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Abstract. If H is an n-th order weighted subcoercive operator associated
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we show that νI + H has a bounded H∞ functional calculus if Re ν is large
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1. INTRODUCTION

During the last two decades there is a steadily growing interest in the following
subjects due to their intimate connection with heat kernels, kernels of Poisson
and Riesz type, singular integration theory and harmonic analysis in Lp-spaces of
manifolds:

– the bounded H∞ functional calculus of operators, in particular semigroup
generators in Lp-spaces with p ∈ (1,∞) (cf. [4], [13], [14] and [5]);

– regularity in Lp-spaces with p ∈ (1,∞) (cf. [2], [9] and [10]);
– Riesz transforms in Lp-spaces with p ∈ (1,∞) (cf. [19] and [17]).

Let H be an n-th order subcoercive operator associated to the left (or right)
regular representation of a connected Lie group G in Lp(G; dg) with p ∈ (1,∞),
where dg denotes the left Haar measure on G. Then it was shown that there
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is a θC > 0 such that for all ϕ ∈ (π/2 − θC , π] there is a ν0 > 0 such that if
ν ∈ C with Re ν > ν0 then the operator νI + H has a bounded H∞ functional
calculus in Lp(G; dg) over Fϕ, the space of bounded and holomorphic functions in
a sector with angle ϕ (for definitions and details we refer to [8]). Simple examples
of subcoercive operators on the real line already elucidate that the constant ν0
depends on the angle ϕ.

As far as the regularity is concerned the following can be remarked. The C∞-
elements of a continuous representation U of a connected Lie group G are exactly
the C∞-elements of a subcoercive operator associated to the representation U (cf.
[10], Theorem 2.6.I). However this coincidence is no longer valid in general if one
compares the Cm-elements for m ∈ N. Indeed, the left regular representations in
L1(R2; dx) or L∞(R2; dx) already show that the Cm-elements may differ for some
m ∈ N (cf. [12] and [15]). On the other hand the differential structures are still the
same if p ∈ (1,∞). More generally, if p ∈ (1,∞) and m ∈ N then the Cm-elements
of the left (respectively right) regular representation of a connected Lie group G
in Lp(G; dg) coincide with the Cm-elements of a subcoercive operator associated
to the left (respectively right) regular representation of G in Lp(G; dg) (cf. [2]).
Further let U be a bounded continuous representation of a connected amenable
Lie group in Lp(M;µ) with p ∈ (1,∞) and (M, µ) a σ-finite measure space. Then
the optimal regularity for n-th order weighted subcoercive operators affiliated to
U was established in [6].

The comparison of the differential structures is closely related to the bound-
edness of the Riesz transforms. For p ∈ (1,∞) it was established that if the real
part of the zero-order coefficient of a weighted subcoercive operator H is suffi-
ciently large then the Riesz transforms of H are bounded on Lp(G; dg) (cf. [2]
and [11]). Anker ([1]) established boundedness of the Riesz transforms for the
Laplace-Beltrami operators in Lp(X; dx), where X is a non-compact symmetric
space obtained by the quotient of a semisimple Lie group G and a maximal com-
pact subgroup K and dx the G-invariant measure on X. Let H be an n-th order
weighted subcoercive operator affiliated to a continuous bounded representation U
of an amenable connected Lie group G in Lp(M;µ), where p ∈ (1,∞) and (M, µ)
is a σ-finite measure space. In [6] it was shown that there is a ν0 > 0 such that
if ν ∈ C with Re ν > ν0 then the Riesz transforms of νI + H are bounded on
Lp(M;µ).

Although the techniques used in this paper are rather standard, we are able
to generalize most of the above results to a fairly large class of continuous rep-
resentations. Most of the non trivial results are taken from [8]. In Section 2 we
consider n-th order weighted subcoercive operators H with respect to a contin-
uous representation U of a connected Lie group G in Lp(M;µ) with p ∈ (1,∞)
and (M, µ) a σ-finite measure space. We show that there is a θC > 0 such that
for all ϕ ∈ (π/2 − θC , π] there is a ν0 > 0 such that if ν ∈ C with Re ν > ν0
then νI + H has a bounded H∞ functional calculus in Lp(M;µ) over Fϕ, the
Riesz transforms of νI +H are bounded on Lp(M;µ) and we deduce optimal reg-
ularity for νI +H. Moreover we deduce weak type (1, 1)-estimates for functional
operators generalizing Proposition 3.2 in [8]. This large class of representations
U covers amongst others the continuous cocycle representations on homogeneous
spaces which include the interesting class of continuous representations induced by
a character. We emphasize that the representation U need not be bounded and G
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may be non-amenable whereas U was bounded and G amenable in [6]. Finally, we
deduce in Section 3 kernel bounds for reduced operator kernels of Riesz transforms
and functional operators of strongly elliptic operators on homogeneous spaces.

2. FUNCTIONAL CALCULUS, REGULARITY AND RIESZ TRANSFORMS

In this section we consider n-th order weighted subcoercive operators H with
respect to a continuous representation U of a connected Lie group G in Lp(M;µ)
with p ∈ (1,∞), where (M, µ) denotes a σ-finite measure space. We show that
there is a ν0 > 0 such that if ν ∈ C with Re ν > ν0 then νI +H has a bounded
H∞ functional calculus in Lp(M;µ), the Riesz transforms of νI +H are bounded
on Lp(M;µ), and optimal regularity is valid for νI +H.

Let G be a connected d-dimensional Lie group with Haar measure dg. Sup-
pose that U : G → L(X ) is a continuous representation of G in a Banach space
X endowed with the norm ‖ · ‖. Let a1, . . . , ad′ be an algebraic basis for g, i.e., a
finite sequence of linearly independent elements of g which generate g. This means
that one can find an integer r such that a1, . . . , ad′ together with all the multi-
commutators (ad aj1) · · · (ad ajn−1)(ajn

), with j1, . . . , jn ∈ {1, . . . , d′} and n 6 r,
establish a basis for g. Next let w1, . . . , wd′ denote a set of weights in [1,∞). Then
the algebraic basis a1, . . . , ad′ and the weights w1, . . . , wd′ induce in a natural way
a modulus g 7→ |g|′ on the connected Lie group G. For a detailed description and
definition we refer to [11], Section 6. Let B′

ε = {g ∈ G : |g|′ < ε} be the corre-
sponding ball for all ε > 0. The modulus function | · |′ in turn defines a unique
local dimension D′ such that there is a C > 1 such that

C−1ρD′
6 VolG(B′

ρ) 6 CρD′

for all ρ ∈ (0, 1], where VolG denotes the volume with respect to the left Haar
measure dg.

