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1. INTRODUCTION

Let f be a complex valued positive definite function, measurable in the Lebesgue
sense on a Euclidean space. Riesz ([14]) proved that f = f c + f0 where f c is a
continuous positive definite function and f0 is zero almost everywhere. Crum ([6])
established the interesting result that f0 is also positive definite.

In [16] the following comment appears: According to a remark in Krĕın ([11]),
already Artjomenko, who lost his life during the second world war, knew that the
remainder function f0 is also positive definite, but he never published his proof.
These results have been extended for complex valued measurable positive definite
functions defined on locally compact groups (see [8] and [13]). Crum’s result was
generalized by Devinatz ([7]) for functions, with values in the set of bounded
operators on a separable Hilbert space, which are weakly measurable and positive
definite on a locally compact group with a left invariant measure. Langer ([12])
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proved a similar result for scalar valued measurable functions with a finite number
of negative squares defined on an interval of R. In the book of Sasvári ([16]), an
extension of Crum’s result was obtained for scalar valued measurable functions,
with a finite number of negative squares, defined on a locally compact group with
a left invariant measure.

The aim of this paper is to establish the analogous version of this result for
Krĕın space operator valued indefinite functions with a finite number of negative
squares, on a locally compact group.

More precisely: let κ be a nonnegative integer and let f be a κ-indefinite func-
tion defined on a locally compact group, with values in the space of the continuous
linear operators of a Krĕın space. We will prove that if f is weakly measurable
then f = f c + f0 wheref c is a κ-indefinite and weakly continuous function and
f0 is a positive definite function that is zero locally almost everywhere. We also
prove that if f is weakly continuous then f is strongly continuous.

As an application we obtain that a weakly measurable group of unitary op-
erators on a separable Pontryagin space and with parameter on a locally compact
group, is strongly continuous.

Some of our proofs are inspired in techniques developed in [7] and [16].

2. PRELIMINARY NOTIONS

Some familiarity with operator theory on Krĕın spaces is assumed. For the theory
of indefinite inner product spaces (see [2], [4], [5], [9], [10]).

We recall some basic notions and results from the theory of Krĕın spaces
and operators on them. The pair (R, 〈 · , · 〉R) is an inner product space if R is a
linear space over C and 〈 · , · 〉R : R×R 7→ C is a sesquilinear mapping, called the
inner product. If R is an inner product space we call (R,−〈 · , · 〉R) its antispace.
A Krĕın space (K, 〈 · , · 〉K) is an inner product space which can be written as an
orthogonal direct sum

K = K+ ⊕K−
where K+ is a Hilbert space and K− is the antispace of a Hilbert space, which will
be denoted by |K−|. Such a representation is called a fundamental decomposition.

Let K be a Krein space. A fundamental decomposition is not necessarily
unique. However, if K = K+ ⊕ K− and K = K+

1 ⊕ K−1 are two fundamental
decompositions, then dimK+ = dimK+

1 and dimK− = dimK−1 . A Pontryagin
space is a Krĕın space K such that dimK− is finite. A topology is induced on K by
any fundamental decomposition K = K+ ⊕ K−. First form the associated Hilbert
space

|K| = K+ ⊕ |K−|.
This Hilbert space has an associated quadratic norm ‖·‖|K|. Two quadratic norms
arising from different fundamental decompositions can be shown to be equivalent.
Therefore the norm topologies resulting from two fundamental decompositions are
the same. All notions of continuity and convergence are understood with respect
to this common topology, which is called the strong topology of K.

For h1, h2 ∈ K, it holds that

|〈h1, h2〉K| 6 ‖h1‖|K| ‖h2‖|K|.
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Let L(K) stand for the space of the continuous linear operators on K. If
T ∈ L(K) its adjoint is the unique operator T ∗ ∈ L(K) such that, for h1, h2 ∈ K

〈Th1, h2〉K = 〈h1, T
∗h2〉K.

Let T ∈ L(K) be an operator: T is selfadjoint if T = T ∗, T is a projection if
it is selfadjoint and T 2 = T and T is unitary if T ∗T = TT ∗ = I.

