2. Remark. It will be useful to have the following reformulation of the
continuity requirements of Definition 1.1. The topological dual X∗ becomes a
Banach B-A-module by setting bfa := f(a · b), a ∈ A, b ∈ B. Identifying V with
its canonical image in X∗, the above continuity requirements are equivalent to
asking V to be a B-A-submodule of X∗.

We shall tacitly use the identification V ⊆ X∗, as well as the bimodule
structure of V .

In the following examples the C∗-algebras A and B come naturally embedded
in von Neumann algebras M,N , respectively. We shall thus also speak of Hilbert
W ∗-modules over M and N . Of course, the C∗-algebras are easily recovered as
the closed linear span of the inner products. In general, A and B need not coincide
with M and N . This is easily seen by considering an infinite dimensional Hilbert
space H, which is a Hilbert W ∗-module over K(H) ⊆ L(H) and C.

1.3. Concrete Hilbert W ∗-modules. We let H be a Hilbert space and X ⊆
L(H) a weakly closed subspace such thatXX∗X ⊆ X. ThenX becomes a concrete
Hilbert W ∗-module over A := XX∗, B := X∗X, putting a · ξ · b := aξb, and
A(ξ|η) := ξη∗, (ξ|η)B := ξ∗η for all a ∈ A, b ∈ B, ξ, η ∈ X. We shall see below
(Remark 2.7) that every Hilbert W ∗-module is isomorphic to a concrete one.

For a given Hilbert A-B-bimodule X, we shall need its adjoint Xo := {ξo :
ξ ∈ X} which becomes a Hilbert B-A-module upon setting

(ξo|ηo)A := A(ξ|η), B(ξo|ηo) := (ξ|η)B , and bξoa := (a∗ξb∗)o,

as well as its linking algebra L ([2]), which is defined by

L =
{(

a ξ
ηo b

)
: a ∈ A, b ∈ B, ξ ∈ X, ηo ∈ Xo

}
,(

a1 ξ1
ηo
1 b1

) (
a2 ξ2
ηo
2 b2

)
=

(
a1a2 + A(ξ1|η2) a1ξ2 + ξ1b2
ηo
1a2 + b1η

o
2 (η1|ξ2)B + b1b2

)
,(

a ξ
ηo b

)∗
=

(
a∗ η
ξo b∗

)
.

There is a unique norm turning L into a C∗-algebra ([2]). Setting p :=
(

1 0
0 0

)
∈

M(L), and q :=
(

0 0
0 1

)
∈ M(L), we obtain A ∼= pLp, B ∼= qLq, and L ∼= pLq.

If M is a von Neumann algebra and p, q ∈ M are projections, then pMq
is a Hilbert W ∗-module over pMp, qMq, using the product of M and putting
pMp(ξ|η) := ξη∗, (ξ|η)qMq := ξ∗η for ξ, η ∈ pMq. This observation is used in the
following examples.
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1.4. The enveloping Hilbert W ∗-module. LetX be a Hilbert A-B-bimodule.
Then its Banach space bidual X∗∗ is a Hilbert W ∗-module over the enveloping von
Neumann algebras A∗∗, B∗∗ in a natural way. Indeed, embedding X in its linking
algebra L, it is easy to see that A∗∗ ∼= pL∗∗p, B∗∗ ∼= qL∗∗q, and X∗∗ ∼= pL∗∗q,
where p, q ∈ M(L) are the canonical projections. So that X∗∗ inherits its structure
of a Hilbert W ∗-module from L∗∗.

In the following, we will consider X as a subset of X∗∗. We note that the
module operations of X∗∗ are the unique separately weak*-continuous extensions
of those of X.

