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1. INTRODUCTION

Among the analytic triangular AF (TAF) algebras, the Z-analytic algebras are
those admitting an integer-valued cocycle. The purpose of this paper is to explore
the connection between these algebras and dynamical systems.

The work of this paper may be, in a sense, considered a parallel version
for nonselfadjoint algebras to the program of [7] and [5] studying the connec-
tions between zero-dimensional dynamical systems, crossed products, and their
K-theoretic invariants. In some respects, the situation here is simpler: isomor-
phism of standard Z-analytic dynamical systems is equivalent to conjugacy of the
dynamical systems, so notions such as strong orbit equivalence are not needed.
Also, since the K-theory for nonselfadjoint algebras is not well developed, we do
not attempt to discuss K-theoretic invariants. On the other hand, there are com-
plications in the nonselfadjoint situation not encountered in the selfadjoint case.
First of all, the dynamical systems are only partially defined; worse yet, the “dy-
namical systems” may require an infinite sequence of partial homeomorphisms
whose graphs are nested. The algebras to which the dynamical systems are as-
sociated are nonselfadjoint subalgebras of groupoid C∗-algebras (cf. [8]), or may
also be viewed as nonselfadjoint subalgebras of generalized crossed products in the
sense of Exel ([3], [4]).
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By a spectral triple (X,P,R) we mean X is a compact space, which in our
setting will always be zero-dimensional, R is a groupoid which is an equivalence
relation on X having unit space X, and P an open subset of R with P ∪ P−1 =
R, P ◦ P ⊆ P, and P ∩ P−1 = X ([17]). P determines a nonselfadjoint algebra
A = A(P) ⊂ C∗(R) ([8]), which is “triangular” in the sense that A∩A∗ ∼= C(X) ⊂
C∗(R). The spectral triples we will study have the property that for all (x, y) ∈ P
the set

{z : (x, z), (z, y) ∈ P}
has finite cardinality. In other words, regarding P as giving an ordering to the
equivalence classes of X, the order type is that of a subset of the integers.

For example, if X is a compact metrix space, ϕ : X → X a homeomorphism,
set

R = {(x, ϕn(x)) : x ∈ X,n ∈ Z}, and P = {(x, ϕn(x)) : x ∈ X,n > 0},
then C∗(R) is the crossed product algebra C(X) ×ϕ Z, A(P) the semicrossed
product algebra C(X) ×ϕ Z+. Suppose X is zero-dimensional, and ϕ a partial
homeomorphism on X. That is, ϕ is a homeomorphism from dom (ϕ) to ran(ϕ),
where both dom (ϕ), ran(ϕ) are open subsets ofX. Then, under certain conditions,
C∗(R) is an AF algebra, and A(P) a standard Z-analytic subalgebra. The partial
homomorphism may arise as the restriction of a homeomorphism of X, (the case
studied in [7]) or it may not admit an extension to a homeomorphism.

Returning to our general setting, suppose (X,P,R) is a spectral triple such
that each equivalence classes of X has the order type of a subset of the integers.
In that case it is possible to define a partial mapping Φ on X which maps each
point to its immediate successor in the ordering. dom (Φ) is the set of all points
which have a successor. In general, such a map need not be continuous. Spectral
triples of this kind can arise from nested sequences of partial homoemorphisms,
{ϕn}n∈Z. By nested sequence we mean that ϕ−n = ϕ−1

n , n ∈ Z, ϕ0 is the identity
map, and that the graphs are nested in the sense

Γ(ϕn ◦ ϕm) ⊂ Γ(ϕn+m), n,m ∈ Z.
Given a partial homeomorphism ϕ of a zero dimensional space X, under

what conditions is the groupoid R(X,ϕ) := {(x, ϕn(x)) : x ∈ X, n ∈ Z} an AF
groupoid? We prove that this happens exactly when (X,ϕ) is conjugate to (B,ψ),
where B is an ordered Bratteli compactum and ψ the Veršik map on B. And
this is the case if and only if for any clopen set U containing the complement of
the range of ϕ, each x ∈ X belongs to the forward orbit of some point u ∈ U
(Corollary 4.13).

The more general case in which R is the union of the graphs Γ(ϕn) of a
nested sequence of partial homeomorphims is precisely the case in which R admits
a (continuous) integer valued cocycle. Here, too, we have necessary and sufficient
conditions, given in terms of dynamical systems, for R to be an AF groupoid.

Though our goal initially was to study nonselfadjoint algebras, our approach
leads to some new results in AF algebras and dynamical systems. Our approach,
however, comes naturally from looking at nonselfadjoint algebras. The nonselfad-
joint algebras we study are the strongly maximal subalgebras of AF algebras which
admit an integer-valued cocycle, i.e., the Z-analytic algebras. Theorem 3.1 in Sec-
tion 3 gives various characterizations of Z-analytic algebras (and spectral triples)
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assuming the enveloping groupoid is AF, and an analogous result for standard Z-
analytic algebras is presented in Theorem 3.2. In Section 4 two standard Z-analytic
algebras are shown to be isomorphic if and only if their partial dynamical systems
are conjugate. (There is a corresponding result for semicrossed products and dy-
namical systems; cf. [14].) We return to this theme again in the context of nested
sequences of partial homeomorphisms in Section 5 in which the dynamics may not
be continuous (Theorem 5.3). An example of a Z-analytic semigroupoid which is
not standard is given in Theorem 5.1. This example admits a semi-saturation, and
in the final of Section 5 we consider necessary and sufficient conditions for a nested
sequence of partial homeomorphisms to admit a semi-saturation. Example 5.2 is
one that does not admit a semi-saturation.

2. PRELIMINARIES

We begin this section with a review of terminology for AF groupoids and semi-
groupoids ([15]).

Let A be a triangular AF algebra, or simply TAF algebra, with canonical
masa D = A ∩ A∗, and C∗-envelope B. In the spectral triple for A, denoted
(X,P,R), X is the Gelfand space of the commutative C∗-algebra D,R is the AF
groupoid of B, and P is the semigroupoid corresponding to the subalgebra A. If
v is a matrix unit of A, or more generally if v is a D-normalizing partial isometry
in A, let v̂ denote its support: i.e., v̂ is the support set of v, viewed as a function
on the groupoid R. Thus,

P =
⋃
{v̂ : v is a matrix unit of A}.

The sets v̂, as v ranges over the matrix units of A, form a basis for the topology
of P. (And the sets v̂, form a basis for the topology of R, as v ranges over the
matrix units of B.)

A cocycle (or, more precisely, a real-valued 1-cocycle) on R is a map c : R→
R satisfying:

• the cocycle condition: for all (x, y), (y, z) ∈ R, c(x, y) + c(y, z) = c(x, z);
• continuity: c is continuous from R to R.

A TAF algebra A with spectral triple (X,P,R) is said to be analytic if there
is a (real-valued 1-) cocycle c such that c−1([0,∞)) = P. We say in this case
that A is the analytic TAF algebra defined by c, and write A = Ac. A is called
Z-analytic if the cocycle c can be chosen to be integer valued.

There is a proper subclass of the Z-analytic algebras, called the standard Z-
analytic algebras. If A is any strongly maximal TAF subalgebra of an AF algebra
B, then by Lemma 1.1, [11], there is a sequence {Bn} of finite dimensional C∗-

algebras of B, say Bn =
r(n)⊕
k=1

Mm(n,k), and a set of matrix units {e (nk)
ij } for

∞⋃
n=1

Bn

such that

An := A ∩Bn =
r(n)⊕

k=1

Tm(n,k),
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where Tm(n,k) is the upper triangular subalgebra of Mm(n,k), and A = lim
→

An and
B = lim

→
Bn. Then A is called standard if the embeddings An → An+1 can be

chosen to be standard ([13]); i.e., standard embeddings in the sense of Effros ([2]).
Since Z-analytic algebras are defined by means of the existence of an integer-valued
cocycle, it is not obvious from the definition that standard Z-analytic algebras form
a subclass of the Z-analytic. If A is Z-analytic with spectral triple (X,P,R), and
hence admits an integer-valued cocycle d, it follows that if x < y are two points in
X belonging to the same equivalence class, then there are at most finitely many
points in the equivalence class between x and y: indeed, the number of such points
can be at most d(x, y). Thus one can define an integer-valued function on d̂, on
P, called the counting cocycle:

d̂(x, y) = Cardinality of {z ∈ X : d(x, z) > 0 and d(z, y) > 0}.
It is clear that d̂ satisfies the additivity property for cocycles; however in general it
is not continuous. From [13] it is known that the standard Z-analytic algebras are
precisely the ones for which the counting cocycle is continuous (cf. Theorem 3.2).