3. THE PONTRYAGIN SPACE AND THE UNITARY GROUP ASSOCIATED
TO A κ-INDEFINITE FUNCTION

Let (K, 〈 · , · 〉K) be a Krĕın space and fix a fundamental decomposition K = K+ ⊕
K−, also let (Ω, · ) be a locally compact group with left invariant Haar measure dx.

Suppose that κ is a nonnegative integer. A function f : Ω → L(K) is said to
be κ-indefinite if:

(a) f(x) = f(x−1)∗ for all x ∈ Ω,
(b) for any finite set of points x1, . . . , xn ∈ Ω and vectors h1, . . . , hn ∈ K, the

hermitian matrix
(〈f(x−1

i xj)hi, hj〉K)n
i,j=1

has at most κ negative eigenvalues, counted according to their multiplicities, and
at least one such matrix has exactly κ negative eigenvalues.

The function f is said to be positive definite if this property holds with κ = 0,
that is the above matrix is nonnegative in every case.

Let f : Ω → L(K) be a κ-indefinite function. According to the definition
given in p. 6 of [1], the hermitian L(K)-valued kernel on Ω× Ω, given by

F (x, y) = f(x−1y)

has κ negative squares. For x ∈ Ω, let fx : Ω → L(K) be the function defined by

fx(y) = f(x−1y).

Observe that fx(·) = F (x, ·).
By Theorem 1.1.3 of [1] there exists a unique Pontryagin space (E , 〈 · , · 〉E) of

K-valued functions on Ω, with reproducing kernel F , such that ind−(E) = κ. The
theory of reproducing kernels was introduced in [3] for the positive definite case.

Recall that E has the following properties:

(i) The elements of E are K-valued functions on Ω.
(ii) For each x ∈ Ω and h ∈ K the function fx( · )h belongs to E .
(iii) For every ϕ ∈ E and h ∈ K

〈ϕ(·), fx(·)h〉E = 〈ϕ(x), h〉K.
(iv) If M is the space of the functions u ∈ E such that

u(·) =
n∑

i=1

fxi(·)hi

where n ∈ N, x1, . . . , xn ∈ Ω and h1, . . . , hn ∈ K, then M is a dense subspace of E .
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(v) If u, v ∈M are such that

u(·) =
n∑

i=1

fxi(·)hi, v(·) =
m∑

j=1

fyj (·)h′j

where x1, . . . , xn, y1, . . . , ym ∈ Ω, h1, . . . , hn, h
′
1, . . . , h

′
m ∈ K, then

〈u, v〉E =
n∑

i=1

m∑

j=1

〈f(x−1
i yj)hi , h

′
j〉K.

In particular, if x, y ∈ Ω and h, h′ ∈ K
〈fx(·)h, fy(·)h′〉E = 〈f(x−1y)h , h′〉K.

The space E will be called the Pontryagin space associated to f and M will
be called the pre-Pontryagin space associated to f . Since M is a dense linear
manifold on E there exists a fundamental decomposition of E

E = E+ ⊕ E−,
where E− is generated by a set of functions {u1, . . . , uκ} ⊂ M, such that

(3.1) 〈ui(·), uj(·)〉E = −δij
for i, j = 1, . . . , κ.

Let |E−| be the antispace of E−, that is |E−| is the Hilbert space (E−,−〈 · , · 〉E).
The norm induced on E by this fundamental decomposition is the norm in the
Hilbert space |E| = E+ ⊕ |E−| given by

(3.2) ‖ϕ‖2|E| = 〈ϕ,ϕ〉E + 2
κ∑

j=1

|〈ϕ, uj〉E |2

for ϕ ∈ E .
In the sequel:
(a) f : Ω → L(K) is a κ-indefinite function, E and M are the Pontryagin

and the pre-Pontryagin spaces associated to f .
(b) E = E+ ⊕ E− is a fundamental decomposition of E , {u1, . . . , uκ} ⊂ M is

a total set on E− such that equality (3.1) holds.
(c) ‖ · ‖|E| is the norm given by formula (3.2).

Theorem 3.1. Let K be a Krĕın space, let f : Ω → L(K) be a κ-indefinite
function and let E be the Pontryagin space associated to f then:

(a) The elements of E are K-valued functions on Ω and f(·)h ∈ E for all
h ∈ K.