1.5. Intertwiners and Morita equivalence. For two representations πi :
A→ L(Hi), i ∈ {1, 2} of a C∗-algebra A the space of intertwiners

X = {T ∈ L(H2,H1) : Tπ2(a) = π1(a)T for all a ∈ A}

is a Hilbert W ∗-module over the commutants π1(A)′ and π2(A)′. Indeed, con-
sidering the direct sum representation π1 ⊕ π2 : A → L(H1 ⊕ H2) with canoni-
cal projections p1, p2 ∈ L(H1 ⊕ H2), and setting L := (π1 ⊕ π2)(A)′, we obtain
π1(A)′ ∼= p1Lp1, π2(A)′ ∼= p2Lp2, and X ∼= p1Lp2. The so obtained Hilbert
W ∗-module is a fundamental device in the theory of Morita equivalence of von
Neumann algebras ([10]).

1.6. Correspondences. We let M,N be von Neumann algebras. A correspon-
dence in the sense of Connes ([3]) is a Hilbert space H which is a normal M-N -
bimodule, or equivalently, which possesses a normal representation of M⊗N opp,
where N opp is the opposite algebra of N . Every correspondence H gives rise to a
Hilbert W ∗-module by comparing it to the identity correspondence over N , which
is simply given by the standard Hilbert space L2(N ) for N and the module mul-
tiplications aξb := aJb∗Jξ, a, b ∈ N , ξ ∈ L2(N ), where J is Tomita’s involution.
Indeed, the space of bounded right module operators

X := {T ∈ L(L2(N ),H) : T (ξa) = T (ξ)a, a ∈ N , ξ ∈ L2(N )}

is a Hilbert W ∗-module, which is most easily seen by letting π1, π2 denote the
right representations of N opp on H and L2(N ), respectively, and observing that
X is a special case of the previous example with A = N opp. Hence, X is a Hilbert
W ∗-module over π1(N opp)′ ⊇M and π2(N opp)′ ∼= N .
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2. MAIN RESULTS

Paschke calls a Hilbert B-module E selfdual ([8]) if for every bounded B-linear
mapping ρ : E → B there is an element η ∈ E such that ρ = (η| · )B . This
terminology is somewhat misleading since it suggests that the space of all bounded
B-linear mappings BB(X,B) is a dual of E. In general, however, there is no natural
way of constructing a B-valued inner product on BB(X,B). So that, at least in
the category of Hilbert C∗-modules, BB(X,B) is not a dual of E. However, we
shall stick to Paschke’s terminology.

A Hilbert A-B-module X is said to be B-selfdual if it is selfdual as a Hilbert
B-module. Correspondingly, we shall say thatX is A-selfdual if, for every bounded
A-linear mapping λ : X → A, there is an element η ∈ X such that λ = A( · |η).

2.1. Definition. A bounded B-linear mapping ρ : X → B is said to vanish
at infinity if, for every approximate identity {uα} ⊆ A,

‖ρ(uα · )− ρ‖ → 0

with respect to the operator norm.

If {uα} ⊆ A is an approximate unit, then ‖uαξ − ξ‖ → 0 for every ξ ∈ X.
In the proof of the following lemma, we shall use a particular approximate unit{
uα :=

nα∑
i=1

A(ηα
i |ηα

i )
}

where {ηα
i } ⊆ X (cf. [2]).

2.2. Lemma. For a bounded B-linear mapping ρ : X → B, the following
conditions are equivalent:

(i) ρ vanishes at infinity;
(ii) there is η ∈ X such that ρ = (η| · )B.

Proof. We assume that ρ : X → B vanishes at infinity. Putting ηα =∑
i

ηα
i ρ(η

α
i )∗, where {ηα

i } ⊆ X determines an approximate identity for A, we find

that, for every ξ ∈ X,

(ηα|ξ)B =
∑

ρ(ηα
i )(ηα

i |ξ)B = ρ
( ∑

ηα
i (ηα

i |ξ)B

)
= ρ

( ∑
A(ηα

i |ηα
i )ξ

)
.

Thus, by assumption, (ηα| · )B → ρ in norm. But as ‖(ηα| · )B‖ = ‖ηα‖, we see
that {ηα} is a Cauchy-net. Letting η = lim ηα, we thus obtain ρ = (η| · )B .