For all i ∈ {1, . . . , d′} denote by Ai = dU(ai) the infinitesimal generator of
the one parameter group t 7→ U(exp(−tai)). We also need multi-index notation.

Let J(d′) =
∞⊕

k=0

{1, . . . , d′}k denote the set of all multi-indices over the index set

{1, . . . , d′}. If α = (i1, . . . , ik) ∈ J(d′) then we set Aα = Ai1 ◦ · · · ◦ Aik
and we

denote by ‖α‖ =
k∑

j=1

wij
the weighted length of the multi-index α.

The Cm-subspace X ′
m is the weighted space defined by

X ′
m =

⋂
α∈J(d′)
‖α‖6m

D(Aα)

endowed with the norm
‖u‖′m = max

α∈J(d′)
‖α‖6m

‖Aαu‖.
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An n-th order form is a function C : J(d′) → C such that C(α) = 0 for ‖α‖ > n
and there is an α ∈ J(d′) with ‖α‖ = n such that C(α) 6= 0. We consider the n-th
order operator H

(2.1) H = dU(C) =
∑

α∈J(d′)
‖α‖6n

cαA
α

with domain D(H) =
⋂

α∈J(d′)
‖α‖6n

D(Aα) and cα = C(α) for all α ∈ J(d′) with ‖α‖ 6

n. In the sequel we denote the zero-order coefficient cα with ‖α‖ = 0 also by c0.
Let Ã1, . . . , Ãd′ be the infinitesimal generators with respect to the left regular

representation LG of G in L2(G; dg) and the directions a1, . . . , ad′ . Then we say
that C is an n-th order G-weighted subcoercive form if n/wi ∈ 2N for each i ∈
{1, . . . , d′} and the operator dLG(C) satisfies the following inequality: there is a
µ > 0 and ν ∈ R such that

Re(v,dLG(C)v) > µ
(

max
α∈J(d′)
‖α‖=n/2

‖Ãαv‖2
)2

− ν‖v‖22

for all v ∈ C∞c (V ), where V is some open neighbourhood of the identity e ∈ G.
Moreover, the corresponding operator H = dU(C) is called an n-th order weighted
subcoercive operator associated to U . Then by Theorem 1.1.IV of [11] the operator
H generates a holomorphic semigroup S in an open representation independent
sector Λ(θC), where

Λ(ϕ) = {z ∈ C \ {0} : | arg(z)| < ϕ}

for all ϕ ∈ (0, π]. Moreover, it follows from Theorem 1.1.IV of [11] that the
semigroup S has a representation independent, fast decreasing, Lie group kernel
K such that

AαSzu =
∫
G

(ÃαKz)(g)U(g)u dg

for all α ∈ J(d′), z ∈ Λ(θC) and u ∈ X . For all ν ∈ C with Re ν sufficiently large
the fractional powers of the resolvent (νI +H)−δ are defined for all δ > 0 by the
Laplace transforms

(νI +H)−δ = Γ(δ)−1

∞∫
0

e−νttδ−1St dt.

Let θ ∈ (0, θC). Since S is analytic in Λ(θ) it follows that there exist M > 1 and
ω > 0 such that ‖Szu‖p 6 Meω|z|‖u‖p for all z ∈ Λ(θ) and u ∈ X . Therefore
(νI + H)−δ are defined for all δ > 0, ν ∈ C such that Re(e−iϕν) > ω for some
ϕ ∈ (−θ, θ) and

(νI +H)−δ = Γ(δ)−1eiδϕ

∞∫
0

e−eiϕνttδ−1Seiϕt dt.
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Next for ϕ ∈ [0, θ] set Γ(ϕ;ω) = Γ+(ϕ;ω) ∪ Γ−(ϕ;ω) with Γ±(ϕ;ω) = {z ∈ C :
Re(ze±iϕ) > ω}. Then the fractional powers of the resolvents are defined by the
above procedure for all ν ∈ ∆(θ;ω), where ∆(θ;ω) =

⋃
ϕ∈[0,θ]

Γ(ϕ;ω).

Let δ > 0. For ν ∈ ∆(θ;ω) define Rν,δ : G→ C by

Rν,δ(g) = Γ(δ)−1

∞∫
0

e−νttδ−1Kt(g) dt, g ∈ G.

Then similarly to the proof of Theorem A.1 in [8], for all α ∈ J(d′) there exist
a, b > 0, independent of δ, such that

(2.2) |(ÃαRν,δ)(g)| 6 aρ(D′+‖α‖−nδ)/nF‖α‖,δ(ρ1/n|g|′)e−bρ1/n|g|′

for all g ∈ G with g 6= e and ν ∈ ∆(θ;ω), where ρ = ρ(ν;∆) denotes the distance
from ν to the boundary of ∆(θ;ω) and

Fk,δ(x) =

x−(D′+k−nδ) if D′ + k > nδ,
1 + log+ x−1 if D′ + k = nδ,
1 if D′ + k < nδ,

with log+ y = log y if y > 1 and log+ y = 0 if y 6 1.
Now, let p ∈ [1,∞] and suppose that U : G → L(Lp(M;µ)) is a continuous

representation of G in Lp(M;µ), where (M, µ) denotes a σ-finite measure space.
Let H be an n-th order weighted subcoercive operator associated to U . Since there
exist C, η > 0 such that ‖U(g)u‖p 6 Ceη|g|′‖u‖p for all u ∈ Lp(M;µ) and g ∈ G
it follows that there is a ν0 > 0 such that∫

G

‖(ÃαRν,δ)(g)U(g)u‖p dg <∞

for all α ∈ J(d′) with ‖α‖ < nδ, u ∈ Lp(M;µ) and ν ∈ ∆(θ;ω) with Re ν > ν0.
Therefore if ν ∈ ∆(θ;ω) and Re ν > ν0 then

Aα(νI +H)−δu = Γ(δ)−1

∞∫
0

e−νttδ−1(AαSt)u dt =
∫
G

(ÃαRν,δ)(g)U(g)u dg

for all α ∈ J(d′) with ‖α‖ < nδ and u ∈ Lp(M;µ). Note that if ‖α‖ = m and
δ = m/n then the Lie group kernel ÃαRν,δ has a logarithmic singularity in the
identity e ∈ G and the integral operator is not norm-convergent for p ∈ [1,∞] in
general.

Now we discuss the functional calculus of the n-th order weighted subcoercive
operator H (cf. also [4], [13] and [14]). It follows from Theorem 1.1.III of [11] that
there exist M > 1 and ω > 0 such that ‖Sz‖ 6 Meω|z| for all z ∈ Λ(θ). Therefore
if we replace H by νI+H with Re ν sufficiently large then S is uniformly bounded
in the sector Λ(θ), i.e., there is an M > 1 such that ‖Sz‖ 6 M for all z ∈ Λ(θ).
Then (−λI +H)−1 is defined and satisfies bounds ‖(−λI +H)−1‖ 6 M |λ|−1 for
all non-zero λ ∈ C with | arg λ| > π/2− θ.
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Next for 0 < ϕ 6 π consider the class

Fϕ = {f : Λ(ϕ) → C : f is bounded and holomorphic}.

