SPECTRAL DENSITY FOR MULTIPLICATION OPERATORS WITH APPLICATIONS TO FACTORIZATION OF L^{1} FUNCTIONS

ISABELLE CHALENDAR and JONATHAN R. PARTINGTON

Communicated by Florian-Horia Vasilescu

Abstract

We give explicit formulae for the spectral density corresponding to $b(T)$ in terms of that associated with T, when b is a finite Blaschke product and T is an absolutely continuous contraction. As an application we obtain a decomposition of L^{1} functions in terms of Hardy class functions. We use the decomposition of the spectral density corresponding to a particular multiplication operator in order to give a constructive proof of the fact that the classes $\mathbb{A}_{m, n}$ (occurring in dual algebra theory) are all distinct.

KEYWORDS: Spectral density, multiplication operator, dual algebra, invariant subspace.

MSC (2000): 47L45, 47A45, 30D55.

1. INTRODUCTION

As usual, we define the Hardy space $H^{2}=H^{2}(\mathbb{D})$ as the space of all functions $f: z \mapsto \sum_{n=0}^{\infty} a_{n} z^{n}$ for which the norm $\|f\|=\left(\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}\right)^{1 / 2}$ is finite. It is wellknown that $H^{2}(\mathbb{D})$ may be regarded isometrically as a closed subspace of $L^{2}(\mathbb{T})$, where \mathbb{T} denotes the unit circle with normalized Lebesgue measure ([12], [10]) by identifying the Taylor coefficients of f with the Fourier coefficients of an $L^{2}(\mathbb{T})$ function.

We use $P_{H_{2}}$ to denote the orthogonal projection from $L^{2}(\mathbb{T})$ onto H^{2}, so that

$$
P_{H^{2}}: \sum_{n=-\infty}^{\infty} a_{n} \mathrm{e}^{\mathrm{i} n \theta} \mapsto \sum_{n=0}^{\infty} a_{n} \mathrm{e}^{\mathrm{i} n \theta}
$$

The complex conjugates of functions in H^{2} form a closed subspace \bar{H}^{2}, and the associated orthogonal projection is given by

$$
P_{\bar{H}^{2}}: \sum_{n=-\infty}^{\infty} a_{n} \mathrm{e}^{\mathrm{i} n \theta} \mapsto \sum_{n=-\infty}^{0} a_{n} \mathrm{e}^{\mathrm{i} n \theta}
$$

For a more general simply-connected domain Ω in \mathbb{C}, with at least two boundary points, and a conformal mapping α from \mathbb{D} onto Ω, we say that a function f defined on Ω lies in $E^{2}(\Omega)$ if and only if the function $z \mapsto f(\alpha(z))\left(\alpha^{\prime}(z)\right)^{1 / 2}$ lies in H^{2}. We refer to [10] for the basic properties of these spaces. In particular, if Ω has rectifiable boundary Γ, and $f \in E^{2}(\Omega)$, then f has nontangential limits almost everywhere on Γ, defining a function in $L^{2}(\Gamma)$. If Ω is a Smirnov domain, for example if Ω is starlike or has analytic boundary, then $E^{2}(\Omega)$ can be identified with the closure of the polynomials in $L^{2}(\Gamma)$.

Following [15], we say that a contraction T on a Hilbert space H lies in the class $C_{0, \text {. if }}\left\|T^{n} x\right\| \rightarrow 0$ as $n \rightarrow \infty$ for all $x \in H$, and in the class $C_{1, .}$ if the only vector $x \in H$ for which $\left\|T^{n} x\right\| \rightarrow 0$ as $n \rightarrow \infty$ is the vector $x=0$. Similarly, we say that $T \in C_{\cdot, 0}$ if $T^{*} \in C_{0, .}$, and $T \in C_{\cdot, 1}$ if $T^{*} \in C_{1, .}$. Finally for $\alpha, \beta \in\{0,1\}$ we define $C_{\alpha, \beta}=C_{\alpha, .} \cap C_{\cdot, \beta}$.

Let T be a nonzero absolutely continuous contraction on a separable infinitedimensional Hilbert space \mathcal{H}, that is, one which either is completely non-unitary or has a unitary part with spectral measure absolutely continuous with respect to Lebesgue measure on the unit circle \mathbb{T}. For a function $f \in L^{1}(\mathbb{T})$, we say that T factorizes f, if there exist $x, y \in \mathcal{H}$ such that $f=x^{T} \cdot y$. Explicitly, this means that the Fourier coefficients of f satisfy

$$
\widehat{f}(n)=\left(T^{* n} x, y\right) \quad \text { and } \quad \widehat{f}(-n)=\left(T^{n} x, y\right)
$$

for all $n \geqslant 1$, while $\widehat{f}(0)=(x, y)$ (cf. [3], Proposition 8.3).
Recall that T is said to lie in the class \mathbb{A} whenever the Nagy-Foias functional calculus Φ_{T} associated with T is an isometry. We denote by $[f]$ the equivalence class of a function $f \in L^{1}(\mathbb{T})$ in the quotient space $L^{1}(\mathbb{T}) / H_{0}^{1}$ (with $H_{0}^{1}=\left\{g \in H^{1}\right.$: $g(0)=0\}$), which can be naturally identified with the predual of H^{∞}. Whenever m and n are two indices with $1 \leqslant m, n \leqslant \aleph_{0}$, we denote by $\mathbb{A}_{m, n}=\mathbb{A}_{m, n}(\mathcal{H})$ the set of operators $T \in \mathcal{L}(\mathcal{H})$ lying in the class \mathbb{A} for which, given any family $\left\{f_{i j}: 0 \leqslant i<m, 0 \leqslant j<m\right\}$ of functions in $L^{1}(\mathbb{T})$, one can find two sequences $\left(x_{i}\right)_{0 \leqslant i<m}$ and $\left(y_{j}\right)_{0 \leqslant j<n}$ of vectors of \mathcal{H} such that $\left[f_{i j}\right]=\left[x_{i}{ }^{T} . y_{j}\right]$ (these classes were introduced in [3], and have been much studied since). It is known that the classes $\mathbb{A}_{m, n}$ are all distinct ([13]) but until now no explicit examples to show this had been given.

The paper is organized as follows. In Section 2 we recall some facts about the operator Poisson kernel, which provides a useful way of expressing the spectral density corresponding to an absolutely continuous contraction T. We also recall results from [8] concerning S, the unilateral shift of multiplicity one on the Hardy space H^{2}, and U, the corresponding bilateral shift on $L^{2}(\mathbb{T})$. It is known that $f=g \stackrel{S}{.} h$ precisely when $f=g \bar{h}$, where $g, h \in H^{2}$, and $f=g \stackrel{U}{ } \cdot h$ precisely when $f=g \bar{h}$, where $g, h \in L^{2}(\mathbb{T})$. Since $L^{1}(\mathbb{T})=L^{2}(\mathbb{T}) \overline{L^{2}(\mathbb{T})}$, any function $f \in L^{1}(\mathbb{T})$
can be factorized using U. For factorizations with S the supplementary condition that $\log |f| \in L^{1}(\mathbb{T})$ is necessary and sufficient, by virtue of [4]. However, letting u be an inner function which is not an automorphism of \mathbb{D}, we show that the operator M_{u} of multiplication by u on H^{2} factorizes all $f \in L^{1}(\mathbb{T})$. This is in contrast to perturbation phenomena observed in the theory of dual algebras for absolutely continuous contractions T, where only the negative Fourier coefficients are to be recovered as soon as $T \in \mathbb{A}[1]$, [9].