Definition 2.1. A partial dynamical system (X,Xmax, Xmin, ϕ) is a quadru-
ple where X is a compact metric space, Xmax, Xmin are closed subsets, and
ϕ : X \ Xmax → X \ Xmin is a homeomorphism. Then ϕ is called a partial
homeomorphism on X. The graph of ϕ will be denoted Γϕ.

In this paper X will always be assumed to be zero dimensional. For n a posi-
tive integer, ϕn will denote the n-fold composite of ϕ, and for n a negative integer,
ϕn will denote the n-fold composite of ϕ−1. Also we adhere to the convention that
ϕ0 = idX .

For U ⊂ X, we write ϕ(U) to mean ϕ(U \ Xmax), and similarly ϕn(U) =
ϕn(U ∩ dom(ϕn)). Since Xmax is closed it follows that if U is open, ϕ(U) is open;
and ϕn(U) is open, n ∈ Z.

3. CHARACTERIZATIONS OFZ-ANALYTIC AND STANDARDZ-ANALYTIC ALGEBRAS

We begin with several characterizations of Z-analytic and standard Z-analytic
algebras. For subsets A,B of an operator algebra A, we will write [A ·B] to denote
the closed linear span of the set {ab : a ∈ A, b ∈ B}. Let T be the circle formed
by identifying the end points of [0, 1].

Theorem 3.1. Let A be a strongly maximal TAF algebra with spectral triple
(X,P,R). The following conditions are equivalent:

(i) C∗(A) admits a continuous action α of T, with fixed point algebra the
diagonal D, and such that

A =
{
b ∈ C∗(A) :

∫

T

αt(b)e2πint dt = 0 for all n > 1
}
.

(ii) There is a sequence {A(n)}, n > 0, of closed linear subspaces of A
satisfying:
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(a) A(0) is the diagonal D;
(b) A(n) ∩ A(m) = (0), n 6= m;
(c) [A(n) · A(m)] ⊂ A(n+m), for all n,m > 0;

(d)
∞⊕

n=0
A(n) is dense in A.

(iii) A is Z-analytic.
(iv) There is a nested sequence {ϕn} of partial homeomorphisms of X, with

ϕ0 = idX , the graph Γϕn
open in P, n > 0, and such that

P =
∞⊔

n=0

Γϕn
(disjoint union).

Proof. (i) ⇒ (ii) Note that α acts on A. Set A(n) := {a ∈ A : a =
1∫
0

αt(b)e−2πint dt, for some b ∈ A}. It follows from the definition of A that A(n) =

(0) for all n < 0. First we show (ii) (a). Since the fixed point algebra of α is the

diagonal D, clearly A(0) ⊃ D. Now let a ∈ A(0); then, if a =
1∫
0

αt(b) dt

αs(a) =

1∫

0

αs(αt(b)) dt =

1∫

0

αs+t(b) dt =

1∫

0

αt(b) dt = a,

where the last equality uses the translation invariance of Lebesgue measure on
T. Thus, the fixed point algebra of α, which by assumption is D, contains A(0).
Hence, A(0) = D.

Next, observe that A(n) = {a ∈ A : αt(a) = e2πinta, t ∈ T}. Indeed, let

a =
1∫
0

αt(b)e−2πint dt, b ∈ A. Then, for s ∈ T,

αs(a) =

1∫

0

αs+t(b)e−2πint dt =

1∫

0

αu(b)e−2πin(u−s) du = e2πinsa.

Conversely, if αs(a) = e2πinsa, a similar calculation shows that a ∈ A(n). Thus,
(ii) (b) is clear, as is (ii) (c).

To show (ii) (d), let ω be a continuous linear functional on A, and suppose

〈a, ω〉 = 0 for all a ∈ A(n), n ∈ Z.
Fix b ∈ A, and consider the continuous function f on T, f(t) = 〈αt(b), ω〉. By the
characterization of A(n) above, we have f̂(n) = 0 for all n ∈ Z. Thus, f = 0, and
hence 〈b, ω〉 = 0. Since b ∈ A was arbitrary, it follows that ω = 0. Thus,

⊕
n∈Z

A(n)

is dense in A. Since by assumption the spaces A(−n), n > 0, are (0), we have that
∞⊕

n=0
A(n) is dense in A.
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(ii)⇒ (iii) Condition (c) of (ii) implies that each A(n) is a closed D-bimodule.
Hence, by Theorem 2.2, [11], A(n) is spanned by the matrix units it contains. Write

Â(n) =
⋃
{v̂ : v a matrix unit in A(n)}.

We claim:
∞⋃

n=0
Â(n) = P.

Let (x0, y0) ∈ P, and suppose (x0, y0) /∈ Â(n), n > 0. Define a representation
π of A as follows: let Hπ be a Hilbert space with orthonormal basis {ξx}x∈O(x0),
and define π on matrix units by

π(v)ξx =
{
ξy if (x, y) ∈ v̂, x ∈ O(x0),
0 otherwise.

By [9], π extends to a representation of A. By supposition, (π(a)ξx0 , ξy0) = 0 for

a ∈ A(n), hence for a ∈
∞⊕

n=0
A(n). Since

∞⊕
n=0

A(n) is dense in A, we have that

(π(a)ξx0 , ξy0) = 0 for a ∈ A. That is impossible, since there is a matrix unit v ∈ A
with (x0, y0) ∈ v̂, hence (π(v)ξx0 , ξy0) = 1. This proves the claim.

Next, Â(n) ∩ Â(m) = ∅, for n 6= m. Indeed, the intersection Â(n) ∩ Â(m) is
open, so if it is nonempty there is a matrix unit v such that v̂ lies in the intersection.
But then v ∈ A(n) ∩ A(m), contradicting (ii) (b).

Define a cocycle d : P → Z, by d(x, y) = n if (x, y) ∈ Â(n). Then d is
well-defined, and continuous since d−1(n) = Â(n) is open in P. Also, if (x, y) ∈
Â(n), (y, z) ∈ Â(m), then by (ii) (c), (x, z) ∈ Â(n + m). So d(x, y) + d(y, z) =
d(x, z), i.e., the cocycle condition is satisfied on P. Then d can be extended to a
cocycle on R by setting d(y, x) = −n if d(x, y) = n. One easily checks that the
cocycle condition is satisfied on the groupoid R.

(iii) ⇒ (iv) Let d be a cocycle for A and ϕn be the partial homeomorphism
on X whose graph Γϕn is d−1(n). It is clear from the cocycle condition that {ϕn}
form a nested sequence and that the graphs Γϕn have the required properties.

(iv) ⇒ (i) Write Γn = Γϕn . We will define a T action on A first by defining
it on matrix units.

Let v be a matrix unit in A; then (by compactness) v̂ =
N⋃

k=0

Γk ∩ v̂, for some

N ∈ Z. Observe that Γk is both open and closed in P, so that, setting v̂k := Γk∩ v̂,
each vk is a matrix unit or sum of matrix units in A. Now set

αt(v) =
N∑

k=0

e2πiktvk, t ∈ T.

Then αt extends by linearity to (the dense subalgebra of) all finite linear com-
binations of matrix units. A short calculation shows that αt is isometric, so it
extends to an isometric map of A. By the nested property of the Γn, the au-
tomorphism property αt(ab) = αt(a)αt(b) holds for a, b matrix units, hence for
linear combinations of matrix units, and finally for arbitrary a, b ∈ A. One can
verify directly, or use [11] or [15] to get that αt is the restriction of a star au-
tomorphism of C∗(A). Finally, one notes that the action t → αt is continous in
the pointwise-norm topology; i.e., for each a ∈ A, the map t → αt(a) is norm
continuous.
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Recall from [3] that a continuous action α of T on a C∗-algebra B is semi-
saturated, if B is generated as a C∗-algebra by the fixed point algebra and the
first spectral subspace B(1). (i.e., B(1) = {b ∈ B : αt(b) = e2πitb}.)

