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Abstract. There exist operators A such that for any sequence of contrac-
tions {An}, there is a total sequence of mutually orthogonal projections {En}
such that

P
EnAEn =

L
An.
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INTRODUCTION

By an operator, we mean an element in the algebra L(H) of all bounded linear op-
erators acting on the usual (complex, separable, infinite dimensional) Hilbert space
H. We denote by the same letter a projection and the corresponding subspace. If
F is a projection and A is an operator, we denote by AF the compression of A by
F , that is the restriction of FAF to the subspace F . Given a total sequence of
nonzero mutually orthogonal projections {En}, we consider the pinching

P(A) =
∞∑

n=1

EnAEn =
∞⊕

n=1

AEn .

If {An} is a sequence of operators acting on separable Hilbert spaces with An

unitarily equivalent to AEn for all n, we also naturally write P(A) =
∞⊕

n=1
An. The

main result of this paper can then be stated as:
Let {An}∞n=1 be a sequence of operators acting on separable Hilbert spaces.

Assume that sup
n
‖An‖ < 1. Then, we have a pinching

P(A) =
∞⊕

n=1

An

for any operator A whose essential numerical range contains the unit disc.
This result is proved in the second section of the paper. We have included

a first section concerning some well-known properties of the essential numerical
range.
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1. PROPERTIES OF THE ESSENTIAL NUMERICAL RANGE

We denote by 〈 · , · 〉 the inner product (linear in the second variable), by coS the
convex hull of a subset S of the complex plane C. W (A) = {〈h, Ah〉 : ‖h‖ = 1}
is the numerical range of the operator A and W (A) is the closure of W (A). The
celebrated Hausdorff-Toeplitz theorem (cf. [6], Chapter 1) states that W (A) is
convex. A corollary is Parker’ s theorem ([6], p. 20): Given an n by n matrix A,
there is a matrix B unitarily equivalent to A and with all its diagonal elements
equal to TrA/n.

Here are three equivalent definitions of the essential numerical range of A,
denoted by We(A):

(1) We(A) =
⋂

W (A + K) where the intersection runs over the compact
operators K;

(2) Let {En} be any sequence of finite rank projections converging strongly
to the identity and denote by Bn the compression of A to the subspace E⊥

n . Then
We(A) =

⋂
n>1

W (Bn);

(3) We(A) = {λ : there is an orthonormal system {en}∞n=1 with
lim〈en, Aen〉 = λ}.

It follows that We(A) is a compact convex set containing the essential spectrum
of A, Spe(A). The equivalence between these definitions has been known since
the early seventies if not sooner (see for instance [1]). The very first definition of
We(A) = is (1); however (3) is also a natural notion and easily entails convexity
and compactness of the essential numerical range. We mention the following result
of Chui-Smith-Smith-Ward ([4]):

Proposition 1.1. Every operator A admits some compact perturbation A+
K for which We(A) = W (A + K).

Another characterization of the essential numerical range of A is

We(A) = {λ : there is a basis {en}∞n=1 with lim〈en, Aen〉 = λ}.
Let us check the equivalence between our definition (3) with orthonormal system
and the above identity which seems to be due to Q.F. Stout ([11]). Let {xn}∞n=1 be
an orthonormal system such that lim

n→∞
〈xn, Axn〉 = λ. If span{xn}∞n=1 is of finite

codimension p we immediately get a basis e1, . . . , ep; ep+1 = x1, . . .; ep+n = xn, . . .
such that lim

n→∞
〈en, Aen〉 = λ. If span{xn}∞n=1 is of infinite codimension, we may

complete this system with {yn}∞n=1 in order to obtain a basis. Let Pj be the
subspace spanned by yj and {xn : 2j−1 6 n < 2j}. By Parker’s theorem, there is
a basis of Pj , say {ej

l }l∈Λj , with

〈ej
l , Aej

l 〉 =
1

dim Pj
TrAPj .
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Since
1

dim Pj
TrAPj → λ as j →∞,

we may index {ej
l }j∈N;l∈Λj in order to obtain a basis {fn}∞n=1 such that

lim
n→∞

〈fn, Afn〉 = λ.