In Section 3 we use the above results to obtain explicit formulae for the spectral density $x{ }^{b(T)} y$, where T is an absolutely continuous contraction and b a finite Blaschke product, in terms of $x^{T} \cdot y$ and the finite cyclic group of continuous functions u such that $b \circ u=b$ on \mathbb{T}. Applying this formula in the case $T=S$ and $b(z)=z^{2}$, we obtain the result that for any function $f \in L^{1}$ there exist $g, h \in H^{2}$ such that

$$
f\left(\mathrm{e}^{\mathrm{i} t}\right)=\frac{(g \bar{h})\left(\mathrm{e}^{\mathrm{i} t / 2}\right)+(g \bar{h})\left(-\mathrm{e}^{\mathrm{i} t / 2}\right)}{2}
$$

A general study of multiplication operators on spaces $E^{2}(\Omega)$ begins in Section 4 , where it is shown that these are $C_{, 0}$ contractions, and various unitary equivalences are established. These results are used in Section 5 in order to construct examples of operators lying in the classes $\mathbb{A}_{m, n} \backslash\left(\mathbb{A}_{m+1,1} \cup \mathbb{A}_{1, n+1}\right)$. This is achieved by means of an explicit formula for $f^{M_{\varphi}} g$ when $f, g \in H^{2}$ and φ is a conformal bijection from \mathbb{D} to the left semi-disc \mathbb{D}_{L}. This resolves a conjecture which was formulated in [11] and provides the first concrete examples of operators showing that the classes $\mathbb{A}_{m, n}$ are all distinct.

2. PRELIMINARIES

2.1. The operator Poisson kernel. Let T be an absolutely continuous contraction on a Hilbert space \mathcal{H}. One can also define the function $x^{T} \cdot y$ via the operator Poisson kernel (see, for example, [14])

$$
K_{r, t}(T):=\left(\operatorname{Id}-r \mathrm{e}^{-\mathrm{i} t} T\right)^{-1}+\left(\operatorname{Id}-r \mathrm{e}^{\mathrm{i} t} T^{*}\right)^{-1}-\mathrm{Id}
$$

for $r \in(0,1)$ and $t \in[0,2 \pi)$ in the following way:

$$
\begin{equation*}
x^{T} y\left(\mathrm{e}^{\mathrm{i} t}\right)=\lim _{r \rightarrow 1^{-}}\left(K_{r, t}(T) x, y\right) \tag{2.1}
\end{equation*}
$$

Note that $x \cdot \frac{T}{{ }^{T}} y=\overline{y^{T}} x$.
Lemma 2.1 .

$$
\begin{aligned}
K_{r, t}(T) & =\left(\operatorname{Id}-r \mathrm{e}^{\mathrm{i} t} T^{*}\right)^{-1}\left(\operatorname{Id}-r^{2} T^{*} T\right)\left(\operatorname{Id}-r \mathrm{e}^{-\mathrm{i} t} T\right)^{-1} \\
& =\left(\operatorname{Id}-r \mathrm{e}^{-\mathrm{i} t} T\right)^{-1}\left(\operatorname{Id}-r^{2} T T^{*}\right)\left(\operatorname{Id}-r \mathrm{e}^{\mathrm{i} t} T^{*}\right)^{-1} .
\end{aligned}
$$

Proof. Note that

$$
\left(\operatorname{Id}-r \mathrm{e}^{\mathrm{i} t} T^{*}\right) K_{r, t}(T)\left(\operatorname{Id}-r \mathrm{e}^{-\mathrm{i} t} T\right)=\operatorname{Id}-r^{2} T^{*} T
$$

and

$$
\left(\operatorname{Id}-r \mathrm{e}^{-\mathrm{i} t} T\right) K_{r, t}(T)\left(\operatorname{Id}-r \mathrm{e}^{\mathrm{i} t} T^{*}\right)=\operatorname{Id}-r^{2} T T^{*}
$$

The equalities of the above lemma are now clear.
2.2. Factorizations in $L^{1}(\mathbb{T})$. We recall some results from [8] which will be needed later.

Lemma 2.2. Let $f_{0} \in L^{\infty}(\mathbb{T})$ be such that $1 / f_{0} \in L^{\infty}(\mathbb{T})$. Then $L^{1}(\mathbb{T})=$ $H^{2} \bar{H}^{2}+\mathbb{C} f_{0}$.

Proof. We leave this as an exercise for the reader. Alternatively, see [8].
Theorem 2.3. Let $T=S \oplus A$, where $S \in \mathcal{L}\left(H^{2}\right)$ is the unilateral shift and $A \in \mathcal{L}(\mathcal{H})$ is an absolutely continuous contraction with $A \neq 0$. Suppose that A factorizes some function $f_{0} \in L^{\infty}(\mathbb{T})$ such that $1 / f_{0}$ is also in $L^{\infty}(\mathbb{T})$. Then for all $f \in L^{1}(\mathbb{T})$ there exist $g \oplus x, h \oplus y \in H^{2} \oplus \mathcal{H}$ such that $f=(g \oplus x)^{T} \cdot(h \oplus y)$.

Proof. Let $f \in L^{1}(\mathbb{T})$. Using Lemma 2.2, there exist $g, h \in H^{2}$ and $\lambda \in \mathbb{C}$ such that $f=g \bar{h}+\lambda f_{0}$. Notice that $g \bar{h}=g \stackrel{S}{.} h$. Our hypothesis implies that there exist $x, y \in \mathcal{H}$ such that $\lambda f_{0}=x^{A} \cdot y$, and hence $f=(g \oplus x)^{T} \cdot(h \oplus y)$.

Remark 2.4. The hypotheses on A can be replaced by the identical hypotheses on its adjoint, since we always have

$$
(x \cdot y)\left(\mathrm{e}^{\mathrm{i}^{*} \theta}\right)=\left(x^{A} \cdot y\right)\left(\mathrm{e}^{-\mathrm{i} \theta}\right)
$$

Corollary 2.5. If $T=S \oplus A$ where $A \neq 0$ and $\sigma_{p}(A) \cap \mathbb{D} \neq \emptyset$, then T factorizes all functions in $L^{1}(\mathbb{T})$.

Proof. Suppose that $\lambda \in \sigma_{p}(A) \cap \mathbb{D}$ and let x be a unit vector in $\operatorname{Ker}(A-\lambda \mathrm{Id})$. Then $\left(A^{n} x, x\right)=\lambda^{n}$ and $\left(A^{* n} x, x\right)=\bar{\lambda}^{n}$ for $n \geqslant 1$, and hence A factorizes the Poisson kernel

$$
P_{\lambda}(z)=1+\sum_{n=1}^{\infty} \lambda^{n} z^{n}+\sum_{n=1}^{\infty} \lambda^{n} \bar{z}^{n}=\frac{1-|\lambda|^{2}}{|1-\lambda \bar{z}|^{2}}
$$

This is an invertible function in $L^{\infty}(\mathbb{T})$, and the result follows from Theorem 2.3.
Remark 2.6. In particular, if $A \neq 0$, and A is a finite-rank operator (and hence $A \in C_{0}$), then $S \oplus A$ factorizes any L^{1} function directly. On the other hand (cf. [6]), the condition $T \oplus A \in \mathbb{A}_{m, n}$ implies that $T \in \mathbb{A}_{m, n}$, and so A does not contribute to the possibility of recovering simultaneously the negative Fourier coefficients of a matrix of functions in $L^{1}(\mathbb{T})$.