Theorem 3.2. Let A be a strongly maximal TAF algebra with spectral triple
(X,P,R). The following conditions are equivalent:

(i) There is a semi-saturated action α of T on C∗(A) with fixed point
algebra the diagonal D, such that

A =
{
b ∈ C∗(A) :

∫

T

αt(b)e2πint dt = 0 for all n > 1
}
.

(ii) There is a sequence A(n), n > 0, of closed linear subspaces of A satis-
fying

(a) A(0) is the diagonal D;
(b) A(n) ∩ A(m) = (0), n 6= m;
(c) [A(n) · A(m)] = A(n+m), for all n,m > 0;

(d)
∞⊕

n=0
A(n) is dense in A.

(iii) The counting cocycle d̂ is finite-valued and continuous on R, and
d̂−1([0,∞)) = P;

(iv) A is a standard TAF algebra;
(v) There is a partial homeomorphism ϕ of X such that the graph Γϕ is

open in P \∆(X), and

P \∆(X) =
∞⋃

n=1

Γϕn ,

where ϕn is the n-fold composite of ϕ.

Proof. (i) ⇒ (ii) With the spectral subspaces A(n) defined as in the proof
of Theorem 3.1, the condition that α be semi-saturated implies that A(n) =
closed span{a1 · · · an : aj ∈ A(1)}, n = 2, 3, . . .. In particular, this implies (ii) (c).
Otherwise the proof is the same as (i) ⇒ (ii) of Theorem 3.1.

(ii) ⇒ (i) Define an action of T on the algebraic direct sum of the A(n),
n > 0, by

αt

( ∑
aj

)
=

∑
e2πinjtaj , where aj ∈ A(nj).

Then α extends to an action of T on
⊕
n∈Z

A(n), which is dense A, hence to an action

of A. Define αt on A(n)∗ by αt(a) = e−2πinta, a ∈ A(n)∗, n > 0. This gives rise
to an isometric action on A∗, and hence a star-action of T on the norm-closure of
A + A∗, which is C∗(A).

(ii) (c) implies that the action is semi-saturated.
(ii) ⇒ (v) We use the same notation as in Theorem 3.1. Thus, Â(n) =⋃{v̂ : v a matrix unit in A(n)}. By assumption, A(1) ∩ A(0) = A(1) ∩ D = (0),

so that Â(1) ∩ ∆(X) = ∅. So Â(1) is the graph Γϕ of a partial homeomorphism
ϕ of X, and the graph Γϕ is disjoint from the diagonal set ∆(X). Also, repeated
application of (ii) (c) implies that Γϕn = Â(n), n > 1. Now as in the proof of
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(ii) ⇒ (iii) of Theorem 3.1,
∞⋃

n=0
Â(n) = P, so that

∞⋃
n=1

Â(n) = P \∆(X). Hence,
∞⋃

n=1
Γϕn = P \∆(X).

(v) ⇒ (ii) Let A(n) be the closed linear span of the set {v ∈ A : v a matrix
unit, v̂ ⊂ Γϕn}. We claim that

Γϕn ∩ Γϕm = ∅ for n 6= m.

Case 1. n = 0 < m. Of course if m = 1, it is true by assumption. If
Γϕm ∩∆(x) 6= ∅ for some m > 1, let (x, x) ∈ Γϕm ∩∆(x). Then there is a y ∈ X
with (x, y) ∈ Γϕm−1 and (y, x) ∈ Γϕ. But then (x, y) and (y, x) are both in P, or
(x, y) ∈ P ∩ P−1 = ∆(X), so that y = x and (x, x) ∈ Γϕ, contrary to hypothesis.

Case 2. 0 < n < m. Suppose (x, y) ∈ Γϕn ∩ Γϕm . Then ϕn(x) = y and
ϕm(x) = y. But ϕm(x) = ϕm−n ◦ ϕn(x), so that ϕm−n(y) = y. Since by Case 1
the graph of ϕm−n is disjoint from the diagonal, this is impossible. Thus the claim
is established.

From the claim we have A(n) ∩A(m) = (0) for n 6= m. Then (ii) (d) follows

from the fact that
∞⊕

n=0
A(n) contains the algebra spanned by the matrix units of A.

(iii) ⇔ (iv) Follows from Proposition 2.8 and Theorem 2.9 of [13].
(iii) ⇒ (v) Let Γϕ = d̂−1(1). This is open in P and disjoint from ∆(X). It

follows that Γϕn = d̂−1(n), and hence

P = d̂−1([0,∞)) =
∞⋃

n=0

Γϕn ,

so (with ϕ0 = idX), P \∆(X) =
∞⋃

n=1
Γϕn .

(v) ⇒ (iii) Observe that the condition that Γϕ is open in P \∆(X) implies
that the sets Γϕn are disjoint and open. Furthermore, the orbit (or equivalence
class) of a point x ∈ X is given by O(x) = {ϕn(x) : x ∈ dom(ϕn), n ∈ Z} (where
for n negative, ϕn(x) denotes the n-fold composite of ϕ−1 at x). In particular,
each orbit has the order type of a subset of Z, so that d̂ is finite on the groupoid
R : d̂(x, y) = n if and only if y = ϕn(x). Thus the counting cocycle d̂ is finite and
continuous on R, and P = d̂−1([0,∞)).

Let X be a zero-dimensional compact space and (X,P,R) a spectral triple
defined by a partial homeomorphism (respectively, a nested sequence of partial
homeomorphisms) on X. Then Theorem 3.2 (respectively, 3.1) shows that A(P)
is standard Z-analytic (respectively, Z-analytic) if and only ifR is an AF groupoid.
In the next two sections we will give necessary and sufficient conditions for R to
be AF.
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4. ORDERED BRATTELI DIAGRAMS AND PARTIAL DYNAMICAL SYSTEMS

Let V and W be two non-empty finite sets. An ordered diagram from V to W
consists of a partially ordered set E and surjective maps r : E →W and s : E → V
such that e and e′ are comparable if and only if r(e) = r(e′). Sometimes we just
write E for (E, r, s). The elements of V and W are the vertices and the elements
of E are the edges of the diagram.

An ordered Bratteli diagram (V, E) consists of a vertex set

V = V0 ∪ V1 ∪ · · · (disjoint union of finite sets),

where V0 is a singleton, and

E = {(En, rn, sn) : n > 1},
where (En, rn, sn) is an ordered diagram from Vn−1 to Vn. If ei ∈ Ei with ri(ei) =
si+1(ei+1) for all i, m < i < n, then (em+1, em+2, . . . , en) is a path from Vm to Vn.
Let X = X(V, E) consist of all infinite sequences (e1, e2, . . .) of edges with ei ∈ Ei

and ri−1(ei−1) = si(ei) for all i. For x = (en)∞n=1 ∈ X and n > 1, we will write
x(n) = en.

Suppose (V, E) is an ordered Bratteli diagram. For each path p = (e1, e2 . . .,
. . . , en) from V0 to Vn, let C(p) = {(f1, f2, . . .) ∈ X : fi = ei for all 1 6 i 6 n}.
We give X the smallest topology where each C(p) is open. In this topology, each
C(p) is actually both closed and open (clopen).

Proposition 4.1. X is a separable compact metrizable space.

Proof. Each En is a discrete space, hence metrizable. Let Y =
∞∏

n=1
En, with

the product topology. Therefore, Y is compact and metrizable and X ⊆ Y . The
topology of X is equal to that inherited from Y . X is separable because it has a
countable base {C(p) : n > 1, p = (e1, e2, . . . , en)}.

