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1. INTRODUCTION

Let A be a Banach algebra. A linear mapping T defined on a subspace E of A
into another Banach algebra is said to be spectrally bounded if r(Tx) 6 Mr(x) for
some constant M > 0 and all x ∈ E. Here, and in the sequel, r( · ) denotes the
spectral radius. Spectrally bounded operators play an important role in Automatic
Continuity Theory as they link together the algebraic and the analytic structure
of a Banach algebra. The separating space of every surjective spectrally bounded
operator is contained in the set of quasi-nilpotent elements (Theorem 5.5.1 in [3]
and Lemma A in [5]). This provides the basis for a neat proof of the automatic
continuity of a Jordan homomorphism from a Banach algebra onto a semisimple
Banach algebra ([2]), and for the more recent result that the separating space
of every Lie epimorphism between Banach algebras is contained in the centre
modulo the radical ([5]). A long-standing open problem on derivations, the non-
commutative Singer-Wermer conjecture, is equivalent to the statement that every
derivation d on a Banach algebra A with the property that dA is contained in the
centre modulo the radical must be spectrally bounded, by the results in [7].

In this paper we are concerned with the structure of spectrally bounded
operators defined on von Neumann algebras. It follows from a classical theorem
of Nagasawa (Theorem 4.1.17 of [3]) that every unital linear spectral isometry T
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from an algebra C(X) onto an algebra C(Y ), that is, T (1) = 1 and r(Tx) = r(x)
for all x ∈ C(X), the algebra of all continuous functions on a compact Hausdorff
space X, is an algebra isomorphism. This result, e.g., yields an alternative route
to the Banach-Stone theorem. In the non-commutative setting, Šemrl recently
obtained the result that every unital surjective spectrally bounded operator on
B(H), where H is an infinite-dimensional Hilbert space, must be a Jordan homo-
morphism (Theorem 2 in [16]). With the main result in this article, Theorem 3.6,
we propose an extension of these results to properly infinite von Neumann alge-
bras. Our aim is to take the existing techniques to their utmost limits, filling in
some small intermediate new steps. These methods heavily rest on the concepts
of idempotent-preserving and of nilpotent-preserving operators. For instance, the
results in [15] on operators which preserve nilpotency in both directions are used in
[8] to prove that every unital surjective spectral isometry on B(E) is a Jordan iso-
morphism, a non-commutative analogue of Nagasawa’s theorem. Another instance
is Aupetit’s recent paper [4], in which he proves that every surjective spectrum-
preserving operator between von Neumann algebras is a Jordan isomorphism. This
result cannot be extended to spectrally bounded operators in general, but it holds
in the setting of properly infinite von Neumann algebras, as Theorem 3.6 shows.

2. PRELIMINARIES

Throughout this paper, A and B will denote unital complex Banach algebras. A
linear mapping T : A→ B is called unital if T (1) = 1, and it is said to be spectrally
bounded if there is a constant M > 0 such that, for every x ∈ A, the estimate

r(Tx) 6 Mr(x)

holds. It is well known that every Jordan epimorphism T : A → B is unital
and preserves invertibility (Lemma 4.1 in [9]); hence, is spectrally bounded with
constant 1. A fundamental fact, proved in Theorem 1 of [2] (see also Theorem 5.5.2
in [3]), states that every surjective spectrally bounded operator T : A → B is
continuous, provided B is semisimple.

The following observation has become a standard tool in the study of Jordan
homomorphisms. For the convenience of the reader, we include its proof.

Lemma 2.1. Let T : A → B be a bounded linear operator from a von Neu-
mann algebra A into a Banach algebra B with the property that (Tp)2 = Tp for
every projection p in A. Then T is a Jordan homomorphism.

Proof. We have to show that (Ta)2 = T (a2) for every a ∈ A. Let p and q be
orthogonal projections in A. Then, p+q is a projection, wherefore, by assumption,

Tp+ Tq = (Tp+ Tq)2 = Tp+ (Tp)(Tq) + (Tq)(Tp) + Tq.