Corollary 2.7. If $T=u(S)$, where u is an inner function which is not an automorphism of \mathbb{D}, then for all $f \in L^{1}(\mathbb{T})$ there exist $g, h \in H^{2}$ such that $f=g{ }^{u(S)} h$.

Proof. From [6], the operator $u(S)$ is unitarily equivalent to $S \oplus \cdots \oplus S$ with n summands if u is rational of degree n, and to a countably infinite direct sum of copies of S otherwise. Therefore $u(S)$ is unitarily equivalent to $S \oplus A$ where $\sigma_{p}\left(A^{*}\right) \neq \emptyset$. Hence the result follows by Theorem 2.3 and Remark 2.4.
3. THE LINK BETWEEN $x \stackrel{b(T)}{\cdot} y$ AND $x^{T} \cdot y$

Theorem 3.1. Let $T \in \mathcal{L}(\mathcal{H})$ be any absolutely continuous contraction, and let b be a finite Blaschke product. Then, for every $x, y \in \mathcal{H}$, we have:

$$
\left(x^{b(T)} y\right)\left(\mathrm{e}^{\mathrm{i} t}\right)=\sum_{j=1}^{d} \frac{\left(x^{T} \cdot y\right)\left(\xi_{j}\right)}{\left|b^{\prime}\left(\xi_{j}\right)\right|} \quad \text { a.e. },
$$

where ξ_{1}, \ldots, ξ_{d} are the solutions of $b(z)=\mathrm{e}^{\mathrm{i} t}$.
Proof. We may partition \mathbb{T} into intervals J_{1}, \ldots, J_{d}, each of which is mapped onto \mathbb{T} by b (see, for example, [5]). Then, by (2.1),

$$
\begin{aligned}
\left(x^{b(T)} y\right)\left(\mathrm{e}^{\mathrm{i} t}\right) & =\lim _{r \rightarrow 1^{-}}\left(K_{r, t}(b(T)) x, y\right) \\
& =\lim _{r \rightarrow 1^{-}}\left(\left(\operatorname{Id}-r \mathrm{e}^{-\mathrm{i} t} b(T)\right)^{-1} x, y\right)+\left(x,\left(\operatorname{Id}-r \mathrm{e}^{-\mathrm{i} t} b(T)\right)^{-1} y\right)-(x, y) \\
& =\lim _{r \rightarrow 1^{-}}\left\langle\left(1-r \mathrm{e}^{-\mathrm{i} t} b\right)^{-1}, x^{T} \cdot y\right\rangle+\left\langle\left(1-r \mathrm{e}^{\mathrm{i} t} \bar{b}\right)^{-1}, x^{T} \cdot y\right\rangle-\left\langle 1, x^{T} \cdot y\right\rangle
\end{aligned}
$$

since $(f(T) x, y)=\left\langle f, x^{T} \cdot y\right\rangle$ for all $f \in L^{\infty}(\mathbb{T})$, by the functional calculus ([2]).
Hence

$$
\begin{aligned}
(x \stackrel{b(T)}{\cdot} y)\left(\mathrm{e}^{\mathrm{i} t}\right) & =\lim _{r \rightarrow 1^{-}} \int_{0}^{2 \pi}\left(x^{T} \cdot y\right)\left(\mathrm{e}^{\mathrm{i} \theta}\right) \frac{1-r^{2}}{\left|1-r \mathrm{e}^{-\mathrm{i} t} b\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{2}} \frac{\mathrm{~d} \theta}{2 \pi} \\
& =\lim _{r \rightarrow 1^{-}} \sum_{j=1}^{d} \int_{J_{j}}\left(x^{T} \cdot y\right)\left(\mathrm{e}^{\mathrm{i} \theta}\right) \frac{1-r^{2}}{\left|1-r \mathrm{e}^{-\mathrm{i} t} b\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{2}} \frac{\mathrm{~d} \theta}{2 \pi} \\
& =\lim _{r \rightarrow 1^{-}} \sum_{j=1}^{d} \int_{0}^{2 \pi} \frac{\left(x^{T} \cdot y\right)\left(b^{-1}\left(\mathrm{e}^{\mathrm{i} \alpha}\right)\right) \mathrm{e}^{\mathrm{i} \alpha}}{b^{\prime}\left(b^{-1}\left(\mathrm{e}^{\mathrm{i} \alpha}\right)\right) b^{-1}\left(\mathrm{e}^{\mathrm{i} \alpha}\right)} \frac{1-r^{2}}{\left|1-r \mathrm{e}^{-\mathrm{i} t} \mathrm{e}^{\mathrm{i} \alpha}\right|^{2}} \frac{\mathrm{~d} \alpha}{2 \pi}
\end{aligned}
$$

where $\mathrm{e}^{\mathrm{i} \alpha}=b\left(\mathrm{e}^{\mathrm{i} \theta}\right)$. Since $\frac{\mathrm{d} \theta}{\mathrm{d} \alpha} \geqslant 0$, we have

$$
\begin{aligned}
\left(x^{b(T)} y\right)\left(\mathrm{e}^{\mathrm{i} t}\right) & =\lim _{r \rightarrow 1^{-}} \sum_{j=1}^{d} \int_{0}^{2 \pi} \frac{\left(x^{T} \cdot y\right)\left(b^{-1}\left(\mathrm{e}^{\mathrm{i} \alpha}\right)\right)}{\left|b^{\prime}\left(b^{-1}\left(\mathrm{e}^{\mathrm{i} \alpha}\right)\right)\right|} \frac{1-r^{2}}{\left|1-r \mathrm{e}^{-\mathrm{i} t} \mathrm{e}^{\mathrm{i} \alpha}\right|^{2}} \frac{\mathrm{~d} \alpha}{2 \pi} \\
& =\sum_{j=1}^{d} \frac{\left(x^{T} \cdot y\right)\left(\xi_{j}\right)}{\left|b^{\prime}\left(\xi_{j}\right)\right|} .
\end{aligned}
$$

Remark 3.2. If one takes $\theta \in[0,2 \pi)$ such that $\mathrm{e}^{\mathrm{i} t}=b\left(\mathrm{e}^{\mathrm{i} \theta}\right)$ it follows from [5] that the solutions of $b(z)=b\left(\mathrm{e}^{\mathrm{i} \theta}\right)$ are given by $\xi_{j}=u^{(j)}\left(\mathrm{e}^{\mathrm{i} \theta}\right), 1 \leqslant j \leqslant d$ where u is a continuous function on \mathbb{T} and where $u^{(j)}=\underbrace{u \circ \cdots \circ u}_{j}$. Therefore we get

$$
\left(x^{b(T)} y\right)\left(\mathrm{e}^{\mathrm{i} t}\right)=\left(x^{b(T)} y\right)\left(b\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right)=\sum_{j=1}^{d} \frac{\left(x^{T} \cdot y\right)\left(u^{(j)}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right)}{\left|b^{\prime}\left(u^{(j)}\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right)\right|},
$$

i.e.