For the reverse implication, we observe that (η|uα · )B = (uαη| · )B converges
uniformly to (η| · )B since ‖uαη − η‖ → 0.

A Hilbert A-B-bimodule X is said to be finitely generated as a right B-

module if there is a finite set {ξi}16i6n ⊆ X such that X =
n∑

i=1

ξiB.



626 Jürgen Schweizer

2.3. Proposition. Every Hilbert A-B-bimodule which is finitely generated
as a right B-module is B-selfdual.

Proof. We have to show, by Lemma 2.2, that every bounded B-linear map-
ping ρ : X → B vanishes at infinity. By assumption, there is {ξi}16i6n ⊆ X such
that the bounded B-linear mapping

P : Bn → X, (bi) →
n∑

i=1

ξibi

is surjective, hence, open by the open mapping theorem. There is thus a real
constant γ > 0 such that, for every ξ ∈ X, there is (bi) ∈ Bn with P ((bi)) = ξ and
‖(bi)‖ 6 γ‖ξ‖. The latter condition implies that ‖bi‖ 6 γ‖ξ‖, 1 6 i 6 n. For an
approximate identity {uα} ⊆ A and ξ = P ((bi)) =

∑
ξibi ∈ X we have

‖ρ(ξ)− ρ(uαξ)‖ =
∥∥∥ρ(∑

ξibi −
∑

uαξibi

)∥∥∥ =
∥∥∥∑

ρ(ξi − uαξi)bi
∥∥∥

6
∑

‖ρ‖ ‖ξi − uαξi‖ ‖bi‖ 6 γ‖ξ‖ ‖ρ‖
∑

‖ξi − uαξi‖.

Hence, ‖ρ− ρ( ·uα)‖ → 0 as desired.

2.4. Remark Using the adjoint Xo of the Hilbert A-B-bimodule X, it is
clear that there are corresponding results for the left module structure of X. In
particular, if X is finitely generated as an A-module, then it is A-selfdual.

For Theorem 2.6 below, we need to recall the relationship between multipliers
of A,B and operators on an equivalence bimodule X over A and B.

We let LM(A), and RM(B), denote the Banach algebras of left, respectively
right, multipliers of A, and B ([9]). For every a ∈ LM(A) and approximate unit
{uα} ⊆ A it is easy to see that, for ξ ∈ X, ((auα)ξ)α is a Cauchy-net. We may thus
define Λ(a)ξ := lim(auα)ξ, which is independent of the choice of the approximate
unit. This yields an isometric isomorphism Λ : LM(A) → BB(X), where BB(X) =
BB(X,X) denotes the Banach algebra of bounded B-linear operators on X. The
inverse of Λ is obtained by observing that for T ∈ BB(X), we have TA(ξ|η)ζ =
Tξ(η|ζ)B = A(Tξ|η)ζ. So that T gives rise to a right centralizer of A.

The isomorphism Λ takes the multiplier algebra M(A) onto the C∗-algebra
of adjointable (with respect to ( · | · )B) operators LB(X) (cf. [7]). Similarly, there
is an isomorphism from RM(B) onto the Banach algebra of bounded A-linear
mappings BA(X), such that M(B) is mapped onto the C∗-algebra of adjointable
(with respect to A( · | · )) operators LA(X).

2.5. Lemma. Let X be a Hilbert C∗-module over the von Neumann algebra
M. If X possesses a predual such that all ( · |ξ)M, ξ ∈ X are continuous on
bounded subsets for the corresponding weak*-topologies, then X is M-selfdual.

Proof. We let ρ : X → M be a bounded M-linear mapping and choose an
approximate identity {uα} ⊆ A := K(X). Since, for fixed α, ρ(uα · ) vanishes
at infinity, there is ηα ∈ X such that ρ(uα · ) = (ηα| · )B . Moreover, ‖ηα‖ =
‖ρ(uα · )‖ 6 ‖ρ‖. Since the unit ball of X is weak*-compact we can choose a
subnet {ηαi} with weak*-limit point η ∈ X. So that, for all ξ ∈ X,

(η|ξ)B = lim
i

(ηαi
|ξ)B = lim

i
ρ(uαi

ξ) = ρ(ξ).
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In what follows, we shall denote the projective tensor product of Banach
spaces by ⊗̂. Its module version is obtained by an obvious quotient construction.
We use the canonical identification (X⊗̂Y )∗ ∼= B(X,Y ∗), for Banach spaces X,Y .