Then it is clear that Fϕ is a Banach space with respect to the norm

‖f‖∞ = sup{|f(z)| : z ∈ Λ(ϕ)}.

For technical reasons we also need the following subspaces

Φϕ,ξ = {f ∈ Fϕ : |f(z)| 6 c|z|ξ(1 + |z|)−2ξ for some c > 0 and all z ∈ Λ(ϕ)},

where ξ > 0. Furthermore, set

Φϕ =
⋃
ξ>0

Φϕ,ξ.

If f ∈ Φϕ with ϕ ∈ (π/2 − θ, π] one can define an operator f(H) by the familiar
complex Cauchy representation formula

(2.3) f(H) = (2πi)−1

∫
Γχ

f(λ)(−λI +H)−1 dλ =
∫
Γχ

f(λ)
∫
G

R−λ,1(g)U(g) dg dλ,

where Γχ is the contour determined by the function

Γχ(t) =
{
teiχ if t ∈ [0,∞),
−te−iχ if t ∈ (−∞, 0],

with π/2− θ < χ < ϕ. The integral (2.3) is norm-convergent, independent of the
particular choice of contour and the operator f(H) is bounded.

However for f ∈ Fϕ one can define f(H) by a similar Cauchy formula but the
contour integral in (2.3) is not necessarily norm-convergent anymore. Therefore
the integral definition for f(H) in (2.3) is to be interpreted in the strong or weak∗

topology according to whether S is strongly or weakly∗ continuous and the do-
main of f(H) is the subspace of X on which the integral is convergent. In this way
we obtain closed operators f(H). We say that H has a bounded H∞ functional
calculus in Lp(M;µ) over Fϕ if all the operators {f(H) : f ∈ Fϕ} are bounded
and if f 7→ f(H) is a continuous map from the Banach space of bounded holomor-
phic functions Fϕ into the Banach algebra L(Lp(M;µ)) of bounded operators on
Lp(M;µ), i.e., if there is a cp > 0 such that

‖f(H)u‖p 6 cp‖f‖∞‖u‖p

for all u ∈ Lp(M;µ) and f ∈ Fϕ.
Let Kf : G→ C be defined by

Kf (g) = (2πi)−1

∫
Γχ

f(λ)R−λ,1(g) dλ

for all g ∈ G. Then it follows from a similar argument as used in the proof of
Corollary A.2 in [8] that for all α ∈ J(d′) there exist a, b > 0, independent of
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the zero-order coefficient c0 but depending on ϕ, and c > 0, linearly dependent of
Re c0 with a positive coefficient depending on ϕ, such that

(2.4) |(ÃαKf )(g)| 6 a‖f‖∞(|g|′)−(D′+‖α‖)e−bc1/n|g|′

for all g ∈ G with g 6= e and f ∈ Fϕ. Moreover, it follows from Section 3 of [8],
that if f ∈ Φϕ then there is a C > 0 such that ‖Kf‖∞ 6 C. Therefore, if f ∈ Φϕ

then there is a ν0 > 0 such that if Re c0 > ν0 then∫
G

‖Kf (g)U(g)u‖p dg <∞

for all u ∈ Lp(M;µ). Hence if Re c0 > ν0 then

f(H)u =
∫
G

Kf (g)U(g)u dg

for all u ∈ Lp(M;µ). However, if f ∈ Fϕ then Kf may have a logarithmic
singularity in the identity e ∈ G and f(H) is not norm-convergent for p ∈ [1,∞]
in general.

The key ingredient in the proof of the first main theorem of this paper is the
following proposition.

Proposition 2.1. Let p ∈ (1,∞) and let H̃ be an n-th order weighted sub-
coercive operator associated to the left (or right) regular representation of G in
Lp(G; dg). Then for all ϕ ∈ (π/2 − θC , π] there is a ν0 > 0 such that for all
ν ∈ C with Re ν > ν0 the operator νI + H̃ has a bounded H∞ functional calculus
in Lp(G; dg) over Fϕ.

Proof. For the left regular representation in Lp(G; dg) the derivation of the
bounded H∞ functional calculus in Lp(G; dg) over Fϕ for all ϕ ∈ (π/2 − θC , π]
is completely analogous to the proof of Theorem 3.1 from [8]. The result for the
right regular representation follows from a similar duality argument as used in the
proof of Lemma 2.1 in [8].

Now we are able to state the first main result of this paper.

Theorem 2.2. Let p ∈ (1,∞). Suppose that U : G → L(Lp(M;µ)) is a
continuous representation of a connected Lie group G in Lp(M;µ), where (M, µ)
denotes a σ-finite measure space. Let H be an n-th order weighted subcoercive
operator. Then the following three statements hold:

(i) For all ϕ ∈ (π/2− θC , π] there is a ν0 > 0 such that for all ν ∈ C with
Re ν > ν0 the operator νI +H has a bounded H∞ functional calculus in Lp(M;µ)
over Fϕ.

(ii) There is a ν0 > 0 such that if ν ∈ C with Re ν > ν0 and m > 0 then
the space (νI + H)−m/n(Lp(M;µ)) is continuously embedded in D(Aα) for all
α ∈ J(d′) with ‖α‖ = m and the Riesz transform

Aα(νI +H)−m/n

is bounded on Lp(M;µ).
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(iii) Let w = min{x ∈ [1,∞) : x ∈ wiN for all i ∈ {1, . . . , d′}}. If m ∈ {nw :
n ∈ N} then there is a ν0 > 0, independent of m, such that for all ν ∈ C with
Re ν > ν0 the spaces D((νI + H)m/n) and L′p;m coincide as sets and there is a
Cp,m,ν > 1 such that

C−1
p,m,ν‖u‖′p;m 6 ‖(νI +H)m/nu‖p 6 Cp,m,ν‖u‖′p;m

for all u ∈ L′p;m.

