COMPUTING EXT FOR GRAPH ALGEBRAS

MARK TOMFORDE

Communicated by William B. Arveson

Abstract

For a row-finite graph G with no sinks and in which every loop has an exit, we construct an isomorphism between $\operatorname{Ext}\left(C^{*}(G)\right)$ and $\operatorname{coker}(A-I)$, where A is the vertex matrix of G. If c is the class in $\operatorname{Ext}\left(C^{*}(G)\right)$ associated to a graph obtained by attaching a sink to G, then this isomorphism maps c to the class of a vector that describes how the sink was added. We conclude with an application in which we use this isomorphism to produce an example of a row-finite transitive graph with no sinks whose associated C^{*}-algebra is not semiprojective.

Keywords: Graph algebras, extension, semiprojectivity.
MSC (2000): 19K33, 46L55.

1. INTRODUCTION

The Cuntz-Krieger algebras \mathcal{O}_{A} are C^{*}-algebras that are generated by a collection of partial isometries satisfying relations described by a finite matrix A with entries in $\{0,1\}$ and no zero rows. In [5] Cuntz and Krieger computed Ext for these C^{*} algebras, showing that $\operatorname{Ext} \mathcal{O}_{A}$ is isomorphic to $\operatorname{coker}(A-I)$, where $A: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$.

In 1982 Watatani noted that one can view \mathcal{O}_{A} as the C^{*}-algebra of a finite directed graph G with no sinks and whose vertex adjacency matrix is A ([20]). However, it was not until the late 1990's that analogues of these C^{*}-algebras were considered for possibly infinite graphs that are allowed to contain sinks ([9], [10]). Since that time there has been a flurry of activity in studying these graph algebras.

Graph algebras have proven to be important for many reasons. To begin with, they include a fairly wide class of C^{*}-algebras. In addition to generalizing the Cuntz-Krieger algebras, graph algebras include many other interesting classes of C^{*}-algebras such as AF-algebras and Kirchberg-Phillips algebras with free K_{1} group. However, despite the fact that graph algebras include a wide class of C^{*}-algebras, their basic structure is fairly well understood and their invariants are readily computable. In fact, results about Cuntz-Krieger algebras can often be extended to graph algebras with only minor modifications. One reason graph
algebras have attracted the interest of many people is that the graph provides a convenient tool for visualization. Not only does the graph determine the defining relations for the generators of the C^{*}-algebra, but also many important properties of the C^{*}-algebra may be translated into graph properties that can easily be read off from the graph.

In this paper we extend Cuntz and Krieger's computation of $\operatorname{Ext} \mathcal{O}_{A}$ to graph algebras. Specifically, we prove the following.

Theorem. Let G be a row-finite graph with no sinks and in which every loop has an exit, and let $C^{*}(G)$ be the C^{*}-algebra associated to G. Then there exists an isomorphism

$$
\omega: \operatorname{Ext}\left(C^{*}(G)\right) \rightarrow \operatorname{coker}\left(A_{G}-I\right)
$$

where A_{G} is the vertex matrix of G and $A_{G}: \prod_{G^{0}} \mathbb{Z} \rightarrow \prod_{G^{0}} \mathbb{Z}$.
In addition to showing that $\operatorname{Ext}\left(C^{*}(G)\right) \cong \operatorname{coker}\left(A_{G}-I\right)$, the isomorphism ω is important because its value on certain extensions can be easily calculated. If E is an essential 1-sink extension of G as described in [13], then $C^{*}(E)$ will be an extension of $C^{*}(G)$ by \mathcal{K} and thus determines an element in $\operatorname{Ext}\left(C^{*}(G)\right)$. Roughly speaking, a 1 -sink extension of G may be thought of as a graph formed by attaching a sink v_{0} to G, and this 1 -sink extension is said to be essential if every vertex of G can reach this sink. For example, if G is the graph
G

then two examples of essential 1 -sink extensions are the following graphs E_{1} and E_{2}.

For each 1 -sink extension there is a vector, called the Wojciech vector, that describes how the sink is added to $G([13])$. In the above two examples the Wojciech vector is the vector whose $v^{\text {th }}$ entry is equal to the number of edges from v to the sink. This vector is $\left(\begin{array}{llll}1 & 1 & 2\end{array}\right)^{\mathrm{t}}$ for E_{1} and $\left(\begin{array}{lll}1 & 0 & 1\end{array}\right)^{\mathrm{t}}$ for E_{2}. It turns out that if E is a 1 -sink extension of G, then the value that ω assigns to the element of $\operatorname{Ext}\left(C^{*}(G)\right)$ associated to E is equal to the class of the Wojciech vector of E in $\operatorname{coker}\left(A_{G}-I\right)$. Furthermore, since ω is additive we have a nice way of describing addition of elements in $\operatorname{Ext}\left(C^{*}(G)\right)$ associated to essential 1-sink extensions. For example, if E_{1} and E_{2} are as above, then the sum of their associated elements in $\operatorname{Ext}\left(C^{*}(G)\right)$ is the element in $\operatorname{Ext}\left(C^{*}(G)\right)$ associated to the 1-sink extension

whose Wojciech vector is $\left(\begin{array}{lll}2 & 1 & 3\end{array}\right)^{\mathrm{t}}=\left(\begin{array}{lll}1 & 1 & 2\end{array}\right)^{\mathrm{t}}+\left(\begin{array}{lll}1 & 0 & 1\end{array}\right)^{\mathrm{t}}$. Thus we have a way of visualizing certain elements of $\operatorname{Ext}\left(C^{*}(G)\right)$ as well as a way to visualize their sums. We show in Section 5 that if G is a finite graph, then every element of $\operatorname{Ext}\left(C^{*}(G)\right)$ is an element associated to an essential 1-sink extension of G. We also show that this is not necessarily the case for infinite graphs.

In addition to providing an easily visualized description of $\operatorname{Ext}\left(C^{*}(G)\right)$, we also show that the isomorphism ω can be used to ascertain information about the semiprojectivity of a graph algebra. Blackadar has shown that the Cuntz-Krieger algebras are semiprojective ([3]), and Szymański has proven that C^{*}-algebras of transitive graphs with finitely many vertices are semiprojective ([16]). Although not all graph algebras are semiprojective (for instance, it follows from Theorem 3.1 of [4] that \mathcal{K} is not semiprojective), it is natural to wonder if the C^{*}-algebras of transitive graphs will always be semiprojective. In Section 6 we answer this question in the negative. We use the isomorphism ω to produce an example of a row-finite transitive graph whose C^{*}-algebra is not semiprojective.

This paper is organized as follows. We begin in Section 2 with a description of Ext due to Cuntz and Krieger. Then, after some graph algebra preliminaries in Section 3, we continue in Section 4 by defining a map $d: \operatorname{Ext}\left(C^{*}(G)\right) \rightarrow$ $\operatorname{coker}\left(B_{G}-I\right)$, where B_{G} is the edge matrix of G. In Section 5 we define the map $\omega: \operatorname{Ext}\left(C^{*}(G)\right) \rightarrow \operatorname{coker}\left(A_{G}-I\right)$, where A_{G} is the vertex matrix of G. We also prove that ω is an isomorphism and compute the value it assigns to elements of $\operatorname{Ext}\left(C^{*}(G)\right)$ associated to essential 1-sink extensions. We conclude in Section 6 by providing an example of a row-finite transitive graph whose C^{*}-algebra is not semiprojective.

2. PRELIMINARIES ON EXT

Throughout we shall let \mathcal{H} denote a separable infinite-dimensional Hilbert space, \mathcal{K} denote the compact operators on \mathcal{H}, \mathcal{B} denote the bounded operators on \mathcal{H}, and $\mathcal{Q}:=\mathcal{B} / \mathcal{K}$ denote the associated Calkin algebra. We shall also let $i: \mathcal{K} \rightarrow \mathcal{B}$ denote the inclusion map and $\pi: \mathcal{B} \rightarrow \mathcal{Q}$ denote the projection map.

In this section we review a few definitions and establish notation. We asume that the reader is familiar with Ext. For those readers who would like more background on Ext we suggest [4] and [8], or for a less comprehensive but more introductory treatment we suggest [19]. We also mention that an expanded version of the topics addressed here, including an account of Ext, is contained in [17].

If A is a C^{*}-algebra, then an extension of A (by the compact operators) is a homomorphism $\tau: A \rightarrow \mathcal{Q}$. An extension is said to be essential if it is a monomorphism.

Definition 2.1. An extension $\tau: A \rightarrow \mathcal{Q}$ is said to be degenerate if there exists a homomorphism $\eta: A \rightarrow \mathcal{B}$ such that $\pi \circ \eta=\tau$. In other words, τ can be lifted to a (possibly degenerate) representation η.

We warn the reader that the terminology used above is not standard. Many authors refer to such extensions as trivial rather than degenerate. However, we have chosen to follow the convention established in [8].

It is a fact that if there exists an essential degenerate extension of A by \mathcal{K} then $\operatorname{Ext}(A)$ will be comprised of weakly stable equivalence classes of essential extensions (Proposition 15.6 .5 in [4]). However, we will find it more convenient to use a description of Ext given by Cuntz and Krieger in [5] when they computed $\operatorname{Ext} \mathcal{O}_{A}$.

Definition 2.2. We say that two Busby invariants τ_{1} and τ_{2} are $C K$-equivalent if there exists a partial isometry $v \in \mathcal{Q}$ such that

$$
\begin{equation*}
\tau_{1}=\operatorname{Ad}(v) \circ \tau_{2} \quad \text { and } \quad \tau_{2}=\operatorname{Ad}\left(v^{*}\right) \circ \tau_{1} \tag{2.1}
\end{equation*}
$$

The following fact was used in [5].
Lemma 2.3. Suppose that τ_{1} and τ_{2} are the Busby invariants of two essential extensions of A by \mathcal{K}. Then τ_{1} equals τ_{2} in $\operatorname{Ext}(A)$ if and only if τ_{1} and τ_{2} are CK-equivalent.

In light of this lemma we may think of the class of τ in $\operatorname{Ext}(A)$ as the class generated by the relation in (2.1). Furthermore, we see that any two essential degenerate extensions will be equivalent.

For extensions τ_{1} and τ_{2} we say that $\tau_{1} \perp \tau_{2}$ if there are orthogonal projections p_{1} and p_{2} such that $\tau_{i}(A) \subseteq p_{i} \mathcal{Q} p_{i}$. In this case we may define a map $\tau_{1} \boxplus \tau_{2}$ by $a \mapsto \tau_{1}(a)+\tau_{2}(a)$. The orthogonality of the projections is enough to ensure that this map will be multiplicative and therefore $\tau_{1} \boxplus \tau_{2}$ will be a homomorphism. The notation \boxplus is used because a quite different meaning has already been assigned to $\tau_{1}+\tau_{2}$ in $\operatorname{Ext}(A)$.

Provided that there exists an essential degenerate extension of A by \mathcal{K}, we may view $\operatorname{Ext}(A)$ as the equivalence classes of essential extensions generated by the relation in (2.1). For any two elements $\tau_{1}, \tau_{2} \in \operatorname{Ext}(A)$, we define their sum to be $\tau_{1}+\tau_{2}=\tau_{1}^{\prime} \boxplus \tau_{2}^{\prime}$ where τ_{1}^{\prime} and τ_{2}^{\prime} are essential extensions such that $\tau_{1}^{\prime} \perp \tau_{2}^{\prime}$ and τ_{i}^{\prime} is weakly stably equivalent to τ_{i}. Note that the common class of all degenerate essential extensions acts as the neutral element in $\operatorname{Ext}(A)$.

3. PRELIMINARIES ON GRAPH C^{*}-ALGEBRAS

A (directed) graph $G=\left(G^{0}, G^{1}, r, s\right)$ consists of a countable set G^{0} of vertices, a countable set G^{1} of edges, and maps $r, s: G^{1} \rightarrow G^{0}$ that identify the range and source of each edge. A vertex $v \in G^{0}$ is called a sink if $s^{-1}(v)=\emptyset$ and a source if $r^{-1}(v)=\emptyset$. All of our graphs will be assumed to be row-finite in that each vertex emits only finitely many edges.

If G is a row-finite directed graph, a Cuntz-Krieger G-family in a C^{*}-algebra is a set of mutually orthogonal projections $\left\{p_{v}: v \in G^{0}\right\}$ together with a set of partial isometries $\left\{s_{e}: e \in G^{1}\right\}$ that satisfy the Cuntz-Krieger relations
$s_{e}^{*} s_{e}=p_{r(e)}$ for $e \in E^{1} \quad$ and $\quad p_{v}=\sum_{\{e: s(e)=v\}} s_{e} s_{e}^{*}$ whenever $v \in G^{0}$ is not a sink.
Then $C^{*}(G)$ is defined to be the C^{*}-algebra generated by a universal Cuntz-Krieger G-family (Theorem 1.2 in [9]).

A path in a graph G is a finite sequence of edges $\alpha:=\alpha_{1} \alpha_{2} \cdots \alpha_{n}$ for which $r\left(\alpha_{i}\right)=s\left(\alpha_{i+1}\right)$ for $1 \leqslant i \leqslant n-1$, and we say that such a path has length $|\alpha|=n$. For $v, w \in G^{0}$ we write $v \geqslant w$ to mean that there exists a path with source v and range w. For $K, L \subseteq G^{0}$ we write $K \geqslant L$ to mean that for each $v \in K$ there exists $w \in L$ such that $v \geqslant w$.