$$
\left(x^{b(T)} y\right) \circ b=\sum_{j=1}^{d}\left(\frac{x^{T} \cdot y}{\left|b^{\prime}\right|}\right) \circ u^{(j)} .
$$

The following corollary is immediate.
Corollary 3.3. Let b be a finite Blaschke product of degree d and for each point $\mathrm{e}^{\mathrm{i} t} \in \mathbb{T}$ denote by ξ_{1}, \ldots, ξ_{d} the solutions of $b(z)=\mathrm{e}^{\mathrm{i} t}$. Let $M_{b}: H^{2} \rightarrow H^{2}$ be the operator defined by $M_{b}(f)=b f$. Then for each $f, g \in H^{2}$ one has:

$$
\left(f^{M_{b}} g\right)\left(\mathrm{e}^{\mathrm{i} t}\right)=\sum_{j=1}^{d} \frac{(f \bar{g})\left(\xi_{j}\right)}{\left|b^{\prime}\left(\xi_{j}\right)\right|}
$$

The next corollary follows from Corollary 2.7 and Corollary 3.3.
Corollary 3.4. Let b be a finite Blaschke product of degree $d \geqslant 2$. Then for any function $f \in L^{1}$ there exist $g, h \in H^{2}$ such that

$$
f\left(\mathrm{e}^{\mathrm{i} t}\right)=\sum_{j=1}^{d} \frac{(g \bar{h})\left(\xi_{j}\right)}{\left|b^{\prime}\left(\xi_{j}\right)\right|}
$$

where ξ_{1}, \ldots, ξ_{d} are the solutions of $b(z)=\mathrm{e}^{\mathrm{i} t}$.
In particular, taking $b(z)=z^{2}$, for any function $f \in L^{1}$ there exist $g, h \in H^{2}$ such that

$$
f\left(\mathrm{e}^{\mathrm{i} t}\right)=\frac{(g \bar{h})\left(\mathrm{e}^{\mathrm{i} t / 2}\right)+(g \bar{h})\left(-\mathrm{e}^{\mathrm{i} t / 2}\right)}{2} .
$$

4. GENERAL PROPERTIES OF MULTIPLICATION OPERATORS

We now extend the ideas of the previous section in order to discuss contractive operators of multiplication by general functions in H^{∞}, also known as analytic Toeplitz operators. We begin with some basic properties of these operators.

Lemma 4.1. Let $\varphi: \mathbb{D} \rightarrow \mathbb{D}$ be a nonconstant holomorphic function and define $M_{\varphi}: H^{2} \rightarrow H^{2}$ by

$$
\left(M_{\varphi} f\right)(z)=\varphi(z) f(z), \quad z \in \mathbb{D} .
$$

Then the operator M_{φ} is a $C_{\cdot, 0}$ contraction.
Proof. Since $\left\|M_{\varphi}^{k}\right\| \leqslant 1$, it is clearly sufficient to verify that

$$
\lim _{n \rightarrow \infty}\left\|\left(M_{\varphi}^{*}\right)^{n} e_{k}\right\|=0 \quad \text { for } k=0,1,2, \ldots
$$

where e_{k} is the function $z \mapsto z^{k}$. Now

$$
\left(\left(M_{\varphi}^{*}\right)^{n} e_{k}, e_{l}\right)=\left(e_{k}, \varphi^{n} e_{l}\right)=0 \quad \text { for } l>k
$$

i.e.

$$
\left\|\left(M_{\varphi}^{*}\right)^{n} e_{k}\right\|^{2}=\sum_{l=0}^{k}\left|\left(e_{k-l}, \varphi^{n}\right)\right|^{2}=\sum_{r=0}^{k}\left|\left(\varphi^{n}, e_{r}\right)\right|^{2}
$$

Therefore it is sufficient to show that $\lim _{n \rightarrow \infty}\left|\left(\varphi^{n}, e_{r}\right)\right|=0$ for each r. Write $\varphi(z)=$ $a_{0}+\varphi_{1}(z)$, where $a_{0}=\varphi(0)$ and so $\left|a_{0}\right|<1$. Then we have

$$
\left|\left(\varphi^{n}, e_{r}\right)\right| \leqslant \sum_{k=0}^{r}\binom{n}{k}\left|a_{0}\right|^{n-k}\left|\left(\varphi_{1}^{k}, e_{r}\right)\right| .
$$

The last term is bounded independently of n by M. Therefore we have

$$
\left|\left(\varphi^{n}, e_{r}\right)\right| \leqslant \sum_{k=0}^{r} \frac{n^{k}}{k!}\left|a_{0}\right|^{n-k} M
$$

which tends to zero as n tends to ∞.
Similar results hold on more general domains, as in the next result.
Corollary 4.2. Let Ω be a bounded simply connected domain in \mathbb{C} and $\Psi: \Omega \rightarrow \mathbb{D}$ analytic. Define $M_{\Psi}: E^{2}(\Omega) \rightarrow E^{2}(\Omega)$ by $M_{\Psi} f=\Psi f$. Then M_{Ψ} is a $C_{\cdot, 0}$ contraction.

Proof. This is immediate from Lemma 4.1, since M_{Ψ} is unitarily equivalent to the analytic Toeplitz operator $M_{\Psi \circ \alpha}$ on H^{2} where $\alpha: \mathbb{D} \rightarrow \Omega$ is a conformal bijection.

In particular, if T is the operator of multiplication by the independent variable on $E^{2}\left(\mathbb{D}_{L}\right)$ where \mathbb{D}_{L} is the left hand half-unit-disc, then T is unitarily equivalent to the operator M_{α} of multiplication by α on H^{2} where $\alpha: \mathbb{D} \rightarrow \mathbb{D}_{L}$ is a conformal bijection.

Lemma 4.3. Let $\varphi: \mathbb{D} \rightarrow \mathbb{D}$ be holomorphic. If $\left|\varphi\left(\mathrm{e}^{\mathrm{i} t}\right)\right|<1$ a.e. then $M_{\varphi}:$ $H^{2} \rightarrow H^{2}$ defined by $M_{\varphi}(f)=\varphi f$ is a C_{00} contraction; otherwise it is C_{10}.