Given an ordered Bratteli diagram (V, E), let Xmax to be the set of maximal
paths, i.e., Xmax = {(ei) ∈ X : ei is maximal in Ei for all i}. Similarly, define
Xmin = {(ei) ∈ X : ei is minimal in Ei for all i}. Since X is compact, it follows
that these sets are always nonempty. Also it is clear that the sets Xmax, Xmin are
closed. Now for every (ei) ∈ X \Xmax, let k = min{i : ei is not maximal in Ei}
and let fk be the successor of ek in Ek. For 1 6 i < k, define fi so that
(f1, . . . , fk−1) is the unique minimal path (i.e., each fi is minimal in Ei) from
V0 to Vk−1 such that rk−1(fk−1) = sk(fk). Finally, let fn = en for n > k. Define
a partial mapping ϕ on X by ϕ((ei)) = (fi). For x, y ∈ X, we will write x 6 y if
ϕn(x) = y for some n > 0. Then 6 is a partial ordering on X.

Let x = (ei) ∈ X and n > 1. Define Cn(x) = C(p), where p = (e1, . . . , en).
If x = (ei) ∈ X \ Xmax, then for every n > 1, there exists m > n such that
(e1, e2, . . . , em) is not maximal. We have ϕ(Ck(x)) = Ck(ϕ(x)) for all k > m.
Since every open subset of X \ Xmax is a union of clopen subsets Ck(x), ϕ is a
partial homeomorphism.
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Definition 4.2. Let B = (V, E ,>) be an ordered Bratteli diagram, and let
(X,Xmax, Xmin, ϕ) be the partial dynamical system constructed above. The par-
tial homeomorphism ϕ is called a Veršik transformation, and (X,Xmax, Xmin, ϕ)
the Veršik partial dynamical system associated with B.

For x ∈ X, let

O(x) = {ϕn(x) : n ∈ Z, x ∈ dom ϕn},
O+(x) = {ϕn(x) : n > 0, x ∈ dom ϕn} = {y ∈ X : y > x},
O−(x) = {ϕn(x) : n 6 0, x ∈ dom ϕn} = {y ∈ X : y 6 x},

and ω+(x) and ω−(x) be the accumulation points of O+(x) and O−(x).

Proposition 4.3. Let (V, E) be an ordered Bratteli diagram and Xmax,
Xmin, and ϕ as defined above. Suppose U (respectively, V ) is a clopen subset
of X containing Xmin (respectively, Xmax). Then we have:

(i)
∞⋃

n=0
ϕn(U) = X;

(ii)
∞⋃

n=0
ϕ−n(V ) = X.

Proof. We prove only (i), as the proof of (ii) is similar. Let x ∈ X. If O−(x)
is finite, then ϕ−n(x) ∈ Xmin for some n > 0. Therefore, x ∈ ϕn(Xmin) ⊆ ϕn(U).
So, we may assume that O−(x) is infinite.

We are going to show that there exists a sequence n1 < n2 < · · · such that
ϕ−ni(x) converges to some x0 ∈ Xmin. Choose m such that Cm(x0) ⊆ U . Then we
have ϕ−ni(x) ∈ Cm(x0) ⊆ U for sufficiently large i, and hence x ∈ ϕni(Cm(x0)) ⊆
ϕni(U).

For each k > 1, let (ek
1 , . . . , e

k
k) be the unique minimal path from V0 to Vk

such that r(ek
k) = r(x(k)). Let xk ∈ X be the point satisfying xk(i) = ek

i for
1 6 i 6 k and xk(i) = x(i) for i > k. Then xk = ϕ−n(k)(x) for some n(k) > 0.
Since O−(x) is infinite, {xk : k > 1} is also infinite. Let x0 be an accumulation
point of {xk : k > 1}. Then x0 ∈ Xmin and there exists a subsequence ni = n(ki)
such that ϕ−ni(x) converges to x0.

We will be studying the relationship of ordered Bratteli diagrams and partial
dynamical systems. For the rest of this section, we will mainly consider partial
dynamical system satisfying the following conditions:

Definition 4.4. A Bratteli system is a quadruple (X,Xmax, Xmin, ϕ) where
Xmax and Xmin are closed subsets of the zero dimensional compact space X, and
ϕ : X \Xmax → X \Xmin is a homeomorphism such that if U (respectively, V ) is
a clopen subset of X containing Xmin (respectively, Xmax), then

(i)
∞⋃

n=0
ϕn(U) = X;

(ii)
∞⋃

n=0
ϕ−n(V ) = X.

Two Bratteli systems (X1, X1
max, X

1
min, ϕ1) and (X2, X2

max, X
2
min, ϕ2) are said

to be conjugate to each other if there exists a homeomorphism h : X1 → X2 such
that h(X1

max) = X2
max, h(X

1
min) = X2

min, and h ◦ ϕ1 = ϕ2 ◦ h.
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Remark 4.5. It will be shown that every Bratteli system is conjugate to
one arising from an ordered Bratteli diagram. This, together with Proposition 4.3,
justifies the above definition.

Since the clopen sets form a base for the topology of X, one could just as
well substitute “open” for “clopen” in the Definition 4.4. However, mostly it will
be convenient to work with clopen sets.

Lemma 4.6. Let Y be a clopen set containing Xmin. Set Z = ϕ−1(Y )∪Xmax.
Then Z is clopen and Y = ϕ(Z) ∪Xmin.

Proof. This follows from the fact that ϕ|X\Z is a homeomorphism from X \Z
to ϕ(X \ Z) = X \ Y .

Similarly, we have

Lemma 4.7. Let Z be a clopen set containing Xmax. Set Y = ϕ(Z) ∪Xmin.
Then Y is clopen and Z = ϕ−1(Y ) ∪Xmax.

We note that in the proof of the last two lemmas, the conditions (i), (ii) in
Definition 4.4 are not needed.

Proposition 4.8. Condition (i) in the definition of Bratteli system is equiv-
alent to condition (ii).

Proof. We show (i)⇒ (ii) By Lemma 4.7, we may assume that V = ϕ−1(Y )∪
Xmax for some clopen Y ⊇ Xmin. Suppose (ii) fails to hold. Then there exists
x0 ∈ X such that for all k > 0, ϕk(x0) /∈ V . In particular, ϕk(x0) /∈ Xmax, so
the forward orbit {ϕk(x0) : k > 0} is defined. Since V is open, the closed orbit
cl{ϕk(x0) : k > 0} does not intersect V , and hence ω+(x0) ∩ V = ∅.

Let x ∈ ω+(x0). Thus there is a sequence 0 6 k1 < k2 < · · · with x =
limϕkn(x0). By assumption (i), x = ϕm(y′) for some m > 0, y′ ∈ Y . Thus,
y′ = lim

n
ϕkn−m(y). Since Y is open, there is an n with kn − m > 0 for which

ϕkn−m(x0) ∈ Y . But then ϕkn−m−1(x0) ∈ V . This is a contradiction, and the
proof is complete.

The implication (ii) ⇒ (i) is analogous.

Remark 4.9. Note that Bratteli systems do not admit periodic points; that
is, there is no point x ∈ X and positive integer n such that x ∈ dom ϕn and
ϕn(x) = x.

Proof. Assume to the contrary there is a periodic point x with period n.
Then the orbit O(x) = {ϕj(x) : 0 6 j < n} is finite and evidently disjoint from
Xmax. Thus there is a clopen neighborhood Z of Xmax which is disjoint from O(x).
But by assumption (ii) of Bratteli systems there is a nonnegative integer j with
x ∈ ϕ−j(Z); i.e., ϕj(x) ∈ Z, a contradiction.
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4.1. Bratteli diagrams from partial dynamical systems. In this section
we will show that any partial dynamical system satisfying (i), (ii) (i.e., a Bratteli
system) is given by a Bratteli diagram. The proof follows Putnam’s construction
in [16].

Suppose (X,Xmax, Xmin, ϕ) is a Bratteli system. Let Y be a clopen subset
containing Xmin and Z = ϕ−1(Y ) ∪Xmax. Define λ : Y → Z by

λ(y) = min{k > 0 : ϕk(y) ∈ Z}.
By condition (ii) of a Bratteli system, λ(y) <∞ for all y ∈ Y . By the compactness

of X, there is an N ∈ Z+ such that
N⋃

n=0
ϕ−n(Z) = X. Therefore, λ(Y ) only takes

a finite number of values, say, J1 < J2 < · · · < Jm. Set

Yk = λ−1(Jk) ⊂ Y, and Y (k, j) = ϕj(Yk) for j = 0, . . . , Jk,

and k = 1, . . . , m. Then we have

(1)
m⋃

k=1

Y (k, 1) = ϕ(Y );

(2) ϕ(Y (k, j)) = Y (k, j + 1), for 0 6 j < Jk;

(3)
m⋃

k=1

Y (k, Jk) = Z;

(4)
m⋃

k=1

Jk⋃
j=0

Y (k, j) = X.