A loop is a path whose range and source are equal. An exit for a loop $x:=x_{1} \cdots x_{n}$ is an edge e for which $s(e)=s\left(x_{i}\right)$ for some i and $e \neq x_{i}$. A graph is said to satisfy Condition (L) if every loop in G has an exit.

If G is a graph then we may associate two matrices to G. The vertex matrix of G is the $G^{0} \times G^{0}$ matrix A_{G} whose entries are given by $A_{G}(v, w):=\#\left\{e \in G^{1}\right.$: $s(e)=v$ and $r(e)=w\}$. The edge matrix of G is the $G^{1} \times G^{1}$ matrix B_{G} whose entries are given by

$$
B_{G}(e, f):= \begin{cases}1 & \text { if } r(e)=s(f) \\ 0 & \text { otherwise }\end{cases}
$$

Notice that if G is a row-finite graph, then the rows of both A_{G} and B_{G} will eventually be zero. Hence left multiplication gives maps $A_{G}: \prod_{G^{0}} \mathbb{Z} \rightarrow \prod_{G^{0}} \mathbb{Z}$ and $B_{G}: \prod_{G^{1}} \mathbb{Z} \rightarrow \prod_{G^{1}} \mathbb{Z}$. Also the maps $A_{G}-I: \prod_{G^{0}} \mathbb{Z} \rightarrow \prod_{G^{0}} \mathbb{Z}$ and $B_{G}-I: \prod_{G^{1}} \mathbb{Z} \rightarrow \prod_{G^{1}} \mathbb{Z}$ will prove important in later portions of this paper.

4. THE Ext GROUP FOR $C^{*}(G)$

The proofs of the following three lemmas are straightforward.
Lemma 4.1. Suppose that p_{1}, p_{2}, \ldots is a countable sequence of pairwise orthogonal projections in \mathcal{Q}. Then there are pairwise orthogonal projections P_{1}, P_{2}, \ldots in \mathcal{B} such that $\pi\left(P_{i}\right)=p_{i}$ for $i=1,2, \ldots$

Lemma 4.2. If w is a partial isometry in \mathcal{Q}, then there exists a partial isometry V in \mathcal{B} such that $\pi(V)=w$.

Lemma 4.3. If w is a unitary in \mathcal{Q}, then w can be lifted to either an isometry or coisometry $U \in \mathcal{B}$.

For the rest of this section let G be a row-finite graph with no sinks that satisfies Condition (L). Since $C^{*}(G)$ is separable, there will exist an essential degenerate extension of $C^{*}(G)$ (Section 15.5 in [4]). (In fact, we shall prove that there are many essential degenerate extensions in Lemma 4.7.) Therefore we may use Cuntz and Krieger's description of Ext discussed in Section 2.

Let $E \in \mathcal{Q}$ be a projection. By Lemma 4.1 we know that there exists a projection $E^{\prime} \in \mathcal{B}$ such that $\pi\left(E^{\prime}\right)=E$. If X is an element of \mathcal{Q} such that $E X E$ is invertible in $E \mathcal{Q} E$, then we denote by $\operatorname{ind}_{E}(X)$ the Fredholm index of $E^{\prime} X^{\prime} E^{\prime}$ in $\operatorname{Im} E^{\prime}$, where $X^{\prime} \in \mathcal{B}$ is such that $\pi\left(X^{\prime}\right)=X$. Since the Fredholm index is invariant under compact perturbations, this definition does not depend on the choice of E^{\prime} or X^{\prime}.

The following two lemmas are taken from [5].
Lemma 4.4. Let $E, F \in \mathcal{Q}$ be orthogonal projections, and let X be an element of \mathcal{Q} such that $E X E$ and $F X F$ are invertible in $E \mathcal{Q E}$ and $F \mathcal{Q} F$ and such that X commutes with E and F. Then $\operatorname{ind}_{E+F}(X)=\operatorname{ind}_{E}(X)+\operatorname{ind}_{F}(X)$.

Lemma 4.5. Let X and Y be invertible operators in $E \mathcal{Q E}$. Then $\operatorname{ind}_{E}(X Y)$ $=\operatorname{ind}_{E}(X)+\operatorname{ind}_{E}(Y)$.

In addition, we shall make use of the following lemmas to define a map from $\operatorname{Ext}\left(C^{*}(G)\right)$ into $\operatorname{coker}\left(B_{G}-I\right)$. The first lemma is an immediate consequnce of the Cuntz-Krieger Uniqueness Theorem for graph algebras (Theorem 3.1 in [2]).

Lemma 4.6. Let G be a graph that satisfies Condition (L), and let $\left\{s_{e}, p_{v}\right\}$ be the canonical Cuntz-Krieger G-family in $C^{*}(G)$. If I is an ideal of $C^{*}(G)$ with the property that $p_{v} \notin I$ for all $v \in G^{0}$, then $I=\{0\}$.

Lemma 4.7. Let G be a row-finite graph with no sinks that satisfies Condition (L), and let $\tau: C^{*}(G) \rightarrow \mathcal{Q}$ be an essential extension of $C^{*}(G)$. If $\left\{s_{e}, p_{v}\right\}$ is the canonical Cuntz-Krieger G-family, then there exists a degenerate essential extension $t: C^{*}(G) \rightarrow \mathcal{Q}$ such that $t\left(s_{e} s_{e}^{*}\right)=\tau\left(s_{e} s_{e}^{*}\right)$ for all $e \in G^{1}$.

Proof. Since τ is essential, $\left\{\tau\left(s_{e} s_{e}^{*}\right)\right\}_{e \in G^{1}}$ is a countable set of mutually orthogonal nonzero projections and we may use Lemma 4.1 to lift them to a collection $\left\{R_{e}\right\}_{e \in G^{1}}$ of mutually orthogonal nonzero projections in \mathcal{B}. Now each $\mathcal{H}_{e}:=\operatorname{Im} R_{e}$ is infinite-dimensional, and for each $v \in G^{0}$ we define $\mathcal{H}_{v}=\underset{\{s(e)=v\}}{\bigoplus} \mathcal{H}_{e}$. Then each \mathcal{H}_{v} is infinite-dimensional and for each $e \in G^{1}$ we can let T_{e} be a partial isometry
with initial space $\mathcal{H}_{r(e)}$ and final space \mathcal{H}_{e}. Also for each $v \in G^{0}$ we shall let Q_{v} be the projection onto \mathcal{H}_{v}. Then $\left\{T_{e}, Q_{v}\right\}$ is a Cuntz-Krieger G-family. By the universal property of $C^{*}(G)$ there exists a homomorphism $\tilde{t}: C^{*}(G) \rightarrow \mathcal{B}$ such that $\widetilde{t}\left(p_{v}\right)=Q_{v}$ and $\widetilde{t}\left(s_{e}\right)=T_{e}$. Let $t:=\pi \circ \widetilde{t}$. Then t is a degenerate extension and $t\left(s_{e} s_{e}^{*}\right)=\pi\left(\widetilde{t}\left(s_{e} s_{e}^{*}\right)\right)=\pi\left(T_{e} T_{e}^{*}\right)=\pi\left(R_{e}\right)=\tau\left(s_{e} s_{e}^{*}\right)$. Furthermore, for all $v \in G^{0}$ we have that

$$
t\left(p_{v}\right)=\sum_{s(e)=v} t\left(s_{e} s_{e}^{*}\right)=\sum_{s(e)=v} \tau\left(s_{e} s_{e}^{*}\right)=\tau\left(p_{v}\right) \neq 0
$$

so t is essential.
Remark 4.8. Suppose that G is a graph with no sinks, τ is an extension of $C^{*}(G)$, and t is another extension for which $t\left(s_{e} s_{e}^{*}\right)=\tau\left(s_{e} s_{e}^{*}\right)$. Then t will also have the property that $t\left(p_{v}\right)=t\left(\sum s_{e} s_{e}^{*}\right)=\sum t\left(s_{e} s_{e}^{*}\right)=\sum \tau\left(s_{e} s_{e}^{*}\right)=\tau\left(\sum s_{e} s_{e}^{*}\right)=$ $\tau\left(p_{v}\right)$ for any $v \in G^{0}$.

Definition 4.9. Let $\tau: C^{*}(G) \rightarrow \mathcal{Q}$ be an essential extension of $C^{*}(G)$, and for each $e \in G^{1}$ define $E_{e}:=\tau\left(s_{e} s_{e}^{*}\right)$. If $t: C^{*}(G) \rightarrow \mathcal{Q}$ is another essential extension of $C^{*}(G)$ with the property that $t\left(s_{e} s_{e}^{*}\right)=E_{e}$, then we define a vector $d_{\tau, t} \in \prod_{G^{1}} \mathbb{Z}$ by

$$
d_{\tau, t}(e)=-\operatorname{ind}_{E_{e}} \tau\left(s_{e}\right) t\left(s_{e}^{*}\right)
$$

Note that this is well defined since $E_{e} \tau\left(s_{e}\right) t\left(s_{e}^{*}\right) E_{e}=\tau\left(s_{e}\right) t\left(s_{e}^{*}\right)$ and by Remark 4.8 we have that $\tau\left(s_{e}\right) t\left(s_{e}^{*}\right) \tau\left(s_{e}^{*}\right) t\left(s_{e}\right)=\tau\left(s_{e}\right) \tau\left(s_{e}^{*} s_{e}\right) \tau\left(s_{e}^{*}\right)=E_{e}$ so $\tau\left(s_{e}\right) t\left(s_{e}^{*}\right)$ is invertible in $E_{e} \mathcal{Q} E_{e}$.

Remark 4.10. If $E \in \mathcal{Q}$ is a projection and $E^{\prime} \in \mathcal{B}$ is a lift of E to a projection in \mathcal{B}, then one can see that $\mathcal{Q}\left(E^{\prime}(\mathcal{H})\right) \cong E \mathcal{Q} E$ via the obvious correspondence. In the rest of this paper we shall often identify $\mathcal{Q}\left(E^{\prime}(\mathcal{H})\right)$ with $E \mathcal{Q} E$.

The proof of the following lemma is straightforward.
Lemma 4.11. Let $E \in \mathcal{Q}$ be a projection and $X \in \mathcal{Q}$, and suppose that $E X E$ is invertible in $E \mathcal{Q} E$. If $V \in \mathcal{Q}$ is a partial isometry with initial projection $V^{*} V=E$ and final projection $V V^{*}=F$, then $\operatorname{ind}_{E} X=\operatorname{ind}_{F} V X V^{*}$.

Proposition 4.12. Let G be a row-finite graph with no sinks that satisfies Condition (L). Also let τ be an essential extension of $C^{*}(G)$ and $E_{e}:=\tau\left(s_{e} s_{e}^{*}\right)$ for $e \in G^{1}$. If t and t^{\prime} are essential extensions of $C^{*}(G)$ that are CK-equivalent and satisfy $t\left(s_{e} s_{e}^{*}\right)=t^{\prime}\left(s_{e} s_{e}^{*}\right)=E_{e}$, then $d_{\tau, t}-d_{\tau, t^{\prime}} \in \operatorname{Im}\left(B_{G}-I\right)$.

Proof. Since t and t^{\prime} are CK-equivalent, there exists a partial isometry $U \in \mathcal{Q}$ such that $t=\operatorname{Ad}(U) \circ t^{\prime}$ and $t^{\prime}=\operatorname{Ad}\left(U^{*}\right) \circ t$. Now notice that U commutes with E_{e}. Thus for any $e \in G^{1}$ we have $\tau\left(s_{e} s_{e}^{*}\right)=\sum_{s(f)=r(e)} \tau\left(s_{f} s_{f}^{*}\right)=\sum_{s(f)=r(e)} t\left(s_{f} s_{f}^{*}\right)=$ $t\left(s_{e}^{*} s_{e}\right)$ and

$$
\begin{array}{rlr}
d_{\tau, t}(e)-d_{\tau, t^{\prime}}(e) & =-\operatorname{ind}_{E_{e}} \tau\left(s_{e}\right) t\left(s_{e}^{*}\right)+\operatorname{ind}_{E_{e}} \tau\left(s_{e}\right) t^{\prime}\left(s_{e}^{*}\right) \\
& =\operatorname{ind}_{E_{e}} t\left(s_{e}\right) \tau\left(s_{e}^{*}\right)+\operatorname{ind}_{E_{e}} \tau\left(s_{e}\right) t^{\prime}\left(s_{e}^{*}\right) & \\
& =\operatorname{ind}_{E_{e}} t\left(s_{e}\right) \tau\left(s_{e}^{*} s_{e}\right) t^{\prime}\left(s_{e}^{*}\right) & \text { by Lemma 4.5 } \\
& =\operatorname{ind}_{E_{e}} t\left(s_{e}\right) t^{\prime}\left(s_{e}^{*}\right) \\
& =-d_{t, t^{\prime}}(e) .
\end{array}
$$