Proof. Suppose $\left|\varphi\left(\mathrm{e}^{\mathrm{i} t}\right)\right|<1$ a.e. and take $f \in H^{2}$. Then for each $\varepsilon>0$ there is a constant $\delta>0$ such that

$$
\left(\int_{C}\left|f\left(\mathrm{e}^{\mathrm{i} t}\right)\right|^{2} \mathrm{~d} t\right)^{1 / 2}<\frac{\varepsilon}{\sqrt{2}}
$$

if C is a subinterval of $(0,2 \pi)$ whose length $\ell(C)$ is less than δ. Now choose β with $0<\beta<1$ such that $\ell\left(A_{\beta}\right)<\delta$ where $A_{\beta}=\left\{t:\left|\varphi\left(\mathrm{e}^{\mathrm{it}}\right)\right|>\beta\right\}$. Then,

$$
\left\|\varphi^{n} f\right\|_{2}^{2} \leqslant \int_{A_{\beta}}\left|\varphi^{n} f\right|^{2}\left(\mathrm{e}^{\mathrm{i} t}\right) \mathrm{d} t+\int_{(0,2 \pi) \backslash A_{\beta}}\left|\varphi^{n} f\right|^{2}\left(\mathrm{e}^{\mathrm{i} t}\right) \mathrm{d} t \leqslant \frac{\varepsilon^{2}}{2}+k^{2 n}\|f\|_{2}^{2} \leqslant \varepsilon^{2}
$$

for n sufficiently large. Conversely, if $\left|\varphi\left(\mathrm{e}^{\mathrm{i} t}\right)\right|=1$ on a set E of positive Lebesgue measure and if $f \in H^{2}$, then $\left\|\varphi^{n} f\right\|^{2} \geqslant \int_{E}|f|^{2}\left(\mathrm{e}^{\mathrm{i} t}\right) \mathrm{d} t$ for all n and this is nonzero for all $f \in H^{2} \backslash\{0\}$.
5. OPERATORS IN $\mathbb{A}_{m, n} \backslash\left(\mathbb{A}_{m+1,1} \cup \mathbb{A}_{1, n+1}\right)$

5.1. The operator $T_{L} \oplus T_{R}^{*}$.

5.1.1. Definition and Remarks. Let $L=\{z \in \mathbb{C}:(|z|=1, \operatorname{Re}(z) \leqslant 0)$ or $(\operatorname{Re}(z)=0,|\operatorname{Im}(z)| \leqslant 1)\}$. Thus L is the boundary of the open left half unit disc; let \mathbb{D}_{L} denote this left half disc (so \mathbb{D}_{L} is the simply connected component of $\mathbb{C} \backslash L$). Put arc-length measure ℓ on L, and define $L^{2}(L, \mathrm{~d} \ell)$ to be the space of (equivalence classes of) square integrable complex functions on L. As noted earlier, we may regard $E^{2}(L, \mathrm{~d} \ell)$ as the closure of the polynomials in $L^{2}(L, \mathrm{~d} \ell)$. Similarly, let us define

$$
R=\{z \in \mathbb{C}:|z|=1, \operatorname{Re}(z) \geqslant 0\} \cup\{z \in \mathbb{C}: \operatorname{Re}(z)=0,|\operatorname{Im}(z)| \leqslant 1)\}
$$

So R is the boundary of the open right half unit disc \mathbb{D}_{R} and we define $L^{2}(R, \mathrm{~d} \ell)$ and $E^{2}(R, \mathrm{~d} \ell)$ in the analogous way.

Let N_{L} be the (normal) operator of multiplication by z on $L^{2}(L, \mathrm{~d} \ell)$, and T_{L} its (subnormal) restriction to $E^{2}(L, \mathrm{~d} \ell)$. Let N_{R} and T_{R} be defined similarly relative to R.

Let $w=\varphi(z)$ be a map that takes the disc to the left semi-disc \mathbb{D}_{L}; for example, $z=\varphi^{-1}(w)=\left(w^{2}-2 w-1\right) /\left(w^{2}+2 w-1\right)$. Note that $\varphi^{\prime}(z)=\left(w^{2}+\right.$ $2 w-1)^{2} /\left(4\left(w^{2}+1\right)\right)$. Then, as we saw in Corollary 4.4, we have an unitary equivalence between T_{L} and the operator M_{φ} on H^{2}.

The following assertion is an immediate consequence of the fact that the membership of the classes $\mathbb{A}_{m, n}$ is invariant under unitary equivalences and the fact that an operator T belongs to a class $\mathbb{A}_{m, n}$ if and only if its adjoint T^{*} belongs to the class $\mathbb{A}_{n, m}$ with $1 \leqslant m, n \leqslant \aleph_{0}$.

Lemma 5.1. Set $\widetilde{T}=T_{R} \oplus T_{L}{ }^{*}$. Then the operator \widetilde{T} belongs to the class $\mathbb{A}_{1,2}$ if and only if it belongs to the class $\mathbb{A}_{2,1}$.
5.1.2. Factorization using M_{φ}. The following formula will be of use in interpreting factorizations with M_{φ}. In what follows $\varphi: \mathbb{D} \rightarrow \mathbb{D}_{L}$ is a conformal bijection, and we shall choose it so that left-hand $\operatorname{arc}\left[\mathrm{e}^{\mathrm{i} \pi / 2}, \mathrm{e}^{3 \mathrm{i} \pi / 2}\right]$ is mapped to itself (to achieve this, consider instead $\varphi \circ \mu$ for a suitable Möbius map μ).

Lemma 5.2. For $\pi / 2<t<3 \pi / 2$ and $f, g \in H^{2}(\mathbb{T})$, we have

$$
f^{M_{\varphi}} g\left(\mathrm{e}^{\mathrm{i} t}\right)=\frac{f \bar{g}\left(\varphi^{-1}\left(\mathrm{e}^{\mathrm{i} t}\right)\right) \mathrm{e}^{\mathrm{i} t}}{\varphi^{\prime}\left(\varphi^{-1}\left(\mathrm{e}^{\mathrm{i} t}\right)\right) \varphi^{-1}\left(\mathrm{e}^{\mathrm{i} t}\right)}+\int_{-\pi / 2}^{\pi / 2} f\left(\mathrm{e}^{\mathrm{i} \theta}\right) \overline{g\left(\mathrm{e}^{\mathrm{i} \theta}\right)} \frac{1-\left|\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{2}}{\left|1-\mathrm{e}^{-\mathrm{i} t} \varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{2}} \mathrm{~d} \theta
$$

and the second term has an analytic extension to the left-hand half plane $\{\operatorname{Re} z<0\}$.

Proof. Using Lemma 2.1, we have, for $\pi / 2<t<3 \pi / 2$,

$$
\begin{aligned}
& f \stackrel{M_{\varphi}}{\cdot} g\left(\mathrm{e}^{\mathrm{i} t}\right) \\
& =\lim _{r \rightarrow 1^{-}} \int_{0}^{2 \pi} f\left(\mathrm{e}^{\mathrm{i} \theta}\right) \overline{g\left(\mathrm{e}^{\mathrm{i} \theta}\right)} \frac{1-r^{2}\left|\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{2}}{\left|1-r \mathrm{e}^{-\mathrm{i} t} \varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{2}} \mathrm{~d} \theta \\
& =\lim _{r \rightarrow 1^{-}} \int_{\pi / 2}^{3 \pi / 2} f\left(\mathrm{e}^{\mathrm{i} \theta}\right) \overline{g\left(\mathrm{e}^{\mathrm{i} \theta}\right)} \frac{1-r^{2}}{\left|1-r \mathrm{e}^{-\mathrm{i} t} \varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{2}} \mathrm{~d} \theta+\int_{-\pi / 2}^{\pi / 2} f\left(\mathrm{e}^{\mathrm{i} \theta}\right) \overline{g\left(\mathrm{e}^{\mathrm{i} \theta}\right)} \frac{1-\left|\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{2}}{\left|1-\mathrm{e}^{-\mathrm{i} t} \varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{2}} \mathrm{~d} \theta .
\end{aligned}
$$