2.6. Theorem. Let X be a Hilbert W ∗-module, and let V denote a pred-
ual of X. Then X is A-selfdual and B-selfdual. Moreover, M(A) and M(B) are
W ∗-algebras with preduals X⊗̂BV and V ⊗̂AX, respectively. The predual V is
unique, and the module multiplications and inner products are separately weak*-
continuous.

Proof. AsX⊗̂BV is a quotient ofX⊗̂V , there is an isometry Θ : (X⊗̂BV )∗ →
B(X,V ∗) = B(X) such that, for all F ∈ (X⊗̂BV )∗,

f(Θ(F )ξ) = F (ξ ⊗B f), f ∈ V, ξ ∈ X.
The range of Θ actually coincides with the subset BB(X) of bounded B-linear
mappings. Indeed, it is clear that im Θ ⊆ BB(X). On the other hand, every
T ∈ BB(X) defines a functional F : ξ ⊗B f 7→ f(Tξ) such that Θ(F ) = T .

Similarly, we obtain (V ⊗̂AX)∗ ∼= BA(X) ∼= RM(B) with duality given by

〈f ⊗A ξ, b〉 = f(ξb), f ∈ V, ξ ∈ X, b ∈ RM(B).

Hence, RM(B) is a dual Banach space and carries thus a weak*-topology.
Now observe that (η| · )B , η ∈ X, is continuous on bounded subsets with respect
to the corresponding weak*-topologies. In fact, for

∑
fi ⊗A ξi ∈ V ⊗̂AX, we have〈 ∑

fi ⊗A ξi, (η| · )B

〉
=

∑
fi(ξi(η| · )B) =

∑
fi(A(ξi|η) · ) ∈ V.

Hence, by the same arguments as in the proof of Lemma 2.5, X is B-selfdual.
It follows as in Hilbert space theory, that every bounded B-linear mapping is
adjointable. Consequently, M(A) ∼= LB(X) = BB(X) is a W ∗-algebra.

Analogously, one obtains that X is A-selfdual and (V ⊗̂AX)∗ ∼= M(B).
For the last assertion, we observe that the multiplier algebra M(L) of the

linking algebra L is isomorphic to the Banach space dual of(
X⊗̂BV V
V V ⊗̂BX

)
,

and hence a W ∗-algebra. So that the remaining assertions follow from the well-
known theorems of Sakai.

2.7. Remark. Let X be a Hilbert W ∗-module and L its linking algebra.
We have seen in the proof of Theorem 2.6 thatM = M(L) is a W ∗-algebra. Hence,
every Hilbert W ∗-module is a corner of a W ∗-algebra.

Every faithful normal representation π of M(L) on a Hilbert space H yields
a realization of X, π(X), which obviously satisfies π(X)π(X)∗π(X) ⊆ π(X). So
that X is isomorphic to a concrete Hilbert W ∗-module.

2.8. Theorem. Let X be an equivalence bimodule over unital C∗-algebras
A and B. If X possesses a predual, then it is a Hilbert W ∗-module and A,B are
von Neumann algebras.

Proof. By our assumtions, we have that LM(A) = A and RM(B) = B. But
we saw in the proof of Theorem 2.6 without using the continuity requirements of
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Definition 1.1, that LM(A), and RM(B), are dual Banach spaces. Hence, A and
B are von Neumann algebras.

Continuing as in the final paragraph of the proof of Theorem 2.6, we see
that the linking algebra L of X is a W ∗-algebra and A, B, X are corners in L.
The weak*-continuity of a ∈ A, b ∈ B as operators on X now follows from the
corresponding theorems of Sakai.