Hence $d_{\tau, t}-d_{\tau, t^{\prime}}=-d_{t, t^{\prime}}$. Now let $k \in \prod_{G^{1}} \mathbb{Z}$ be the vector given by $k(f):=\operatorname{ind}_{E_{f}} U$. Then for any $e \in G^{1}$ we have

$$
\begin{array}{rlr}
d_{t, t^{\prime}}(e) & =-\operatorname{ind}_{E_{e}} t\left(s_{e}\right) t^{\prime}\left(s_{e}^{*}\right) & \\
& =-\operatorname{ind}_{E_{e}} t\left(s_{e}\right) U t\left(s_{e}^{*}\right) U^{*} & \\
& =-\operatorname{ind}_{E_{e}} t\left(s_{e}\right) U t\left(s_{e}^{*}\right)-\operatorname{ind}_{E_{e}} U^{*} & \text { by Lemma 4.5 } \\
& =-\operatorname{ind}_{t\left(s_{e}^{*} s_{e}\right)} U-\operatorname{ind}_{E_{e}} U^{*} & \text { by Lemma 4.11 } \\
& =-\operatorname{ind}_{s(f)=r(e)} E_{f} U+\operatorname{ind}_{E_{e}} U & \\
& =-\sum_{s(f)=r(e)} \operatorname{ind}_{E_{f}} U+\operatorname{ind}_{E_{e}} U & \text { by Lemma 4.4 } \\
& =-\left(\sum_{f \in G^{1}} B_{G}(e, f) k(f)-k(e)\right) &
\end{array}
$$

so $d_{t, t^{\prime}}=-\left(B_{G}-I\right) k$ and $d_{\tau, t}-d_{\tau, t^{\prime}}=-d_{t, t^{\prime}} \in \operatorname{Im}\left(B_{G}-I\right)$.
Definition 4.13. Let G be a row-finite graph with no sinks that satisfies Condition (L). Let B_{G} be the edge matrix of G and $B_{G}-I: \prod_{G^{1}} \mathbb{Z} \rightarrow \prod_{G^{1}} \mathbb{Z}$. If τ is an essential extension of $C^{*}(G)$, then we shall define an element $d_{\tau} \in \operatorname{coker}\left(B_{G}-I\right)$ by

$$
d_{\tau}:=\left[d_{\tau, t}\right] \in \operatorname{coker}\left(B_{G}-I\right)
$$

where t is any degenerate extension with the property that $t\left(s_{e} s_{e}^{*}\right)=\tau\left(s_{e} s_{e}^{*}\right)$ for all $e \in G^{1}$.

In the above definition, the existence of t follows from Lemma 4.7. In addition, since any two degenerate essential extensions are CK-equivalent, it follows from Proposition 4.12 that the class of $d_{\tau, t}$ in $\operatorname{coker}\left(B_{G}-I\right)$ will be independent of the choice of t. Therefore d_{τ} is well defined.

The proof of the following lemma is straightforward.
Lemma 4.14. Suppose that τ_{1} and τ_{2} are extensions of a C^{*}-algebra A, and that v is a partial isometry in \mathcal{Q} for which $\tau_{1}=\operatorname{Ad}(v) \circ \tau_{2}$ and $\tau_{2}=\operatorname{Ad}\left(v^{*}\right) \circ$ τ_{1}. Then there exists either an isometry or coisometry $W \in \mathcal{B}$ such that $\tau_{1}=$ $\operatorname{Ad} \pi(W) \circ \tau_{2}$ and $\tau_{2}=\operatorname{Ad} \pi\left(W^{*}\right) \circ \tau_{1}$.

Corollary 4.15. Let τ_{1} and τ_{2} be essential extensions of a C^{*}-algebra A. Then τ_{1} and τ_{2} are CK-equivalent if and only if there exists either an isometry or coisometry W in \mathcal{B} such that $\tau_{1}=\operatorname{Ad} \pi(W) \circ \tau_{2}$ and $\tau_{2}=\operatorname{Ad} \pi\left(W^{*}\right) \circ \tau_{1}$.

Lemma 4.16. Let G be a row-finite graph with no sinks that satisfies Condition (L). Suppose that τ_{1} and τ_{2} are two essential extensions of $C^{*}(G)$ that are equal in $\operatorname{Ext}\left(C^{*}(G)\right)$. Then $d_{\tau_{1}}$ and $d_{\tau_{2}}$ are equal in $\operatorname{coker}\left(B_{G}-I\right)$.

Proof. Since τ_{1} and τ_{2} are equal in $\operatorname{Ext}\left(C^{*}(G)\right)$ it follows that they are CKequivalent. By interchanging τ_{1} and τ_{2} if necessary, we may use Corollary 4.15 to choose an isometry W in \mathcal{B} for which $\tau_{1}=\operatorname{Ad} \pi(W) \circ \tau_{2}$ and $\tau_{2}=\operatorname{Ad} \pi\left(W^{*}\right) \circ \tau_{1}$. For each $e \in G^{1}$ define $E_{e}:=\tau_{1}\left(s_{e} s_{e}^{*}\right)$ and $F_{e}:=\tau_{2}\left(s_{e} s_{e}^{*}\right)$. By Lemma 4.7 there
exists a degenerate essential extension $t_{2}=\pi \circ \widetilde{t}_{2}$ with the property that $t_{2}\left(s_{e} s_{e}^{*}\right)=$ $\tau_{2}\left(s_{e} s_{e}^{*}\right)=F_{e}$ for all $e \in G^{1}$. Then $\widetilde{t}_{1}:=W \widetilde{t}_{2} W^{*}$ will be a representation of $C^{*}(G)\left(\widetilde{t}_{1}\right.$ is multiplicative since W is an isometry), and thus $t_{1}:=\pi \circ \widetilde{t}_{1}$ will be a degenerate extension with the property that $t_{1}\left(s_{e} s_{e}^{*}\right)=\tau_{1}\left(s_{e} s_{e}^{*}\right)$. Now since τ_{1} is essential we have that

$$
t_{1}\left(p_{v}\right)=\sum_{s(e)=v} t_{1}\left(s_{e} s_{e}^{*}\right)=\sum_{s(e)=v} \tau_{1}\left(s_{e} s_{e}^{*}\right)=\tau_{1}\left(p_{v}\right) \neq 0
$$

Therefore $p_{v} \notin \operatorname{ker} t_{1}$ for all $v \in G^{0}$ and it follows from Lemma 4.6 that $\operatorname{ker} t_{1}=$ $\{0\}$, and thus t_{1} is essential.

Now recall that $E_{e}:=\tau_{1}\left(s_{e} s_{e}^{*}\right)$ and $F_{e}:=\tau_{2}\left(s_{e} s_{e}^{*}\right)$. Since W is an isometry, we see that $\pi(W) F_{e}$ is a partial isometry with source projection F_{e} and range projection E_{e}. Therefore by Lemma 4.11 it follows that

$$
\begin{aligned}
\operatorname{ind}_{F_{e}} \tau_{2}\left(s_{e}\right) t_{2}\left(s_{e}^{*}\right) & =\operatorname{ind}_{E_{e}} \pi(W) F_{e} \tau_{2}\left(s_{e}\right) t_{2}\left(s_{e}^{*}\right) F_{e} \pi\left(W^{*}\right) \\
& =\operatorname{ind}_{E_{e}} \pi(W) \tau_{2}\left(s_{e}\right) t_{2}\left(s_{e}^{*}\right) \pi\left(W^{*}\right) \\
& =\operatorname{ind}_{E_{e}} \pi(W) \tau_{2}\left(s_{e}\right) \pi\left(W^{*}\right) \pi(W) t_{2}\left(s_{e}^{*}\right) \pi\left(W^{*}\right) \\
& =\operatorname{ind}_{E_{e}} \tau_{1}\left(s_{e}\right) t_{1}\left(s_{e}^{*}\right)
\end{aligned}
$$

and $d_{\tau_{2}}$ equals $d_{\tau_{1}}$ in $\operatorname{coker}\left(B_{G}-I\right)$.
Definition 4.17. If G is a row-finite graph with no sinks that satisfies Condition (L), we define the Cuntz-Krieger map to be the map $d: \operatorname{Ext}\left(C^{*}(G)\right) \rightarrow$ $\operatorname{coker}\left(B_{G}-I\right)$ defined by $\tau \mapsto d_{\tau}$.

The previous lemma shows that the Cuntz-Krieger map d is well defined, and the next lemma shows that it is a homomorphism.

Lemma 4.18. Suppose that G is a row-finite graph with no sinks that satisfies Condition (L). Then the Cuntz-Krieger map is additive.

Proof. Let τ_{1} and τ_{2} be elements of $\operatorname{Ext}\left(C^{*}(G)\right)$ and choose the representatives τ_{1} and τ_{2} such that $\tau_{1} \perp \tau_{2}$. Let t_{1} and t_{2} be degenerate essential extensions such that $t_{1}\left(s_{e} s_{e}^{*}\right)=\tau_{1}\left(s_{e} s_{e}^{*}\right)$ and $t_{2}\left(s_{e} s_{e}^{*}\right)=\tau_{2}\left(s_{e} s_{e}^{*}\right)$.

If we let $t=t_{1} \boxplus t_{2}$, then it is straightforward to see that $d_{\tau_{1} \boxplus \tau_{2}, t}=d_{\tau_{1}, t_{1}}+$ $d_{\tau_{2}, t_{2}}$. Also since $\tau_{1} \boxplus \tau_{2}$ is weakly stably equivalent to $\tau_{1}+\tau_{2}$, Lemma 4.16 implies that we have $d_{\tau_{1} \boxplus \tau_{2}}=d_{\tau_{1}+\tau_{2}}$ in $\operatorname{coker}\left(B_{G}-I\right)$. Putting this all together gives $d_{\tau_{1}+\tau_{2}}=d_{\tau_{1} \boxplus \tau_{2}}=\left[d_{\tau_{1} \boxplus \tau_{2}, t}\right]=\left[d_{\tau_{1}, t_{1}}+d_{\tau_{2}, t_{2}}\right]=\left[d_{\tau_{1}, t_{1}}\right]+\left[d_{\tau_{2}, t_{2}}\right]=d_{\tau_{1}}+d_{\tau_{2}}$ in $\operatorname{coker}\left(B_{G}-I\right)$. Thus d is additive.

We mention the following lemma whose proof is straightforward.
Lemma 4.19. Let $E \in \mathcal{Q}$ be a projection, and suppose that T is a unitary in $E \mathcal{Q} E$ with $\operatorname{ind}_{E} T=0$. If $E^{\prime} \in \mathcal{B}$ is a projection such that $\pi\left(E^{\prime}\right)=E$, then there is a unitary $U \in \mathcal{B}\left(E^{\prime} \mathcal{H}\right)$ such that $\pi(U)=T$.

Proposition 4.20. Let G be a row-finite graph with no sinks that satisfies Condition (L). Then the Cuntz-Krieger map $d: \operatorname{Ext}\left(C^{*}(G)\right) \rightarrow \operatorname{coker}\left(B_{G}-I\right)$ defined by $\tau \mapsto d_{\tau}$ is injective.

Proof. Let τ be an essential extension of $C^{*}(G)$ and suppose that d_{τ} equals 0 in $\operatorname{coker}\left(B_{G}-I\right)$. Use Lemma 4.7 to choose a degenerate essential extension
$t:=\pi \circ \tilde{t}$ of $C^{*}(G)$ such that $t\left(s_{e} s_{e}^{*}\right)=E_{e}:=\tau\left(s_{e} s_{e}^{*}\right)$ for all $e \in G^{1}$. Also let $E_{e}^{\prime}:=\widetilde{t}\left(s_{e} s_{e}^{*}\right)$.