The essential numerical range appears closely related to the diagonal set of
A which we define by

∆(A) = { λ : there is a basis {en}∞n=1 with 〈en, Aen〉 = λ}.
The next result is a straightforward consequence of a lemma of Peng Fan ([5]). A
real operator means an operator acting on a real Hilbert space and intX denotes
the interior of X ⊂ C.

Proposition 1.2. Let A be an operator. Then intWe(A) ⊂ ∆(A) ⊂ We(A).
Consequently, an open set U is contained in ∆(A) if and only if there is a basis
{en}∞n=1 such that U ⊂ co{〈ek, Aek〉 : k > n} for all n. Finally, the diagonal set
of a real operator is symetric about the real axis. (For A self-adjoint, the result
holds with int denoting the interior of subsets of R.)

Curiously enough, it seems difficult to answer the following questions: Is the
diagonal set always a (possibly vacuous) convex set? Is there an operator of the
form self-adjoint + compact with a disconnected diagonal set?

An elementary, but very important property of W ( · ) is the so named projec-
tion property Re W (A) = W (Re A) (see [6], p. 9), where Re stands for real part.
We( · ) has also this property. This result and the Hausdorff-Toeplitz theorem are
the keys to prove the following fact:

Proposition 1.3. Let A be an operator.
(i) If We(A) ⊂ W (A) then W (A) is closed.
(ii) There exist normal finite rank operators R of arbitrarily small norm such

that W (A + R) is closed.

Proof. Assertion (i) is due to J.S. Lancaster ([8]). We prove the second asser-
tion and implicitly prove Lancaster’s result. We may find an orthonormal system
{fn} such that the closure of the sequence {〈fn, Afn〉} contains the boundary
∂We(A). Fix ε > 0. It is possible to find an integer p and scalars zj , 1 < j < p,
with |zj | < ε, such that:

co{〈fj , Afj〉+ zj : 1 < j < p} ⊃ ∂We(A).

Thus, the finite rank operator R =
∑

1<j<p

zjfj⊗fj has the property that W(A+R)

contains We(A).
We need this operator R. Indeed, setting X = A + R, we also have W(X) ⊃

We(X). We then claim that W(X) is closed (this claim implies assertion (i)). By
the contrary, there would exist z ∈ ∂W (X) \We(X). Furthermore, since W (X) is
the convex hull of its extreme points, we could assume that such a z is an extreme
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of W (X). By suitable rotation and translation, we could assume that z = 0 and
that the imaginary axis is a line of support of W (X). The projection property for
W ( · ) would imply that W (Re X) = (x, 0[ for a certain negative number x, so that
0 ∈ We(Re X). Thus we would deduce from the projection property for We( · )
that 0 ∈ We(X); a contradiction.

The perturbation R in Proposition 1.3 can be taken real if A is real. We
mention that the set of operators with nonclosed numerical ranges is not dense
in L(H). Proposition 1.3 improves the following result of I.D. Berg and B. Sims
([3]): operators which attain their numerical radius are norm dense in L(H). A
motivation for Berg and Sims was the following fact: given an arbitrary operator
A, a small rank one perturbation of A yields an operator which attains its norm.
Indeed, the polar decompositon allows us to assume that A is positive, an easy
case when reasoning as in the proof of Proposition 1.3.

Let us say that a convex set in C is relatively open if either it is a single
point, an open segment or an usual open set. Using similar methods as in the
previous proof, or applying Propositions 1.2 and 1.3, we obtain:

Proposition 1.4. For an operator A the following assertions are equivalent:
(i) W (A) is relatively open;
(ii) ∆(A) = W (A).

From the previous results we may derive some information about W ( · ),
We( · ) and ∆( · ) for various classes of operators:

(a) Let S be either the unilateral or bilateral shift, then ∆(S) = W (S) is the
open unit disc. More generally Stout showed ([10]) that weighted periodic shifts
S have open numerical ranges; therefore ∆(S) = W (S).