(b) E is invariant under translations in the following sense: if ϕ ∈ E, ω ∈ Ω
and ψ is the function defined by ψ(x) = ϕ(ωx) then ψ is in E.

(c) If (Uωϕ)(x) = ϕ(ωx) for ϕ ∈ E, x, ω ∈ Ω, then (Uω)ω∈Ω is a unitary
representation of Ω in E with cyclic subspace

∨{f(·)h : h ∈ K}.
(d) The linear operator τ : K → E defined by τh = f(·)h is bounded, and

f(ω) = τ∗Uωτ

for all ω ∈ Ω.
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(e) If ϕ ∈ E, ω ∈ Ω and h ∈ K then

〈ϕ(ω), h〉K = 〈Uωϕ, τh〉E = 〈ϕ,U−1
ω τh〉E .

(f) Weak convergence of a net {ϕα} in E implies weak convergence in K of
the net {ϕα(ω)} for all ω ∈ Ω.

Proof. Note that (a) follows immediately from the properties of the space E .
For ω, x ∈ Ω let Vω : M→M be the linear operator defined by

(Vωu)(x) = u(ωx).

It turns out that Vω is an unitary operator and

Vωfx = fω−1x, V −1
ω fx = fωx.

Since M is a pre-Pontryagin space with completion E , Vω has a unitary extension
Uω : E → E .

Let ϕ ∈ E , x ∈ Ω, h ∈ K, then

(3.3)
〈(Uωϕ)(x), h〉K = 〈Uωϕ, fx(·)h〉E = 〈ϕ,U−1

ω fx(·)h〉E = 〈ϕ, V −1
ω fx(·)h〉E

= 〈ϕ(·), fωx(·)h〉E = 〈ϕ(ωx), h〉K.

From (iv) it follows that
∨

ω∈Ω

Uω

( ∨{f(·)h : h ∈ K}
)

spans E . Thus we have

proved (b) and (c).
Now we will prove (d). Let τ : K → E defined by τh = f(·)h. For all h ∈ K,

‖τh‖2|E| = 〈τh, τh〉E + 2
κ∑

j=1

|〈τh, uj〉E |2 = 〈f(·)h, f(·)h〉E + 2
κ∑

j=1

|〈uj , f(·)h〉E |2

= 〈f(1)h, h〉K + 2
κ∑

j=1

|〈uj(1), h〉K|2 6
(
‖f(1)‖+ 2

κ∑

j=1

‖uj(1)‖2|K|
)
‖h‖2|K|.

Given h, h′ ∈ K, ω ∈ Ω

〈f(ω)h, h′〉K = 〈fω−1(·)h, f1(·)h′〉E = 〈Uωf(·)h, f(·)h′〉E
= 〈Uωτh, τh

′〉E = 〈τ∗Uωτh, h
′〉K.

So (d) is proved.
From formula (3.3) it follows that

〈Uωϕ, fx(·)h〉E = 〈ϕ,U−1
ω fx(·)h〉E = 〈ϕ(ωx), h〉K.

Taking x = 1 and observing that, for all h ∈ K, f1(·)h = τh we obtain (e).
Finally (f) follows from (e).

In the following (Uω)ω∈Ω will be the unitary representation of Ω on E given
by Theorem 3.1 and τ : K → E will be the linear operator given by τh = f(·)h.
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Proposition 3.2. If f is locally bounded then:
(a) the function ω 7→ ‖Uω‖ is locally bounded;
(b) all the elements of E are locally bounded.
Proof. Since Ω is locally compact, a function is locally bounded if and only if

it is bounded on compact subsets of Ω. So we will show that ω 7→ ‖Uω‖ is bounded
on compact sets.

Step 1. For each pair i, j ∈ {1, . . . , κ} the function ω 7→ |〈Uωui, uj〉E | from
Ω to C is bounded on compact sets. In fact, for each i ∈ {1, . . . , κ} there exists
xi

l ∈ Ω, hi
l ∈ K, l = 1, . . . ,mi, such that

ui =
mi∑

l=1

fxi
l
(·)hi

l.