By hypothesis, there exists $k \in \prod_{G^{1}} \mathbb{Z}$ such that $d_{\tau, t}=\left(B_{G}-I\right) k$. Since τ is essential, for all $e \in G^{1}$ we must have that $\pi\left(E_{e}^{\prime}\right)=E_{e}=\tau\left(s_{e} s_{e}^{*}\right) \neq 0$. Since E_{e}^{\prime} is a projection, this implies that $\operatorname{dim}\left(\operatorname{Im}\left(E_{e}^{\prime}\right)\right)=\infty$. Therefore for each $e \in G^{1}$ we may choose isometries or coisometries V_{e} in $\mathcal{B}\left(E_{e}^{\prime}(\mathcal{H})\right)$ such that $\operatorname{ind}_{E_{e}} V_{e}=-k(e)$. Extend each V_{e} to all of \mathcal{H} by defining it to be zero on $\left(E_{e}^{\prime}(\mathcal{H})\right)^{\perp}$. Let $U:=\sum_{e \in G^{1}} V_{e}$. It follows that this sum converges in the strong operator topology. Notice that for all $e, f \in G^{1}$ we have

$$
V_{f} \widetilde{t}\left(s_{e} s_{e}^{*}\right)=V_{f} E_{f}^{\prime} E_{e}^{\prime}= \begin{cases}V_{f} & \text { if } e=f, \\ 0 & \text { otherwise }\end{cases}
$$

Since U commutes with E_{e}^{\prime} for all $e \in G^{1}$, we see that $\pi(U) \tau\left(s_{e}\right) \pi\left(U^{*}\right) t\left(s_{e}^{*}\right)$ is a unitary in $E_{e} \mathcal{Q} E_{e}$. Hence we may consider $\operatorname{ind}_{E_{e}} \pi(U) \tau\left(s_{e}\right) \pi\left(U^{*}\right) t\left(s_{e}^{*}\right)$. Using the above identity we see that for each $e \in G^{1}$ we have

$$
\begin{align*}
\operatorname{ind}_{E_{e}} \pi(U) \tau\left(s_{e}\right) \pi\left(U^{*}\right) t\left(s_{e}^{*}\right) & =\operatorname{ind}_{E_{e}} \pi(U) \tau\left(s_{e} s_{e}^{*}\right) \tau\left(s_{e}\right) \pi\left(U^{*}\right) t\left(s_{e}^{*}\right) \\
& =\operatorname{ind}_{E_{e}} \pi\left(V_{e}\right) \tau\left(s_{e}\right) t\left(s_{e}^{*}\right)\left(t\left(s_{e}\right) \pi\left(U^{*}\right) t\left(s_{e}^{*}\right)\right) \tag{4.1}
\end{align*}
$$

Now since $t\left(s_{e}\right)$ is a partial isometry with source projection

$$
t\left(s_{e}^{*} s_{e}\right)=\sum_{s(f)=r(e)} t\left(s_{f} s_{f}^{*}\right)=\sum_{s(f)=r(e)} E_{f}
$$

and range projection $t\left(s_{e} s_{e}^{*}\right)=E_{e}$, we may use Lemma 4.11 to conclude that

$$
\text { ind } \sum_{s(f)=r(e)}^{E_{f}} \pi\left(U^{*}\right)=\operatorname{ind}_{E_{e}} t\left(s_{e}\right) \pi\left(U^{*}\right) t\left(s_{e}^{*}\right)
$$

This combined with Lemma 4.4 implies that

$$
\begin{align*}
\operatorname{ind}_{E_{e}} t\left(s_{e}\right) \pi\left(U^{*}\right) t\left(s_{e}^{*}\right) & =\sum_{s(f)=r(e)} \operatorname{ind}_{E_{f}} \pi\left(U^{*}\right)=\sum_{s(f)=r(e)} \operatorname{ind}_{E_{f}} \pi\left(V_{f}^{*}\right) \\
& =\sum_{s(f)=r(e)} k(f)=\sum_{f \in G^{1}} B_{G}(e, f) k(f) \tag{4.2}
\end{align*}
$$

Combining (4.1) and (4.2) with Lemma 4.5 gives

$$
\operatorname{ind}_{E_{e}} \pi(U) \tau\left(s_{e}\right) \pi\left(U^{*}\right) t\left(s_{e}^{*}\right)=\left(\sum_{f \in G^{1}} B_{G}(e, f) k(f)-k(e)\right)-d_{\tau}(e)=0
$$

Thus by Lemma 4.19 there exists an operator $X_{e} \in \mathcal{B}$ such that the restriction of X_{e} to $E_{e}^{\prime}(\mathcal{H})$ is a unitary operator and $\pi\left(X_{e}\right)=\pi(U) \tau\left(s_{e}\right) \pi\left(U^{*}\right) t\left(s_{e}^{*}\right)$. Let ${\underset{\sim}{T}}_{e}:=X_{e} \widetilde{t}\left(s_{e}\right)$. Then T_{e} is a partial isometry that satisfies $T_{e} T_{e}^{*}=E_{e}^{\prime}$ and $T_{e}^{*} T_{e}=$ $\widetilde{t}\left(s_{e}^{*}\right) X_{e}^{*} X_{e} \widetilde{t}\left(s_{e}\right)=\widetilde{t}\left(s_{e}^{*} s_{e}\right)=\widetilde{t}\left(p_{r(e)}\right)$. One can then check that $\left\{\widetilde{t}\left(p_{v}\right), T_{e}\right\}$ is a Cuntz-Krieger G-family in \mathcal{B}. Thus by the universal property of $C^{*}(G)$ there exists a homomorphism $\widetilde{\rho}: C^{*}(G) \rightarrow \mathcal{B}$ such that $\widetilde{\rho}\left(p_{v}\right)=\widetilde{t}\left(p_{v}\right)$ and $\widetilde{\rho}\left(s_{e}\right)=T_{e}$. Let $\rho:=\pi \circ \widetilde{\rho}$. Then ρ is a degenerate extension of $C^{*}(G)$. Furthermore, since $\rho\left(p_{v}\right)=t\left(p_{v}\right) \neq 0$ we see that $p_{v} \notin \operatorname{ker} \rho$ for all $v \in G^{0}$. Since G satisfies

Condition (L), it follows from Lemma 4.6 that $\operatorname{ker} \rho=\{0\}$ and ρ is a degenerate essential extension. In addition, we see that for each $e \in G^{1}$

$$
\rho\left(s_{e}\right)=\pi\left(T_{e}\right)=\pi\left(X_{e} \widetilde{t}\left(s_{e}\right)\right)=\pi(U) \tau\left(s_{e}\right) \pi\left(U^{*}\right) t\left(s_{e}^{*}\right) t\left(s_{e}\right)=\pi(U) \tau\left(s_{e}\right) \pi\left(U^{*}\right)
$$

Thus $\rho\left(s_{e}\right)=\pi(U) \tau\left(s_{e}\right) \pi\left(U^{*}\right)$ for all $e \in G^{1}$, and since the s_{e} 's generate $C^{*}(G)$, it follows that $\rho(a)=\pi(U) \tau(a) \pi\left(U^{*}\right)$ for all $a \in C^{*}(G)$ and hence $\rho=\operatorname{Ad}(\pi(U)) \circ \tau$.

In addition, since the V_{e} 's are either isometries or coisometries on $E_{e}^{\prime}(\mathcal{H})$ with finite Fredholm index, it follows that $\pi\left(V_{e}^{*} V_{e}\right)=\pi\left(V_{e} V_{e}^{*}\right)=\pi\left(E_{e}^{\prime}\right)$. Therefore, for any $e \in G^{1}$ we have that

$$
\begin{aligned}
\pi\left(U^{*} U\right) \tau\left(s_{e}\right) & =\pi\left(U^{*} \sum_{f \in G^{1}} V_{f} \widetilde{t}\left(s_{e} s_{e}^{*}\right)\right) \tau\left(s_{e}\right)=\pi\left(U^{*} V_{e} E_{e}^{\prime}\right) \tau\left(s_{e}\right) \\
& =\pi\left(\sum_{f \in G^{1}} V_{f}^{*} E_{e}^{\prime} V_{e}\right) \tau\left(s_{e}\right)=\pi\left(V_{e}^{*} V_{e}\right) \tau\left(s_{e}\right)=\pi\left(E_{e}^{\prime}\right) \tau\left(s_{e}\right) \\
& =\tau\left(s_{e} s_{e}^{*}\right) \tau\left(s_{e}\right)=\tau\left(s_{e}\right)
\end{aligned}
$$

Again, since the s_{e} 's generate $C^{*}(G)$, it follows that $\pi\left(U^{*} U\right) \tau(a)=\tau(a)$ for all $a \in$ $C^{*}(G)$. Similarly, $\tau(a) \pi\left(U^{*} U\right)=\tau(a)$ for all $a \in C^{*}(G)$. Thus $\pi\left(U^{*}\right) \rho(a) \pi(U)=$ $\pi\left(U^{*} U\right) \tau(a) \pi\left(U^{*} U\right)=\tau(a)$ for all $a \in C^{*}(G)$ and $\tau=\operatorname{Ad}\left(\pi(U)^{*}\right) \circ \rho$.

Now because the V_{e} 's are all isometries or coisometries on orthogonal spaces, it follows that U, and hence $\pi(U)$, is a partial isometry. Therefore, $\tau=\rho$ in $\operatorname{Ext}\left(C^{*}(G)\right)$ and since ρ is a degenerate essential extension it follows that $\tau=0$ in $\operatorname{Ext}\left(C^{*}(G)\right)$. This implies that d is injective.

5. THE WOJCIECH MAP

In the previous section we showed that if G is a row-finite graph with no sinks that satisfies Condition (L), then the Cuntz-Krieger map $d: \operatorname{Ext}\left(C^{*}(G)\right) \rightarrow \operatorname{coker}\left(B_{G}-\right.$ $I)$ is a monomorphism. It turns out that d is also surjective; that is, it is an isomorphism. In this section we shall prove this fact, but we shall do it in an indirect way. We show that $\operatorname{coker}\left(B_{G}-I\right)$ is isomorphic to $\operatorname{coker}\left(A_{G}-I\right)$ and then compose d with this isomorphism to get a map from $\operatorname{Ext}\left(C^{*}(G)\right)$ into coker $\left(A_{G}-\right.$ $I)$. We call this composition the Wojciech map and we shall show that it, and consequently also d, is surjective. For the rest of this paper we will be mostly concerned with the Wojciech map and how it relates to 1 -sink extensions defined in [13].

Definition 5.1. Let G be a graph. The source matrix of G is the $G^{0} \times G^{1}$ matrix given by

$$
S_{G}(v, e)= \begin{cases}1 & \text { if } s(e)=v \\ 0 & \text { otherwise }\end{cases}
$$

and the range matrix of G is the $G^{1} \times G^{0}$ matrix given by

$$
R_{G}(e, v)= \begin{cases}1 & \text { if } r(e)=v \\ 0 & \text { otherwise }\end{cases}
$$

Notice that if G is a row-finite graph, then S_{G} will have rows that are eventually zero and left multiplication by S_{G} defines a $\operatorname{map} S_{G}: \prod_{G^{1}} \mathbb{Z} \rightarrow \prod_{G^{0}} \mathbb{Z}$. Also R_{G} will always have rows that are eventually zero. (In fact, regardless of any conditions on G, R_{G} will have only one nonzero entry in each row.) Therefore left multiplication by R_{G} defines a map $R_{G}: \prod_{G^{0}} \mathbb{Z} \rightarrow \prod_{G^{1}} \mathbb{Z}$. Furthermore, one can see that

$$
R_{G} S_{G}=B_{G} \quad \text { and } \quad S_{G} R_{G}=A_{G}
$$

The following lemma is well known for finite graphs and a proof for S_{G} restricted to the direct $\operatorname{sum} S_{G}: \underset{G^{1}}{\bigoplus} \mathbb{Z} \rightarrow \underset{G^{0}}{\bigoplus} \mathbb{Z}$ is given in Lemma 4.2 of [11]. Essentially the same proof goes through if we replace the direct sums by direct products.

Lemma 5.2. Let G be a row-finite graph. The map $S_{G}: \prod_{G^{1}} \mathbb{Z} \rightarrow \prod_{G^{0}} \mathbb{Z}$ induces an isomorphism $\overline{S_{G}}: \operatorname{coker}\left(B_{G}-I\right) \rightarrow \operatorname{coker}\left(A_{G}-I\right)$.

Proof. Suppose that $z \in \operatorname{Im}\left(B_{G}-I\right)$. Then $z=\left(B_{G}-I\right) u$ for some $u \in \prod_{G^{1}} \mathbb{Z}$. Then

$$
S_{G} z=S_{G}\left(B_{G}-I\right) u=S_{G}\left(R_{G} S_{G}-I\right) u=\left(S_{G} R_{G}-I\right) S_{G} u=\left(A_{G}-I\right) S_{G} u
$$

and S_{G} does in fact map $\operatorname{Im}\left(B_{G}-I\right)$ into $\operatorname{Im}\left(A_{G}-I\right)$. Thus S_{G} induces a homomorphism $\overline{S_{G}}$ of $\operatorname{coker}\left(B_{G}-I\right)$ into $\operatorname{coker}\left(A_{G}-I\right)$. In the same way, R_{G} induces a homomorphism $\overline{R_{G}}$ from $\operatorname{coker}\left(A_{G}-I\right)$ into $\operatorname{coker}\left(B_{G}-I\right)$, which we claim is an inverse for $\overline{S_{G}}$. We see that

$$
\begin{aligned}
\overline{R_{G}} \circ \overline{S_{G}}\left(u+\operatorname{Im}\left(B_{G}-I\right)\right) & =R_{G} S_{G} u+\operatorname{Im}\left(B_{G}-I\right) \\
& =u+\left(B_{G} u-u\right)+\operatorname{Im}\left(B_{G}-I\right)=u+\operatorname{Im}\left(B_{G}-I\right)
\end{aligned}
$$

and similarly $\overline{S_{G}} \circ \overline{R_{G}}$ is the identity on $\operatorname{coker}\left(A_{G}-I\right)$.
Definition 5.3. Let G be a row-finite graph with no sinks that satisfies Condition (L), and let $d: \operatorname{Ext}\left(C^{*}(G)\right) \rightarrow \operatorname{coker}\left(B_{G}-I\right)$ be the Cuntz-Krieger map. The Wojciech map is the homomorphism $\omega: \operatorname{Ext}\left(C^{*}(G)\right) \rightarrow \operatorname{coker}\left(A_{G}-I\right)$ given by $\omega:=\overline{S_{G}} \circ d$. Given an extension τ of $C^{*}(G)$, we shall refer to the class $\omega(\tau)$ in $\operatorname{coker}\left(A_{G}-I\right)$ as the Wojciech class of τ.

Lemma 5.4. Let G be a row-finite graph with no sinks that satisfies Condition (L). Then the Wojciech map associated to G is a monomorphism.

Proof. Since $\omega=\overline{S_{G}} \circ d$, and $\overline{S_{G}}$ is an isomorphism by Lemma 5.2, the result follows from Proposition 4.20.