It follows that (Tp)(Tq)+(Tq)(Tp) = 0 and, hence, (Tp)(Tq) = −(Tp)(Tq)(Tp) =
(Tq)(Tp) since Tp is idempotent. As a result, Tp and Tq are orthogonal idempo-
tents.
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Let a =
n∑

j=1

λjpj be a linear combination of mutually orthogonal projections

p1, . . . , pn ∈ A. Then,

T (a2) = T

( n∑
j=1

λ2
jpj

)
=

n∑
j=1

λ2
jTpj = (Ta)2

for Tp1, . . . , Tpn are mutually orthogonal idempotents. By the spectral theorem
(Theorem 5.2.2 in [10]) every self-adjoint element a ∈ Asa is the norm-limit of finite
linear combinations of mutually orthogonal projections. Hence, the continuity of
T entails that T (a2) = (Ta)2 for every a ∈ Asa. Replacing a by a + b in this
identity yields T (ab+ ba) = (Ta)(Tb) + (Tb)(Ta) for all a, b ∈ Asa.

Suppose a = a1 + ia2 with ai ∈ Asa is the cartesian decomposition of a ∈ A.
By the above,

T (a2) = T (a2
1 − a2

2 + i(a1a2 + a2a1))

= (Ta1)2 − (Ta2)2 + i((Ta1)(Ta2) + (Ta2)(Ta1)) = (Ta)2.
This proves the result.

A projection p in a von Neumann algebra A is called properly infinite if zp
is either 0 or infinite (in the sense of Murray-von Neumann) for every central
projection z in A. The von Neumann algebra A is said to be properly infinite if
the identity 1 in A is a properly infinite projection. (See 6.3 in [10].) Every von
Neumann algebra can be decomposed into a direct sum of a finite and a properly
infinite part; we will have nothing to say about the finite case (see Section 3 below).

The following is the main feature of a properly infinite projection; see
Lemma 6.3.3 in [10].

Lemma 2.2. (Halving Lemma) Let e be a properly infinite projection in a
von Neumann algebra A. Then there is a subprojection f of e such that f and
e− f are both equivalent to e. Hence both f and e− f are properly infinite.

The next lemma provides us with a useful decomposition in a properly infinite
von Neumann algebra.

Lemma 2.3. ([11], Theorem 5) Let A be a properly infinite von Neumann
algebra. Then every element in A can be written as a sum of five elements with
square zero.

The subsequent spectral characterisation of nilpotent elements of a Banach
algebra combines results by Aupetit and Zemánek ([6]) and by Ransford and White
([13]), and will play a crucial role in the proof of Theorem 3.6.

Lemma 2.4. Let A be a Banach algebra, a ∈ A, and n > 1. The following
conditions are equivalent:

(i) an ∈ rad(A);
(ii) for every bounded neighbourhood of zero U in A, there is a constant

CU > 0 such that r(a+ x) 6 CU‖x‖1/n for all x ∈ U ;
(iii) for some bounded neighbourhood of zero U in A, there is a constant

CU > 0 such that r(a+ x) 6 CU‖x‖1/n for all x ∈ U .

Proof. (i) ⇒ (ii) is Theorem 2.2 in [6], (ii) ⇒ (iii) is trivial, and (iii) ⇒
(i) is Theorem 2.1 in [13].
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3. A STRUCTURE THEOREM

A Jordan homomorphism between two Banach algebras A and B is a linear map-
ping T : A→ B which preserves the derived Jordan product; hence, T (ab+ ba) =
(Ta)(Tb) + (Tb)(Ta) for all a, b ∈ A. Equivalently, T (a2) = (Ta)2 for all a ∈ A.
Therefore each Jordan homomorphism preserves nilpotent as well as idempotent
elements. In addition, if B is semisimple and T is surjective, then T is auto-
matically bounded. These necessary conditions have been previously exploited by
several authors to establish that spectrally bounded operators on certain classes
of Banach algebras have to be Jordan homomorphisms, and we will make no ex-
ception.

Šemrl’s result that a unital surjective spectrally bounded operator on B(H)
is a Jordan homomorphism can be immediately extended to the case of a mapping
from B(H) to B(K); this is in fact noticed in his paper (Remark 6 in [16]). It is,
however, essential that dimH = ∞; counterexamples in the case of the complex
n × n matrices Mn are given in his article (Remark 4 in [16]), where the general
form of unital bijective spectrally bounded operators on Mn is indeed stated.
Consequently, a first restriction we are bound to make is some sort of “strong
infinite dimensionality” of the domain algebra. Together with the need for a good
supply of projections (Lemma 2.1), the setting of properly infinite von Neumann
algebras turns out to be the right one (Proposition 3.4 below).

