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AN INTRINSIC DIFFICULTY
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Abstract. The set of possible values (w1, . . . , wk) = (f(x1), . . . , f(xk)) aris-
ing from restricting contractive elements f from some uniform algebra A to
a finite set {x1, . . . , xk} in the domain is called an interpolation body. When
the uniform algebra is the bidisk algebra, Cole and Wermer show that the
associated interpolation body is a semi-algebraic set and it is in this sense
that the interpolation body is “computable”. Motivated by the work of Cole
and Wermer, Paulsen introduced the notion of the Schur ideal which acts a
natural “dual” object for these interpolation bodies. From this “duality” a
stronger notion of “computability” follows which will allow us to discuss the
intrinsic differences between interpolation on the bidisk and interpolation on
the disk.
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1. INTRODUCTION

Let X be compact Hausdorff space and let C(X) denote the continuous complex-
valued functions on X. We call A ⊆ C(X) a uniform algebra provided that A is
uniformly closed, contains the identity, and separates points in X. For fixed points
x1, . . . , xk in X, B. Cole, K. Lewis, and J. Wermer define in [5] the interpolation
body associated with A and x1, . . . , xk, denoted D(A; x1, . . . , xk), in the following
way: a point

→
w= (w1, . . . , wk) in Ck belongs to D(A; x1, . . . , xk) if for each ε > 0,

there exists f in A with ‖f‖∞ 6 1 + ε such that f(xi) = wi for i = 1, . . . , k.
Equivalently, a point (w1, . . . , wk) in Ck belongs to D(A; x1, . . . , xk) if ‖w1[f1]+· · ·
· · ·+wk[fk]‖ 6 1, where [fi] is in A/Ix, fi(xj) = δij , and Ix is the ideal of functions
in A vanishing at the points x1, . . . , xk. With this point of view, one can see that
an interpolation body D(A; x1, . . . , xk) is a natural coordinization of the closed
unit ball of the quotient algebra (k-idempotent operator algebra) A/Ix.
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G. Pick has solved the classic interpolation problem from D to D (open
unit disk) in 1916. In [11], G. Pick has showed that (w1, . . . , wk) in Ck is in
D(A(D); α1, . . . , αk) if and only if the matrix

(
1−wiwj

1−αiαj

)
is positive semi-definite,

where A(D) denotes the disk algebra. Note, that G. Pick’s theorem yields the same
set of finite conditions for determining if an arbitrary k-tuple (w1, . . . , wk) in Ck

belongs to D(A(D); α1, . . . , αk). The author would like to accentuate that the goal

of this paper resides in finding a finite (or possibly infinite) number of conditions

which will allow us to determine the ball D(A; x1, . . . , xk) and more specifically
the ball D(A(D2); z1, . . . , zk), where A(D2) denotes the bidisk algebra. For a fixed
pair of k-tuples, say z1, . . . , zk in D2 and w1, . . . , wk in C it is known that there

exist finite methods for determining whether one can interpolate the given pair of
k-tuples (i.e, ∀ ε > 0∃ f ∈ A(D2) with ‖f‖∞ 6 1 + ε such that f(zi) = wi). For

such constructions, see the work of J. Ball and T. Trent ([3]) and/or the work of

J. Agler and J. McCarthy ([2]). However, these finite methods yield unique sets
of finite conditions for distinct k-tuples, say (w1, . . . , wk) and (w̃1, . . . , w̃k) in Ck,

the target space. This is precisely the intrinsic difficulty we are referring to with

interpolation on the bidisk.
In [7], B. Cole and J. Wermer show that D(A(D2); z1, . . . , zk) is a semi-

algebraic set (i.e, a set determined by a finite collection of polynomial inequali-
ties). Thus, one can determine if an arbitrary k-tuple (w1, . . . , wk) in Ck is in
D(A(D2); z1, . . . , zk) by checking a finite number of polynomial inequalities (the

same set of polynomial inequalities work for each k-tuple). However, in proving
that D(A(D2); z1, . . . , zk) is a semi-algebraic set B. Cole and J. Wermer appeal to

an existential theorem of A. Tarskie and A. Seidenberg and by doing so avoid the
construction of the polynomial inequalities which determine D(A(D2); z1, . . . , zk).