We shall eventually show that the Wojciech map is also surjective; that is, it is an isomorphism. In order to do this we consider 1-sink extensions, which were introduced in [13], and describe a way to associate elements of $\operatorname{Ext}\left(C^{*}(G)\right)$ to them.

Definition 5.5. (Definition 1.1 in [13]) Let G be a row-finite graph. A 1sink extension of G is a row-finite graph E that contains G as a subgraph and satisfies:
(i) $H:=E^{0} \backslash G^{0}$ is finite, contains no sources, and contains exactly 1 -sink v_{0};
(ii) there are no loops in E whose vertices lie in H;
(iii) if $e \in E^{1} \backslash G^{1}$, then $r(e) \in H$;
(iv) if w is a sink in G, then w is a sink in E.

We will write $\left(E, v_{0}\right)$ for the 1 -sink extension, where v_{0} denotes the sink outside G.

If $\left(E, v_{0}\right)$ is a 1-sink extension of G, then we may let $\pi_{E}: C^{*}(E) \rightarrow C^{*}(G)$ be the surjection described in Corollary 1.3 of [13]. Then $\operatorname{ker} \pi_{E}=I_{v_{0}}$ where $I_{v_{0}}$ is the ideal in $C^{*}(E)$ generated by the projection $p_{v_{0}}$. Thus we have a short exact sequence

$$
0 \longrightarrow I_{v_{0}} \xrightarrow{i} C^{*}(E) \xrightarrow{\pi_{E}} C^{*}(G) \longrightarrow 0 .
$$

We call E an essential 1-sink extension of G when $G^{0} \geqslant v_{0}$. Note that $I_{v_{0}}$ is an essential ideal of $C^{*}(E)$ if and only if E is an essential 1 -sink extension of G (Lemma 2.2 in [13]).

Lemma 5.6. If G is a row-finite graph and $\left(E, v_{0}\right)$ is an essential 1-sink extension of G, then $I_{v_{0}} \cong \mathcal{K}$.

Proof. Let $E^{*}\left(v_{0}\right)$ be the set of all paths in E whose range is v_{0}. Since E is an essential 1-sink extension of G, it follows that $G^{0} \geqslant v_{0}$. Thus for every $w \in G^{0}$ there exists a path from w to v_{0}. If G^{0} is infinite, this implies that $E^{*}\left(v_{0}\right)$ is also infinite. If G^{0} is finite, then because $G^{0} \geqslant v_{0}$ it follows that G is a finite graph with no sinks, and hence contains a loop. If w is any vertex on this loop, then there is a path from w to v_{0} and hence $E^{*}\left(v_{0}\right)$ is infinite. Now because $E^{*}\left(v_{0}\right)$ is infinite it follows from Corollary 2.2 of [9] that $I_{v_{0}} \cong \mathcal{K}\left(\ell^{2}\left(E^{*}\left(v_{0}\right)\right)\right) \cong \mathcal{K}$.

Definition 5.7. Let G be a row-finite graph and let $\left(E, v_{0}\right)$ be an essential 1 -sink extension of G. The extension associated to E is (the strong equivalence class of) the Busby invariant of any extension

$$
0 \quad \longrightarrow \mathcal{K} \quad \xrightarrow{i_{E}} C^{*}(E) \quad \xrightarrow{\pi_{E}} C^{*}(G) \quad \longrightarrow \quad 0
$$

where i_{E} is any isomorphism from \mathcal{K} onto $I_{v_{0}}$. As with other extensions we shall not distinguish between an extension and its Busby invariant.

Remark 5.8. The above extension is well defined up to strong equivalence. If different choices of i_{E} are made then it follows from a quick diagram chase that the two associated extensions will be strongly equivalent (see problem 3E(c) of [19] for more details). Also recall that since $p_{v_{0}}$ is a minimal projection in $I_{v_{0}}$ (Corollary 2.2 in [9]), it follows that $i_{E}^{-1}\left(p_{v_{0}}\right)$ will always be a rank 1 projection in \mathcal{K}.

Let $\left(E, v_{0}\right)$ be a 1 -sink extension of G. Then for $w \in E^{0}$ we denote by $Z\left(w, v_{0}\right)$ the set of paths α from w to v_{0} with the property that $\alpha_{i} \in E^{1} \backslash G^{1}$ for $1 \leqslant i \leqslant|\alpha|$. The Wojciech vector of E is the element $\omega_{E} \in \prod_{G^{0}} \mathbb{N}$ given by

$$
\omega_{E}(w):=\# Z\left(w, v_{0}\right)
$$

An edge $e \in E^{1}$ with $s(e) \in G^{0}$ and $r(e) \notin G^{0}$ is called a boundary edge, and the sources of these edges are called boundary vertices.

Lemma 5.9. Let G be a row-finite graph and let $\left(E, v_{0}\right)$ be a 1-sink extension of G. If $\left\{s_{e}, p_{v}\right\}$ is the canonical Cuntz-Krieger E-family in $C^{*}(E)$ and $\sigma: C^{*}(E) \rightarrow \mathcal{B}$ is a representation with the property that $\sigma\left(p_{v_{0}}\right)$ is a rank 1 projection, then

$$
\operatorname{rank} \sigma\left(s_{e}\right)=\# Z\left(r(e), v_{0}\right) \quad \text { for all } e \in E^{1} \backslash G^{1}
$$

Proof. For $e \in E^{1} \backslash G^{1}$ let $k_{e}:=\max \left\{|\alpha|: \alpha \in Z\left(\left(r(e), v_{0}\right)\right\}\right.$. Since E is a 1sink extension of G we know that k_{e} is finite. We shall prove the claim by induction on k_{e}. If $k_{e}=0$, then $r(e)=v_{0}$ and $\operatorname{rank} \sigma\left(s_{e}\right)=\operatorname{rank} \sigma\left(s_{e}^{*} s_{e}\right)=\operatorname{rank} \sigma\left(p_{v_{0}}\right)=1$.

Assume that the claim holds for all $f \in E^{1} \backslash G^{1}$ with $k_{f} \leqslant m$. Then let $e \in E^{1} \backslash G^{1}$ with $k_{e}=m+1$. Since E is a 1 -sink extension of G there are no loops based at $r(e)$. Thus $k_{f} \leqslant m$ for all $f \in E^{1} \backslash G^{1}$ with $s(f)=r(e)$. By the induction hypothesis $\operatorname{rank} \sigma\left(s_{f}\right)=\# Z\left(r(e), v_{0}\right)$ for all f with $s(f)=r(e)$. Since the projections $s_{f} s_{f}^{*}$ are mutually orthogonal we have

$$
\begin{aligned}
\operatorname{rank} \sigma\left(s_{e}\right) & =\operatorname{rank} \sigma\left(s_{e}^{*} s_{e}\right)=\operatorname{rank}\left(\sum_{s(f)=r(e)} \sigma\left(s_{f} s_{f}^{*}\right)\right)=\sum_{s(f)=r(e)} \operatorname{rank} \sigma\left(s_{f} s_{f}^{*}\right) \\
& =\sum_{s(f)=r(e)} \# Z\left(\left(r(f), v_{0}\right)=\# Z\left(r(e), v_{0}\right)\right.
\end{aligned}
$$

Lemma 5.10. Let G be a row-finite graph with no sinks that satisfies Condition (L), and let $d: \operatorname{Ext}\left(C^{*}(G)\right) \rightarrow \operatorname{coker}\left(B_{G}-I\right)$ be the Cuntz-Krieger map. If $\left(E, v_{0}\right)$ is an essential 1-sink extension of G and τ is the Busby invariant of the extension associated to E, then

$$
d(\tau)=[x]
$$

where $[x]$ is the class in $\operatorname{coker}\left(B_{G}-I\right)$ of the vector $x \in \prod_{G^{1}} \mathbb{Z}$ given by $x(e):=$ $\omega_{E}(r(e))$ for all $e \in G^{1}$, and ω_{E} is the Wojciech vector of E.

Proof. Let $\left\{s_{e}, p_{v}\right\}$ be the canonical Cuntz-Krieger G-family in $C^{*}(G)$, and let $\left\{t_{e}, q_{v}\right\}$ be the canonical Cuntz-Krieger E-family in $C^{*}(E)$. Choose an isomorphism $i_{E}: \mathcal{K} \rightarrow I_{v_{0}}$, and let σ and τ be the homomorphisms that make the diagram

commute. Then τ is the Busby invariant of the extension associated to E, and since E is an essential 1-sink extension, it follows that σ and τ are injective. For all $v \in E^{0}$ and $e \in E^{1}$ define

$$
H_{v}:=\operatorname{Im} \sigma\left(q_{v}\right) \quad \text { and } \quad H_{e}:=\operatorname{Im} \sigma\left(t_{e} t_{e}^{*}\right)
$$

Note that $s(e)=v$ implies that $H_{e} \subseteq H_{v}$. Also since $i_{E}^{-1}\left(q_{v_{0}}\right)$ is a rank 1 projection, and since the above diagram commutes, it follows that $\sigma\left(q_{v_{0}}\right)$ is a rank 1 projection. Thus $H_{v_{0}}$ is 1-dimensional. Furthermore, by Lemma 5.9 we see that $\operatorname{dim}\left(H_{v}\right)=$
$\# Z\left(v, v_{0}\right)$ and $\operatorname{dim}\left(H_{e}\right)=\# Z\left(r(e), v_{0}\right)$ for all $v \in E^{0} \backslash G^{0}$ and $e \in E^{1} \backslash G^{1}$. In addition, since $t_{e} t_{e}^{*} \leqslant q_{s(e)}$ for any $e \in E^{1} \backslash G^{1}$ and because the q_{v} 's are mutually orthogonal projections, it follows that the H_{e} 's are mutually orthogonal subspaces for all $e \in E^{1} \backslash G^{1}$.

For all $v \in G^{0}$ define

$$
V_{v}:=H_{v} \ominus\left(\bigoplus_{\substack{e \text { is a boundary } \\ \text { edge and } s(e)=v}} H_{e}\right) .
$$

Then for every $v \in G^{0}$, we have $\pi\left(\sigma\left(q_{v}\right)\right)=\tau\left(\pi_{E}\left(q_{v}\right)\right)=\tau\left(p_{v}\right) \neq 0$ since τ is injective. Therefore, the rank of $\sigma\left(q_{v}\right)$ is infinite and hence $\operatorname{dim}\left(H_{v}\right)=\infty$ and $\operatorname{dim}\left(V_{v}\right)=\infty$. Now for each $v \in G^{0}$ and $e \in G^{1}$ let P_{v} be the projection onto V_{v} and S_{e} be a partial isometry with initial space $V_{r(e)}$ and final space H_{e}. One can then check that $\left\{S_{e}, P_{v}\right\}$ is a Cuntz-Krieger G-family in \mathcal{B}. Therefore, by the universal property of $C^{*}(G)$ there exists a homomorphism $\widetilde{t}: C^{*}(G) \rightarrow \mathcal{B}$ with the property that $\widetilde{t}\left(s_{e}\right)=S_{e}$ and $\widetilde{t}\left(p_{v}\right)=P_{v}$. Define $t:=\pi \circ \widetilde{t}$.

Then for all $v \in G^{0}$ we have that

$$
t\left(p_{v}\right)=\pi\left(\widetilde{t}\left(p_{v}\right)\right)=\pi\left(P_{v}\right) \neq 0
$$

Thus $p_{v} \notin \operatorname{ker} t$ for all $v \in G^{0}$. By Lemma 4.6 it follows that $\operatorname{ker} t=\{0\}$ and t is an essential extension of $C^{*}(G)$. Now since $S_{e} S_{e}^{*}$ is a projection onto a subspace of $\operatorname{Im} \sigma\left(t_{e} t_{e}^{*}\right)$ with finite codimension, it follows that $\pi\left(S_{e} S_{e}^{*}\right)=\pi\left(\sigma\left(t_{e} t_{e}^{*}\right)\right)$. Thus t has the property that for all $e \in G^{1}$

$$
t\left(s_{e} s_{e}^{*}\right)=\pi\left(\widetilde{t}\left(s_{e} s_{e}^{*}\right)\right)=\pi\left(S_{e} S_{e}^{*}\right)=\pi\left(\sigma\left(t_{e} t_{e}^{*}\right)\right)=\tau\left(\pi_{E}\left(t_{e} t_{e}^{*}\right)\right)=\tau\left(s_{e} s_{e}^{*}\right)
$$

By the definition of the Cuntz-Krieger map d it follows that the image of the extension associated to E will be the class of the vector d_{τ} in $\operatorname{coker}\left(B_{G}-I\right)$, where $d_{\tau}(e)=-\operatorname{ind}_{\tau\left(s_{e} s_{e}^{*}\right)} \tau\left(s_{e}\right) t\left(s_{e}^{*}\right)$. Now $\operatorname{ind}_{\tau\left(s_{e} s_{e}^{*}\right)} \tau\left(s_{e}\right) t\left(s_{e}^{*}\right)$ is equal to the Fredholm index of $\sigma\left(t_{e} t_{e}^{*}\right) \sigma\left(t_{e}\right) S_{e}^{*} \sigma\left(t_{e} t_{e}^{*}\right)=\sigma\left(t_{e}\right) S_{e}^{*}$ in $\operatorname{Im}\left(\sigma\left(t_{e} t_{e}^{*}\right)\right)=H_{e}$. Since S_{e} is a partial isometry with initial space $V_{r(e)} \subseteq H_{r(e)}$ and final space H_{e}, and since $\sigma\left(t_{e}\right)$ is a partial isometry with initial space $H_{r(e)}$ it follows that $\operatorname{ker} \sigma\left(t_{e}\right) S_{e}^{*}=\{0\}$ in H_{e}. Furthermore, $\sigma\left(t_{e}^{*}\right)$ is a partial isometry with initial space H_{e} and final space

$$
H_{r(e)}=V_{r(e)} \oplus\left(\bigoplus_{\substack{f \text { is a boundary } \\ \text { edge and } s(f)=r(e)}} H_{f}\right)
$$

and S_{e} is a partial isometry with initial space $V_{r(e)}$. Therefore, since $\operatorname{dim}\left(H_{f}\right)=$ $\# Z\left(r(f), v_{0}\right)$ for all $f \notin G^{1}$ we have that

$$
\operatorname{ker}\left(\left(\sigma\left(t_{e}\right) S_{e}\right)^{*}\right)=\operatorname{ker}\left(S_{e} \sigma\left(t_{e}^{*}\right)\right)=\sum_{s(f)=r(e)} Z\left(r(f), v_{0}\right)=\omega_{E}(r(e))
$$

Thus $d_{\tau}(e)=\omega_{E}(r(e))$ for all $e \in G^{1}$.