It is clear that every spectrally bounded operator preserves quasi-nilpotent
elements, and the main tool to deduce preservation of nilpotents from this is the
subharmonicity of the spectral radius (Theorem 6.4.2 in [12]). In Šemrl’s approach,
this is combined with an application of Kaplansky’s theorem on locally algebraic
operators (Theorem 4.2.7 of [3]). It turns out that this technique easily extends
to the case when the codomain is a C∗-algebra of type I. In order to avoid any
constraint on the codomain, we will, however, appeal to the above characterisation
of nilpotent elements.

Lemma 3.1. Let T : A→ B be a surjective spectrally bounded operator be-
tween the Banach algebras A and B, and let a ∈ A. If an ∈ rad(A) for some
n > 1, then (Ta)n ∈ rad(B). In particular, if B is semisimple, T preserves
nilpotent elements.

Proof. By composing T with the canonical epimorphism B → B/rad(B), if
necessary, we may assume that B is semisimple. As a result, T is bounded ([3],
Theorem 5.5.2) and hence open. Let N > 0 be such that, for each y ∈ B, there
is x ∈ A with the properties Tx = y and ‖x‖ 6 N‖y‖. Let M > 0 be such
that r(Tx) 6 Mr(x) for all x ∈ A. By Lemma 2.4, there exists C > 0 such that
r(a+ x) 6 C‖x‖1/n for all x ∈ A with ‖x‖ 6 1. Take y ∈ B with ‖y‖ 6 1/N and
choose x ∈ A such that Tx = y and ‖x‖ 6 N‖y‖. We have

r(Ta+ y) = r(T (a+ x)) 6 Mr(a+ x) 6 MC‖x‖1/n 6 MCN1/n‖y‖1/n.

Thus, by Lemma 2.4 (iii), (Ta)n = 0 as claimed.

We will actually need this result only in the case n = 2.
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Corollary 3.2. Every surjective spectrally bounded operator from a Ba-
nach algebra onto a semisimple Banach algebra preserves elements with square
zero.

The next result allows us to translate the above observations into the preser-
vation of idempotents.

Lemma 3.3. Let T : A→ B be a linear mapping between Banach algebras
which preserves elements with square zero. If e, f are orthogonal idempotents in
A, then

(Ta)(Tb) + (Tb)(Ta) = 0

for all a ∈ eAe, b ∈ fAf which can be written as finite sums of elements with
square zero.

Proof. Let a ∈ eAe, b ∈ fAf be written as a =
∑
i

ai, b =
∑
j

bj , respectively,

where ai ∈ eAe and bj ∈ fAf are elements with square zero for all i, j. Then
(ai + bj)2 = 0 for all i, j, wherefore, by assumption, (T (ai + bj))2 = 0 which
yields (Tai)(Tbj) + (Tbj)(Tai) = 0 for all i, j. Summing over all i, j we find
(Ta)(Tb) + (Tb)(Ta) = 0 as claimed.

In the following result we generalise the second main step in Šemrl’s theorem.

Proposition 3.4. Let A be a properly infinite von Neumann algebra, and
let B be a Banach algebra. Suppose that the unital linear mapping T : A→ B pre-
serves elements with square zero. Then T maps projections in A onto idempotents
in B.

Proof. Let p ∈ A be a projection. Suppose at first that both p and 1− p are
properly infinite. Then we can apply Lemmas 2.3 and 3.3 to obtain

(Tp)(1− Tp) + (1− Tp)(Tp) = 0,

which in turn is equivalent to (Tp)2 = Tp.
Suppose next that p is properly infinite but 1 − p is not. By Lemma 2.2,

there is a subprojection f of p such that p ∼ f ∼ p − f , where ∼ denotes
equivalence, so that both f and p − f are properly infinite. It follows that 1 − f
and 1 − p + f = 1 − (p − f) are properly infinite. For example, let z ∈ A be a
central projection with z(1− f) 6= 0. Writing z(1− f) = z(1−p)+ z(p− f) we see
that z(1− f) is infinite whenever z(p− f) 6= 0, as 1− p and p− f are orthogonal.
If z(p− f) = 0, then zp = 0 since p− f ∼ p. Therefore, z(1− f) = z is infinite in
this case too. Hence, 1− f is properly infinite and similarly for 1− (p− f).