In this paper we will show that for three particular points z1, z2, z3 in D2

that D(A(D2); z1, z2, z3) fails to be “computable” in a stricter sense, namely, that

the largest (affiliated) Schur ideal is not finitely generated. In Section 2 we will

describe tersely the motivation for studying Schur ideals and make the terminology

precise. In Section 3 we will bring forward the notion of an interpolation problem

being “strongly computable”, as well as, compare and contrast this new notion of

computability with the work of B. Cole and J. Wermer in [7]. In Section 4 we will

present an example which is not strongly computable by using some results from V.

Paulsen’s paper [9]. Last, in Section 5 we will give an alternate proof of J. Agler’s

bidisk interpolation formula, [1], due to V. Paulsen.
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2. PRELIMINARIES

Throughout the paper Mk will denote the k×k matrices with complex entries and
M+

k will denote the closed cone of positive semi-definite matrices in Mk. If P is
in Mk, then it will be understood that P is the matrix (pij)k

i,j=1 simply written as
(pij). If P, Q are in Mk, then the Schur product of the matrices P and Q, denoted
as P ∗ Q, is defined to be (pij) ∗ (qij) = (pijqij). The matrix P being positive
semi-definite will be denoted as P > 0.

The following theorem is due to B. Cole and J. Wermer ([6]), in which they
give conditions on a point (w1, . . . , wk) in Ck in order that (w1, . . . , wk) belong
to the interpolation body D = D(A; x1, . . . , xk) where A ⊆ C(X) is an arbitrary
uniform algebra and x1, . . . , xk in X.

Theorem 2.1. (Cole-Wermer) If A ⊆ C(X) is a uniform algebra and x1, . . . ,
xk ∈ X, then there exists a set S ⊆ M+

k such that

(w1, . . . , wk) ∈ D if and only if ((1− wiwj)pij) > 0 for all (pij) ∈ S.

In [9], V. Paulsen observes that Theorem 2.1 suggests the following “du-
alities” between subsets of the closed k-polydisk and subsets of M+

k . Given a
non-empty set S ⊆ M+

k define

S⊥ = {(w1, . . . , wk) ∈ Ck : ((1− wiwj)pij) > 0 ∀ (pij) ∈ S}.
Similarly, given a subset D of the closed k-polydisk with 0 ∈ D define

D⊥ = {(pij) : ((1− wiwj)pij) > 0 ∀ (w1, . . . , wk) ∈ D}.
Since we insist that 0 ∈ D then D⊥ is always a set of positive semi-definite ma-
trices. Observing further that the set D⊥ has certain properties, V. Paulsen ([9])
introduces the concept of a Schur ideal, defined below. By studying this duality
between hyperconvex sets and Schur ideals and using some results from the theory
of abstract operator algebras, V. Paulsen is able to generalize J. Agler’s scalar-
valued interpolation results ([1]) for the bidisk to more general product domains
([9]). For another approach to such problems see the paper of A. Tomerlin ([14]).

Definition 2.2. Let I ⊆ Mk
+ be a non-empty set. Then I will be called a

Schur ideal provided that:
(i) A,B ∈ I ⇒ A + B ∈ I.
(ii) A ∈ I, P ∈ Mk

+ ⇒ A ∗ P ∈ I.

If D is a subset of the closed k-polydisk with 0 ∈ D, then D⊥ is a Schur ideal.
A consequence of Theorem 2.1 is that if D = D(A; x1, . . . , xk), then D = D⊥⊥.

Definition 2.3. A Schur ideal I ⊆ M+
k is said to be finitely generated

provided that there exist P1, . . . , Pm ∈ M+
k such that

I = 〈P1, . . . , Pm〉 =
{ m∑

i=1

Pi ∗Ri : Ri ∈ M+
k

}
.
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Definition 2.4. Let A ⊆ C(X), x1, . . . , xk ∈ X, and I ⊆ M+
k be a

Schur ideal. Then the Schur ideal I is said to be affiliated with the interpola-
tion body D(A; x1, . . . , xk) associated with A and x1, . . . , xk provided that I⊥ =
D(A; x1, . . . , xk).