Proposition 5.11. Let G be a row-finite graph with no sinks that satisfies Condition (L), and suppose that $\left(E, v_{0}\right)$ is an essential 1-sink extension of G. If τ is the Busby invariant of the extension associated to E, then the value that the Wojciech map $\omega: \operatorname{Ext}\left(C^{*}(G)\right) \rightarrow \operatorname{coker}\left(A_{G}-I\right)$ assigns to τ is given by the class of the Wojciech vector in $\operatorname{coker}\left(A_{G}-I\right)$; that is,

$$
\omega(\tau)=\left[\omega_{E}\right]
$$

Proof. From Lemma 5.10 we have that $d_{\tau}=[x]$ in $\operatorname{coker}\left(B_{G}-I\right)$, where $x \in \prod_{G^{1}} \mathbb{Z}$ is the vector given by $x(e):=\omega_{E}(r(e))$ for $e \in G^{1}$. By the definition of ω we have that $\omega(\tau):=\overline{S_{G}}\left(d_{\tau}\right)$ in $\operatorname{coker}\left(A_{G}-I\right)$. Thus $\omega(\tau)$ equals the class of the vector $y \in \prod_{G^{0}} \mathbb{Z}$ given by

$$
y(v)=\left(S_{G}(x)\right)(v)=\sum_{s(e)=v} x(e)=\sum_{s(e)=v} \omega_{E}(r(e))
$$

Hence for all $v \in G^{0}$ we have

$$
y(v)-\omega_{E}(v)=\sum_{s(e)=v} \omega_{E}(r(e))-\omega_{E}(v)=\sum_{w \in G^{0}} A_{G}(v, w) \omega_{E}(w)-\omega_{E}(v)
$$

so $y-\omega_{E}=\left(A_{G}-I\right) \omega_{E}$. Thus $[y]=\left[\omega_{E}\right]$ and $\omega(\tau)=\left[\omega_{E}\right]$ in $\operatorname{coker}\left(A_{G}-I\right)$.
This result gives us a method to prove that ω is surjective. We need only produce essential 1-sink extensions with the appropriate Wojciech vectors.

A 1 -sink extension E of G is said to be simple if $E^{0} \backslash G^{0}$ consists of a single vertex. If G is a graph with no sinks, then for any $x \in \prod_{G^{0}} \mathbb{N}$ we may form a simple 1-sink extension of G with Wojciech vector equal to x merely by defining $E^{0}:=G^{0} \cup\left\{v_{0}\right\}$ and $E^{1}:=G^{1} \cup\left\{e_{w}^{i}: w \in G^{0}\right.$ and $\left.1 \leqslant i \leqslant x(w)\right\}$ where each e_{w}^{i} is an edge with source w and range v_{0}. In order to show that the Wojciech map is surjective we will not only need to produce such 1 -sink extensions, but also ensure that they are essential.

Lemma 5.12. Let G be a row-finite graph with no sinks that satisfies Condition (L). There exists a vector $n \in \prod_{G^{0}} \mathbb{Z}$ with the following two properties:
(i) $\left(A_{G}-I\right) n \in \prod_{G^{0}} \mathbb{N}$;
(ii) for all $v \in G^{0}$ there exists $w \in G^{0}$ such that $v \geqslant w$ and $\left(\left(A_{G}-I\right) n\right)(w) \geqslant 1$.

Proof. Let $L \subseteq G^{0}$ be those vertices of G that feed into a loop; that is,

$$
L:=\left\{v \in G^{0}: \text { there exists a loop } x \text { in } G \text { for which } v \geqslant r\left(x_{1}\right)\right\}
$$

Now consider the set $M:=G^{0} \backslash L$. Because G has no sinks, and because $v \in M$ and $v \geqslant w$ implies that $w \in M$, it follows that M cannot have a finite number of elements. Thus M is either empty or countably infinite. If $M \neq \emptyset$ then list the elements of M as $M=\left\{w_{1}, w_{2}, \ldots\right\}$. Now let $v_{1}^{1}:=w_{1}$. Choose an edge $e_{1}^{1} \in G^{1}$ with the property that $s\left(e_{1}^{1}\right)=v_{1}^{1}$ and define $v_{2}^{1}:=r\left(e_{1}^{1}\right)$. Continue in this fashion: given v_{k}^{1} choose an edge e_{k}^{1} with $s\left(e_{k}^{1}\right)=v_{k}^{1}$ and define $v_{k+1}^{1}:=r\left(e_{k}^{1}\right)$. Then $v_{1}^{1}, v_{2}^{1}, \ldots$ are the vertices of an infinite path which are all elements of M.

Since these vertices do not feed into a loop it follows that they are distinct; i.e. $v_{i}^{1} \neq v_{j}^{1}$ when $i \neq j$.

Now if every element $w \in M$ has the property that $w \geqslant v_{i}^{1}$ for some i, then we shall stop. If not, choose the smallest $j \in \mathbb{N}$ for which $w_{j} \nsupseteq v_{i}^{1}$ for all $i \in \mathbb{N}$. Then define $v_{1}^{2}:=w_{j}$ and choose an edge e_{1}^{2} with $s\left(e_{1}^{2}\right)=v_{1}^{2}$. Define $v_{2}^{2}:=r\left(e_{1}^{2}\right)$. Continue in this fashion: given v_{k}^{2} choose an edge e_{k}^{2} with $s\left(e_{k}^{2}\right)=v_{k}^{2}$ and define $v_{k+1}^{2}:=r\left(e_{k}^{2}\right)$. Then we produce a set of distinct vertices $v_{1}^{2}, v_{2}^{2}, v_{3}^{2}, \ldots$ that lie on the infinite path $e_{1}^{2} e_{2}^{2} e_{3}^{2} \ldots$. Moreover, since $v_{1}^{2} \nexists v_{i}^{1}$ for all i we must have that the v_{i}^{2} 's are also distinct from the v_{i}^{1} 's.

Continue in this manner. Having produced an infinite path $e_{1}^{k} e_{2}^{k} e_{3}^{k} \ldots$ with distinct vertices $v_{1}^{k}, v_{2}^{k}, \ldots$ we stop if every element $w \in M$ has the property that $w \geqslant v_{i}^{j}$ for some $1 \leqslant i<\infty, 1 \leqslant j \leqslant k$. Otherwise, we choose the smallest $l \in \mathbb{N}$ such that $w_{l} \nsupseteq v_{i}^{j}$ for all $1 \leqslant i<\infty, 1 \leqslant j \leqslant k$. We define $v_{1}^{k+1}:=w_{l}$. Given v_{j}^{k+1} we choose an edge e_{j}^{k+1} with $s\left(e_{j}^{k+1}\right)=v_{j}^{k+1}$. We then define $v_{j+1}^{k+1}:=r\left(e_{j}^{k+1}\right)$. Thus we produce an infinite path $e_{1}^{k+1} e_{2}^{k+1} \ldots$ with distinct vertices $v_{1}^{k+1}, v_{2}^{k+1}, \ldots$. Moreover, since $v_{1}^{k+1} \nsupseteq v_{i}^{j}$ for all $1 \leqslant i<\infty, 1 \leqslant j \leqslant k$, it follows that the v_{i}^{k+1}, s are distinct from the v_{i}^{j},s for $j \leqslant k$.

By continuing this process we are able to produce the following. For some $n \in \mathbb{N} \cup\{\infty\}$ there is a set of distinct vertices $S \subseteq M$ given by

$$
S=\left\{v_{j}^{k}: 1 \leqslant j<\infty, 1 \leqslant k<n\right\}
$$

with the property that $M \geqslant S$, and for any $v_{j}^{k} \in S$ there exists an edge $e_{j}^{k} \in G^{1}$ for which $s\left(e_{j}^{k}\right)=v_{j}^{k}$ and $r\left(e_{j}^{k}\right)=v_{j+1}^{k}$.

Now define

$$
a_{v}= \begin{cases}1 & \text { if } v \in L, \\ j & \text { if } v=v_{j}^{k} \in S \\ 0 & \text { otherwise }\end{cases}
$$

and let $n:=\left(a_{v}\right) \in \prod_{G^{0}} \mathbb{Z}$. We shall now show that n has the appropriate properties. We shall first show that $\left(A_{G}-I\right) n \in \prod_{G^{0}} \mathbb{N}$. Let $v \in G^{0}$ and consider four cases. (Throughout the following remember that the entries of n are nonnegative integers.)

Case 1. $A_{G}(v, v) \geqslant 1$. Then $\left(\left(A_{G}-I\right) n\right)(v) \geqslant a_{v}\left(A_{G}(v, v)-1\right) \geqslant 0$.
Case 2. $A_{G}(v, v)=0, v \in L$. Since $A_{G}(v, v)=0$ and v feeds into a loop, there must exist an edge $e \in G^{1}$ with $s(e)=v$ and $r(e) \in L$. Thus

$$
\left(\left(A_{G}-I\right) n\right)(v) \geqslant a_{v}\left(A_{G}(v, v)-1\right)+a_{r(e)} A_{G}(v, r(e)) \geqslant 1(-1)+1(1)=0
$$

Case 3. $A_{G}(v, v)=0, v=v_{j}^{k} \in S$. Then there exists an edge e_{j}^{k} with $s\left(e_{j}^{k}\right)=v_{j}^{k}$ and $r\left(e_{j}^{k}\right)=v_{j+1}^{k} \neq v_{j}^{k}$. Thus
$\left(\left(A_{G}-I\right) n\right)(v) \geqslant a_{v}\left(A_{G}(v, v)-1\right)+a_{v_{j+1}^{k}} A_{G}\left(v, v_{j+1}^{k}\right) \geqslant j(-1)+(j+1)(1)=1$.
Case 4. $A_{G}(v, v)=0, v \notin L, v \notin S$. Then

$$
\left(\left(A_{G}-I\right) n\right)(v) \geqslant a_{v}\left(A_{G}(v, v)-1\right) \geqslant 0 \cdot\left(A_{G}(v, v)-1\right)=0
$$

Therefore $\left(A_{G}-I\right) n \in \prod_{G^{0}} \mathbb{N}$.
We shall now show that for all $v \in G^{0}$ there exists $w \in G^{0}$ such that $v \geqslant w$ and $\left(\left(A_{G}-I\right) n\right)(w) \geqslant 1$. If $v \notin L$, then $v \in M$ and $v \geqslant v_{j}^{k}$ for some $v_{j}^{k} \in S$. But then there is an edge e_{j}^{k} with $s\left(e_{j}^{k}\right)=v_{j}^{k}$ and $r\left(e_{j}^{k}\right)=v_{j+1}^{k} \neq v_{j}^{k}$. Thus we have that

$$
\begin{aligned}
\left(\left(A_{G}-I\right) n\right)\left(v_{j}^{k}\right) & \geqslant a_{v_{j}^{k}}\left(A_{G}\left(v_{j}^{k}, v_{j}^{k}\right)-1\right)+a_{v_{j+1}^{k}} A_{G}\left(v_{j}^{k}, v_{j+1}^{k}\right) \\
& \geqslant(j)(0-1)+(j+1)(1)=1
\end{aligned}
$$

On the other hand, if $v \in L$, then v feeds into a loop. Since G satisfies Condition (L) this loop must have an exit. Therefore, there exists $w \in L$ such that $v \geqslant w$ and w is the source of two distinct edges $e, f \in G^{1}$, where one of the edges, say e, is the edge of a loop and hence has the property that $r(e) \in L$. Now consider the following three cases.

Case 1. $r(f) \notin L$. Then $r(f) \in M$ and hence $r(f) \geqslant v_{j}^{k}$ for some $v_{j}^{k} \in S$. But then $v \geqslant v_{j}^{k}$ and $\left(\left(A_{G}-I\right) n\right)\left(v_{j}^{k}\right) \geqslant 1$ as above.