Suppose we are given a Hilbert C∗-module over a von Neumann algebra.
We may ask for further conditions which imply that it is a Hilbert W ∗-module.
The following proposition gives three such conditions. Its proof simplifies some
arguments in [1] and [5], where the equivalence of conditions two and three is also
proved.

2.9. Proposition. For a Hilbert C∗-module X over the von Neumann
algebra M the following conditions are equivalent:

(i) X possesses a predual V such that all ( · |ξ)M, ξ ∈ X are continuous on
bounded subsets for the corresponding weak*-topologies;

(ii) X is M-selfdual;
(iii) the unit ball of X is complete with respect to the locally convex topology

induced by the family of seminorms

N = {|ϕ(( · |ξ)M)| : ϕ ∈M∗, ξ ∈ X};

(iv) X is a Hilbert W ∗-module.

Proof. The implication (i) ⇒ (ii) is Lemma 2.5.
(ii) ⇒ (iii) Let {ηα} be a N -Cauchy net in the unit ball of X. For every

ϕ ∈ M∗ and ξ ∈ X, the net {ϕ((ηα|ξ)M)} is Cauchy and bounded by ‖ξ‖ ‖ϕ‖.
Hence ϕ 7→ limϕ((ηα|ξ)M) defines a bounded functional on M∗, and there is
ρ(ξ) ∈ M such that w*-lim (ηα|ξ)M = ρ(ξ) and ‖ρ(ξ)‖ 6 ‖ξ‖. Clearly, ρ is M-
linear and by assumption there is η ∈ X with ρ(ξ) = (η|ξ)M. It follows that
N -lim ηα = η.

(iii) ⇒ (iv) Let V denote the norm closure of the linear span of {ϕ(( · |ξ)M) :
ϕ ∈ M∗, ξ ∈ X} in X∗. The unit ball of X is still complete with respect to
the weak topology induced by V . Note that V is a separating Banach space of
functionals for X. We may thus consider the canonical embedding of X into V ∗.
This embedding is a homeomorphism with respect to the topologies induced by V ,
and the image of X is weak*-dense by the Hahn-Banach theorem. Consequently,
the unit ball of X is weak*-complete in V ∗ and therefore weak*-closed. So is all
of X by the Krein-Smulian theorem. Hence, X = V ∗.

The continuity assertions follow immediately, taking f =
∑
ϕi(( · |ξi)M) and

a ∈ L(X), b ∈M, from

bfa =
∑

ϕi((a · b)|ηi)M) =
∑

ϕi((b∗( · |a∗η)M) ∈ V and

‖bfa‖ = ‖f(a · b)‖ 6 ‖a‖ ‖b‖ ‖f‖.

The remaining implication (iv) ⇒ (i) is part of Theorem 2.6.
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3. THE ENVELOPING HILBERT C∗-MODULE AND MULTIPLIERS

For every ϕ ∈ B∗ and ξ ∈ X, ϕ((ξ| · )B) yields a continuous functional on X,
whose norm is bounded by ‖ϕ‖ ‖ξ‖. Considering B∗ as a B-bimodule, we thus
obtain a bounded homomorphism of B-A-modules Θ : B∗⊗̂BX

o → Xo, ϕ⊗ ξo 7→
ϕ((ξ| · )B), where the bimodule structure of Xo is given by bΦa := Φ(a · b), Φ ∈
Xo, a ∈ A, b ∈ B, and similarly for B∗.

The following proposition shows that Θ is isometric and onto.

3.1. Proposition. For a Hilbert A-B-bimodule X the mapping ϕ ⊗ ξo 7→
ϕ((ξ| · )B) yields an isometric isomorphism of Banach B-A-modules, i.e.,

B∗⊗̂BX
o ∼= X∗.

Similarly, ξo ⊗ ϕ 7→ ϕ(A( · |ξ)) yields an isometric isomorphism Xo⊗̂AA
∗ ∼= X∗.