Another consequence of Theorem 2.1 is that each interpolation body
D(A; x1, . . . , xk) has an affiliated Schur ideal, namely D(A; x1, . . . , xk)⊥. Note,
we have that

〈(
1

1−αiαj

)〉
is the unique affiliated Schur ideal for the interpolation

body D(A(D); α1, . . . , αk) ([13]). In Definition 2.4 we could have easily defined
the notion of an affiliated set instead of an affiliated Schur ideal. However, the
interpolation body D(A(D); α1, . . . , αk) has infinitely many affiliated sets.

3. SEMI-ALGEBRAIC VERSUS STRONGLY COMPUTABLE

In this section we will introduce the notion of an interpolation problem being
“strongly computable” as well as compare and contrast this new notion with the
work of B. Cole and J. Wermer in [7].

Throughout this section we will assume that D = D(A; x1, . . . , xk) for some
uniform algebra A and for fixed points x1, . . . , xk in X. This assumption will allow
us to make use of the fact that D⊥⊥ = D.

Definition 3.1. A Schur ideal I is said to be affiliated with the set D
provided that

I⊥ = D.

One can verify that if I is any other affiliated Schur ideal with respect to the
set D, then I ⊆ D⊥. In this sense, D⊥ is the largest affiliated Schur ideal with
respect to the set D. This motivated the following definition.

Definition 3.2. The set D is strongly computable provided that D⊥ is a
finitely generated Schur ideal.

Remark 3.3. If D is strongly computable, then there exist P1, . . . , Pm ∈
M+

k such that D⊥ = 〈P1, . . . , Pm〉. Let (w1, . . . , wk) ∈ Ck and consider the follow-
ing implications:

(1− wiwj) ∗ Pl > 0 for l = 1, . . . ,m

⇒ ∀ Q ∈ M+
k , (1− wiwj) ∗Q ∗ Pl > 0 for l = 1, . . . ,m

⇒ ∀ Q1, . . . , Qm ∈ M+
k , (1− wiwj) ∗

m∑

l=1

Ql ∗ Pl > 0

⇒ ∀ P ∈ D⊥, (1− wiwj) ∗ P > 0.

Since D⊥⊥ = D we have that (w1, . . . , wk) ∈ D. Thus, if D⊥ is finitely generated,
then it is sufficient to check finitely many positivity conditions to determine if
(w1, . . . , wk) ∈ D.

It turns out that, if D = D(A(D); α1, . . . , αk), then D⊥ =
〈(

1
1−αiαj

)〉
, see

Proposition 4.1 in Section 4. Hence, D = D(A(D); α1, . . . , αk) is strongly com-
putable. Moreover, if I is any other Schur ideal affiliated with D = D(A(D); α1,
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. . . , αk), then I is the Schur ideal
〈(

1
1−αiαj

)〉
; see [13]. However, for a general uni-

form algebra A, it is still not known whether I⊥ = D(A; x1, . . . , xk) implies that
I = D(A; x1, . . . , xk)⊥; we leave this issue for future work. In Section 4 we will
show that for three particular points z1, z2, z3 in D2 the ball D(A(D2); z1, z2, z3)
is not strongly computable.

B. Cole and J. Wermer prove the following theorem in [7].

Theorem 3.4. (Cole-Wermer) If z1 = (α1, β1), . . . , zk = (αk, βk) ∈ D2,
then D(A(D2); z1, . . . , zk) is a semi-algebraic set in Ck.

Loosely speaking, a set X ⊆ Rk is semi-algebraic provided that X is de-
termined by a finite collection of polynomial inequalities (for a brief exposition
of the theory of semi-algebraic sets see [7]). Thus, despite our example where
D(A(D2); z1, z2, z3) is not strongly computable, it seems plausible to assume that
there may exists a finitely generated Schur ideal, say I, such that I ⊆ D⊥ and
I⊥ = D(A(D2); z1, z2, z3). This was the motivation behind the next definition.