Proof. The proof is based on a transference method inspired by [3]. First let
ϕ ∈ (π/2 − θC , π] and f ∈ Φϕ. Let χ : G → [0, 1] be a C∞ cut-off function such
that χ(g) = 1 for all g ∈ B′

1/2 and χ(g) = 0 for all g ∈ G \ B′
1. If R denotes the

right regular representation of G in Lp(G; dg) then there exist C, η > 0 such that

(2.5) ‖R(g)v‖p 6 Ceη|g|′‖v‖p

for all v ∈ Lp(G; dg) and g ∈ G and, moreover,

(2.6) ‖U(g)u‖p 6 Ceη|g|′‖u‖p

for all u ∈ Lp(M;µ) and g ∈ G. Note that η > 0 depends on p and U .
Let H̃ = dR(C) be the n-th order weighted subcoercive operator associated

to R. Then it follows from (2.4) and Proposition 2.1 that there exist a γ > 0 and
a C1,p > 0, independent of f but depending on ϕ and η, such that if Re c0 > γ
then

(2.7)

∫
G

|Kf (g)(1− χ(g))| ‖U(g)u‖p dg 6 C

∫
G

|Kf (g)(1− χ(g))|eη|g|′ dg‖u‖p

6 C1,p‖f‖∞‖u‖p

for all u ∈ Lp(M;µ),

(2.8)

∫
G

|Kf (g)(1− χ(g))| ‖R(g)v‖p dg 6 C

∫
G

|Kf (g)(1− χ(g))|eη|g|′ dg‖v‖p

6 C1,p‖f‖∞‖v‖p

for all v ∈ Lp(G; dg) and, moreover,

(2.9) ‖f(H̃)v‖p 6 C1,p‖f‖∞‖v‖p

for all v ∈ Lp(G; dg).
Next let ν ∈ C with Re ν > max(γ − Re c0, 0) and replace H by νI + H.

Then one can write

f(H)u =
∫
G

Kf (g)U(g)u dg = f(H)1u+ f(H)2u

for all u ∈ Lp(M;µ), where

f(H)1 =
∫
G

Kf (g)χ(g)U(g) dg
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and
f(H)2 =

∫
G

Kf (g)(1− χ(g))U(g) dg.

Set kf = Kfχ. Then kf ∈ L1(G; dg) with compact support. Suppose that one has
shown that f(H)1 maps Lp(M;µ) into Lp(M;µ) and, moreover, that there is a
C ′ > 0, independent of p and f , such that

(2.10) ‖f(H)1u‖p 6 C ′Np(kf )‖u‖p

for all u ∈ Lp(M;µ), where Np(kf ) > 0 denotes the L(Lp(G; dg))-norm of the
operator

Tfv =
∫
G

kf (g)R(g)v dg.

It follows from (2.8) that

‖(Tf − f(H̃))v‖p 6 C1,p‖f‖∞‖v‖p

for all v ∈ Lp(G; dg), and hence from (2.9) that

Np(kf ) 6 2C1,p‖f‖∞.
Therefore, if (2.10) is valid then

‖f(H)1u‖p 6 2C ′C1,p‖f‖∞‖u‖p

for all u ∈ Lp(M;µ).
Now we deduce (2.10). The operator f(H)1 is a well defined object for

u ∈ L∞(M;µ) ∩ Lp(M;µ) because kf has compact support. Since L∞(M;µ) ∩
Lp(M;µ) is a dense subset of Lp(M;µ) it suffices to show (2.10) for all u ∈
L∞(M;µ) ∩ Lp(M;µ). Since U is uniformly bounded on (B′

1)
−1 there is a c > 0

such that
‖f(H)1u‖p 6 c‖U(h)(f(H)1u)‖p

for all h ∈ B′
1 and u ∈ L∞(M;µ) ∩ Lp(M;µ). Then

‖f(H)1u‖p
p 6 cpVolG(B′

1)
−1

∫
B′

1

‖U(h)(f(H)1u)‖p
p dh

for all u ∈ L∞(M;µ) ∩ Lp(M;µ). Observe that

(2.11) U(h)(f(H)1u) =
∫
G

kf (g)U(hg)u dg

for all h ∈ B′
1 and u ∈ L∞(M;µ) ∩ Lp(M;µ).

Next let χ̃ : G → {0, 1} be the characteristic function χ̃ = 1B′
2
. Then it

follows from (2.11) and Fubini’s theorem that

‖f(H)1u‖p
p 6 cpVolG(B′

1)
−1

∫
M

∫
B′

1

∣∣∣∣ ∫
G

kf (g)χ̃(hg)(U(hg)u)(x) dg
∣∣∣∣p dhdµ(x)

6 cpVolG(B′
1)
−1

∫
M

∫
G

∣∣∣∣ ∫
G

kf (g)χ̃(hg)(U(hg)u)(x) dg
∣∣∣∣p dhdµ(x)
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for all u ∈ L∞(M;µ) ∩ Lp(M;µ). It follows from Fubini’s theorem again that

‖f(H)1u‖p
p 6 cpVolG(B′

1)
−1(Np(kf ))p

∫
M

∫
G

χ̃(w)|(U(w)u)(x)|p dw dµ(x)

= (cNp(kf ))pVolG(B′
1)
−1

∫
G

χ̃(w)
∫
M

|(U(w)u)(x)|p dµ(x) dw

for all u ∈ L∞(M;µ) ∩ Lp(M;µ). Hence

‖f(H)1u‖p
p 6 (cCe2ηNp(kf ))pVolG(B′

1)
−1VolG(B′

2)‖u‖p
p

for all u ∈ L∞(M;µ) ∩ Lp(M;µ) and (2.10) is proved.
Now we consider the second operator f(H)2. It follows from (2.7) that

‖f(H)2u‖p 6 C1,p‖f‖∞‖u‖p

for all u ∈ L∞(M;µ) ∩ Lp(M;µ). Therefore, a combination of the results above
gives

‖f(H)u‖p 6 (2C ′ + 1)C1,p‖f‖∞‖u‖p

for all u ∈ Lp(M;µ). This result extends to all f ∈ Fϕ by McIntosh’s convergence
theorem ([13], Section 5) and the proof of (i) is complete.

Next we prove (ii) and (iii). We use a similar approximation procedure as
used in [2] and we show that that there is a ν0 > 0 such that if ν ∈ C with
Re ν > ν0 then the space (νI +H)−m/n(Lp(M;µ)) is continuously embedded in
D(Aα) for all α ∈ J(d′) with ‖α‖ = m and the Riesz transform

Aα(νI +H)−m/n

is bounded on Lp(M;µ). Fix N ∈ N, N > D′ and for all j ∈ N with j > 2 Re ν
and Re ν sufficiently large consider the operators

(2.12) Xj = jN (jI +H)−N (νI +H)−m/n.

Then for ‖α‖ = m with m > 0 one expects to find a ν0 > 0 such that the operators
AαXj converge to Aα(νI+H)−m/n as j tends to infinity and Re ν > ν0. We prove
that for Re ν > ν0 the operators AαXj are bounded uniformly in j on Lp(M;µ)
and it follows from this result that (νI + H)−m/n maps into the domain of Aα

and Aα(νI + H)−m/n is bounded on Lp(M;µ). The uniformity with respect to
j is obtained from the uniform upper bounds with respect to j for the Lie group
kernels of AαXj for large |g|′, established similarly as in [2].