Proof. We shall show that the adjoint of Θ, Θ∗ : X∗∗ → (B∗⊗̂BX
o)∗ is a

surjective isometry. Clearly, Θ itself will then be a surjective isometry.
Let us observe that for all η ∈ X∗∗, Θ∗(η)(ϕ ⊗B ξ) = ϕ((ξ|η)B∗∗), which is

obvious for elements in X and follows for general elements by continuity. It will
be convenient to identify (B∗⊗̂BX

o)∗ and BB(Xo, B∗∗) via

BB(Xo, B∗∗) → (B∗⊗̂BX
o)∗, f 7→ (ϕ⊗B ξ 7→ ϕ(f(ξ))).

Hence, Θ∗(η) = ( · |η)B∗∗ for all η ∈ X∗∗. To see the surjectivity of Θ∗, let
f ∈ BB(Xo, B∗∗). Its weak*-continuous extension f̃ : (Xo)∗∗ → B∗∗ is B∗∗-
linear, so that, by Theorem 2.6, there is η ∈ X∗∗ such that, for all ξo ∈ Xo,
f(ξo) = f̃(ξo) = (ξ|η)B∗∗ = Θ∗(η)(ξo) .

To establish that Θ∗ is isometric, we need to show that ( · |η)B∗∗ attains its
norm ‖η‖ on the subspace X ⊆ X∗∗. To this end we shall work in the linking
algebra L of X. We identify X and X∗∗ with the subspaces pLq ⊆ L and pL∗∗q ⊆
L∗∗, respectively. It is a consequence of Kaplansky’s density theorem that pL1q
is weak*-dense in pL∗∗1 q. Choosing a state ψ ∈ L∗ such that ψ(‖η‖−1η∗η) = ‖η‖,
there is thus, for every ε > 0, an element ξ ∈ X1 with

‖η‖ − ε 6 |ψ(ξ∗η)| 6 ‖(ξ|η)B∗∗‖ 6 ‖Θ∗(η)‖.

In [8] Paschke showed that, for a Hilbert B-module X, BB(B∗∗⊗B X
o, B∗∗)

can be equipped with a B∗∗-valued inner product turning it into a B∗∗-selfdual
Hilbert C∗-module, which, as X can be isometrically embedded in BB(B∗∗ ⊗B

Xo, B∗∗), was called the selfdual completion by him. Using that BB(B∗∗ ⊗B

Xo, B∗∗) is canonically isomorphic to BB(Xo, B∗∗), we obtain the following corol-
lary.
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3.2. Corollary. The selfdual completion BB(Xo, B∗∗) of a Hilbert A-B-
bimodule X is isomorphic to the enveloping Hilbert W ∗-module X∗∗. Similarly,
we have BA(Xo, A∗∗) ∼= X∗∗.

3.3. Definition. For a Hilbert A-B-bimodule X we put
RM(X) = {η ∈ X∗∗ : (X|η)B∗∗ ⊆ B},
LM(X) = {η ∈ X∗∗ : A∗∗(η|X) ⊆ A},
M(X) = LM(X) ∩ RM(X).

Clearly, the isomorphism Θ∗ : X∗∗ → BB(Xo, B∗∗), η 7→ ( · |η)B∗∗ from the
proof of Proposition 3.1 maps RM(X) onto BB(Xo, B), and the corresponding
map X∗∗ → BA(Xo, A∗∗) takes LM(X) onto BA(Xo, A). So that RM(X) = X,
respectively LM(X) = X, if and only if X is B-selfdual, respectively, A-selfdual.

3.4. Proposition. For a Hilbert A-B-bimodule X, we have
M(X) = {η ∈ X∗∗ : Aη + ηB ⊆ X} ∼= LA(Xo, A) ∼= LB(Xo, B).

Proof. Let η ∈ X∗∗ be such that Aη + ηB ⊆ X. For every ξ ∈ X and each
approximate identity {uα} ⊆ A, we have

(ξ|η)B∗∗ = lim
α

(uαξ|η)B∗∗ = lim
α

(ξ|uαη)B∗∗ ⊆ B.