(b) There exist a number of Toeplitz operators with open numerical range.
See the papers by E.M. Klein ([7]) and by J.K. Thukral ([11]).

(c) Let X be an operator lying in a C∗-subalgebra of L(H) with no finite
dimensional projections. Then for any real θ, W (Re eiθX) = We(Re eiθX). From
the projection property for W ( · ) and We( · ) we infer that We(X) = W (X).

(d) Let X be an essentially normal operator i.e. X∗X −XX∗ is compact. It
is known that We(X) = coSpe(X). Indeed, for such an operator the essential norm
equals the essential spectral radius i.e. ‖X‖e = ρe(X). Denoting by We(X) the
essential numerical radius of X we deduce that ‖X‖e = We(X) = ρe(X). Note
that eiθX + µI = Y is also an essentially normal operator for any θ ∈ R and
µ ∈ C. Let z be an extremal point of We(X). With suitable θ and µ we have
eiθz + µ = We(Y ) = max{|y| : y ∈ We(Y )}, the maximum being attained at the
single point eiθz + µ. Since co Spe(Y ) ⊂ We(Y ) and ρe(Y ) = We(Y ), this implies
that eiθz + µ ∈ Spe(Y ). Hence z ∈ Spe(Y ), so that We(X) = co Spe(X).
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2. THE PINCHING THEOREM

Recall that one way to define the essential numerical range of an operator A is:

We(A) = {λ : there is an orthonormal system {en}∞n=1 with lim〈en, Aen〉 = λ}.
It is then easy to check that We(A) is a compact convex set. Moreover We(A)
contains the open unit disc D if and only if there is a basis {en}∞n=1 such that
co{〈ek, Aek〉 : k > n} ⊃ D for all n.

Theorem 2.1. Let A be an operator with We(A) ⊃ D and let {An}∞n=1 be a
sequence of operators such that sup

n
‖An‖ < 1. Then, we have a pinching

P(A) =
∞⊕

n=1

An.

(If A and {An}∞n=1 are real, then we may take a real pinching).

Proof. It suffices to solve the following problem:

Problem (P). Let A be an operator, with ‖A‖ 6 γ and We(A) ⊃ D, let h
be a norm one vector and X a strict contraction, ‖X‖ < ρ < 1. Find a projection
E, and a constant ε > 0 only depending on γ and ρ such that:

(i) dim E = ∞ and AE = X;
(ii) dim E⊥ = ∞, We(AE⊥) ⊃ D and ‖Eh‖ > ε.

Let us explain why it is sufficient to solve Problem (P). Take γ = ‖A‖ and fix
a dense sequence {hn} in the unit sphere of H. We claim that (i) and (ii) ensure
that there exists a sequence of mutually orthogonal projections {Ej} such that,
setting Fn =

∑
j6n

Ej , we have for all integers n:

(∗) An = AEn and We(AF⊥n ) ⊃ D (so dim F⊥n = ∞);
(∗∗) ‖Fnhn‖ > ε.

This is true for n = 1 by (i). Suppose this holds for an N > 1. Let ν(N) > N + 1
be the first integer for which F⊥N hν(N) 6= 0. Note that ‖AF⊥

N
‖ 6 γ. We apply (i)

and (ii) to AF⊥
N

, AN+1 and F⊥N hν(N)/‖F⊥N hν(N)‖ in place of A, X and h. We then
deduce that (∗) and (∗∗) are still valid for N + 1. Therefore (∗) and (∗∗) hold for
all n. Denseness of {hn} and (∗∗) show that Fn strongly increases to the identity

I so that
∞∑

j=1

Ej = I as required.

We first solve Problem (P) restricted to condition (i), consisting in repre-
senting A as a dilation of X. Next, we solve Problem (P) completely.