Definition 3.5. The set D is said to be computable provided there exists a
finitely generated Schur ideal I0 with I⊥0 = D.

Clearly, if a set D is strongly computable, then the set D is computable. In
the next proposition we will show that if a set D is computable, then the set D is
semi-algebraic.

Proposition 3.6. If D is computable, then D is a semi-algebraic set.

Proof. We note that a matrix P ∈ Mk is positive semi-definite ([8]) if and
only if P = P ∗ and the principal minors of P are non-negative, where the principal
minors of P are the scalars ∆l(P ) defined by

∆l(P ) = det




p11 · · · p1l
...

...
pl1 · · · pll


 , 1 6 l 6 k.

The set D being computable implies that there exists a finitely generated Schur
ideal I0 with I⊥0 = D. Thus, we can choose P1, . . . , Pm ∈ M+

k such I0 =
〈P1, . . . , Pm〉. But,

(w1, . . . , wk) ∈ D ⇔ ((1− wiwj)pl
ij) > 0 for l = 1, . . . , m,

⇔ ∆1((1− wiwj)pl
ij) > 0 for l = 1, . . . , m,

⇔ ∆2((1− wiwj)pl
ij) > 0 for l = 1, . . . , m,

...
⇔ ∆k((1− wiwj)pl

ij) > 0 for l = 1, . . . , m.

Thus, the real polynomials ∆l
n(w1, . . . , wk, w1, . . . , wk) for n = 1, . . . , k and l =

1, . . . , m determine the set D. Hence the set D is semi-algebraic in Ck.

We mentioned previously that D⊥ is the largest affiliated Schur ideal with
respect to the set D. Thus, if D⊥ is finitely generated, then the set D is semi-
algebraic. Hence, a set being strongly computable (and/or computable) is a stricter
notion of computability than a set being semi-algebraic.
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4. EXAMPLE

In this section we will show that for three particular points z1, z2, z3 in D2 that
the interpolation body D(A(D2); z1, z2, z3) is not strongly computable. Proving
that D(A(D2); z1, z2, z3)⊥ is infinitely generated does not rely on any particularly
deep theorems in analysis but is rather a straight forward argument. The sub-
tlety lies in determining what form the Schur ideal D(A(D2); z1, z2, z3)⊥ takes.
Theorem 4.2 below does exactly that for any fixed set of points z1, . . . , zk in D2,
where k is arbitrary. Theorem 4.2 is a special case of a more general theorem,
due to V. Paulsen in [9]. Theorem 4.2 does even more than tell us what form
D(A(D2); z1, z2, z3)⊥ takes! By using some elementary facts about dual cones and
a factorization theorem for polynomials in two complex-variables we will see in
Section 5 that J. Agler’s bidisk interpolation formula ([1]) follows as a corollary to
Theorem 4.2 quite naturally. We will begin this section with a proposition about
Pick bodies (i.e, D(A(D); α1, . . . , αk)).

Proposition 4.1. Let α1, . . . , αk ∈ D. Then
〈( 1

1− αiαj

)〉
= D(A(D); α1, . . . , αk)⊥ =

{( 1
1− αiαj

)}⊥⊥
.

The proof of Proposition 4.1 will be omitted. However, the key ingredient in
proving Proposition 4.1 is Pick’s theorem. Note, throughout the remainder of the
paper we will often interchange

〈(
1

1−αiαj

)〉
with D(A(D); α1, . . . , αk)⊥ and vice

versa when convenient.

Theorem 4.2. (Paulsen) Let z1 = (α1, β1), . . . , zk = (αk, βk) ∈ D2. Then

D(A(D2); z1, . . . , zk) =
(〈( 1

1− αiαj

)〉
∩

〈( 1
1− βiβj

)〉)⊥
.

A proof of Theorem 4.2 will be provided in Section 5.