Case 2. $r(f) \in L$ and $r(e)=r(f)$. Then

$$
\left(\left(A_{G}-I\right) n\right)(w) \geqslant-a_{w}+a_{r(f)} A_{G}(w, r(f)) \geqslant-1+(1)(2)=1
$$

Case 3. $r(f) \in L$ and $r(e) \neq r(f)$. Then

$$
\begin{aligned}
\left(\left(A_{G}-I\right) n\right)(w) & \geqslant-a_{w}+a_{r(e)} A_{G}(w, r(e))+a_{r(f)} A_{G}(w, r(f)) \\
& \geqslant-1+(1)(1)+(1)(1)=1 .
\end{aligned}
$$

Lemma 5.13. Let G be a row-finite graph with no sinks that satisfies Condition (L). Let $x \in \prod_{G^{0}} \mathbb{N}$. Then there exists an essential 1-sink extension E of G with the property that $\left[\omega_{E}\right]=[x]$ in $\operatorname{coker}\left(A_{G}-I\right)$.

Proof. By Lemma 5.12 we see that there exists $n \in \prod_{G^{0}} \mathbb{Z}$ with the property that $\left(A_{G}-I\right) n \in \prod_{G^{0}} \mathbb{N}$ and for all $v \in G^{0}$ there exists $w \in G^{0}$ for which $v \geqslant w$ and $\left(\left(A_{G}-I\right) n\right)(w) \geqslant 1$. Since $x+\left(A_{G}-I\right) n \in \prod_{G^{0}} \mathbb{N}$ we may let E be a 1 -sink extension of G with Wojciech vector $\omega_{E}=x+\left(A_{G}-I\right) n$. Let v_{0} be the sink of E. We shall show that E is essential. Let $v \in G^{0}$. Then there exists $w \in G^{0}$ for which $v \geqslant w$ and $\left(\left(A_{G}-I\right) n\right) \geqslant 1$. But then $\omega_{E}(w) \geqslant\left(\left(A_{G}-I\right) n\right)(w) \geqslant 1$ and w is a boundary vertex of E. Hence $v \geqslant w \geqslant v_{0}$ and we have shown that $G^{0} \geqslant v_{0}$. Thus E is essential, and furthermore $\left[\omega_{e}\right]=\left[x+\left(A_{G}-I\right) n\right]=[x]$ in $\operatorname{coker}\left(A_{G}-I\right)$.

Proposition 5.14. Let G be a row-finite graph with no sinks that satisfies Condition (L). The Wojciech map $\omega: \operatorname{Ext}\left(C^{*}(G)\right) \rightarrow \operatorname{coker}\left(A_{G}-I\right)$ is surjective.

Proof. If x is any vector in $\prod_{G^{0}} \mathbb{N}$, then by Lemma 5.13 there exists an essential 1 -sink extensions E for which $\left[\omega_{E}\right]=[x]$. If τ is the Busby invariant of the extension associated to E, then by Lemma 5.11 we have that $\omega(\tau)=\left[\omega_{E_{1}}\right]=[x]$. Thus $[x] \in \operatorname{Im} \omega$ for all $x \in \prod_{G^{0}} \mathbb{N}$.

Now because $C^{*}(G)$ is separable and nuclear, it follows from Corollary 15.8.4 of [3] that $\operatorname{Ext}\left(C^{*}(G)\right)$ is a group. Because $\prod_{G^{0}} \mathbb{N}$ is the positive cone of $\prod_{G^{0}} \mathbb{Z}$, and hence generates $\prod_{G^{0}} \mathbb{Z}$, the fact that $[x] \in \operatorname{Im} \omega$ for all $x \in \prod_{G^{0}} \mathbb{N}$ implies that $\operatorname{Im} \omega=\operatorname{coker}\left(A_{G}-I\right)$.

Corollary 5.15. Let G be a row-finite graph with no sinks that satisfies Condition (L). The map $d: \operatorname{Ext}\left(C^{*}(G)\right) \rightarrow \operatorname{coker}\left(B_{G}-I\right)$ is surjective.

Proof. This follows from the fact that $\omega=\overline{S_{G}} \circ d$, and $\overline{S_{G}}$ is an isomorphism. I
Theorem 5.16. Let G be a row-finite graph with no sinks that satisfies Condition (L). The Wojciech map $\omega: \operatorname{Ext}\left(C^{*}(G)\right) \rightarrow \operatorname{coker}\left(A_{G}-I\right)$ and the CuntzKrieger map $d: \operatorname{Ext}\left(C^{*}(G)\right) \rightarrow \operatorname{coker}\left(B_{G}-I\right)$ are isomorphisms. Consequently,

$$
\operatorname{Ext}\left(C^{*}(G)\right) \cong \operatorname{coker}\left(A_{G}-I\right) \cong \operatorname{coker}\left(B_{G}-I\right)
$$

Remark 5.17. Suppose that G is a row-finite graph with no sinks that satisfies Condition (L), and that τ is an element of $\operatorname{Ext}\left(C^{*}(G)\right)$ for which $\omega(\tau) \in$ $\operatorname{coker}\left(A_{G}-I\right)$ can be written as $[x]$ for some $x \in \prod_{G^{0}} \mathbb{N}$. Then Lemma 5.13 shows us that there exists an essential 1-sink extension E with the property that the extension associated to E is equal to τ in $\operatorname{Ext}\left(C^{*}(G)\right)$. Thus for every $\tau \in \operatorname{Ext}\left(C^{*}(G)\right)$ with the property that $\omega(\tau)=[x]$ for $x \in \prod_{G^{0}} \mathbb{N}$, we may choose a representative that is the extension associated to an essential 1-sink extension. It is natural to wonder if this is the case for all elements of $\operatorname{Ext}\left(C^{*}(G)\right)$. It turns out that in general it is not. To see this let G be the following infinite graph.

Then G is a row-finite graph with no sinks that satisfies Condition (L). However,

$$
A_{G}-I=\left(\begin{array}{cccc}
1 & 0 & 0 & \\
1 & 0 & 0 & \ldots \\
1 & 0 & 0 & \\
& \vdots & & \ddots
\end{array}\right)
$$

and if we let $x:=\left(\begin{array}{llll}-1 & -2 & -3 & \cdots\end{array}\right)^{\mathrm{t}} \in \prod_{G^{0}} \mathbb{Z}$ then for all $n \in \prod_{G^{0}} \mathbb{Z}$ we have that

$$
x+\left(A_{G}-I\right) n=\left(\begin{array}{c}
-1+n(v) \\
-2+n(v) \\
-3+n(v) \\
\vdots
\end{array}\right)
$$

Thus for any $n \in \prod_{G^{0}} \mathbb{Z}$ we see that $x+\left(A_{G}-I\right) n$ has negative entries. Hence $x+\left(A_{G}-I\right) n$ cannot be the Wojciech vector of a 1 -sink extension for any $n \in \prod_{G^{0}} \mathbb{Z}$.

It turns out, however, that if we add the condition that G be a finite graph then the result does hold.

Lemma 5.18. Let G be a finite graph with no sinks that satisfies Condition (L). If $v \in G^{0}$, then there exists $n \in \prod_{G^{0}} \mathbb{N}$ for which $\left(A_{G}-I\right) n \in \prod_{G^{0}} \mathbb{N}$ and $\left(\left(A_{G}-I\right) n\right)(v) \geqslant 1$.

Proof. If $A_{G}(v, v) \geqslant 2$ then we can let $n=\delta_{v}$ and the claim holds. Therefore, we shall suppose that $A_{G}(v, v) \leqslant 1$. Since G has no sinks and satisfies Condition (L), there must exist an edge $e_{1} \in G^{1}$ with $s\left(e_{1}\right)=v$ and $r\left(e_{1}\right) \neq v$. Then since G has no sinks we may find an edge $e_{2} \in G^{1}$ with $s\left(e_{2}\right)=r\left(e_{1}\right)$, and an edge $e_{3} \in G^{1}$ with $s\left(e_{3}\right)=r\left(e_{2}\right)$. Continuing in this fashion we will produce an infinite path $e_{1} e_{2} \ldots$ with $s\left(e_{1}\right)=v$. Since G is finite, the vertices $s\left(e_{i}\right)$ of this path must eventually repeat. Let m be the smallest natural number for which $s\left(e_{m}\right)=s\left(e_{k}\right)$ for some $1 \leqslant k \leqslant m-1$. Note that because $r\left(e_{1}\right) \neq s\left(e_{1}\right)$ we must have $m \geqslant 3$.

Now $e_{k} e_{k+1} \ldots e_{n-1}$ will be a loop, and since G satisfies Condition (L), there exists an exit for this loop. Thus for some $k \leqslant l \leqslant n-1$ there exists $f \in G^{1}$ such that $r(f)=s\left(e_{l}\right)$ and $f \neq e_{l}$. For each $w \in G^{0}$ define

$$
a_{w}:= \begin{cases}2 & \text { if } w \in\left\{s\left(e_{i}\right)\right\}_{i=2}^{l} \\ 1 & \text { otherwise }\end{cases}
$$

Note that $\left\{s\left(e_{i}\right)\right\}_{i=2}^{l}$ may be empty. This will occur if and only if $l=1$. Now let $n:=\left(a_{w}\right) \in \prod_{G^{0}} \mathbb{N}$. To see that $\left(\left(A_{G}-I\right) n\right)(v) \geqslant 1$, note that $a_{v}=1$, and consider four cases.

Case 1. $l=1$ and $r(f)=r\left(e_{1}\right)$. Since $r\left(e_{1}\right) \neq v$ we have that

$$
\left(\left(A_{G}-I\right) n\right)(v) \geqslant a_{v}\left(A_{G}(v, v)-1\right)+a_{r\left(e_{1}\right)} A_{G}\left(v, r\left(e_{1}\right)\right) \geqslant 1(-1)+1(2)=1
$$

Case 2. $l=1$ and $r(f)=v$. Then

$$
\left(\left(A_{G}-I\right) n\right)(v) \geqslant a_{v}\left(A_{G}(v, v)-1\right)+a_{r\left(e_{1}\right)} A_{G}\left(v, r\left(e_{1}\right)\right) \geqslant 1(1-1)+1(1)=1
$$

Case 3. $l=1, r(f) \neq r\left(e_{1}\right)$, and $r(f) \neq v$. Then

$$
\begin{aligned}
\left(\left(A_{G}-I\right) n\right)(v) & \geqslant a_{v}\left(A_{G}(v, v)-1\right)+a_{r\left(e_{1}\right)} A_{G}\left(v, r\left(e_{1}\right)\right)+a_{r(f)} A_{G}(v, r(f)) \\
& \geqslant 1(-1)+1(1)+1(1)=1
\end{aligned}
$$

Case 4. $l \geqslant 2$. Then $a_{r\left(e_{1}\right)}=2$ and

$$
\left(\left(A_{G}-I\right) n\right)(v) \geqslant a_{v}\left(A_{G}(v, v)-1\right)+a_{r\left(e_{1}\right)} A_{G}\left(v, r\left(e_{1}\right)\right) \geqslant 1(-1)+2(1)=1
$$

To see that $\left(A_{G}-I\right) n \in \prod_{G^{0}} \mathbb{N}$ let $w \in G^{0}$ and consider the following three cases.
Case 1. $w=s\left(e_{l}\right)$ and $r\left(e_{l}\right)=r(f)$. Then $a_{w}=2$ and we have

$$
\left(\left(A_{G}-I\right) n\right)(w) \geqslant a_{w}\left(A_{G}(w, w)-1\right)+a_{r\left(e_{l}\right)} A_{G}\left(w, r\left(e_{l}\right)\right) \geqslant 2(-1)+1(2)=0
$$

Case 2. $w=s\left(e_{l}\right)$ and $r\left(e_{l}\right) \neq r(f)$. Then

$$
\begin{aligned}
\left(\left(A_{G}-I\right) n\right)(w) & \geqslant a_{w}\left(A_{G}(w, w)-1\right)+a_{r\left(e_{l}\right)} A_{G}\left(w, r\left(e_{l}\right)\right)+a_{r(f)} A_{G}(w, r(f)) \\
& \geqslant 2(-1)+1(1)+1(1)=0 .
\end{aligned}
$$

Case 3. $w \neq s\left(e_{l}\right)$. Then either $w \in\left\{s\left(e_{i}\right)\right\}_{i=2}^{l-1}$ or $a_{w}=1$. In either case there exists an edge e with $s(e)=w$ and $a_{r(e)} \geqslant a_{w}$. Thus

$$
\left(\left(A_{G}-I\right) n\right)(w) \geqslant a_{w}\left(A_{G}(w, w)-1\right)+a_{r(e)} A_{G}(w, r(e)) \geqslant-a_{w}+a_{r(e)} \geqslant 0
$$

and $\left(A_{G}-I\right) n \in \prod_{G^{0}} \mathbb{N}$.
Theorem 5.19. Let G be a finite graph with no sinks that satisfies Condition (L). For any $[x] \in \operatorname{coker}\left(A_{G}-I\right)$ there exists an essential 1-sink extension E of G such that $\left[\omega_{E}\right]=[x]$ in $\operatorname{coker}\left(A_{G}-I\right)$.