Hence

|〈Uωui, uj〉E | =
∣∣∣

mi∑

l=1

mj∑
p=1

〈fω−1xi
l
(·)hi

l, fxj
p
(·)hj

p〉E
∣∣∣ =

∣∣∣
mi∑

l=1

mj∑
p=1

〈f((xi
l)
−1ωxj

p)h
i
l, h

j
p〉K

∣∣∣

which is clearly bounded on compact sets.
Step 2. For each i ∈ {1, . . . , κ} the function ω 7→ ‖Uωui‖|E| from Ω to C is

bounded on compact sets. Simply observe that

‖Uωui‖2|E| = 〈ui, ui〉E + 2
κ∑

j=1

|〈Uωui, uj〉E |2 = −1 + 2
κ∑

j=1

|〈Uωui, uj〉E |2.

Step 3. The function ω 7→ ‖Uω‖ is locally bounded. Indeed, if ϕ ∈ E then

‖Uωϕ‖2|E| = 〈Uωϕ,Uωϕ〉E + 2
κ∑

j=1

|〈Uωϕ, uj〉E |2 = 〈ϕ,ϕ〉E + 2
κ∑

j=1

|〈ϕ,U−1
ω uj〉E |2

6
(
1 + 2

κ∑

j=1

‖U−1
ω uj‖2|E|

)
‖ϕ‖2|E|.

We conclude that

‖Uω‖ 6 1 + 2
κ∑

j=1

‖U−1
ω uj‖2|E|.

To prove (b) let ϕ ∈ E . If ω ∈ Ω and h ∈ K then
|〈ϕ(ω), h〉K| = |〈Uωϕ, τh〉E | 6 ‖Uω‖ ‖τ‖ ‖ϕ‖|E|‖h‖|K|.

Taking h = ϕ(ω) the result follows.
Remark 3.3. From the proof of Proposition 3.2 it also follows that: If f is

bounded then:
(a) the function ω 7→ ‖Uω‖ is bounded;
(b) every ϕ ∈ E is bounded.

3.1. The weakly continuous case. Recall that a function g : Ω → L(K)
is weakly continuous if for all h1, h2 ∈ K the complex-valued function ω 7→
〈g(ω)h1, h2〉K is continuous and g is strongly continuous if for all h ∈ K the K-
valued function ω 7→ g(ω)h is continuous.

Also recall that a function ϕ : Ω → K is weakly continuous if for every h ∈ K
the complex valued function ω 7→ 〈ϕ(ω), h〉K is continuous.
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Proposition 3.4. If f is weakly continuous then:
(a) for every u ∈ M the function from Ω to E given by ω 7→ Uωu is contin-

uous;
(b) all the elements of E are weakly continuous.

Proof. Since every u ∈ M is a linear combination of functions of the form
Uωτh, with ω ∈ Ω and h ∈ K, to prove (a) it is enough to show that for each ω ∈ Ω
and h ∈ K the function x 7→ UxUωτh is continuous. It is clear that all the elements
of M are weakly continuous, in particular u1, . . . , uk are weakly continuous.

Let x, x0, ω ∈ Ω then

‖Uxωτh− Ux0ωτh‖2|E|

= 〈Uxωτh− Ux0ωτh, Uxωτh− Ux0ωτh〉E + 2
κ∑

j=1

|〈Uxωτh− Ux0ωτh, uj〉E |2

= 2〈f(·)h, f(·)h〉E − 2Re〈U(xω)−1x0ωf(·)h, f(·)h〉E

+ 2
κ∑

j=1

|〈uj , Uxωτh〉E − 〈uj , Ux0ωτh〉E |2

= 2〈f(1)h, h〉K − 2Re〈f(ω−1x−1x0ω)h, h〉K

+ 2
κ∑

j=1

|〈uj(ω−1x−1), h〉K − 〈uj(ω−1x0
−1), h〉K|2.

Since f(1)∗ = f(1) we have that 〈f(1)h, h〉K is a real number. Thus (a) follows
from the weak continuity of f and uj .

Assertion (b) is obtained from (a) and from (e) of Theorem 3.1.