Theorem 4.3. Let z1 = (0, 0), z2 =
(

1√
2
, 0

)
, z3 =

(
0, 1√

2

)
. Then the Schur

ideal

D(A(D2); z1, z2, z3)⊥ =

〈(
1 1 1
1 2 1
1 1 1

)〉
∩

〈 (
1 1 1
1 1 1
1 1 2

) 〉

is infinitely generated.

Corollary 4.4. The set D
(
A(D2); (0, 0),

(
1√
2
, 0

)
,
(
0, 1√

2

))
is not strongly

computable.

This example exhibits the intrinsic difference between interpolation on D2

and interpolation on D (i.e, D(A(D); α1, . . . , αk)⊥ is necessarily finitely gener-
ated and D(A(D2); z1, . . . , zk)⊥ is not necessarily finitely generated). However,
D

(
A(D2); (0, 0),

(
1√
2
, 0

)
,
(
0, 1√

2

))
may be computable since D(A(D2); z1, . . . , zk)

is necessarily a semi-algebraic set ([7]); we leave this issue for future work.
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We will need three lemmas in order to prove Theorem 4.3. The proofs of
the first two lemmas will be omitted since they are straight ahead calculations.
Throughout the remainder of this section z1 = (0, 0), z2 =

(
1√
2
, 0

)
, and z3 =(

0, 1√
2

)
.

Lemma 4.5. If θ ∈ [0, 2π], then Sθ ∈ D(A(D2); z1, z2, z3)⊥ where

Sθ =




1 1√
3

1√
3

1√
3

1 1+eiθ

3

1√
3

1+e−iθ

3 1


 .

Lemma 4.6. Let P = (pij)3i,j=1 > 0. Let

v1 =




1−2eiθ√
3

2eiθ

−1


 and v2 =




2−eiθ√
3

eiθ

−2


 for a fixed θ.

If




1 1 1
1 1

2 1
1 1 1


 ∗ Pv1 = 0 and




1 1 1
1 1 1
1 1 1

2


 ∗ Pv2 = 0, then P = tSθ where

t > 0 and Sθ =




1 1√
3

1√
3

1√
3

1 1+eiθ

3

1√
3

1+e−iθ

3 1


 .

Lemma 4.7. Let Q1, . . . , Qm ∈ D(A(D2); z1, z2, z3)⊥ and

Sθ =
m∑

i=1

Pi ∗Qi

where P1, . . . , Pm ≥ 0. Then Pi ∗Qi = tiSθ where ti > 0 for i = 1, . . . ,m.

Proof.

Sθ =
m∑

i=1

Pi ∗Qi ⇒
( 1 1 1

1 1
2 1

1 1 1

)
∗ Sθ =

m∑

i=1

( 1 1 1
1 1

2 1
1 1 1

)
∗ Pi ∗Qi

and

( 1 1 1
1 1 1
1 1 1

2

)
∗ Sθ =

m∑

i=1

( 1 1 1
1 1 1
1 1 1

2

)
∗ Pi ∗Qi .

Now for i = 1, . . . ,m we will let

Ri =

(
1 1 1
1 1

2 1
1 1 1

)
∗ Pi ∗Qi and Ti =

( 1 1 1
1 1 1
1 1 1

2

)
∗ Pi ∗Qi .
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For i = 1, . . . ,m each Qi ∈ D(A(D2); z1, z2, z3)⊥ ⇒ ∃ Ui ≥ 0 such that

Qi = Ui ∗
(

1 1 1
1 2 1
1 1 1

)
.

Hence, Ri = Pi ∗ Ui ≥ 0, for i = 1, . . . ,m. Similarly, Ti ≥ 0, for i = 1, . . . ,m. Let
v1, v2 be as in Lemma 4.6. Then

(
1 1 1
1 1

2 1
1 1 1

)
∗ Sθv1 = 0 and

( 1 1 1
1 1 1
1 1 1

2

)
∗ Sθv2 = 0.