2.1. Preliminaries. We shall use a sequence {Vk}k>1 of orthogonal matrices
acting on spaces of dimensions 2k. This sequence is built up by induction:

V1 =
1√
2

(
1 1
−1 1

)
then Vk =

1√
2

(
Vk−1 Vk−1

−Vk−1 Vk−1

)
for k > 2.
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Given a Hilbert space G and a decomposition

G =
2k⊕

j=1

Hj with H1 = · · · = H2k = H,

we may consider the unitary (orthogonal) operator on G : Wk = Vk

⊗
I, where I

denotes the identity on H.
Now, let B : G → G be an operator which, relatively to the above decompo-

sition of G, is written with a block diagonal matrix

B =




B1

. . .
B2k


 .

We observe that the block matrix representation of WkBW ∗
k has its diagonal en-

tries all equal to
1
2k

(B1 + · · ·+ B2k) .

So, the orthogonal operators Wk allow us to pass from a block diagonal matrix
representation to a block matrix representation in which the diagonal entries are
all equal.

2.2. Solution of problem (P) (i). The contraction Y = (1/‖X‖)X can be
dilated in a unitary

U =
(

Y −(I − Y Y ∗)1/2

(I − Y ∗Y )1/2 Y ∗

)

thus X can be dilated in a normal operator N = ‖X‖U with ‖N‖ < ρ. This
permits to restrict to the case when X is a normal contraction, ‖X‖ < ρ < 1.
Thus we set the following problem:

Problem (Q). Let X be a normal contraction, ‖X‖ < ρ < 1. Find a
projection E, dim E = ∞, such that AE = X.

We remark with the Berg-Weyl-von Neumann theorem ([2]) that a normal
contraction X, ‖X‖ < ρ < 1, can be written

(2.1) X = D + K

where D is normal diagonalizable, ‖D‖ = ‖X‖ < ρ, and K is compact with an
arbitrarily small norm. Let K = Re K + i Im K be the cartesian decomposition of
K. We can manage to have an integer l, a real α and a real β so that decomposition
(2.1) satisfies:

(a) the operators αD, βRe K, βImK are majorized in norm by ρ;
(b) there are positive integers m, n with 2l = m + 2n and

(2.2) X =
1
2l

(mαD + nβRe K + nβi Im K).

More precisely we can take any l such that [2l/(2l − 2)] · ‖X‖ < ρ. Next,
assuming ‖K‖ < ρ/2l, we can take m = 2l − 2, n = 1, α = 2l/(2l − 2) and β = 2l.
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Let then T be the diagonal normal operator acting on the space

G =
2l⊕

j=1

Hj with H1 = · · · = H2l = H,

and defined by

T =
( m⊕

j=1

Dj

)
⊕

( m+n⊕

j=m+1

Rj

)
⊕

( 2l⊕

j=m+n+1

Sj

)

where Dj = αD, Sj = βReK and Sj = βi ImK.
We note that ‖T‖ < ρ < 1 and that the operator WlTW ∗

l , represented in
the preceding decomposition of G, has its diagonal entries all equal to X by (i).
Thus to solve Problem (Q) it suffices to solve the following problem.

Problem (R). Given a diagonal normal operator T , ‖T‖ < ρ < 1, find a
projection E, dim E = ∞, such that AE = T .

Solution of Problem (R). Let {λn(T )}n>1 be the eigenvalues of T repeated
according to their multiplicities. Since |λn(T )| < 1 for all n and that We(A) ⊃ D,
we have a norm one vector e1 such that 〈e1, Ae1〉 = λ1(T ). Let

F1 = [span{e1, Ae1, A
∗e1}]⊥.

As F1 is of finite codimension, We(AF1) ⊃ D. So, there exists a norm one vector
e2 ∈ F1 such that 〈e2, Ae2〉 = λ2(T ). Next, we set

F2 = [span{e1, Ae1, A
∗e1, e2, Ae2, A

∗e2}]⊥, . . . .

If we go on like this, we exhibit an orthonormal system {en}n>1 such that, setting
E = span{en}n>1, we have AE = T .