Theorem 3.5. If f is weakly continuous then the representation (Uω)ω∈Ω is
strongly continuous.

Proof. Let ϕ ∈ E , we must prove that the function ω 7→ Uωϕ is continuous.
Observe that given ω, ω0 ∈ Ω and u ∈M

‖Uωϕ− Uω0ϕ‖E 6 ‖Uωϕ− Uωu‖E + ‖Uωu− Uω0u‖E + ‖Uω0u− Uω0ϕ‖E
6 ‖Uω‖ ‖ϕ− u‖E + ‖Uωu− Uω0u‖E + ‖Uω0‖ ‖ϕ− u‖E .

Since M is dense in E , using the continuity of ω 7→ Uωu (Proposition 3.4) and the
local boundedness of ω 7→ ‖Uω‖ (Proposition 3.2) the result follows.

Corollary 3.6. Let K be a Krĕın space and let f : Ω → L(K) be a κ-
indefinite function. If f is weakly continuous then f is strongly continuous.

Proof. Since f(ω) = τ∗Uωτ the result follows.
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3.2. The weakly measurable case. Let us consider the left invariant Haar
measure on the locally compact group Ω.

Recall that a function g : Ω → L(K) is weakly measurable if for every h1, h2 ∈
K the complex valued function ω 7→ 〈g(ω)h1, h2〉K is measurable. Also recall that
a function ϕ : Ω → K is weakly measurable if for every h ∈ K the complex valued
function ω 7→ 〈ϕ(ω), h〉K is measurable.

Proposition 3.7. If f is weakly measurable then f is locally bounded.

Proof. It is enough to show that f is bounded on each compact subset of Ω.
By a straightforward application of the Banach-Steinhaus theorem it is enough to
prove that for each h1, h2 ∈ K the function ω 7→ 〈f(ω)h1, h2〉K is bounded on each
compact subset of Ω.

If h ∈ K then the function g given by g(ω) = 〈f(ω)h, h〉K is κ0-indefinite,
where κ0 6 κ. By Theorem 1 of [15] (see also Theorem 5.3.1 of [16]), g is locally
bounded. From the identity

〈f(ω)h1, h2〉K =
1
4
{〈f(ω)(h1 + h2), h1 + h2〉K − 〈f(ω)(h1 − h2), h1 − h2〉K}

+
i
4
{〈f(ω)(h1 + ih2), h1 + ih2〉K − 〈f(ω)(h1 − ih2), h1 − ih2〉K}

the result follows.

Theorem 3.8. If f is weakly measurable then the representation (Uω)ω∈Ω

is weakly measurable.

Proof. It is clear that all the elements of M are weakly measurable. From
the definition of the inner product on E it follows that: If u, v ∈ M then the
function w 7→ 〈u,Uωv〉E is measurable.

If ϕ,ψ ∈ E then there exist sequences {un}, {vn} in M such that

ϕ = lim
n→+∞

un and ψ = lim
n→+∞

vn.

Thus 〈ϕ,Uωψ〉E = lim
n→+∞

〈un, Uωvn〉E . Therefore the function

(3.4) w → 〈ϕ,Uωψ〉E
is measurable.

Corollary 3.9. If f is weakly measurable then all the elements of E are
weakly measurable.

Proof. Let ϕ ∈ E and take ψ = τh in equation (3.4). From (e) of Theorem 3.1
it follows that ϕ is weakly measurable.
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4. THE MAIN RESULT

Theorem 4.1. Let κ be a nonnegative integer, let K be a separable Krĕın
space and let (Ω, ·) be a locally compact group. If f : Ω → L(K) is a weakly
measurable κ-indefinite function, then there exist two functions f0 and f c from Ω
to L(K) such that:

(a) f = f c + f0;
(b) f c is κ-indefinite and weakly continuous;
(c) f0 is positive definite and it is zero locally almost everywhere.

In order to prove this theorem we need some previous results.
Let C00(Ω) denote the set of the complex valued function defined on Ω with

compact support. For α ∈ C00(Ω), let α∗(x) = α(x−1).