Similarly, A∗∗(η|X) ⊆ A. Hence, η ∈ M(X). For the reverse inclusion, we note that
every η ∈ M(X) and a ∈ A defines a bounded B-linear mapping ρ = ( · |aη)B∗∗ =
(a∗ · |η)B∗∗ : Xo → B, which obviously vanishes at infinity. By Lemma 2.2 there is
ζo ∈ Xo such that ( · |aη)B∗∗ = ( · |ζ)B = ( · |ζ)B∗∗ , whence aη = ζ ∈ X. Similarly,
we have ηB ⊆ X using Remark 2.4.

If η ∈ M(X), then an adjoint of A∗∗(η| · ) : Xo → A, ξo 7→ A∗∗(η|ξ) is given by
A→ Xo, a 7→ ηoa. Hence, Λ(η) := A∗∗(η| · ) ∈ LA(Xo, A), and Λ is an A-B-linear
isometry. Surjectivity of Λ is clear from Definition 3.3 and the remark thereafter.

Similarly, M(X) ∼= LB(Xo, B).

3.5. Remark. In [4] Echterhoff and Raeburn introduced multiplier bimod-
ules in the following way. A double centralizer (mA,mB) is a pair consisting of
A-linear and B-linear mappings mA : A → X, mB : B → X, respectively, such
that the compatibility relation

mA(a)b = amB(b), a ∈ A, b ∈ B
is satisfied. Boundedness of such mappings follows as in the C∗-algebra case. The
multiplier bimodule is defined as the set of all double centralizers of X.

Let us briefly show that this definition coincides with ours. Of course, each
ξ ∈ M(X) defines a double centralizer via

(a 7→ aξ, b 7→ ξb).
If, on the other hand, (mA,mB) is a double centralizer, we put η = m∗∗

A (1),
η′ = m∗∗

B (1) and observe that the compatibility of mA and mB implies that
aηb = am∗∗

A (1)b = mA(a)b = amB(b) = aη′b, a ∈ A, b ∈ B.
Using weak*-continuity we find that η = η′. Consequently, Aη + ηB = mA(A) +
mB(B) ⊆ X, whence η ∈ M(X).

The following proposition is contained in [4]. We give an alternative proof.
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3.6. Proposition. The multiplier bimodule M(X) is the unique Hilbert
M(A)-M(B)-bimodule satisfying the following properties:

(i) AM(X) + M(X)B ⊆ X;
(ii) if M is another A-B-bimodule which contains X and satisfies (i), then

there exists a unique A-B-linear mapping M → M(X) which is the identity on X.

Proof. We shall first show that M(X) is a Hilbert M(A)-M(B)-bimodule.
Let ξ, η ∈ M(X). Then B(ξ|η)B∗∗ + (ξ|η)B∗∗B = (ξB|η)B∗∗ + (ξ|ηB)B∗∗ ⊆ B.
Hence, (M(X)|M(X))B∗∗ ⊆ M(B), and similarly, A∗∗(M(X)|M(X)) ⊆ M(A). The
inclusion M(A)M(X) + M(X)M(B) ⊆ M(X) follows immediately from the char-
acterization of multipliers given in Proposition 3.4.

Statement (i) is part of Proposition 3.4. Suppose that M is another A-B-
bimodule with X ⊆ M and AM + MB ⊆ X. Every m ∈ M defines a double
centralizer (a 7→ am, b 7→ mb), hence, using the preceding remark, an element in
M(X). It is straightforward to check that this mapping has the required properties.

Suppose now that Φ,Ψ : M → M(X) are two module mappings fixing X.
Then (Φ(m) − Ψ(m))b = Φ(mb) − Ψ(mb) = mb −mb = 0 with m ∈ M , b ∈ B.
Consequently, Φ(m) = Ψ(m), m ∈M .

The uniqueness of M(X) follows from the usual universality considerations.
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