2.3. Solution of problem (P) (i) and (ii). We take an arbitrary norm one
vector h. We can show, using the same reasoning as that applied to solve Problem
(R), that we have an orthonormal system {fn}n>0, with f0 = h, such that:

(a) 〈f2j , Af2j〉 = 0 for all j > 1;
(b) {〈f2j+1, Af2j+1〉}j>0 is a dense sequence in D;
(c) if F = span{fj}j>0, then AF is the normal operator

∑

j>0

〈fj , Afj〉fj ⊗ fj .

Setting F0 = span{f2j}j>0 and F ′0 = span{f2j+1}j>0, we have then:

(a) Relatively to the decomposition F = F0

⊕
F ′0, AF can be written

AF =
(

AF0 0
0 AF ′0

)
.

(b) We(AF ′0) ⊃ D and h ∈ F0.
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We can then write a decomposition of F ′0, F ′0 =
∞⊕

j=1

Fj where for each index j,

Fj commutes with AF and We(AFj
) ⊃ D; so that the decomposition F =

∞⊕
j=0

Fj

yields a representation of AF as a block diagonal matrix,

AF =
∞⊕

j=0

AFj
.

Since We(AFj ) ⊃ D when j > 1, the same reasoning as that used in the solution of
Problem (R) entails that for any sequence {Xj}j>0 of strict contractions we have
decompositions

(†) Fj = Gj

⊕
G′j

allowing us to write for j > 1

AFj =
(

Xj ∗
∗ ∗

)
.

Since ‖X‖ < ρ < 1, we can find an integer l only depending on ρ and γ, as well as
strict contractions X1, . . . , X2l , such that

(2.3) X =
1
2l

(
AF0 +

2l−1∑

j=1

Xj

)
.

We come back to decompositions (†) and we set

G = F0 ⊕
( 2l−1⊕

j=1

Gj

)
.

Relatively to this decomposition,

AG =




AF0

X1

. . .
X2l−1


 .

Then we deduce from (2.3) that the block matrix WlAGW ∗
l has its diagonal entries

all equal to X.

Summary: h ∈ G and there exists a decomposition G =
2l⊕

j=1

Ej such that

AEj = X for each j. Thus we have an integer j0 such that, setting Ej0 = E, we
have

AE = X and ‖Eh‖ > 1√
2l

.

The proof is finished.
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Corollary 2.2. Let A be an operator with We(A) ⊃ D. For any strict
contraction X, there is an isometry V such that X = V ∗AV .

Corollary 2.3. Let A be an operator with We(A) ⊃ D. For any contraction
X, there is a sequence {Un} of unitary operators such that U∗

nAUn → X in the
weak operator topology.

We use the strict inclusion notation X ⊂⊂ Y for subsets X, Y of C to mean
that there is an ε > 0 such that {x + z : x ∈ X, |z| < ε} ⊂ Y .

Theorem 2.4. Let A be an operator and let {An}∞n=1 be a sequence of nor-

mal operators. If
∞⋃

n=1
W (An) ⊂ We(A) then we have a pinching

P(A) =
∞⊕

n=1

An.

(For self-adjoint operators, this result holds with the strict inclusion of R.)

Sketch of proof. Let N be a normal operator with W (N) ⊂⊂ We(A). If N is
diagonalizable, reasonning as in the proof of Theorem 2.1, we deduce that N can
be realized as a compression of A. If N is not diagonalizable we may assume that
0 ∈ We(A). Thanks to the Berg-Weyl-von Neumann theorem and still reasonning
as in the proof of Theorem 2.1 we again deduce that N is a compression of A.
Finally, the strict containment assumption allows us to get the wanted pinching.

To finish this section, we mention that we can not drop the assumption that
the strict contractions An of Theorem 2.1 are uniformly bounded in norm by a
real < 1. This observation is equivalent to the fact that we can not delete the
strict containment assumption in Theorem 2.4:

Let P be a halving projection (dim P = dimP⊥ = ∞), so We(P ) = [0, 1].
Then the sequence {1 − 1/n2}n>1 can not be realized as the entries of the main
diagonal of a matrix representation of P . To check that, we note that the positive
operator I−P would be in the trace-class: a contradiction. (Recall that a positive
operator with a summable diagonal is trace class.)
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