Define a new function $\psi: \mathbb{T} \rightarrow \mathbb{T}$ by

$$
\psi\left(\mathrm{e}^{\mathrm{i} \theta}\right)= \begin{cases}\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right) & \text { if } \frac{\pi}{2}<\theta<\frac{3 \pi}{2} \\ \mathrm{e}^{\mathrm{i} \theta} & \text { otherwise }\end{cases}
$$

Then, since $\lim _{r \rightarrow 1^{-}} \frac{1-r^{2}}{\left|1-r e^{-\mathrm{i} t} \psi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{2}}=0$ for $\theta \in(0,2 \pi) \backslash\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]$, we get

$$
\begin{aligned}
& f^{M_{\varphi}} g\left(\mathrm{e}^{\mathrm{i} t}\right) \\
& =\lim _{r \rightarrow 1^{-}} \int_{0}^{2 \pi} f\left(\mathrm{e}^{\mathrm{i} \theta}\right) \overline{g\left(\mathrm{e}^{\mathrm{i} \theta}\right)} \frac{1-r^{2}}{\left|1-r \mathrm{e}^{-\mathrm{i} t} \psi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{2}} \mathrm{~d} \theta+\int_{-\pi / 2}^{\pi / 2} f\left(\mathrm{e}^{\mathrm{i} \theta}\right) \overline{g\left(\mathrm{e}^{\mathrm{i} \theta}\right)} \frac{1-\left|\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{2}}{\left|1-\mathrm{e}^{-\mathrm{i} t} \varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{2}} \mathrm{~d} \theta \\
& =\frac{f \bar{g}\left(\varphi^{-1}\left(\mathrm{e}^{\mathrm{i} t}\right)\right) \mathrm{e}^{\mathrm{i} t}}{\varphi^{\prime}\left(\varphi^{-1}\left(\mathrm{e}^{\mathrm{i} t}\right)\right) \varphi^{-1}\left(\mathrm{e}^{\mathrm{i} t}\right)}+\int_{-\pi / 2}^{\pi / 2} f\left(\mathrm{e}^{\mathrm{i} \theta}\right) \overline{g\left(\mathrm{e}^{\mathrm{i} \theta}\right)} \frac{1-\left|\varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{2}}{\left|1-\mathrm{e}^{-\mathrm{i} t} \varphi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{2}} \mathrm{~d} \theta
\end{aligned}
$$

using a change of variables and the standard properties of the Poisson kernel, as in the proof of Theorem 3.1. Note that the first term involves the value of $f \bar{g}$ at just one point of the left-hand semi-circle, and the second term involves values only on the right-hand semi-circle.

Since, for $\mathrm{e}^{\mathrm{i} t}$ on the unit circle,

$$
\left|1-\mathrm{e}^{-\mathrm{i} t} w\right|^{-2}=\left|\mathrm{e}^{\mathrm{i} t}-w\right|^{-2}=\left(\mathrm{e}^{\mathrm{i} t}-w\right)^{-1}\left(\mathrm{e}^{-\mathrm{i} t}-\bar{w}\right)^{-1}=\frac{\mathrm{e}^{\mathrm{i} t}}{\left(\mathrm{e}^{\mathrm{i} t}-w\right)\left(1-\bar{w} \mathrm{e}^{\mathrm{i} t}\right)},
$$

it is clear that the second term has an analytic extension to the left-hand half plane $\{\operatorname{Re} z<0\}$.

REMARK 5.3. Similar formulae for $f \stackrel{M_{\varphi}}{\bullet} g\left(\mathrm{e}^{\mathrm{i} t}\right)$ hold in the case where φ lies in the disc algebra, $\|\varphi\|_{\infty}=1$, and for all $\mathrm{e}^{\mathrm{i} t}$ in some subarc of \mathbb{T} we have $\varphi^{-1}\left(\mathrm{e}^{\mathrm{i} t}\right) \cap \mathbb{T}$ finite and nonempty.

We are now ready for the main result of this section.
Theorem 5.4. $T_{L} \oplus T_{R}^{*} \in \mathbb{A} \backslash\left(\mathbb{A}_{1,2} \cup \mathbb{A}_{2,1}\right)$.

Proof. Clearly $\sigma\left(T_{L} \oplus T_{R}^{*}\right)=\overline{\mathbb{D}}$, which is a sufficient condition for membership in \mathbb{A}. By Lemma 5.1, it is sufficient to prove that $M_{\varphi} \oplus T_{R}^{*} \notin \mathbb{A}_{2,1}$. Let $\delta=1 / 2$ and $C_{\delta}=\{z \in \mathbb{C}: \operatorname{Re} z<-\delta\}$. Now consider the function γ defined on \mathbb{T} by

$$
\gamma\left(\mathrm{e}^{\mathrm{i} t}\right)=\frac{\mathrm{e}^{\mathrm{i} t}}{\varphi^{\prime}\left(\varphi^{-1}\left(\mathrm{e}^{\mathrm{i} t}\right)\right) \varphi^{-1}\left(\mathrm{e}^{\mathrm{i} t}\right)}
$$

Take Ω_{1} and Ω_{2} to be closed subarcs of $C_{\delta} \cap \mathbb{T}$ such that $\ell\left(\Omega_{1}^{\mathrm{c}} \cap \Omega_{2}^{\mathrm{c}} \cap C_{\delta}\right)>0$, $\ell\left(\Omega_{1} \cap \Omega_{2}\right)=0$, and $\ell\left(\Omega_{j}\right)>0$ for $j=1,2$. Suppose that $M_{\varphi} \oplus T_{R}^{*} \in \mathbb{A}_{2,1}$. It follows that there exist functions f_{1}, f_{2}, g in H^{2} and x_{1}, x_{2}, y in $E^{2}(R, \mathrm{~d} \ell)$ such that:

$$
\left\{\begin{array}{l}
{\left[f_{1}{ }^{M_{\varphi}} g\right]+\left[x_{1}{ }^{T_{R_{R}}} y\right]=\left[\chi_{\Omega_{1}}\right]} \\
{\left[f_{2}{ }^{M_{\varphi}} g\right]+\left[x_{2}{ }^{T_{R^{*}}} y\right]=\left[\chi_{\Omega_{2}}\right]}
\end{array}\right.
$$

Since $\sigma\left(T_{R}^{*}\right) \cap \mathbb{T}=R \cap \mathbb{T}$, it follows from the proof of Lemma 5.1 in [6] that $x_{1}{ }^{T_{R}{ }^{*}} y$ and $x_{2}{ }^{T_{R^{*}}} y$ have analytic extensions to C_{δ}. Using Lemma 5.2 there exist h_{1} and h_{2} in H^{2} and k_{1}, k_{2} analytic on C_{δ}, such that, on $C_{\delta} \cap \mathbb{T}$,

$$
\left\{\begin{array}{l}
\chi_{\Omega_{1}}\left(\mathrm{e}^{\mathrm{i} t}\right)+\mathrm{e}^{\mathrm{i} t} h_{1}\left(\mathrm{e}^{\mathrm{i} t}\right)=f_{1}\left(\varphi^{-1}\left(\mathrm{e}^{\mathrm{i} t}\right)\right) \overline{g\left(\varphi^{-1}\left(\mathrm{e}^{\mathrm{i} t}\right)\right)} \gamma\left(\mathrm{e}^{\mathrm{i} t}\right)+k_{1}\left(\mathrm{e}^{\mathrm{i} t}\right) \tag{5.1}\\
\chi_{\Omega_{2}}\left(\mathrm{e}^{\mathrm{i} t}\right)+\mathrm{e}^{\mathrm{i} t} h_{2}\left(\mathrm{e}^{\mathrm{i} t}\right)=f_{2}\left(\varphi^{-1}\left(\mathrm{e}^{\mathrm{i} t}\right)\right) \overline{g\left(\varphi^{-1}\left(\mathrm{e}^{\mathrm{i} t}\right)\right)} \gamma\left(\mathrm{e}^{\mathrm{i} t}\right)+k_{2}\left(\mathrm{e}^{\mathrm{i} t}\right)
\end{array}\right.
$$