Proposition 4.2. For each α ∈ C00(Ω) there exists a linear operator Aα ∈
L(E) such that:

(a) For ϕ ∈ E, ω ∈ Ω and h ∈ K,

〈(Aαϕ)(ω), h〉K = (α ∗ 〈ϕ(·), h〉K)(ω) =
∫

Ω

α(y)〈ϕ(ωy−1), h〉K dy.

(b) A∗α = Aα∗ .

Proof. For α ∈ C00(Ω), consider the sesquilinear functional Bα from E × E
to C defined by

Bα(ϕ1, ϕ2) =
∫

Ω

α(y)〈ϕ1, Uyϕ2〉E dy

for ϕ1, ϕ2 ∈ E . Since ‖Uω‖ is locally bounded we have that B is continuous.
Therefore there exists a continuous linear operator Aα from E to E such that
Bα(ϕ1, ϕ2) = 〈Aαϕ1, ϕ2〉E .

Let ϕ ∈ E , ω ∈ Ω, and h ∈ K

〈(Aαϕ)(ω), h〉K = 〈UωAαϕ, τh〉E = 〈Aαϕ,U
−1
ω τh〉E =

∫

Ω

α(y)〈ϕ,UyU
−1
ω τh〉E dy

=
∫

Ω

α(y)〈ϕ(ωy−1), h〉K dy.

Let ϕ1, ϕ2 ∈ E ,

〈Aαϕ1, ϕ2〉E =
∫

Ω

α(y)〈ϕ1, Uyϕ2〉E dy =
∫

Ω

α(y)〈ϕ2, Uy−1ϕ1〉E dy

=
∫

Ω

α∗(y)〈ϕ2, Uyϕ1〉E dy = 〈Aα∗ϕ2, ϕ1〉E = 〈ϕ1, Aα∗ϕ2〉E .

Thus A∗α = Aα∗ .
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Proposition 4.3. (a) If α ∈ C00(Ω) and ϕ ∈ E then Aαϕ is weakly contin-
uous.

(b) If ϕ ∈ E and Aαϕ = 0 for all α ∈ C00(Ω) then ϕ(ω) = 0 locally almost
everywhere.

Proof. If h ∈ K and ω ∈ Ω then

〈(Aαϕ)(ω), h〉K =
∫

Ω

α(y) 〈ϕ(ωy−1), h〉K dy =
∫

Ω

α(ωy−1) 〈ϕ(y), h〉K dy.

Since ϕ is locally bounded and α is continuous with compact support it follows
that the function ω 7→ 〈(Aαϕ)(ω), h〉K is continuous.

Let ϕ ∈ E such that Aαϕ = 0 for all α ∈ C00(Ω). Then for each h ∈ K we
have that ∫

Ω

α(ωy−1) 〈ϕ(y), h〉K dy = 0

for all α ∈ C00(Ω). Thus 〈ϕ(ω), h〉K = 0 locally almost everywhere.
Let {en}n>1 be a complete orthogonal subset of K. For each n ∈ N there

exists a locally null set An ⊂ Ω such that 〈ϕ(ω), en〉K = 0 if ω /∈ An.
Let A =

⋃
n>1

An. Then A is locally null and 〈ϕ(ω), h〉K = 0 if ω /∈ A and

h ∈ K. Therefore ϕ(ω) = 0 locally almost everywhere.

Consider C = {ϕ ∈ E : ϕ is weakly continuous}.
As usual, let C⊥ = {ϕ ∈ E : 〈ϕ,ψ〉E = 0 for all ψ ∈ E}.
Proposition 4.4. (a) The space C is a closed linear space.
(b) Every function of C⊥ is zero locally almost everywhere.
(c) C ∩ C⊥ = {0}.
(d) The space C is a nondegenerate subspace of E. That is, C is a Pontryagin

space with the indefinite inner product 〈 · , · 〉E .
(e) C and C⊥ are invariant under (Uω)ω∈Ω.