Set

kj(g) =

∞∫
0

fj(t)Kt(g) dg

for all g ∈ G and j ∈ N, where

fj(t) = jN (N − 1)!−1Γ(m/n)−1

t∫
0

xN−1e−jx(t− x)m/n−1e−ν(t−x) dx.
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Let m > 0 and α ∈ J(d′) with ‖α‖ = m. It follows from [2] that

AαXju =
∫
G

kj,1(g)U(g)u dg +
∫
G

kj,2(g)U(g)u dg

for all u ∈ Lp(M;µ) and j ∈ N, where

kj,1 = (Ãαkj)χ and kj,2 = (Ãαkj)(1− χ).

Let Np(kj,1) > 0 be the L(Lp(G; dg))-norm of the operator

Wjv =
∫
G

kj,1(g)R(g)v dg

for all j ∈ N. Let Np(Ãαkj) denote the L(Lp(G; dg))-norm of the operator

Vjv =
∫
G

(Ãαkj)(g)R(g)v dg

for all j ∈ N. Then it follows from a similar argument as used in the proof of
Theorem A.1 of [8] that there exists a c > 0 such that

(2.13) |kj,2(g)| 6 |(Ãαkj)(g)| 6 e−cν1/n|g|′

for all g ∈ G \ B′
1 and j ∈ N. Therefore it follows from (2.5), (2.6) and a similar

argument as used in the proof of Theorem 2.3 from [2] that there is a ν0 > 0 such
that if Re ν > ν0 then there is a C2,p > 0, independent of j and ν0, such that

‖(Wj − Vj)v‖p 6 C2,p‖v‖p

for all v ∈ Lp(G; dg) and j ∈ N,

Np(Ãαkj) 6 C2,p

for all j ∈ N and, further,( ∫
M

∣∣∣∣ ∫
G

kj,2(g)(U(g)u)(x) dg
∣∣∣∣p dµ(x)

)1/p

6 C2,p‖u‖p

for all u ∈ L∞(M;µ) ∩ Lp(M;µ) and j ∈ N. Hence if Re ν > ν0 then

Np(kj,1) 6 2C2,p

for all j ∈ N. Next it follows from a similar transference argument as used above
that if Re ν > ν0 then there is a C > 0, independent of ν0, such that∫

M

∣∣∣∣ ∫
G

kj,1(g)(U(g)u)(x) dg
∣∣∣∣p dµ(x) 6 (CNp(kj,1))p‖u‖p

p

for all u ∈ L∞(M;µ) ∩ Lp(M;µ) and j ∈ N. It follows that

‖AαXju‖p 6 (2C + 1)C2,p‖u‖p

for all u ∈ L∞(M;µ) ∩ Lp(M;µ) and j ∈ N. Finally the Statements (ii) and (iii)
follow as in the proof of Theorem 2.3 in [2] (see also [11], Section 9).
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In the following theorem we formulate a rather weak condition which ensures
the existence of weak type (1, 1)-estimates. The theorem generalizes the weak type
(1, 1)-estimates deduced in [2] and [8], Proposition 3.2.

Theorem 2.3. Let (M, µ) be a σ-finite measure space. Let G be a connected
Lie group and suppose that U is a continuous representation of G such that there
exist c1, c2 > 0 such that

µ
(
{x ∈M : |(U(g)u)(x)| > τ}

)
6 c1µ

(
{x ∈M : |u(x)| > c2τ}

)
for all g ∈ B′

1, u ∈ L1(M;µ) and τ > 0. Let H be an n-th order weighted
subcoercive operator. Then the following two statements hold:

(i) For all ϕ ∈ (π/2 − θC , π] there is a ν0 > 0 such that if ν ∈ C with
Re ν > ν0 then there is a c > 0, independent of ν, such that

µ
(
{x ∈M : |(f(νI +H)u)(x)| > τ}

)
6 cτ−1‖f‖∞‖u‖1

for all u ∈ L1(M;µ), τ > 0 and f ∈ Φϕ.
(ii) There is a ν0 > 0 such that if m > 0 and ν ∈ C with Re ν > ν0 then

there is a c > 0, independent of ν, such that

µ
(
{x ∈M : |(AαXju)(x)| > τ}

)
6 cτ−1‖u‖1

for all u ∈ L1(M;µ), τ > 0, j ∈ N and α ∈ J(d′) with ‖α‖ = m. The operators
Xj for j ∈ N are the operators as defined in (2.12) in the proof of Theorem 2.2.

Proof. We only prove the first statement. The second statement can be
proved analogously.

Let ϕ ∈ (π/2 − θC , π], f ∈ Φϕ, u ∈ L1(M;µ) and τ > 0. Let χ : G → [0, 1]
be a C∞ cut-off function such that χ(g) = 1 for all g ∈ B′

1/2 and χ(g) = 0 for all
g ∈ G \ B′

1. If R denotes the right regular representation of G in L1(G; dg) then
there exist C, η > 0 such that

(2.14) ‖U(g)u‖1 6 Ceη|g|′‖u‖1
for all u ∈ L1(M;µ) and g ∈ G and, moreover,

(2.15) ‖R(g)v‖1 6 Ceη|g|′‖v‖1
for all v ∈ L1(G; dg) and g ∈ G. Note that η > 0 depends on U .

Next let H̃ = dR(C) denote the n-th order weighted subcoercive operator
associated to R. Then it follows from (2.4) and a similar argument as used in the
proof of Proposition 3.2 in [8] that there exist a γ > 0 and a c3 > 0, independent
of f but depending on ϕ and η, such that if Re c0 > γ then

(2.16)
∫
G

|Kf (g)(1− χ(g))| ‖U(g)u‖1 dg 6 c3‖f‖∞‖u‖1

for all u ∈ L1(M;µ) and

(2.17)
∫
G

|Kf (g)(1− χ(g))| ‖R(g)v‖1 dg 6 c3‖f‖∞‖v‖1
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for all v ∈ L1(G; dg) and, moreover,

(2.18) VolG
(
{g ∈ G : |(f(H̃)v)(g)| > σ}

)
6 c3σ

−1‖f‖∞‖v‖1

for all σ > 0 and v ∈ L1(G; dg).

Next let ν ∈ C be such that Re ν > max(γ − Re c0, 0) and replace H by
νI +H. We first estimate

µ

({
x ∈M :

∣∣∣∣ ∫
G

kf (g)(U(g)u)(x) dg
∣∣∣∣ > τ

})
,

where kf = Kfχ. Let χ̃ : G→ {0, 1} be the characteristic function χ̃ = 1B′
2

again.
If h ∈ B′

1 then∫
G

kf (g)U(h)(U(g)u) dg=
∫
B′

1

kf (g)U(h)(U(g)u) dg=
∫
B′

1

kf (g)χ̃(hg)U(h)(U(g)u) dg

=
∫
G

kf (g)χ̃(hg)U(hg)u dg.