Proof. For each $v \in G^{0}$ we may use Lemma 5.18 to obtain a vector $n_{v} \in \prod_{G^{0}} \mathbb{N}$ such that $\left(A_{G}-I\right) n_{v} \in \prod_{G^{0}} \mathbb{N}$ and $\left(\left(A_{G}-I\right) n_{v}\right)(v) \geqslant 1$. Now write x in the form $x=\sum_{v \in G^{0}} a_{v} \delta_{v}$. Let $n:=\sum_{v \in G^{0}}^{G^{0}}\left(\left|a_{v}\right|+1\right) n_{v}$. Then by linearity, $x+\left(A_{G}-I\right) n \in \prod_{G^{0}} \mathbb{N}$ and $x+\left(A_{G}-I\right) n \neq 0$. Let E be a 1-sink extension of G with $\operatorname{sink} v_{0}$ and Wojciech vector equal to $x+\left(A_{G}-I\right) n$. Then $\left[\omega_{E}\right]=\left[x+\left(A_{G}-I\right) n\right]=[x]$ in $\operatorname{coker}\left(A_{G}-I\right)$. Furthermore, since $\omega_{E}(v) \geqslant 1$ for all $v \in G^{0}$ it follows that $G^{0} \geqslant v_{0}$ and E is an essential 1-sink extension.

This result shows that if G is a finite graph with no sinks that satisfies Condition (L), then for any element in $\operatorname{Ext}\left(C^{*}(G)\right)$ we may choose a representative that is the extension associated to an essential 1-sink extension E of G. Furthermore, since the Wojciech map is an isomorphism we see that if E_{1} and E_{2} are essential 1-sink extensions that are representatives for $\tau_{1}, \tau_{2} \in \operatorname{Ext}\left(C^{*}(G)\right)$, then the essential 1-sink extension with Wojciech vector equal to $\omega_{E_{1}}+\omega_{E_{2}}$ will be a representative of $\tau_{1}+\tau_{2}$. Hence we have a way of choosing representatives of the classes in Ext that have a nice visual interpretation and for which we can easily compute their sum.

6. SEMIPROJECTIVITY OF GRAPH ALGEBRAS

In 1983 Effros and Kaminker ([7]) began the development of a shape theory for C^{*} algebras that generalized the topological theory. In their work they looked at C^{*} algebras with a property that they called semiprojectivity. These semiprojective C^{*}-algebras are the noncommutative analogues of absolute neighborhood retracts. In 1985 Blackadar generalized many of these results ([3]), but because he wished to apply shape theory to C^{*}-algebras not included in [7] and because the theory in [7] was not a direct noncommutative generalization, Blackadar gave a new definition of semiprojectivity. Blackadar's definition is more restrictive than that in [7].

Definition 6.1. (Blackadar) A separable C^{*}-algebra A is semiprojective if for any C^{*}-algebra B, any increasing sequence $\left\{J_{n}\right\}_{n=1}^{\infty} \frac{\text { of (closed two-sided) ideals, }}{\infty}$ and any $*$-homomorphism $\phi: A \rightarrow B / J$, where $J:=\overline{\bigcup_{n=1}^{\infty} J_{n}}$, there is an n and a *-homomorphism $\psi: A \rightarrow B / J_{n}$ such that

where $\pi: B / J_{n} \rightarrow B / J$ is the natural quotient map.
In [4] it was shown that the Cuntz-Krieger algebras are semiprojective, and more recently Blackadar has announced a proof that \mathcal{O}_{∞} is semiprojective. Based on the proof for \mathcal{O}_{∞} Szymański has proven in [16] that if E is a transitive graph with finitely many vertices (but a possibly infinite number of edges), then $C^{*}(E)$ is semiprojective.

We now give an example of a row-finite transitive graph G with an infinite number of vertices and with the property that $C^{*}(G)$ is not semiprojective. We use the fact that the Wojciech map of Section 5 is an isomorphism in order to prove that $C^{*}(G)$ is not semiprojective.

If G is a graph, then by adding a sink at $v \in G^{0}$ we shall mean adding a single vertex v_{0} to G^{0} and a single edge e to G^{1} going from v to v_{0}. More formally, if G is a graph, then we form the graph F defined by $F^{0}:=G^{0} \cup\left\{v_{0}\right\}, F^{1}:=G^{1} \cup\{e\}$, and we extend r and s to F^{1} by defining and $r(e)=v_{0}$ and $s(e)=v$.

Example 6.2.

If G is the above graph, then note that G is transitive, row-finite, and has no sinks.
Theorem 6.3. If G is the graph in Example 6.2, then $C^{*}(G)$ is not semiprojective.

Proof. For each $i \in \mathbb{N}$ let E_{i} be the graph formed by adding a sink to G at w_{i}, and let F_{i} be the graph formed by adding a sink to each vertex in $\left\{w_{i}, w_{i+1}, \ldots\right\}$. In each case we shall let v_{i} denote the sink that is added at w_{i}. As examples we
draw E_{3} and F_{3} :

We shall now assume that $C^{*}(G)$ is semiprojective and arrive at a contradiction. Let $B:=C^{*}\left(F_{1}\right)$ and for each $n \in \mathbb{N}$ let $H_{n}:=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Also let $H_{\infty}:=\left\{v_{1}, v_{2}, \ldots\right\}$. Set $J_{n}:=I_{H_{n}}$. Then $\left\{J_{n}\right\}_{n=1}^{\infty}$ is an increasing sequence of ideals and $J:=\bigcup_{n=1}^{\infty} J_{n}=I_{H_{\infty}}$. Now $B / J=C^{*}\left(F_{1}\right) / I_{H_{\infty}} \cong C^{*}(G)$ and for each $n \in \mathbb{N}, B / J_{n} \cong C^{*=1}\left(F_{n+1}\right)$ by Theorem 4.1 from [2]. Thus if we identify $C^{*}(G)$ and B / J, then by semiprojectivity there exists a homomorphism $\psi: C^{*}(G) \rightarrow B / J_{n}$ for some n

such that $\pi \circ \psi=$ id. Note that the projection $\pi: B / J_{n} \rightarrow B / J$ is just the projection $\pi: C^{*}\left(F_{n+1}\right) \rightarrow C^{*}\left(F_{n+1}\right) / I_{\left\{v_{n+1}, v_{n+2}, \ldots\right\}} \cong C^{*}(G)$.

Now if we let $\left\{s_{e}, p_{v}\right\}$ be the canonical Cuntz-Krieger F_{n+1}-family in $C^{*}\left(F_{n+1}\right)$ and let $\left\{t_{e}, q_{v}\right\}$ be the canonical Cuntz-Krieger E_{n+1}-family in $C^{*}\left(E_{n+1}\right)$, then by the universal property of $C^{*}\left(F_{n+1}\right)$ there exists a homomorphism $\rho: C^{*}\left(F_{n+1}\right) \rightarrow$ $C^{*}\left(E_{n+1}\right)$ such that
$\rho\left(s_{e}\right)=\left\{\begin{array}{ll}t_{e} & \text { if } e \in E_{n+1}^{1}, \\ 0 & \text { if } e \in F_{n+1}^{1} \backslash E_{n+1}^{1} ;\end{array} \quad\right.$ and $\quad \rho\left(p_{v}\right)=\left\{\begin{array}{ll}q_{v} & \text { if } v \in E_{n+1}^{0}, \\ 0 & \text { if } v \in F_{n+1}^{0} \backslash E_{n+1}^{0} .\end{array}\right.$.
Since E_{n+1} is a 1-sink extension of G, we have the usual projection $\pi_{E_{n+1}}$: $C^{*}\left(E_{n+1}\right) \rightarrow C^{*}(G)$. One can then check that the diagram

commutes simply by checking that $\pi_{E_{n+1}} \circ \rho$ and π agree on generators. This, combined with the fact that $\pi \circ \psi=\mathrm{id}$ on $C^{*}(G)$, implies that $\pi_{E_{n+1}} \circ \rho \circ \psi=\mathrm{id}$. Hence the short exact sequence

is split exact. Therefore this extension is degenerate. Since $I_{v_{n+1}} \cong \mathcal{K}$ by Corollary 2.2 of [9] we have that this extension is in the zero class in $\operatorname{Ext}\left(C^{*}(G)\right)$.

However, the Wojciech vector of E_{n+1} is $\omega_{E_{n+1}}=\delta_{w_{n+1}}$. Since

$$
A_{G}-I=\left(\begin{array}{ccccc}
0 & 2 & 0 & 0 & \\
2 & 0 & 2 & 0 & \ldots \\
0 & 2 & 0 & 2 & \\
0 & 0 & 2 & 0 & \\
& \vdots & & & \ddots
\end{array}\right)
$$

we see that every vector in the image of $A_{G}-I$ has entries that are multiples of 2. Thus $\delta_{w_{n+1}} \notin \operatorname{Im}\left(A_{G}-I\right)$, and $\left[\omega_{E_{n+1}}\right]$ is not zero in $\operatorname{coker}\left(A_{G}-I\right)$. But then Proposition 5.11 and Theorem 5.16 imply that the extension associated to $C^{*}\left(E_{n+1}\right)$ is not equal to zero in $\operatorname{Ext}\left(C^{*}(G)\right)$. This provides the contradiction, and hence $C^{*}(G)$ cannot be semiprojective.

Remark 6.4. After the completion of this work, Spielberg proved in [15] that all classifiable, simple, separable, purely infinite C^{*}-algebras having finitely generated K-theory and free K_{1}-group are semiprojective (Theorem 3.12 in [15]). This was accomplished by realizing these C^{*}-algebras as graph algebras of transitive graphs. It also implies that if G is a transitive graph that is not a single loop, and if $C^{*}(G)$ has finitely generated K-theory and free K_{1}-group, then $C^{*}(G)$ is semiprojective. We mention that the C^{*}-algebra associated to the graph in Example 6.2 does not have finitely generated K-theory.

Acknowledgements. This research was carried out while the author was a student at Dartmouth College and it forms part of his doctoral dissertation. The author would like to take this opportunity to thank Dana P. Williams for his supervision and guidance throughout this project. The author would also like to thank the referee for providing many helpful suggestions.

REFERENCES

1. W. Arveson, Notes on extensions of C^{*}-algebras, Duke Math. J. 44(1977), 329-355.
2. T. Bates, D. Pask, I. Raeburn, W. Szymański, The C^{*}-algebras of row-finite graphs, New York J. Math. 6(2000), 307-324.
3. B. Blackadar, Shape theory for C^{*}-algebras, Math. Scand. 56(1985), 249-275.
4. B. Blackadar, K-theory for Operator Algebras, second ed., Cambridge Univ. Press, Cambridge 1998.
5. J. Cuntz, W. Krieger, A class of C^{*}-algebras and topological markov chains, Invent. Math. 56(1980), 251-268.
6. K. Davidson, C^{*}-Algebras by Example, Fields Inst. Monogr., vol. 6, Amer. Math. Soc., Providence, RI, 1996.
7. E.G. Effros, J. Kaminker, Homotopy continuity and shape theory for C^{*}-algebras, in Geometric Methods in Operator Algebras (Kyoto 1983), Pitman Res. Notes Math. Ser., vol. 123, Longman Sci. Tech., Harlow 1986, pp. 152-180.
8. K.K. Jensen, K. Thomsen, Elements of KK-Theory, Birkhäuser, Boston-Massachusetts, 1991.
9. A. Kumjian, D. Pask, I. Raeburn, Cuntz-Krieger algebras of directed graphs, Pacific J. Math. 184(1998), 161-174.
10. A. Kumjian, D. Pask, I. Raeburn, J. Renault, Graphs, groupoids, and CuntzKrieger algebras, J. Funct. Anal. 144(1997), 505-541.
11. M.H. Mann, I. Raeburn, C.E. Sutherland, Representations of finite groups and Cuntz-Krieger algebras, Bull. Austral. Math. Soc. 46(1992), 225-243.
12. I. Raeburn, W. Szymański, Cuntz-Krieger algebras of infinite graphs and matrices, Proc. Amer. Math. Soc. 129(2000), 2319-2327.
13. I. Raeburn, M. Tomforde, D. Williams, Classification theorems for the $C^{*}-$ algebras of graphs with sinks, preprint, 2000.
14. I. Raeburn, D. Williams, Morita Equivalence and Continuous-Trace C^{*}-Algebras, Math. Surveys Monographs, vol. 60, Amer. Math. Soc., Providence, RI, 1998.
15. J. Spielberg, Semiprojectivity for certain purely infinite C^{*}-algebras, preprint, 2001.
16. W. SzYMAŃSKi, On semiprojectivity of C^{*}-algebras of directed graphs, Proc. Amer. Math Soc. 130(2002), 1391-1399.
17. M. Tomforde, Extensions of graph C^{*}-algebras, Ph.D. Dissertation, Dartmouth College, 2002.
18. D. Voiculescu, A non-commutative Weyl-von Neumannn theorem, Rev. Roumaine Math. Pures Appl. 21(1976), 97-113.
19. N.E. Wegge-Olsen, K-Theory and C^{*}-Algebras, Oxford Univ. Press, Oxford 1993.
20. Y. Watatani, Graph theory for C^{*}-algebras, in Operator Algebras and their Applications (R.V. Kadison, ed.), Proc. Sympos. Pure Math., vol. 38, part 1, Amer. Math. Soc., Providence, RI, 1982, pp. 195-197.

MARK TOMFORDE
Department of Mathematics
Dartmouth College
Hanover, NH 03755-3551
USA
Current address:
Department of Mathematics
University of Iowa
Iowa City, IA 52242-1419 USA
E-mail: tomforde@math.iowa.edu