By the first step, we have (Tf)2 = Tf and (T (p−f))2 = T (p−f). Applying
Lemma 3.3 with e = p − f , we also have T (p − f)(Tf) + (Tf)T (p − f) = 0.
Consequently,

(Tp)2 =
(
T (p− f) + Tf

)2

= (T (p− f))2 + T (p− f)(Tf) + (Tf)T (p− f) + (Tf)2

= T (p− f) + Tf = Tp.

Suppose now that p is not properly infinite but infinite. Let z ∈ A be
the unique (minimal) central projection in A such that zp is properly infinite
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and (1 − z)p is finite ([10], Proposition 6.3.7). By the previous step, T (zp) is
idempotent. Since z and 1− z are properly infinite, we can apply Lemmas 2.3 and
3.3 to za and (1− z)b and obtain

T (za)T ((1− z)b) + T ((1− z)b)T (za) = 0, a, b ∈ A.
Rearranging this identity we find
(3.1) T (za)T (b) + T (b)T (za) = T (za)T (zb) + T (zb)T (za), a, b ∈ A.
Set b = 1 in (3.1). Since T is unital, it follows that

2T (za) = T (za)T (z) + T (z)T (za),
and multiplying this identity on the left by the idempotent T (z) as well as on the
right and then subtracting the resulting identities, we have

T (z)T (za) = T (za)T (z) = T (za), a ∈ A.
Set a = 1 in (3.1). Then, using the identity just obtained,

T (z)T (b) + T (b)T (z) = T (z)T (zb) + T (zb)T (z) = 2T (zb)
for all b ∈ A. As above, this entails that
(3.2) T (z)T (b) = T (b)T (z) = T (zb), b ∈ A.
In particular,

T (p)T (zp) = T (p)T (z)T (p) = T (p)T (z)2T (p)

= T (p)T (z)T (p)T (z) = T (zp)T (zp) = T (zp)

and similarly T (zp)T (p) = T (zp).
From this, we deduce that(
T ((1− z)(1− p))

)2 =
(
1− T (z)− (T (p)− T (zp))

)2

= (1− T (z))2 + (T (p)− T (zp))2 − 2(1− T (z))(T (p)− T (zp))

= 1− T (z) + T (p)2 + T (zp)2 − 2T (p)T (zp)

− 2(T (p)− T (z)T (p)− T (zp) + T (z)T (zp))

= 1− T (z) + T (p)2 + T (zp)− 2T (p)

= (1− T (z)− T (p) + T (zp)) + ((Tp)2 − Tp).

This is nothing but(
T ((1− z)(1− p))

)2 − T ((1− z)(1− p)) = (Tp)2 − Tp,

wherefore Tp is idempotent if and only if Tq is idempotent, where q is the pro-
jection q = (1 − z)(1 − p). Let z′ be a central projection in A. If z′(1 − z) = 0,
then z′q = 0 as q 6 1 − z. If z′q 6= 0 is finite, then z′(1 − z)p must be infinite as
z′q + z′(1 − z)p = z′(1 − z), which is either infinite or zero, and the sum of two
orthogonal finite projections is finite (Theorem 6.3.8 in [10]). Since z′(1− z)p is a
subprojection of the finite projection (1− z)p, it follows that z′q is either zero or
infinite. By means of this, q is properly infinite whence Tq is an idempotent by
the second part of the proof. Therefore, Tp is an idempotent.

Finally suppose that p is finite. Then, 1− p is infinite wherefore T (1− p) =
1− Tp is idempotent by the previous argument. Consequently, Tp is idempotent,
which completes the proof.
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Combining this proposition with Lemma 2.1 we derive the following result.

Corollary 3.5. Every bounded unital operator from a properly infinite von
Neumann algebra into a Banach algebra which preserves elements with square zero
is a Jordan homomorphism.

We state the main result of this paper.

Theorem 3.6. Every spectrally bounded unital operator from a properly in-
finite von Neumann algebra onto a semisimple Banach algebra is a Jordan homo-
morphism.

Proof. Let T : A→ B be spectrally bounded with T1 = 1. Suppose that T
is surjective and B is semisimple. By Corollary 3.2, T preserves elements with
square zero. Suppose that A is a properly infinite von Neumann algebra. Since T
is bounded, Corollary 3.5 entails that T is a Jordan homomorphism.