Therefore

µ

({
x ∈M :

∣∣∣∣ ∫
G

kf (g)(U(g)u)(x) dg
∣∣∣∣ > τ

})

= µ

({
x ∈M :

∣∣∣∣(U(h−1)
( ∫

G

kf (g)U(hg)u dg
))

(x)
∣∣∣∣ > τ

})

= µ

({
x ∈M :

∣∣∣∣(U(h−1)
( ∫

G

kf (g)χ̃(hg)U(hg)u dg
))

(x)
∣∣∣∣ > τ

})

6 c1µ

({
x ∈M :

∣∣∣∣ ∫
G

kf (g)χ̃(hg)(U(hg)u)(x) dg
∣∣∣∣ > c2τ

})

for all h ∈ B′
1. Moreover, if

Tfv =
∫
G

Kf (g)(1− χ(g))R(g)v dg

for all v ∈ L1(G; dg) then it follows from (2.17) that

‖Tfv‖1 6 c3‖f‖∞‖v‖1

for all v ∈ L1(G; dg). Therefore, it follows from (2.18) that

VolG
(
{g ∈ G : |((f(H̃)− Tf )v)(g)| > σ}

)
6 2c3σ−1‖f‖∞‖v‖1
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for all v ∈ L1(G; dg) and σ > 0. Then it follows from (2.14) and Fubini’s theorem
that there exist b, c > 0, independent of f, u and τ , such that

µ

({
x ∈M :

∣∣∣∣ ∫
G

kf (g)(U(g)u)(x) dg
∣∣∣∣>τ})

6 c1VolG(B′
1)
−1

∫
B′

1

µ

({
x ∈M :

∣∣∣∣ ∫
G

kf (g)χ̃(hg)(U(hg)u)(x) dg
∣∣∣∣>c2τ})

dh

= c1VolG(B′
1)
−1

∫
M

VolG

({
h ∈ B′

1 :
∣∣∣∣ ∫

G

kf (g)χ̃(hg)(U(hg)u)(x) dg
∣∣∣∣>c2τ})

dµ(x)

6 c1VolG(B′
1)
−1

∫
M

VolG

({
h ∈ G :

∣∣∣∣ ∫
G

kf (g)χ̃(hg)(U(hg)u)(x) dg
∣∣∣∣>c2τ})

dµ(x)

6 c1VolG(B′
1)
−1

∫
M

c‖f‖∞τ−1

∫
G

|χ̃(g)(U(g)u)(x)|dg dµ(x)

= c1cτ
−1‖f‖∞VolG(B′

1)
−1

∫
G

χ̃(g)
∫
M

|(U(g)u)(x)|dµ(x) dg

6 c1bcτ
−1‖f‖∞VolG(B′

1)
−1VolG(B′

2)‖u‖1.
So the inequality for the operator with kernel kf is proved. Finally∫

M

∣∣∣∣ ∫
G

(Kf (g)(1− χ(g))(U(g)u)(x) dg
∣∣∣∣ dµ(x) 6 c3‖f‖∞‖u‖1.

In particular the operator with kernel Kf (1− χ) also satisfies a weak type (1, 1)-
estimate and the theorem follows immediately.

Now we discuss a class of representations affiliated to cocycles and quasi-
invariant measures. This class embraces the class of continuous unitary represen-
tations induced by a character.

Example 2.4. Let X = G/M with G a connected Lie group and M a σ-
compact Lie subgroup. Let S : X ×G→ C be a continuous cocycle, i.e.,

S(x, e) = 1 and S(x, gh) = S(hx, g)S(x, h)

for all g, h ∈ G and x ∈ X.
Moreover, let dx be a quasi-invariant non-zero positive regular Borel measure

on X. By the Radon-Nikodym theorem there exists a function R : X×G→ (0,∞)
such that for each g ∈ G the function x 7→ R(x, g) is Borel measurable, for all
ϕ ∈ Cc(X) the function x 7→ ϕ(x)R(x, g) belongs to L1(X; dx) and∫

X

ϕ(g−1x) dx =
∫
X

ϕ(x)R(x, g) dx.

Suppose in addition that R is continuous and that there exist CR, CS > 1 such
that

(2.19) C−1
R 6 R(x, g) 6 CR
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and

(2.20) C−1
S 6 S(x, g) 6 CS

for all x ∈ X and g ∈ B′
1. Let p ∈ [1,∞] and consider the representation U of G

in Lp(X; dx) given by

(2.21) (U(g)u)(x) = S(x, g−1)−1R(x, g−1)1/2u(g−1x), a.e. x ∈ X
for all ϕ ∈ Lp(X; dx) and g ∈ G. Then it follows from Proposition 2.7 of [18]
that U is a strongly continuous representation of G in Lp(X; dx) if p ∈ [1,∞)
and weakly∗ continuous if p = ∞. Therefore if p ∈ (1,∞) then it follows from
Theorem 2.2 that for each weighted subcoercive operator H associated to U and
ϕ ∈ (π/2 − θC , π] there is a ν0 > 0 such that if ν ∈ C with Re ν > ν0 then
νI + H has a bounded H∞ functional calculus in Lp(X; dx) over Fϕ, and the
Riesz transforms of νI + H are bounded on Lp(X; dx). Moreover, if µ = dx,
g ∈ B′

1 and u ∈ L1(X; dx) then

µ
(
{x ∈ X : |(U(g)u)(x)| > τ}

)
= µ

(
{x ∈ X : |S(x, g−1)−1R(x, g−1)1/2u(g−1x)| > τ}

)
6 µ

(
{x ∈ X : |u(g−1x)| > C−1

S C
−1/2
R τ}

)
=

∫
X

1{x∈X:|u(x)|>C−1
S

C
−1/2
R

τ}(y)R(y, g) dy

6 CR

∫
X

1{x∈X:|u(x)|>C−1
S

C
−1/2
R

τ}(y) dy

= c1µ
(
{x ∈ X : |u(x)| > c2τ}

)
for all τ > 0, where c1 = CR > 1 and c2 = C−1

S C
−1/2
R > 0. Therefore it follows

from Theorem 2.3 that weak type (1, 1)-estimates are valid for the functional
operators and Riesz transforms.

In the following example we consider continuous representations of a con-
nected Lie group G induced by a representation of G by measurable bijections
from (M, µ) onto (M, µ) with (M, µ) a σ-finite measure space (generalizing the
left Haar measure preserving left regular representation of G). See also Theo-
rem 2.6 in [3].