On $\Omega_{1}^{\mathrm{c}} \cap \Omega_{2}^{\mathrm{c}} \cap C_{\delta}$ we have

$$
\left[\mathrm{e}^{\mathrm{i} t} h_{1}\left(\mathrm{e}^{\mathrm{i} t}\right)-k_{1}\left(\mathrm{e}^{\mathrm{i} t}\right)\right] f_{2}\left(\varphi^{-1}\left(\mathrm{e}^{\mathrm{i} t}\right)\right)=\left[\mathrm{e}^{\mathrm{i} t} h_{2}\left(\mathrm{e}^{\mathrm{i} t}\right)-k_{2}\left(\mathrm{e}^{\mathrm{i} t}\right)\right] f_{1}\left(\varphi^{-1}\left(\mathrm{e}^{\mathrm{i} t}\right)\right)
$$

and hence the same inequality holds on $C_{\delta} \cap \mathbb{T}$ since both sides of the equation are E^{1} (Hardy class) functions on $C_{\delta} \cap \mathbb{D}$. Multiplying the first equation of (5.1) by $f_{2}\left(\varphi^{-1}\left(\mathrm{e}^{\mathrm{it} t}\right)\right)$ and the second by $f_{1}\left(\varphi^{-1}\left(\mathrm{e}^{\mathrm{i} t}\right)\right)$ and subtracting, we see that

$$
\chi_{\Omega_{1}}\left(\mathrm{e}^{\mathrm{i} t}\right) f_{2}\left(\varphi^{-1}\left(\mathrm{e}^{\mathrm{i} t}\right)\right)=\chi_{\Omega_{2}}\left(\mathrm{e}^{\mathrm{i} t}\right) f_{1}\left(\varphi^{-1}\left(\mathrm{e}^{\mathrm{i} t}\right)\right) \quad \text { on } C_{\delta} \cap \mathbb{T},
$$

which implies that f_{1} and f_{2} are identically zero, since they vanish on subsets of positive measure. This is absurd as $\chi_{\Omega_{1}}$ and $\chi_{\Omega_{2}}$ are not the restrictions of analytic functions.
5.2. The operator $T_{L}^{(m)} \oplus T_{R}^{*(n)}$. For every pair of positive integers m and n, denote by $T_{L}^{(m)} \oplus T_{R}^{*(n)}$ the operator given by the direct sum of m copies of T_{L} and n copies of T_{R}^{*}.

We extend the methods of the previous section to obtain the following result, establishing Conjecture 3.5 of [11], which provides a constructive proof of the fact that the classes $\mathbb{A}_{m, n}$ are distinct. Recall that a non constructive proof was given in [13].

Theorem 5.5. $T_{L}^{(m)} \oplus T_{R}^{*(n)} \in \mathbb{A}_{m, n} \backslash\left(\mathbb{A}_{m+1,1} \cup \mathbb{A}_{1, n+1}\right)$.
Proof. The fact that $T_{L}^{(m)} \oplus T_{R}^{*(n)} \in \mathbb{A}_{m, n}$ is a consequence of [7] but was proved previously in Proposition 3.2 of [11]. It is sufficient to prove that $T_{L}^{(m)} \oplus$ $T_{R}^{*(n)} \notin \mathbb{A}_{m+1,1}$; the assertion concerning $\mathbb{A}_{1, n+1}$ follows similarly, after taking the adjoint and exchanging L and R.

With the methods of the previous section, we prove that the unitarily equivalent operator $M_{\varphi}^{(m)} \oplus T_{R}^{*(n)} \notin \mathbb{A}_{m+1,1}$. Let δ, C_{δ} and γ be as in the proof of Theorem 5.4. Let $\left(\Omega_{l}\right)_{1 \leqslant l \leqslant m+1}$ be closed disjoint subarcs of $C_{\delta} \cap \mathbb{T}$, each of positive Lebesgue measure, such that $\ell\left(\bigcap_{1 \leqslant l \leqslant m+1} \Omega_{l} \cap C_{\delta}\right)>0$. Suppose that $M_{\varphi}^{(m)} \oplus T_{R}^{*(n)} \in \mathbb{A}_{m+1,1}$. Then, as in the proof of Theorem 5.4, there exist arrays $\left(f_{l}^{j}\right)_{1 \leqslant l \leqslant m+1,1 \leqslant j \leqslant m},\left(g^{j}\right)_{1 \leqslant j \leqslant m}$ and $\left(h_{l}\right)_{1 \leqslant l \leqslant n+1}$ in H^{2}, and $\left(k_{l}\right)_{1 \leqslant l \leqslant n+1}$ analytic on C_{δ} such that the following system of equations is satisfied on $C_{\delta} \cap \mathbb{T}$:

$$
\begin{equation*}
\chi_{\Omega_{l}}\left(\mathrm{e}^{\mathrm{i} t}\right)+\mathrm{e}^{\mathrm{i} t} h_{l}\left(\mathrm{e}^{\mathrm{i} t}\right)=\sum_{j=1}^{m} f_{l}^{j}\left(\varphi^{-1}\left(\mathrm{e}^{\mathrm{i} t}\right)\right) \overline{g^{j}\left(\varphi^{-1}\left(\mathrm{e}^{\mathrm{i} t}\right)\right)} \gamma\left(\mathrm{e}^{\mathrm{i} t}\right)+k_{l}\left(\mathrm{e}^{\mathrm{i} t}\right), \tag{5.2}
\end{equation*}
$$

for $1 \leqslant l \leqslant m+1$.
So, for each t, the following determinant is equal to 0 :

$$
0=\left|\begin{array}{cccc}
f_{1}^{1}\left(\varphi^{-1}\left(\mathrm{e}^{\mathrm{i} t}\right)\right) & \cdots & f_{1}^{m}\left(\varphi^{-1}\left(\mathrm{e}^{\mathrm{i} t}\right)\right) & \left(-\chi_{\Omega_{1}}\left(\mathrm{e}^{\mathrm{i} t}\right)+q_{1}\left(\mathrm{e}^{\mathrm{i} t}\right)\right) \\
f_{2}^{1}\left(\varphi^{-1}\left(\mathrm{e}^{\mathrm{i} t}\right)\right) & \cdots & f_{2}^{m}\left(\varphi^{-1}\left(\mathrm{e}^{\mathrm{i} t}\right)\right) & \left(-\chi_{\Omega_{2}}\left(\mathrm{e}^{\mathrm{i} t}\right)+q_{2}\left(\mathrm{e}^{\mathrm{i} t}\right)\right) \\
\vdots & \vdots & \vdots & \vdots \\
f_{m+1}^{1}\left(\varphi^{-1}\left(\mathrm{e}^{\mathrm{i} t}\right)\right) & \cdots & f_{m+1}^{m}\left(\varphi^{-1}\left(\mathrm{e}^{\mathrm{i} t}\right)\right) & \left(-\chi_{\Omega_{m+1}}\left(\mathrm{e}^{\mathrm{i} t}\right)+q_{m+1}\left(\mathrm{e}^{\mathrm{i} t}\right)\right)
\end{array}\right|
$$