Remarks 3.7. (i) The algebra B(H) is properly infinite if and only if H is
infinite dimensional; thus, Šemrl’s theorem follows directly from Theorem 3.6.

(ii) In Theorem 1.3 of [4], Aupetit showed that every surjective spectrum-
preserving operator T : A→ B between von Neumann algebras A and B is a Jor-
dan isomorphism. It follows directly from the hypotheses that T is unital and
injective. Therefore, our Theorem 3.6 extends Aupetit’s theorem in the case of
a properly infinite von Neumann algebra A. On the other hand, every bounded
operator defined on a commutative C∗-algebra is spectrally bounded. As commu-
tative von Neumann algebras are finite, this shows that Aupetit’s result has no
direct analogue in the case of a finite von Neumann algebra A.

(iii) Jordan homomorphisms onto C∗-algebras can be decomposed into a
multiplicative and an anti-multiplicative part in a very general setting. Let ϕ :
A → B be a Jordan homomorphism onto the C∗-algebra B. Then there exists a
unique central projection q in the multiplier algebra of the commutator ideal of B
such that

(3.3) ϕ(xy) = qϕ(x)ϕ(y) + (1− q)ϕ(y)ϕ(x), x, y ∈ A,

see Theorem 6.3.4 in [1] or Corollary 2.9 in [14]. As ϕ is continuous ([2], [9]),
this implies that kerϕ is a closed ideal in the Banach algebra A. In general,
the projection q need not belong to B, but this will be the case under various
additional assumptions, for instance, if B is stable, has no finite traces, or is
boundedly centrally closed.

In conclusion we discuss the consequences of Theorem 3.6, under the per-
spective of blending the assumptions in Nagasawa’s theorem and Šemrl’s theorem,
to the existence of spectrally bounded operators between certain C∗-algebras. Let
A be a properly infinite von Neumann algebra, and let ϕ : A → B be a Jordan
homomorphism onto a C∗-algebra B such that the decomposition in (3.3) is valid
within B, i.e., q ∈ Z(B). We may assume that q 6= 0. Then, ψ : A→ qB defined
by ψ(a) = qϕ(a), a ∈ A is a surjective homomorphism, wherefore the C∗-algebras
A/ kerψ and qB are isomorphic as algebras. By Gardner’s theorem, they are thus
isomorphic as C∗-algebras. Since ψ(1) = q 6= 0, kerψ is a proper ideal of A. Take
a projection p ∈ A \ kerψ such that p ∼ 1 − p ∼ 1 and denote by p its image in
the quotient algebra A = A/ kerψ. If vi, i = 1, 2 are partial isometries in A such
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that v1v∗1 = p, v∗1v1 = 1, v2v∗2 = 1 − p, and v∗2v2 = 1 and si = vi, i = 1, 2 are
their images in A, then s1s

∗
1 + s2s

∗
2 = p + 1 − p = 1 and s∗1s1 = s∗2s2 = 1 in A.

Consequently, the C∗-subalgebra generated by s1 and s2 is the Cuntz algebra O2.
Suppose now in addition that B is type I, then qB and therefore A are type I

as well. However, this would imply that O2 is type I, which is false. As a result,
there is no Jordan homomorphism from A onto a type I C∗-algebra B of this type.

Putting this together with Theorem 3.6, we find the following somewhat
surprising result.

Corollary 3.8. Let A be a properly infinite von Neumann algebra, and let
B be a C∗-algebra of type I such that the unique decomposition of every Jordan
homomorphism from A onto B in (3.3) is valid within B. Then there is no unital
spectrally bounded operator from A onto B.

This result applies in particular to every commutative and to every finite-
dimensional C∗-algebra B. The following special case, which, in particular, rules
out the existence of a general Hahn-Banach theorem for spectrally bounded linear
functionals, can, however, be derived more directly.

Corollary 3.9. There are no non-zero spectrally bounded linear functionals
on properly infinite von Neumann algebras.

Proof. Every spectrally bounded linear functional f vanishes on nilpotent
elements. Since a properly infinite von Neumann algebra is linearly spanned by
square-zero elements (Lemma 2.3), f has to be zero.
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