But this implies
〈 m∑

i=1

Riv1, v1

〉
= 0 ⇒ Riv1 = 0 for i = 1, . . . ,m(4.1)

and
〈 m∑

i=1

Tiv2, v2

〉
= 0 ⇒ Tiv2 = 0 for i = 1, . . . ,m.(4.2)

Thus, by Lemma 4.6 and (4.1), (4.2) above we have that Pi ∗Qi = tiSθ and ti > 0

for i = 1, . . . , k. Note, that
m∑

i=1

ti = 1.

Prof of Theorem 4.3. Suppose that D(A(D2); z1, z2, z3)⊥ is finitely gener-
ated. Then there exists Q1, . . . , Qm ∈ M+

3 , such that D(A(D2); z1, z2, z3)⊥ =
〈Q1, . . . , Qm〉. For each θ ∈ [0, 2π] we can choose P1, . . . , Pm > 0 such that

Sθ =
m∑

i=1

Pi ∗Qi

⇒ Pi ∗Qi = tiSθ, ti > 0 and
m∑

i=1

ti = 1 for i = 1, . . . ,m (Lemma 4.7),

⇒ ∃ k ∈ {1, . . . , m} such that tk 6= 0,

⇒ Sθ = t−1
k Pk ∗Qk.

Therefore, for all θ ∈ [0, 2π], there exists kθ ∈ {1, . . . , m} and Rθ > 0 such that

Sθ = Rθ ∗Qkθ
.

Note, if θ 6= π, then Qkθ
has all non-zero entries. Now, define Γk = {θ :

kθ = k} for k = 1, . . . , m. Since the Γk′s cover the unit circle, we can choose
k0 ∈ {1, . . . ,m} and {θn} ⊆ Γk0 such that θn → π as n →∞ and for each n ∈ N,
θn 6= π. Thus, for each n ∈ N we can choose Rn > 0 such that

Sθn = Rn ∗Qk0 .

The fact that there exists an n ∈ N such that θn 6= π implies that Qk0 = (qk0
ij ) has

all non-zero entries. Thus, we can define

Q̂k0 =

(
1

qk0
ij

)
.
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But for each n ∈ N we have that Sθn
= Rn ∗Qk0 , this implies for each n ∈ N that

Rn = Q̂k0 ∗ Sθn
and

Sθn
→ Sπ as n →∞⇒ Rn → Rπ as n →∞⇒ Sπ = Rπ ∗Qk0 .

Since Qk0 has all non-zero entries we may assume that

Qk0 =

(
1 a b
a 1 z
b z 1

)
, where a, b, z ∈ C.

But Qk0 ∈ D(A(D2); z1, z2, z3)⊥ implies that the following two matrices


1 a b
a 1

2 z

b z 1


 and

( 1 a b
a 1 z
b z 1

2

)

are positive semi-definite. Thus, |a|2 6 1
2 and |b|2 6 1

2 . We also have that

Sπ =




1 1√
3

1√
3

1√
3

1 0
1√
3

0 1


 ⇒ Rπ =




1 1
a
√

3
1

b
√

3

1
a
√

3
1 0

1

b
√

3
0 1


 .

Thus, we have the following two implications,

Rπ > 0 ⇒ 1− 1
3|a|2 −

1
3|b|2 > 0(4.3)

and

|a|2 6 1
2
⇒ 1

3|a|2 > 2
3
.(4.4)

But (4.3) and (4.4) imply that |b|2 > 1, which contradicts the fact that |b|2 6 1
2 .

Hence, D(A(D2); z1, z2, z3)⊥ is not finitely generated.

5. AGLER’S BIDISK INTERPOLATION FORMULA

In this section we will first state a factorization theorem for polynomials in two
complex variables with norm strictly less than 1, due to D. Blecher and V. Paulsen
([4]). This theorem together with the matrix-valued version of Pick’s theorem
([12]), and the fact that D⊥⊥ = D for an arbitrary interpolation body will enable
us to prove Theorem 4.2. Again, Theorem 4.2 is a special case of a more general
theorem in [9]. The proof of Theorem 4.2 is much simpler than the proof of the
general theorem and is due to V. Paulsen.