It follows from the definition that the sets Y (k, j), 1 6 k 6 m, 0 6 j 6 Jk

are disjoint.

(1) and (2) are clear. To show (3), let z ∈ Z. By assumption (i),
∞⋃

n=0
ϕn(Y ) =

X, so there is a smallest nonnegative integer j for which z ∈ ϕj(Y ). Set y =
ϕ−j(z).

Claim. For 0 6 ` < j, ϕ`(y) /∈ Z.

Suppose to the contrary that for some `, 0 6 ` < j, ϕ`(y) ∈ Z. Note that
ϕ`(y) /∈ Xmax, since ϕ`(y) ∈ dom ϕj−`. Thus, by definition of Z, y1 = ϕ(ϕ`(y)) ∈
Y , and z = ϕj−`−1(y1). Since j − `− 1 > 0, this contradicts our choice of j. This
establishes the claim.

Thus, λ(y) = j, so j ∈ {J1, . . . , Jk}, and hence z ∈ ϕJk(y) ∈ Y (k, Jk) for
some k.

The proof of (4) is similar. Let x ∈ X, and let j be the smalllest nonnegative
integer with x ∈ ϕj(Y ). Set y = ϕ−j(x). Then, as in the proof of (3), ϕ`(y) /∈ Z
for 0 6 ` < j. If y ∈ Yk, then x ∈ Y (k, j), since 0 6 j 6 Jk.

Note. The sets Y (k, j), 1 6 k 6 m, 0 6 j 6 Jk are open and form a
partition of X. Hence, each of them is both closed and open (clopen).

Definition 4.10. We will refer to such a partition as a Kakutani-Rohlin
partition, and to the sets {Y (k, j) : 0 6 j 6 Jk} as a tower.

Let the partial dynamical system (X,Xmax, Xmin, ϕ) be a Bratteli system,
and let {Yn}∞n=1 be a nested sequence of clopen sets containing Xmin such that
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∞⋂
n=1

Yn = Xmin. Then
∞⋂

n=1
(ϕ−1(Yn) ∪ Xmax) = Xmax. Let {Pn}∞n=1 be a nested

sequence of finite clopen partitions of X such that each Yn is a union of clopen
sets in Pn, n = 1, 2, . . ., and

∨Pn is a base for the topology of X.
Inductively, construct sequences Qn,P ′n where Qn is a finite clopen partition

of Yn, P ′n is a finite clopen partition of X as follows: set

Q1 =
∨

j=0,...,J(1,k)

∨

k=1,...,m(1)

{ϕ−j [(Y1(k, j) ∩ P ] : P ∈ P1}.

SoQ1 is a partition of Y1, and each set Y1(k, 0) is the union of sets Y1(k, 0)∩Q
as Q runs through Q1. Index these sets Y1(k, 0, i), 1 6 i 6 r(1, k). The sets

Y1(k, j, i) = ϕj(Y1(k, 0, i)),

1 6 k 6 m(1), 1 6 i 6 r(1, k), 0 6 j 6 J(1, k), partition X. Denote this partition
P ′1. Let P ′0 = {X}.

Suppose now that n > 1 and P ′1, . . . ,P ′n−1 have been defined so that P ′l is a
refinement of Pl and P ′l−1, for 1 6 l 6 n− 1. Set

Qn =
∨
{ϕ−j(Yn(k, j) ∩ P ) : P ∈ Pn ∨ P ′n−1, 1 6 j 6 J(n, k), 1 6 k 6 m(n)}.

Thus the set Yn(k, 0) is a union of sets Yn(k, 0) ∩ Q, Q ∈ Qn. Index these
sets by Yn(k, 0, i), 1 6 i 6 r(n, k). Then, let P ′n be the partition consisting of the
sets

Yn(k, j, i) = ϕj(Yn(k, 0, i)),

1 6 k 6 m(n), 1 6 i 6 r(n, k), 1 6 j 6 J(n, k).
Note that since P ′n is finer than Pn,

∨P ′n generates the topology of X.

Theorem 4.11. Let the partial dynamical system (X,Xmax, Xmin, ϕ) be a
Bratteli system. Then there is a Bratteli diagram B = B(V, E ,>) such that the
Veršik partial dynamical system (X ′, X ′

max, X
′
min, ϕ

′) associated to B is conjugate
to (X,Xmin, Xmax, ϕ).

Proof. The Bratteli diagram B to be constructed will have as its vertices the
set

Vn = {Yn(k, 0, i) : 1 6 i 6 r(n, k), 1 6 k 6 m(n)} for n > 1.

For convenience of notation, define V0 = {Y0(1, 0, 1)} = {X}. Let n > 1.
For each Yn(k, 0, i) and 0 6 ` 6 J(n, k), if Yn(k, `, i) ⊆ Yn−1(k′, 0, i′) for some
1 6 k′ 6 m(n − 1), 1 6 i′ 6 r(n − 1, k′), we put an edge e from Yn−1(k′, 0, i′)
to Yn(k, 0, i). We will indicate the correspondence between e and ` by j(e) = `.
Define s(e) = Yn−1(k′, 0, i′) and r(e) = Yn(k, 0, i). For two edges e1, e2 with
r(e1) = r(e2), we put e1 6 e2 if j(e1) 6 j(e2). This defines an ordered Bratteli
diagram B(V, E). Let (X ′, X ′

max, X
′
min, ϕ

′) be the corresponding Veršik partial
dynamical system. We are going to show that (X ′, X ′

max, X
′
min, ϕ

′) is conjugate to
(X,Xmin, Xmax, ϕ).

Since Yn ⊆ Yn−1, we have j(e) = 0 for all minimal edges e. Suppose e is
a maximal edge from Yn−1(k′, 0, i′) to Yn(k, 0, i). Let ` = j(e). Then we have
Yn(k, `, i) ⊆ Yn−1(k′, 0, i′) but Yn(k, j, i) ∩ Yn−1 = ∅ for all ` < j 6 J(n, k). Since
for each 0 6 j 6 J(n − 1, k′), Yn−1(k′, j, i′) ⊆ Yn−1 or Yn−1(k′, j, i′) ∩ Yn−1 = ∅,
we have Yn−1(k′, j − `, i′) ∩ Yn−1 = ∅ for ` < j 6 J(n, k). On the other hand,
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ϕ(Yn−1(k′, J(n, k)−`, i′))∩Yn−1 ⊃ ϕ(Yn(k, J(n, k), i))∩Yn = ϕ(Yn(k, J(n, k), i)) 6=
∅. Hence, J(n, k)− ` = J(n− 1, k′), which implies that ` = J(n, k)− J(n− 1, k′).

For 1 6 m 6 n, let em be an edge from Ym−1(km−1, 0, im−1) to Ym(km, 0, im),
then p = (e1, . . . , en) is a finite path in B from V0 to Vn. For each 1 6 m 6 n,

let jm = j(em). Define Ψ(p) = Yn(kn, sn, in) where sn =
n∑

m=1
jm. Suppose n > 1.

Let p′ = (e1, . . . , en−1) and sn−1 =
n−1∑
m=1

jm. We have

Ψ(p) = Yn(kn, sn−1 + jn, in) = ϕsn−1(Yn(kn, jn, in))

⊆ ϕsn−1(Yn−1(kn−1, 0, in−1)) = Ψ(p′).