Proof. It is clear that C is a linear space. Let {ϕn} ⊂ E and ϕ ∈ E be such
that lim

n→∞
‖ϕn − ϕ‖|E| = 0. For ω ∈ Ω and h ∈ K

|〈ϕn(ω)− ϕ(ω), h〉K| = |〈ϕn − ϕ,U−1
ω τh〉E | 6 ‖ϕn − ϕ‖|E|‖U−1

ω τh‖|E|
6 ‖ϕn − ϕ‖|E|‖U−1

ω ‖ ‖τh‖|E|.
From Propositions 3.2 and 3.7 we have that ‖U−1

ω ‖ is locally bounded. Then

lim
n→∞

〈ϕn(ω), h〉K = 〈ϕ(ω), h〉K
uniformly on compact subsets of Ω, thus ϕ ∈ C. Therefore C is closed.

By Proposition 4.3, if ψ ∈ E , Aαψ ∈ C for all α ∈ C00(Ω). Therefore if
ϕ ∈ C⊥ then

〈Aαϕ,ψ〉E = 〈ϕ,Aα∗ψ〉E = 0 for all ψ ∈ E .
Again by Proposition 4.3, ϕ = 0 locally almost everywhere.

If ϕ ∈ C ∩ C⊥ then ϕ must be weakly continuous and zero locally almost
everywhere, so (c) and (d) follow.
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Clearly, C is invariant under (Uω)ω∈Ω. Finally (e) follows from

U∗ω = U−1
ω = Uω−1 .

The following result is an extension of Lemma 5.3.4 given in [16].

Lemma 4.5. Let f be κ-indefinite where κ > 1. If x1, . . . , xn ∈ Ω and
h1, . . . , hn ∈ K, are such that

M =
(〈f(x−1

i xj)hi, hj〉K
)n

i,j=1

has exactly κ negative eigenvalues, counted according to their multiplicity, then

Ω =
n⋃

i,j=1

xiS(f, hi, hj)x−1
j

where S(f, h, h′) = {ω ∈ Ω : 〈f(ω)h, h′〉K 6= 0} for h, h′ ∈ K.

Proof. If the result were not true there would exist z ∈ Ω such that z /∈
xiS(f, hi, hj)x−1

j , i, j = 1, . . . , n, so we would have that

〈f(x−1
i zxj)hi, hj〉K = 0.

Let y1, . . . , y2n ∈ Ω and h′1, . . . , h
′
2n ∈ K be defined by

yi = xi, yn+i = zxi, h′i = hi, h′n+i = hi,

for i = 1, . . . , n. Then

(〈f(y−1
i yj)h′i, h

′
j〉K)2n

i,j=1 =
(
M 0
0 M

)

which has 2κ negative eigenvalues. This is a contradiction.

Corollary 4.6. If f is κ-indefinite and f vanish locally almost everywhere
then f is positive definite.

Proof. If f = 0 locally almost everywhere, then every set of the form
x−1

i S(f, hi, hj)x−1
j , x1, . . . , xn ∈ Ω and h1, . . . , hn ∈ K would have locally measure

zero. Therefore if κ > 1, the whole group Ω would be locally null. Thus κ = 0.

Now we prove Theorem 4.1.
Since C is orthocomplemented the orthogonal projection of E on C, P = P EC ,

is a bounded linear operator.
Given ω ∈ Ω set

f c(ω) = τ∗UωPτ.

Then f c(ω) ∈ L(K).
Let h1, h2 ∈ K, then

〈f c(ω)h1, h2〉K = 〈τ∗UωPτh1, h2〉K = 〈UωPτh1, τh2〉E = 〈Pτ(ω)h1, h2〉K.
Since Pτ is weakly continuous it follows that f c is weakly continuous.

Now we shall prove that f c has a finite number of negative squares. By (e)
of Proposition 4.4, (Uω)ω∈Ω and P commute, therefore

〈f c(ω)h1, h2〉K = 〈τ∗UωPτh1, h2〉K = 〈UωP
2τh1, τh2〉E = 〈UωPτh1, P τh2〉E .
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Thus∑

i

∑

j

λiλj〈f c(ω−1
i ωj)hi, hj〉K

=
∑

i

∑

j

λiλj〈Uω−1
i

ωj
Pτhi, P τhj〉E =

∑

i

∑

j

λiλj〈U−1

ω−1
j

ωi
Pτhi, P τhj〉E

=
∑

i

∑

j

λiλj〈U−1
ωi
Pτhi, U

−1
ωj
Pτhj〉E =

〈 ∑

i

λiU
−1
ωi
Pτhi,

∑

j

λjU
−1
ωj
Pτhj

〉
E
.