Following the proof of Theorem 4.2 we state two corollaries (5.2 and 5.3)
which follow from Theorem 4.2 (not from Theorem 5.1). We will omit the proof
of Corollary 5.2 (V. Paulsen’s bidisk interpolation formula) and before proving
Corollary 5.3 (J. Agler’s bidisk interpolation formula) we will discuss how the two
corollaries tell us when we can or can’t interpolate two sets of k-tuples. We will
then recall some elementary facts about dual cones and end the paper with an
alternate proof of J. Agler’s bidisk interpolation formula, due to V. Paulsen.
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Theorem 5.1. (Blecher-Paulsen) Let p(α, β) be a polynomial in two com-
plex variables with ‖p‖ = sup{|p(α, β)| : |α|, |β| 6 1} < 1. Then p factors as
follows:

p(α, β) = F1(α) G1(β) F2(α)G2(β) · · ·Fm(α) Gm(β)
1× l1 l1 × l2 l2 × l3 l3 × l4 · · · l2m−1 × 1

where ‖Fi‖, ‖Gi‖ < 1 for all i and entries of Fi and Gi are polynomials.

Proof of Theorem 4.2. Let D = D(A(D2); z1, . . . , zk), where zi = (αi, βi).
Looking at functions constant in β implies that D(A(D); α1, . . . , αk) ⊆ D which
implies that D⊥ ⊆ D(A(D); α1, . . . , αk)⊥. Similarly, D⊥ ⊆ D(A(D); β1, . . . , βk)⊥.
Therefore,

D⊥ ⊆ D(A(D); α1, . . . , αk)⊥ ∩ D(A(D); β1, . . . , βk)⊥

which implies that
(〈( 1

1− αiαj

)〉
∩

〈( 1
1− βiβj

)〉)⊥
⊆ D⊥⊥ = D.

To show the other containment let Q = (qij) ∈ D(A(D); α1, . . . , αk)⊥ ∩
D(A(D); β1, . . . , βk)⊥ and let p(α, β) be a polynomial such that ‖p‖ < 1. Let
wi = p(αi, βi) and suppose ((1− wiwj)qij) > 0. Then we have the following:

((1− wiwj)qij) > 0

⇒ (qij) ∈ D⊥
⇒ D(A(D); α1, . . . , αk)⊥ ∩ D(A(D); β1, . . . , βk)⊥ ⊆ D⊥
⇒ D⊥⊥ = D ⊆ (D(A(D); α1, . . . , αk)⊥ ∩ D(A(D); β1, . . . , βk)⊥)⊥.

Thus, we need only prove that ((1 − wiwj)qij) > 0. Assume p(α, β) =
F (α)G(β).

1− wiwj = 1− p(αi, βi)p(αj , βj)

= 1−G∗(βi)F ∗(αi)F (αj)G(βj)

= 1−G∗(βi)G(βj) + G∗(βi)[I − F ∗(αi)F (αj)]G(βj).

Now Schur product (1 − wiwj) with (qij) where (qij) =
(

p1
ij

1−αiαj

)
or (qij) =

(
p2

ij

1−βiβj

)
where (p1

ij), (p
2
ij) > 0, to get

((1− wiwj)qij) = ((1−G∗(βi)G(βj))qij) + (G∗(βi)[(I − F ∗(αi)F (αj))qij ]G(βj))

=
(1−G∗(βi)G(βj)

1− βiβj

p2
ij

)
+

(
G∗(βi)

[I − F ∗(αi)F (αj)
1− αiαj

p1
ij

]
G(βj)

)
> 0.

To prove the above inequality we are using three separate facts. First, we are
using the matrix-valued version of Pick’s theorem ([12]). Next, we are using two
facts from matrix analysis. First, the Schur product of two positive semi-definite
matrices is positive semi-definite and if P is positive semi-definite, then X∗PX
is positive semi-definite for X ∈ Mk,m, m arbitrary ([8]). Now, by induction on
p(αi, βi) = F (αi)H(αi, βi), where H(αi, βi) has n− 1 factors, we are done.
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Now that we have proven Theorem 4.2 the following corollaries follow easily.