Define a map ψ : X ′ → X as follows. Let x′ ∈ X ′ be the infinite path x′ =

(e1, e2, . . .). Then let {ψ(x′)} =
∞⋂

n=1
Ψ((e1, . . . , en)). Clearly, ψ is a homeomor-

phism such that ψ(X ′
min) = Xmin and ψ(X ′

max) = Xmax. Let x′ = (e1, e2, . . .) ∈ X ′
such that e` is an edge from Y`−1(k`−1, 0, i`−1) to Y`(k`, 0, i`) and j` = j(e`) for
all 1 6 ` 6 n. If x′ is not maximal, let m be the smallest integer such that em

is not maximal. Let j′m be the smallest integer j > jm such that Ym(km, j, im) ⊆
Ym−1(k′m−1, 0, i

′
m−1) for some k′m−1, i

′
m−1. Since Ym(km, j, im)∩ Ym−1 = ∅ for all

jm < j < j′m and Ym(km, j
′
m, im) ⊆ Ym−1, we have j′m− jm = 1+J(m− 1, km−1).

For 1 6 ` < m, j` = J(`, k`)−J(`− 1, k′`) because e` is maximal. Therefore, j′m =

1+J(m−1, km−1)+jm = 1+
m∑

`=1

j`. Let fm be the edge from Ym−1(k′m−1, 0, i
′
m−1)

to Ym(km, 0, im) with j(fm) = j′m. Let (f1, . . . , fm−1) be the unique minimal path
from V0 to Ym−1(k′m−1, 0, i

′
m−1). Then ϕ′(x′) = (f1, . . . , fm, em+1, em+2, . . .). For

n > m, let sn =
n∑

`=m+1

j`. We have

{ψ(ϕ′(x′))} =
∞⋂

n=m+1

Yn

(
kn,

m∑

`=1

j(f`) + sn, in

)
=

∞⋂
n=m+1

Yn(kn, j
′
m + sn, in)

= ϕ
( ∞⋂

n=m+1

Yn

(
kn,

m∑

`=1

j` + sn, in

))
= {ϕ(ψ(x′))}.

It follows that ψ ◦ ϕ′ = ϕ ◦ ψ.

Remark 4.12. It follows that for any choice of nested clopen sets Yn with
intersection Xmax the ordered Bratteli diagram with corresponding Veršik trans-
formation is conjugate to the given partial dynamical system. Thus, the Veršik
transformation is independent of the nested sequence {Yn}.

Corollary 4.13. Let (X,Xmax, Xmin, ϕ) be a partial dynamical system.
Then the following are equivalent:

(i) R = {(x, ϕn(x)) : x ∈ dom (ϕn), n ∈ Z} is an AF groupoid;
(ii) the partial dynamical system (X,Xmax, Xmin, ϕ) is conjugate to a Veršik

map on a Bratteli compactum;

(iii) for any clopen subset U containing Xmin,
∞⋃

n=0
ϕn(U) = X;
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(iv) for any clopen subset V containing Xmax,
∞⋃

n=0
ϕ−n(V ) = X.

For the next result we will need the notion of equivalence for ordered Bratteli
diagrams from [13] (Definitions 3.4, 3.5 and 3.6); for the reader’s convenience, we
recall the definition here.

Definition 4.14. Let V,W be (finite) vertex sets. Two ordered diagrams
(V,E, r, s), (V,E′, r′, s′) are order equivalent if there is an order-preserving bijection
Φ : E → E′ such that

r(e) = r′(Φ(e)) and s(e) = s′(Φ(e)).

Now, let (V, E), (W,F) be two ordered Bratteli diagrams. The Bratteli
diagrams are said to be order equivalent if there exist strictly increasing maps
g, h : N→ N with g(0) = h(0) and ordered diagrams E′n from Vn to Wg(n) and F ′n
from Wn to Vh(n) such that

F ′g(n) ◦ E′n is order equivalent to Eh(g(n)) ◦ · · · ◦ En+1

and

E′h(n) ◦ F ′n is order equivalent to Fg(h(n)) ◦ · · · ◦ Fn+1.

Remark 4.15. A contraction of an ordered Bratteli diagram B = (V, E) is
another ordered Bratteli diagram (V ′, E ′) together with a subsequence {nk} of the
positive integers such that V ′k = Vnk

and the edge set E′k consists of all paths from
Vnk−1 to Vnk

, ordered lexicographically.
Another definition of order equivalence of ordered Bratteli diagrams is as

follows: say B = (V, E), B′ = (V ′, E ′) are order equivalent if there is a third
ordered Bratteli diagram B′′ = (V ′′, E ′′) such that the contraction of B′′ to the
even vertices is a contraction of B, and the contraction of B′′ to the odd vertices
is a contraction of B′.

It is easy to see that this definition is equivalent to the one we have given
above.

While we have been viewing ordered Bratteli diagrams as a partial dynamical
systems, one can just as well view them as defining a standard Z-analytic algebra
by viewing the edges as (ordered) standard embeddings, as in [13]. Now it is
known that two semicrossed products are isomorphic if and only if their actions
(i.e., homeomorphisms) are conjugate ([10], [6], [14]). Exel’s generalized notion
of crossed product by a partial action ([3], [4]) allows one to consider standard
Z-analytic algebras as semicrossed products. In this sense, the following theorem
extends the earlier results on semicrossed products.
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Theorem 4.16. Let (V, E) (respectively (V ′, E ′)) be an ordered Bratteli di-
agram, (X,Xmax, Xmin, ϕ) (respectively, (X ′, X ′

max, X
′
min, ϕ

′)) the Veršik partial
dynamical system constructed from the diagram, and A = A(V, E) (respectively,
A′ = A′(V ′, E ′)) the standard Z-analytic TAF algebra defined by the diagram (V, E)
(respectively, (V ′, E ′)). Then the following are equivalent:

(i) the Bratteli diagrams (V, E), (V ′, E ′) are order equivalent;
(ii) the (X,Xmax, Xmin, ϕ), (X ′, X ′

max, X
′
min, ϕ

′) Veršik partial dynamical
systems are conjugate;

(iii) A is isometrically isomorphic to A′;
(iv) A is algebrically isomorphic to A′.

Proof. (i) ⇔ (iii) was proved by Power ([13], Theorem 3.7).
(ii) ⇒ (iii) To begin, we need the fact that if a strongly maximal TAF

algebra is the inductive limit of a system (An, σn), then the spectrum P of A is
the projective limit of the spectra of An. It follows in this case that the spectrum
P of A is {(x, y) ∈ X ×X : y = ϕn(x) for some n > 0}.

Suppose (ii) is satisfied, and let ψ : X → X ′ be a homeomorphism which
induces a conjugacy of the two partial dynamical systems. Define Ψ : P → P ′,

Ψ(x, ϕj(x)) = (ψ(x), ψ(ϕj(x)) = (ψ(x), ϕ′j(ψ(x)),

x ∈ X \Xmax . Then Ψ is a semigroupoid isomorphism, and so by Theorem 7.5 in
[15], A,A′ are isometrically isomorphic.

(iii) ⇒ (ii) Conversely, suppose there is a semigroupoid isomorphism Ψ :
P → P ′. Setting ∆(X) = {(x, x) : x ∈ X}, note that Ψ(∆(X)) = ∆(X ′). Indeed,
if Ψ(x, x) = (x′, y′), then

(x′, y′) = Ψ((x, x) ◦ (x, x)) = Ψ(x, x) ◦Ψ(x, x) = (x′, y′) ◦ (x′, y′),

forcing y′ = x′. Thus there is a homeomorphism ψ : X → X ′ so that Ψ(x, x) =
(ψ(x), ψ(x)), x ∈ X. Also,

Ψ(x, ϕ(x)) = Ψ(x, x) ◦Ψ(x, ϕ(x)) ◦Ψ(ϕ(x), ϕ(x))

= (ψ(x), ψ(x)) ◦Ψ(x, ϕ(x)) ◦ (ψ(ϕ(x)), ψ(ϕ(x))),

from which Ψ(x, ϕ(x)) = (ψ(x), ψ(ϕ(x))). Since (ψ(x), ψ(ϕ(x)) ∈ P ′, ψ(ϕ(x)) =
ϕ′j(ψ(x)) for some j > 0. Now j = 0 is impossible, as Ψ−1 maps ∆(X ′) into
∆(X). Now if j > 2, then

(ψ(x), ϕ′j(ψ(x))) = (ψ(x), ϕ′(ψ(x))) ◦ (ϕ′(ψ(x)), ϕ′j(ψ(x)))

is the composition of two elements of P ′ \ ∆(X ′). Applying Ψ−1, we have that
(x, ϕ(x)) is the composition of two elements of P \∆(x). But this is impossible,
as ϕ(x) is the immediate successor of x. Thus,

Ψ(x, ϕ(x)) = (ψ(x), ϕ′(ψ(x))), and hence ϕ′(ψ(x)) = ψ(ϕ(x)).