Example 2.5. For a σ-finite measure space (M, µ) let T be a representation
of a connected Lie group G by measurable bijections from (M, µ) onto (M, µ) such
that there exist c1, c2 > 0 such that

µ
(
T (g){x ∈M : |u(x)| > τ}

)
6 c1µ

(
{x ∈M : |u(x)| > c2τ}

)
for all g ∈ B′

1, τ > 0 and u ∈ L1(M;µ). Set U(g)u = u ◦ T (g−1) for all
u ∈ L1(M;µ) and g ∈ G and assume that U is a continuous representation in
L1(M;µ). Then

µ
(
{x ∈M : |(U(g)u)(x)| > τ}

)
= µ

(
T (g){x ∈M : |u(x)| > τ}

)
6 c1µ

(
{x ∈M : |u(x)| > c2τ}

)
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for all g ∈ B′
1, τ > 0 and u ∈ L1(M;µ), and weak type (1, 1)-estimates hold for

any weighted subcoercive operator associated to U , by Theorem 2.3.
If T is a representation of G by measure preserving measurable bijections

from (M, µ) onto (M, µ) then the corresponding U need not be continuous. One
easily verifies, however, that there exist C, η > 0 such that∫

M

|u(T (g)x)|dµ(x) 6 Ceη|g|′‖u‖1

for all u ∈ L1(M;µ) and g ∈ G and the proof of Theorem 2.3 still works.

3. REDUCED OPERATOR KERNELS

We show in this section that the Riesz transforms and functional operators of a
strongly elliptic operator H, affiliated to U , given by (2.21), are reduced kernel
operators, and we derive upper bounds for these reduced kernels. Before we can
introduce resolvent reduced kernels, we need the following lemma. In the sequel,
Rν,δ and Kf denote the Lie group kernels corresponding to the strongly elliptic
operator H, associated to U , given by (2.21). By Lemma 2.4.IV in [18], there is a
unique function ρ : G→ (0,∞) such that

R(k̇, g) = ρ(gk)ρ(k)−1

for all g, k ∈ G, and, further,∫
G

ϕ(g)ρ(g) dg =
∫

G/M

∫
M

ϕ(gm) dmdġ

for all ϕ ∈ Cc(G). Moreover, let ∆G : G → (0,∞) denote the modular function
of G. Let ∆(θ;ω) and ρ(ν;∆), with θ ∈ (0, θC), ω > 0 and ν ∈ ∆(θ;ω), be as in
Section 2.

Lemma 3.1. For all δ > 0 there exists an ω0 > ω such that the integral∫
M

Rν,δ(gm−1k−1)S(k̇, gm−1k−1)(ρ(g)ρ(km))−1/2∆G(m−1k−1) dm

exists for all g, k ∈ G with ġ 6= k̇, uniformly with respect to ν ∈ ∆(θ;ω) with
Re ν > ω0.

Proof. Let δ > 0. By Theorem A.1 of [8] there exist a, b > 0 such that

(3.1)
|Rν,δ(gm−1k−1)| 6 ae−bρ(ν;∆)1/n|gm−1k−1|

6 aebρ(ν;∆)1/n(|g|+|k|)e−bρ(ν;∆)1/n|m|

for all m ∈ M and g, k ∈ G such that |gm−1k−1| > C̃ for some C̃ > 0 to be
determined in the sequel and ν ∈ ∆(θ;ω).
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Alternatively, it follows from (2.19) and a chain argument (cf. also Lemma 2.2
in [18]) that there exist C, η > 0 such that

(ρ(g)ρ(km))−1/2 6 Cρ(g)−1/2eη|k|eη|m|

for all m ∈ M and g, k ∈ G, and, moreover, it follows from (2.20) and a chain
argument (cf. also (87) in [18]) that

|S(k̇, gm−1k−1)| 6 C ′eη′(|g|+|m|+|k|)

for all m ∈M and g, k ∈ G. Next, there exist C, η > 0 such that

∆G(m−1k−1) 6 Ceη|k|eη|m|

for all m ∈M and k ∈ G.
Finally, let g, k ∈ G be such that ġ 6= k̇. Then there exists a C̃ > 0 such that

|gm−1k−1| > C̃ for all m ∈ M . Indeed, if there is a sequence m1,m2, . . . in M
such that |gm−1

n k−1| 6 1/n for all n ∈ N then mn ∈ B|g|+|k|+1 for all n ∈ N. Since
B|g|+|k|+1 is compact and M is closed, one can pass to a convergent subsequence
in M and there is an m ∈M with |gm−1k−1| = 0. But then ġ = k̇.

Hence, there exists an ω0 > ω, depending on δ > 0, such that the integral
is absolutely convergent, uniformly for all ν ∈ ∆(θ;ω), with Re ν > ω0, and the
lemma follows.

Let a1, . . . , ad be a basis for the Lie algebra g of G. In Proposition 2.10 of
[18] we proved the existence of the continuous heat kernel κ : X × X → C of
the holomorphic semigroup generated by H. Next, consider the contragredient
representation of U in each Lp(X; dx) defined by

(
∨

U(g)ϕ)(x) = S(x, g−1)R(x, g−1)1/2ϕ(g−1x), a.e. x ∈ X
for all ϕ ∈ Lp(X; dx). For all i ∈ {1, . . . , d}, let Ri denote the infinitesimal

generator in the direction ai affiliated to
∨

U . Let V be the representation of G in
L∞(X; dx) defined by

(V (g)ϕ)(x) = ϕ(g−1x), a.e. x ∈ X
for all ϕ ∈ L∞(X; dx) and g ∈ G. Let Bi = dV (ai) denote the infinitesimal
generator of the one parameter group t 7→ V (exp(−tai)) in L∞(X; dx). Consider
the metric d : X ×X → [0,∞) on X defined by

(3.2) d(x; y) = sup
{
|ψ(x)− ψ(y)| : ψ ∈ Cb;∞(X) real and

d∑
i=1

|Biψ|2 6 1
}

for all x, y ∈ X, where Cb;∞(X) denotes the space of all infinitely differentiable
functions on X with uniformly bounded derivatives. Introduce the balls B(x; r)
by

B(x; r) = {y ∈ X : d(x; y) < r}
for all x ∈ X and r > 0. Let R1, . . . , Rd denote the infinitesimal generators in the

directions a1, . . . , ad associated to the representation
∨

U . Then in Proposition 2.11
of [18] it was shown that κt is pointwise C∞ in the second variable with respect
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to R1, . . . , Rd, and, moreover, if β ∈ J(d) and Rβ denotes the pointwise (multi-)-
derivative, with respect to the second variable, then Rβκt is pointwise C∞ in the
first variable, with respect to the infinitesimal generators A1, . . . , Ad. Further, if
α, β ∈ J(d), Aα denotes the pointwise (multi-)derivative, with respect to the first
variable, and Rβ denotes, again, the pointwise (multi-)derivative, with respect to
the second variable, then AαRβκt is given by the reduction formula