Corollary 5.2. (Paulsen) Let z1 = (α1, β1), . . . , zk = (αk, βk) ∈ D2 and
w1, . . . , wk ∈ D. Then (w1, . . . , wk) ∈ D(A(D2); z1, . . . , zk) if and only if (1 −
wiwj) ∗Q > 0∀Q satisfying:

(i) (1− αiαj) ∗Q > 0;
(ii) (1− βiβj) ∗Q > 0.

Corollary 5.3. (Agler) Let z1 = (α1, β1), . . . , zk = (αk, βk) ∈ D2 and
w1, . . . , wk ∈ D. Then (w1, . . . , wk) ∈ D(A(D2); z1, . . . , zk) if and only if there
exists positive semi-definite matrices P and Q such that

(1− wiwj) = ((1− αiαj)pij) + ((1− βiβj)qij).

The above two corollaries tell us the following. If one chooses the correct
P, Q > 0 satisfying

(1− wiwj) = ((1− αiαj)pij) + ((1− βiβj)qij),

then J. Agler’s formula tells us we can interpolate (z1, . . . , zk) and (w1, . . . , wk).
However, one would have to exhaust an infinite number of possible P, Q > 0 to
show one can’t interpolate (w1, . . . , wk) using Corollary 5.3.

Conversely, suppose Q satisfies

(1− αiαj) ∗Q > 0 and (1− βiβj) ∗Q > 0.

If (1 − wiwj) ∗ Q is not positive semi-definite, then V. Paulsen’s formula tells
us we can’t interpolate (w1, . . . , wk). On the other hand, to show that we can
interpolate (w1, . . . , wk) we would need to verify (1 − wiwj) ∗ Q > 0 for all Q
satisfying conditions (i) and (ii) in Corollary 5.2. But by Theorem 4.3 we have
that for three particular points in the bidisk that there are infinitely many Q’s
satisfying conditions (i) and (ii) in Corollary 5.2.

Before proving Agler’s bidisk interpolation formula (Corollary 5.3) we need
to recall some facts about dual cones.

Given a set S let S+ = {y : 0 6 y · x, ∀x ∈ S}.
(i) S+ is a cone.
(ii) S ⊆ S++.
(iii) S++ = cone(S) — smallest closed cone containing S (Krein-Milman).

Theorem 5.4. Let C1 and C2 be closed cones. Then

(C1 ∩ C2)+ = (C+
1 + C+

2 )−.

Consider the space of k × k Hermitian matrices Mh
k as a real Hilbert space

with pairing A¯B =
k∑

i,j=1

aijbij = 〈A∗Be, e〉 where e is the vector of all ones and

〈 · , · 〉 denotes the usual inner product on Ck.
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Proposition 5.5. Let I ⊆ M+
k be a Schur ideal. Then I is a cone and

I+ = {H ∈ Mh
k : H ¯ P > 0, ∀P ∈ I} = {H ∈ Mh

k : H ∗ P > 0, ∀P ∈ I}.
Moreover, (w1, . . . , wk) ∈ I⊥ if and only if (1− wiwj) ∈ I+.

We are now able to prove Agler’s bidisk interpolation formula.

Proof of Corollary 5.3. Let D = D(A(D2); z1, . . . , zk). By Theorem 4.2

D =
(〈( 1

1− αiαj

)〉
∩

〈( 1
1− βiβj

)〉)⊥
.

But by Proposition 5.5

(w1, . . . , wk) ∈ D ⇔ (1− wiwj) ∈
(〈( 1

1− αiαj

)〉
∩

〈( 1
1− βiβj

)〉)+

.

But by Theorem 5.4
(〈( 1

1− αiαj

)〉
∩

〈( 1
1− βiβj

)〉)+

=
〈( 1

1− αiαj

)〉+

+
〈( 1

1− βiβj

)〉+

.

Next observe that
〈( 1

1− αiαj

)〉+

=
{

H ∈ Mh
k : H ∗

( 1
1− αiαj

)
> 0

}

= {(1− αiαj) ∗ P : P > 0}.
This completes the proof of Corollary 5.3.
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