In other words, ψ is a conjugacy of the two partial dynamical systems.
(iii) ⇔ (iv) was proved by Donsig, Pitts and Power ([1]).
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5. NESTED SEQUENCES AND AF ALGEBRAS

In this section, we are going to characterize nested sequences of partial homeo-
morphism that will give rise to AF algebras.

Let A be a Z-analytic algebra and B = C∗(A). Choose a sequence {Bn} of

finite dimensional C∗-algebras of B, say Bn =
r(n)⊕
k=1

Mm(n,k), and a set of matrix

units {e (Nk)
ij } for

∞⋃
n=1

Bn such that

An := A ∩Bn =
r(n)⊕

k=1

Tm(n,k),

where Tm(n,k) is the upper triangular subalgebra of Mm(n,k), and A = lim
→

An and

B = lim
→

Bn. Denote e (Nk)
ii by e

(Nk)
i . Let (X,P,R) be the associated spectral

triple. Then there exists an integer valued cocycle d on R with d−1([0,∞)) = P.
For each n, define a partial homeomorphism ϕn on X by ϕn(x) = y if d(x, y) = n.
Then {ϕn}n∈Z is a nested sequence of partial homeomorphisms on X such that

P =
∞⊔

n=0

Γϕn .

For n ∈ Z, let Xn
max = X−n

min = X \ domϕn, Xmax =
∞⋂

n=1
Xn

max and Xmin =
∞⋂

n=1
Xn

min.

We have

Xmin =
⋂
n

( ⋃

k

ê
(Nk)
1

)
and Xmax =

⋂
n

( ⋃

k

ê
(Nk)
m(n,k)

)
.

Suppose U and V are clopen subsets of X containing Xmin and Xmax respec-
tively. Then there exists N such that

⋃
k

ê
(Nk)
1 ⊆ U and

⋃
k

ê
(Nk)
m(N,k) ⊆ V . For n ∈ Z,

let ϕ̃n be the restriction of ϕn to Dn = {x ∈ X : (x, ϕn(x)) ∈ ê (Nk)
ij for some i, j}.

Then each Dn is clopen. Let

M = max{d(x, y) : (x, y) ∈ ê (Nk)
ij , 1 6 i, j 6 m(N, k), 1 6 k 6 r(N)}.

If q > M then the domain of ϕ̃q is empty. This proves the necessity of the
conditions in Theorem 5.2. We first prove the sufficiency of the conditions for a
special case of the theorem.

Lemma 5.1. Let N = {ϕn}n∈Z be a nest of partial homeomorphisms on a
compact zero-dimensional space X such that:

(i) Xmin and Xmax are clopen;
(ii) for each n > 1, domϕn and domϕ−n are clopen;
(iii) there exists M > 1 such that domϕn = ∅ for |n| > M .

Then the groupoid defined by N is AF.
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Proof. Define Φ : X \Xmax → X \Xmin by

Φ(x) = ϕk(x) where k = min{n > 1 : x ∈ domϕn}.

We are going to prove that

(1) Φ is bijective and

Φ−1(y) = ϕ−k(y) where k = min{n > 1 : y ∈ domϕ−n}.

(2) Φ is a homeomorphism.

(3)
∞⋃

n=0
Φn(Xmin) = X =

∞⋃
n=0

Φ−n(Xmax).

Proof of (1). Suppose x, y ∈ X \Xmax and Φ(x) = Φ(y). Let

r = min{n > 1 : x ∈ domϕn} and s = min{n > 1 : y ∈ domϕn}.

So Φ(x) = ϕr(x) = ϕs(y) = Φ(y). If r > s, then we have y = ϕ−s ◦ ϕr(x) =
ϕr−s(x). Therefore, x ∈ domϕr−s and 1 6 r − s < r, a contradiction. Therefore,
r 6 s. Similarly, r > s and consequently, r = s. This proves that Φ is one to one.

Let y ∈ X \Xmin and k = min{n > 1 : y ∈ domϕ−n}. Then y = ϕk(x) for
some x ∈ X \Xmax. Suppose n > 1 and x ∈ domϕn. Then

y = ϕk(x) = ϕk(ϕ−n ◦ ϕn(x)) = (ϕk ◦ ϕ−n)ϕn(x) = ϕk−n ◦ ϕn(x) ∈ domϕ−(k−n),

and k − n < k. Therefore, k − n 6 0. Hence, n > k and y = Φ(x).

Proof of (2). Let C be a closed subset of X \Xmax. We will show that Φ(C)
is closed. Suppose xn ∈ C and y = lim

n→∞
Φ(xn). By choosing a subsequence if

necessary, we may assume that for some fixed k > 1, Φ(xn) = ϕk(xn) for all n
and x0 = lim

n→∞
xn ∈ C ∩ domϕk. Therefore, y = ϕk(x0). Suppose m > 1 and

x0 ∈ domϕm. Then xn ∈ domϕm for sufficiently large n. Hence, k 6 m and
y = ϕk(x0) = Φ(x0) ∈ Φ(C). Therefore, Φ(C) is closed. Since Φ is bijective, Φ(O)
is open for every open set O in X \Xmax. The same proof shows that Φ−1(O) is
open for any open set O in X \Xmin. Consequently, Φ is a homeomorphism.

Proof of (3). Since dom ΦM = ∅, we have

X = X \ domΦM =
M−1⋃
n=0

Φ−n(Xmax).

Hence, X =
∞⋃

n=0
Φ−n(Xmax). Similarly, X =

∞⋃
n=0

Φn(Xmin).

It follows that (X,Xmax, Xmin,Φ) is a Bratteli system. By construction, this
system generates the same groupoid as that defined by the nest N .
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Theorem 5.2. Let N = {ϕn}n∈Z be a nest of partial homeomorphisms on
a compact zero-dimensional space X and R the groupoid defined by N . Then R
is AF if and only if the following is satisfied:

Given clopen subsets U and V of X containing Xmin and Xmax respectively,
there exist clopen subsets Y and Z with Xmin ⊆ Y ⊆ U and Xmax ⊆ Z ⊆ V such
that for n > 1, if ϕ̃n is the restriction of ϕn to Dn = {x ∈ X \Z : ϕn(x) ∈ X \Y },
ϕ̃−n = ϕ̃−1

n , and ϕ0 = idX , then the system {ϕ̃n} satisfies the conditions of
Lemma 5.1.

Proof. Suppose N is a nest satisfying the above conditions. Then we can
choose a sequence of clopen subsets Uk and V k such that

⋂
k

Uk = Xmin and
⋂
k

V k = Xmax. For each k, applying the condition to U = Uk and V = V k, we

have clopen sets Y k and Zk with ϕ̃
(k)
n and dom ϕ̃

(k)
n defined accordingly. Let Rk

be the groupoid defined by the nest {ϕ̃(k)
n }. Since Rk ⊆ Rk+1 and R =

⋃
k=1

Rk, it

suffices to prove that each Rk is AF. Since the nest {ϕ̃(k)
n } satisfies the conditions

in Lemma 5.1, the result follows.

Example 5.3. This is an example of a nested sequence of partial homeo-
morphisms satisfying the conditions in Theorem 5.2 but the counting cocycle on
the associated groupoid is not continuous. Therefore, the corresponding TAF al-
gebra is Z-analytic but not standard Z-analytic. This TAF algebra is isomorphic
to the example given by Donsig and Hopenwasser ([12]).

Suppose X =
∞∏

n=1
{0, 1}. Define a homeomorphism ϕ : X → X by ϕ((xn)) =

(yn), where

yn =

{
0 if xi = 1 for all 1 6 i 6 n,
1 if xi = 1 for all 1 6 i 6 n− 1 and xn = 0,
xn if xi = 0 for some 1 6 i 6 n− 1.

(ϕ is usually referred to as the odometer map.)