where, for $1 \leqslant l \leqslant m+1$, we have $\left.q_{l}\left(\mathrm{e}^{\mathrm{i} t}\right)=-\mathrm{e}^{\mathrm{i} t} h_{l}\left(\mathrm{e}^{\mathrm{i} t}\right)+k_{l}\left(\mathrm{e}^{\mathrm{i} t}\right)\right)$, which is holomorphic on $C_{\delta} \cap \mathbb{D}$. Thus,

$$
0=\left|\begin{array}{cccc}
f_{1}^{1}\left(\varphi^{-1}\left(\mathrm{e}^{\mathrm{i} t}\right)\right) & \cdots & f_{1}^{m}\left(\varphi^{-1}\left(\mathrm{e}^{\mathrm{i} t}\right)\right) & \left(-\chi_{\Omega_{1}}\left(\mathrm{e}^{\mathrm{i} t}\right)\right) \\
f_{2}^{1}\left(\varphi^{-1}\left(\mathrm{e}^{\mathrm{i} t}\right)\right) & \cdots & f_{2}^{m}\left(\varphi^{-1}\left(\mathrm{e}^{\mathrm{i} t}\right)\right) & \left(-\chi_{\Omega_{2}}\left(\mathrm{e}^{\mathrm{i} t}\right)\right) \\
\vdots & \vdots & \vdots & \vdots \\
f_{m+1}^{1}\left(\varphi^{-1}\left(\mathrm{e}^{\mathrm{i} t}\right)\right) & \cdots & f_{m+1}^{m}\left(\varphi^{-1}\left(\mathrm{e}^{\mathrm{i} t}\right)\right) & \left(-\chi_{\Omega_{m+1}}\left(\mathrm{e}^{\mathrm{i} t}\right)\right)
\end{array}\right|+H\left(\mathrm{e}^{\mathrm{i} t}\right),
$$

with H analytic on $C_{\delta} \cap \mathbb{D}$ and equal to 0 on $\Omega^{\mathrm{c}} \cap C_{\delta}$, where $\Omega=\underset{1 \leqslant l \leqslant m+1}{\bigcup} \Omega_{l}$. Since $\ell\left(\Omega^{\mathrm{c}} \cap C_{\delta}\right)>0$, we get that the function H is identically equal to 0 . Therefore, for each t such that $\mathrm{e}^{\mathrm{i} t} \in \Omega_{m+1}$, we get:

$$
\left|\begin{array}{ccc}
f_{1}^{1}\left(\varphi^{-1}\left(\mathrm{e}^{\mathrm{i} t}\right)\right) & \cdots & f_{1}^{m}\left(\varphi^{-1}\left(\mathrm{e}^{\mathrm{i} t}\right)\right) \\
f_{2}^{1}\left(\varphi^{-1}\left(\mathrm{e}^{\mathrm{i} t}\right)\right) & \cdots & f_{2}^{m}\left(\varphi^{-1}\left(\mathrm{e}^{\mathrm{i} t}\right)\right) \\
\vdots & \vdots & \vdots \\
f_{m}^{1}\left(\varphi^{-1}\left(\mathrm{e}^{\mathrm{i} t}\right)\right) & \cdots & f_{m}^{m}\left(\varphi^{-1}\left(\mathrm{e}^{\mathrm{i} t}\right)\right)
\end{array}\right|=0
$$

Since $\ell\left(\Omega_{m+1}\right)>0$ and since the above determinant, say D, is an analytic function in the Nevanlinna class, we obtain that D is identically equal to 0 . It follows from (5.2) that there exists an integer $l_{0} \in\{1, \ldots, m\}$ such that $\chi_{\Omega_{l_{0}}}$ is a linear combination of $\left\{\chi_{\Omega_{l}}: l \neq l_{0}, 1 \leqslant l \leqslant m\right\}$ up to an analytic function in the Nevanlinna class on $C_{\delta} \cap \mathbb{D}$. The choice of the subarcs Ω_{l}, for $1 \leqslant l \leqslant m$, makes the last assertion absurd and this completes the proof.

Acknowledgements. The authors are grateful to the Franco-British Alliance programme and the European Research Training Network in Analysis and Operators for financial support.

REFERENCES

1. H. Bercovici, Factorization theorems and the structure of operators on Hilbert space, Ann. of Math. 128(1988), 399-413.
2. H. Bercovici, Notes on invariant subspaces, Bull. Amer. Math. Soc. 23(1990), 1-36.
3. H. Bercovici, C. Foias, C. Pearcy, Dual Algebras with Applications to Invariant Subspaces and Dilation Theory, CBMS Regional Conf. Ser. Math., vol. 56. Amer. Math. Soc., Providence, RI, 1985.
4. J. Bourgain, A problem of Douglas and Rudin on factorization, Pacific J. Math. 121(1986), 47-50.
5. G. Cassier, I. Chalendar, The group of invariants of a finite Blaschke product, Complex Variables 42(2000), 193-206.
6. G. Cassier, I. Chalendar, B. Chevreau, New examples of contractions illustrating membership and non-membership in the classes $\mathbb{A}_{n, m}$, Acta Sci. Math. (Szeged) 64(1998), 707-731.
7. I. Chalendar, F. Jaeck, On the contractions in the classes $\mathbb{A}_{n, m}$, J. Operator Theory 38(1997), 265-296.
8. I. Chalendar, J.R. Partington, L^{1} factorizations for some perturbations of the unilateral shift, C.R. Acad. Sci. Paris Sér. I Math. 332(2001), 115-119.
9. B. Chevreau, Sur les contractions à calcul fonctionnel isométrique. II, J. Operator Theory, 20(1988), 269-293.
10. P.L. Duren, Theory of H^{p} Spaces, Pure Appl. Math., vol. 38, Academic Press, New York 1970.
11. G. Exner, I.B. Jung, Dual operator algebras and contractions with finite defect indices, J. Operator Theory 36(1996), 107-119.
12. K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, 1965.
13. I.B. Jung, Dual operator algebras and the classes $\mathbb{A}_{m, n}$. I, J. Operator Theory 27(1992), 309-323.
14. V.I. Paulsen, Completely Bounded Maps and Dilations, Pitman Res. Notes in Math., vol. 146, Longman, 1986.
15. B.Sz.-Nagy, C. Foias, Harmonic Analysis of Operators on Hilbert Space, NorthHolland, 1970.
```
ISABELLE CHALENDAR Institut Girard Desargues UFR de Mathématiques
Université Claude Bernard Lyon 1 69622 Villeurbanne Cedex FRANCE
```

E-mail: chalenda@igd.univ-lyon1.fr

JONATHAN R. PARTINGTON
School of Mathematics
University of Leeds
Leeds LS2 9JT
UK
E-mail: J.R.Partington@leeds.ac.uk