Then f c is κc-indefinite, where κc 6 κ.
Set f0(ω) = f(ω) − f c(ω) then f0(ω) = τ∗Uω(I − P )τ. As before it follows

that f0 is κ0-indefinite, where κ0 6 κ.
Let h1, h2 ∈ K. Since I − P is the orthogonal projection on C⊥, from (b)

of Proposition 4.4 it follows that (I − P )τ(ω)h1 = 0 locally almost everywhere.
Therefore

〈f0(ω)h1, h2〉K = 〈τ∗Uω(I − P )τh1, h2〉K = 〈Uω(I − P )τh1, τh2〉E
= 〈(I − P )τ(ω)h1, h2〉K = 0,

locally almost everywhere.
Let {en}n>1 be a complete orthogonal subset of K. For each n,m ∈ N there

exists a locally null set Anm ⊂ Ω such that

〈f0(ω)en, em〉K = 0 if ω /∈ Anm.

Let A =
⋃

n,m>1

Anm. Then A is locally null and, for all h1, h2 ∈ K,

〈f0(ω)h1, h2〉K = 0 if ω /∈ A.
Thus f0(ω) = 0 locally almost everywhere.

Finally from Corollary 4.6 it follows that f0 is positive definite and therefore
κc = κ.

5. ON MEASURABLE UNITARY GROUPS

The following theorem is an extension for groups of unitary operators on Pontrya-
gin spaces, of a result given in [7].

Theorem 5.1. Let (Ω, ·) be a locally compact group and let G be a separable
Pontryagin space. If (Tω)ω∈Ω ⊂ L(G) is a weakly measurable group of unitary
operators, then (Tω)ω∈Ω is strongly continuous.

Proof. Let κ be the index of G. Since (Tω)ω∈Ω is a unitary group, it is a
κ-indefinite function.

By Theorem 4.1 we have that

Tω = T (ω) = V (ω) +R(ω),

where V (ω) is a κ-indefinite weakly continuous function and R(ω) is positive def-
inite and equal to zero locally almost everywhere.
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For x ∈ Ω let
Ωx = {ω ∈ Ω : R(ω x) = 0}.

The set ΩC1 is locally null and it is clear that Ωx = Ω1x
−1, therefore ΩCx is also

locally null.
Let ω0 ∈ Ω be such that R(ω0) = 0. If ω ∈ Ω1 ∩ Ωω0 then

R(ωω0) = R(ω) = R(ω0) = 0

and
V (ωω0) = V (ωω0) +R(ωω0) = T (ωω0) = T (ω)T (ω0)

= (V (ω) +R(ω))(V (ω0) +R(ω0)) = V (ω)V (ω0).

We have that V is weakly continuous, the set (Ω1 ∩ Ωω0)
C = ΩC1 ∪ ΩCω0

is
locally null and R(ω) = 0 locally almost everywhere. Therefore

V (ωω′) = V (ω)V (ω′)

for all ω, ω′ ∈ Ω. Since R is positive definite, we have that R(x) = R∗(x−1) for all
x ∈ Ω.

Let ω ∈ Ω be such that R(ω) = 0, then

R(ω−1) = 0, T (ω) = V (ω) and T (ω−1) = V (ω−1).

So
V (1) = V (ω)V (ω−1) = T (ω)T (ω−1) = T (1) = I.

Therefore R(1) = 0. Since R is positive definite it follows that R ≡ 0.
So we have that (Tω)ω∈Ω is weakly continuous. From Corollary 3.6 it follows

that (Tω)ω∈Ω is strongly continuous.
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10. I.S. Iokhvidov, M.G. Krĕın, H. Langer, Introduction to the Spectral Theory of
Operators in Spaces with an Indefinite Metric, Akademie-Verlag, Berlin 1982.
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RAMÓN BRUZUAL MARISELA DOMÍNGUEZ
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