For x ∈ X, let Xmax = {x} and Xmin = {ϕ(x)}. Restricting ϕ to X \
Xmax, we have a partial dynamical system (X,Xmax, Xmin, ϕ), which is a Bratteli
system. The conjugacy class of this system is independent of the choice of x.
Indeed, viewing X as a solenoidal group, given any two points x, x′ there is a
homeomorphism h of X mapping x to x′ which commutes with ϕ, namely h(y) =
y + x′ − x. It follows that the system with x as the maximal point is conjugate
to the system with x′ as the maximal point. The corresponding TAF algebra is
standard Z-analytic with Bn = M2n and An = T2n .
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Let x0 = (0, 0, . . .) and xn = ϕn(x0) for n ∈ Z. Define

X0
max = ∅,

X1
max = {xk : k = −2,−1, 0},

X2
max = {xk : k = −3, 0},

...

Xn
max = {xk : −n− 1 6 k 6 0, k 6= −n,−1} for n > 2,

X−n
max = ϕn(Xn

max) for n > 1.

Let ϕ0 = idX . For n 6= 0, let ϕn = ϕn|X\Xn
max

. Then N = {ϕn}n∈Z is a nested
sequence of partial homeomorphism on X with Xmax = {x0} and Xmin = {x−1}.
We are going to show that:

(1) N satisfies the conditions in Theorem 5.2;
(2) the counting cocycle d̂ is not continuous.

Proof of (1). Given k > 1 and ci ∈ {0, 1} for i = 1, . . . , k, define the k-
cylinder sets

[c1, . . . , ck]k = {x = {xn} ∈ X : xi = ci for 1 6 i 6 k}.

The cylinder sets are clopen and form a basis of the topology of X. Given any
clopen sets U and V with Xmin ⊆ U and Xmax ⊆ V , there exists k > 1 such that
[1, . . . , 1]k ⊆ U and [0, . . . , 0]k ⊆ V . Let Ck be the collection of all k-cylinder sets.
Then

Dn =
{ ⋃{C ∈ Ck : C ∩X(n)

max = ∅} for n 6= 0,
X for n = 0.

It is straightforward to check that the condition in Theorem 5.2 is satisfied.

Proof of (2). Let xn = {xn
i }i>1, where xn

i = 1 for 1 6 i 6 n and xn
i = 0

otherwise. Then each xn is in domϕ1 ◦ ϕ1 but xn converges to x−1 ∈ domϕ2 \
(domϕ1 ◦ϕ1). Therefore, d̂(xn, ϕ2(xn)) = 2 but d̂(x−1, ϕ2(x−1)) = 1. Hence, d̂ is
not continuous.

LetN = {ϕn}n∈Z be a nested sequence of partial homeomorphisms satisfying
the condition in Theorem 5.2. Define Φ : X \Xmax → X \Xmin by

Φ(x) = ϕk(x) where k = min{n > 1 : x ∈ domϕn}

(as defined in Lemma 5.1). In Example 5.3, we have xn → x−1 but Φ(xn) → x0 6=
x1 = Φ(x−1). Therefore, Φ may not be continuous. However, Φ turns out to be
very useful in the study of the isomorphism of the associated Z-analytic algebra.
The proof of the following theorem is similar to the proof for the equivalence of
conditions (ii) and (iii) in Theorem 4.16.
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Theorem 5.4. Suppose N = {ϕn}n∈Z and N ′ = {ϕ′n}n∈Z are two nested
sequences of partial homeomorphisms on X and X ′ satisfying the conditions in
Theorem 5.2. Then the associated Z-analytic algebras A and A′ are isometrically
isomorphic if and only if there exists a homeomorphism ψ : X → X ′ such that
ψ(Xmax) = X ′

max, ψ(Xmin) = X ′
min and ψ ◦ Φ = Φ′ ◦ ψ.

Semi-saturating a nested sequence. In Example 5.3 there is a single par-
tial homeomorphism ϕ of X (actually in this case a homeomorphism) such that
each ϕn in the nested sequence arises as a restriction of the n-fold composition
ϕn. A semi-saturation of a nested sequence {ϕn} of partial homeomorphisms is
a partial homeomorphism ϕ on X satisfying dom (ϕn) ⊂ dom (ϕn), and for all
x ∈ dom (ϕn), ϕn(x) = ϕn(x), n = 1, 2, . . ..

We note that in the above example, domϕ1 is dense in
∞⋃

n=1
domϕn. For such

systems we have the following result.

Proposition 5.5. Let {ϕn}∞n=0 be a nested sequence of partial homeomor-

phism on X such that domϕ1 is dense in
∞⋃

n=1
domϕn. Then the following condi-

tions are equivalent:

(i) There exists a homeomorphism ϕ on
∞⋃

n=1
domϕn such that for all n > 1

ϕn = ϕn|domϕn.
(ii) (a) there exists lim

k→∞
ϕ1(x(k)) for every sequence {x(k)} in domϕ1 such

that lim
k→∞

x(k) ∈
∞⋃

n=1
domϕn; and

(b) there exists lim
k→∞

ϕ−1
1 (y(k)) for every sequence {y(k)} ∈ rangeϕ1 such

that lim
k→∞

y(k) ∈
∞⋃

n=1
rangeϕn.

Proof. Clearly, (ii) follows from (i). Suppose (ii) holds. Let x ∈
∞⋃

n=2
domϕn

and x(k) ∈ domϕ1 such that lim
k→∞

x(k) = x. Then y = lim
k→∞

ϕ1(x(k)) exists and

the limit is independent of the choice of {x(k)}. Therefore, we can extend ϕ1 to a

continuous map ϕ on
∞⋃

n=1
domϕn. It follows from (b) that ϕ is a homeomorphism

on
∞⋃

n=1
domϕn.

Example 5.6. Let X =
{(

1
n , i

)
: i = 1, 2 and n > 1

}
∪{(0, 1), (0, 2)} ⊂ R2,

X1 = X \ {(0, 1), (0, 2)}. Define a nested sequence {ϕn}∞n=0 of partial homeomor-
phism on X by: ϕ0 = idX ; ϕ1

((
1

2k−1 , i
))

=
(

1
2k , i

)
for i = 1, 2 , ϕ1

((
1
2k , 1

))
=(

1
2k−1 , 2

)
, and ϕ1

((
1
2k , 2

))
=

(
1

2k+1 , 1
)

for all k > 1; ϕ2((0, 1)) = (0, 2) and

ϕ2(x) = ϕ2
1(x) for all x ∈ X1 and for k > 2, ϕ2k−1 = ϕ2k−1

1 and ϕ2k = ϕk
2 .
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Let xk =
(

1
2k−1 , 1

)
and yk =

(
1
2k , 1

)
. Then lim

k→∞
x(k) = lim

k→∞
y(k) = (0, 1)

but lim
k→∞

ϕ1(x(k)) = (0, 1) and lim
k→∞

ϕ1(y(k)) = (0, 2). So there exists no partial

homeomorphism ϕ on X such that ϕn = ϕn|Xn for all n.
This shows that the nested sequence {ϕn}∞n=1 does not admit a semi-satura-

tion. Let (X,P1,R1) be the spectral triple associated with {ϕn}∞n=0. We want to
show that (X,P1,R1) is the spectral triple of a Z-analytic algebra. For this it is
enough to know that R1 is an AF groupoid.

Define Xmax = {(0, 2)}, Xmin = {(1, 1)} and ϕ : X \ Xmax → X \ Xmin

by ϕ((0, 1)) = (0, 2), ϕ
((

1
n , 1

))
=

(
1
n , 2

)
and ϕ

((
1
n , 2

))
=

(
1

n+1 , 1
)

for all
n > 1. Then (X,Xmax, Xmin, ϕ) is a Bratteli system with associated spectral triple
(X,P2,R2). It is easy to check that R2 = R1. By Theorem 4.11, the quadruple
(X,Xmax, Xmin, ϕ) is conjugate to a Veršik transformation of an ordered Bratteli
diagram. The (unordered) Bratteli diagram defines the AF algebra C∗(R2) =
C∗(R1). Another way to see that R1 is an AF groupoid is to apply Theorem 5.2.
Therefore, A(P1) is a Z-analytic subalgebra of C∗(R1) but A(P1) is not standard
Z-analytic.
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