(AαRβκt)(ġ; k̇) =
∑

(γ,δ)∈Lb(β)

dδ

·
∫
M

(ÃαR̃γKt)(gm−1k−1)S(k̇, gm−1k−1)(ρ(g)ρ(km))−1/2∆G(m−1k−1) dm

for all g, k ∈ G and t > 0. Further, it follows from Theorem 2.12 in [18] that for
all α, β ∈ J(d) there exist a, b > 0 and ω′ > 0 such that

(3.3)
|(AαRβκt)(x; y)| 6 c

(
VolX(B(x; 1))VolX(B(y; 1))

)−1/2

· t−(|α|+|β|+d−dM )/neω′te−b(d(x;y)nt−1)1/(n−1)

for all x, y ∈ G/M and t > 0.
By Lemma 3.1 one can define, for ν ∈ C with Re ν sufficiently large, the

function rν,δ : X ×X \ {(x, x) : x ∈ X} → C by

(3.4)

rν,δ(ġ; k̇)

=
∫
M

Rν,δ(gm−1k−1)S(k̇, gm−1k−1)(ρ(g)ρ(km))−1/2∆G(m−1k−1) dm

=
∫
M

Γ(δ)−1

∞∫
0

e−νttδ−1Kt(gm−1k−1) dt

· S(k̇, gm−1k−1)(ρ(g)ρ(km))−1/2∆G(m−1k−1) dm

= Γ(δ)−1

∞∫
0

e−νttδ−1κt(ġ; k̇) dt

for all g, k ∈ G such that ġ 6= k̇.

Remark 3.2. If ν ∈ C with Re ν sufficiently large, then the expression for
rν,δ, in terms of the integral of κt, is absolutely convergent, in virtue of the upper
estimates for κt stated in (3.3). We may reverse the order of integration in the
double integral, because one can show, by a similar estimation argument as used
in the proof of Theorem A.1 in [8] that there exist a, b > 0 such that

∞∫
0

Γ(δ)−1e−νttδ−1|Kt(gm−1k−1)|dt 6 ae−bρ(ν;∆)1/n|m|

for all m ∈M if ġ 6= k̇. Now, by a similar bounding argument as used in the proof
of Lemma 3.1, the repeated integral in (3.4) is absolutely convergent.



Functional calculus, regularity and Riesz transforms 281

The rν,δ are reduced resolvent kernels by the following identity.

Proposition 3.3. If p ∈ [1,∞] and ϕ ∈ Lp(X; dx) then

((νI +H)−δϕ)(x) =
∫
X

rν,δ(x; y)ϕ(y) dy

for a.e. x ∈ X.

Proof. The proposition follows directly from Laplace transformation, and the
observation that κt is the reduced heat kernel of S = St generated by H.

Next, the left derivative in the direction ai on the Lie group G is denoted by
Ãi and the right derivative by R̃i. If β ∈ J(d), then by Lb(β) we denote the set of
all (γ, δ) ∈ J(d)2 such that γ is a multi-index obtained from β by omission of some
indices and δ is the multi-index formed by the omitted indices (cf. [7], p. 747).
Moreover, if δ = (j1, . . . , jl) ∈ J(d) then we set dδ = (R̃j1∆G)(e) · · · (R̃jl

∆G)(e).
Then, by similar arguments as used in the proof of Proposition 2.11 in [18], and
using the upper bounds in (2.2), one can show that for all α, β ∈ J(d) one has

(AαRβrν,δ)(ġ; k̇) =
∑

(γ,δ)∈Lb(β)

dδ

∫
M

(ÃαR̃γRν,δ)(gm−1k−1)

· S(k̇, gm−1k−1)(ρ(g)ρ(km))−1/2∆G(m−1k−1) dm

= Γ(δ)−1

∞∫
0

e−νttδ−1(AαRβκt)(ġ; k̇) dt

for all g, k ∈ G, with ġ 6= k̇.
In the following lemma we state bounds for rν,δ and its derivatives.

Lemma 3.4. For all α, β ∈ J(d) and θ ∈ (0, θC) there exist a, b > 0 and
ω > 0 such that

|(AαRβrν,δ)(x; y)| 6 a(VolX(B(x; 1))VolX(B(y; 1)))−1/2ρ(d−dM+|α|+|β|−nδ)/n

· F|α|+|β|,δ(ρ1/nd(x; y))e−bρ1/nd(x;y)

for all x, y ∈ X with x 6= y and ν ∈ ∆(θ;ω), where ρ = ρ(ν;∆) and

Fk,δ(x) =

x−(d−dM+k−nδ) if d− dM + k > nδ,
1 + log+ x−1 if d− dM + k = nδ,
1 if d− dM + k < nδ,

with log+ y = log y if y > 1 and log+ y = 0 if y 6 1.

Proof. The proof is analogous to the proof of Theorem A.1 in [8] or Theo-
rem III.6.7 in [16], since the estimates depend on the upper bounds for κt and all
its derivatives, stated in (3.3).



282 C.M.P.A. Smulders

By similar arguments as used in the proof of Proposition 2.11 in [18], again,
but now using the upper bounds from (2.4), one can show that, if Re c0 is suffi-
ciently large for the coefficient c0 of H, the operator f(H) has a reduced kernel
κf such that for all α, β ∈ J(d)

(AαRβκf )(ġ; k̇) =
∑

(γ,δ)∈Lb(β)

dδ

·
∫
M

(ÃαR̃γKf )(gm−1k−1)S(k̇, gm−1k−1)(ρ(g)ρ(km))−1/2∆G((km)−1) dm

for all g, k ∈ G such that ġ 6= k̇.
In the following lemma, we state upper bounds for κf and its derivatives.

Lemma 3.5. Let α, β ∈ J(d), θ ∈ (0, θC) and ϕ ∈ (π/2, π]. If the real part
of the zero-order coefficient c0 of H is sufficiently large then there exist a, b > 0,
independent of c0, and c > 0, linearly dependent on Re c0, such that

|(AαRβκf )(x; y)|

6 a(VolX(B(x; 1))VolX(B(y; 1)))−1/2‖f‖∞(d(x; y))−(d−dM+|α|+|β|)e−bc1/nd(x;y)

for all f ∈ Fϕ and x, y ∈ X with x 6= y.

Proof. The proof is similar to the proof of Corollary A.2 in [8], if we use the
kernel bounds for κt and all its derivatives, stated in (3.3).
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