THE TOEPLITZ ALGEBRA ON THE BERGMAN SPACE COINCIDES WITH ITS COMMUTATOR IDEAL

DANIEL SUÁREZ

Communicated by Nikolai K. Nikolski

Abstract

Let L_{a}^{2} be the Bergman space of the unit disk and $\mathfrak{T}\left(L_{a}^{2}\right)$ be the Banach algebra generated by Toeplitz operators T_{f}, with $f \in L^{\infty}$. We prove that the closed bilateral ideal of $\mathfrak{T}\left(L_{a}^{2}\right)$ generated by operators of the form $T_{f} T_{g}-T_{g} T_{f}$ coincides with $\mathfrak{T}\left(L_{a}^{2}\right)$.

Keywords: Commutator ideal, Toeplitz operators, Bergman space.
MSC (2000): Primary 47B35; Secondary 47B47.

1. INTRODUCTION

If $0<p \leqslant \infty$ let $L^{p}=L^{p}(\mathbb{D}, \mathrm{~d} A)$, where \mathbb{D} is the open unit disk and $\mathrm{d} A(z)=$ $(1 / \pi) \mathrm{d} x \mathrm{~d} y$, with $z=x+\mathrm{i} y$, is the normalized area measure on \mathbb{D}. The Bergman space L_{a}^{p} is formed by the analytic functions in L^{p}. If $1<p<\infty$ then

$$
(P f)(z)=\int_{\mathbb{D}} \frac{f(\omega)}{(1-\bar{\omega} z)^{2}} \mathrm{~d} A(\omega)
$$

is a bounded projection from L^{p} onto L_{a}^{p}. This is the usual Bergman projection. For $a \in L^{\infty}$ let $M_{a}: L^{p} \rightarrow L^{p}$ be the operator of multiplication by a and $P_{a}=$ $P M_{a}$. Then $\left\|P_{a}\right\| \leqslant C_{p}\|a\|_{\infty}$, where C_{p} is the norm of P acting on L^{p}. The Toeplitz operator $T_{a}: L_{a}^{p} \rightarrow L_{a}^{p}$ is the restriction of P_{a} to the space L_{a}^{p}. If B is a Banach space, we will write $\mathfrak{L}(B)$ for the algebra of all bounded operators on B and $\mathfrak{T}\left(L_{a}^{p}\right)$ for the closed subalgebra of $\mathfrak{L}\left(L_{a}^{p}\right)$ generated by $\left\{T_{a}: a \in L^{\infty}\right\}$.

If A is a Banach algebra, its commutator ideal $\mathfrak{C} A$ is the closed bilateral ideal generated by elements of the form $[x, y] \stackrel{\text { def }}{=} x y-y x$, with $x, y \in A$. It is clear that $\mathfrak{C} A$ is the smallest closed ideal of A such that $A / \mathfrak{C} A$ is a commutative Banach algebra. There is an extensive literature on commutator ideals and abelianizations of Toeplitz algebras acting on the Hardy space H^{2}. The book of Nikoslki
([5]) contains plentiful information and further references. In contrast with this situation, we only have a handful of results for Toeplitz algebras of operators on L_{a}^{2}. Probably the most relevant papers on the subject are [2], [4] and [1].

If H is a Hilbert space of dimension greater than one then $\mathfrak{C} \mathfrak{L}(H)=\mathfrak{L}(H)$. Although this situation is very unusual for Toeplitz algebras, the purpose of this paper is to prove the following

Theorem 1.1. The Toeplitz algebra on L_{a}^{2} coincides with its commutator ideal.

In [3] it is shown that if $\phi(z)=\exp \left(\mathrm{i} \log \log |z|^{-2}\right)$ then the semicommutator $T_{\bar{\phi} \phi}-T_{\bar{\phi}} T_{\phi}$ is a nontrivial scalar multiple of the identity. Analogously, it could happen that there are two simple functions $a, b \in L^{\infty}$ such that $T_{a} T_{b}-T_{b} T_{a}$ is easily seen to be invertible. This would immediately prove Theorem 1.1. Since I was unable to find such functions or even prove their existence, the proof here is considerably more complicated.

2. SEGMENTATION

For $z \in \mathbb{D}$ let $\varphi_{z}(\omega)=(z-\omega) /(1-\bar{z} \omega)$, the special automorphism of \mathbb{D} that interchanges 0 and z. The pseudo-hyperbolic metric is defined by $\rho(z, \omega)=\left|\varphi_{z}(\omega)\right|$ for $z, \omega \in \mathbb{D}$. It is well known that ρ is invariant under the action of $\operatorname{Aut}(\mathbb{D})$. We will also use that

$$
\rho(z, \omega) \geqslant \frac{\rho(z, u)-\rho(u, \omega)}{1-\rho(z, u) \rho(u, \omega)} \quad \text { for all } z, \omega, u \in \mathbb{D}
$$

If $0<r<1$ write $K(z, r) \stackrel{\text { def }}{=}\{\omega \in \mathbb{D}: \rho(\omega, z) \leqslant r\}$ for the closed ball of center z and radius r with respect to ρ. A sequence $\mathcal{S}=\left\{z_{n}\right\}$ in \mathbb{D} will be called separated if $\inf _{i \neq j} \rho\left(z_{i}, z_{j}\right)>0$. Although I have not found the next result in its present form in the literature, it is a well known feature of separated sequences. We sketch here a proof.

Lemma 2.1. Let \mathcal{S} be a separated sequence and $0<\sigma<1$. Then there is a finite decomposition $\mathcal{S}=\mathcal{S}_{1} \cup \cdots \cup \mathcal{S}_{N}$ such that for every $1 \leqslant i \leqslant N: \rho(z, \omega)>\sigma$ for all $z \neq \omega$ in \mathcal{S}_{i}.

Proof. Since \mathcal{S} is separated, there is some positive integer N depending only on σ and the degree of separation of \mathcal{S}, such that $K(z, \sigma) \cap \mathcal{S}$ has no more than N points for every $z \in \mathbb{D}$. Let $\mathcal{S}_{1} \subset \mathcal{S}$ be a maximal sequence such that $\rho(z, \omega)>\sigma$ for every $z, \omega \in \mathcal{S}_{1}$ with $z \neq \omega$. The maximality implies that $\mathcal{S} \subset \bigcup_{z \in \mathcal{S}_{1}} K(z, \sigma)$. If $\mathcal{S}=\mathcal{S}_{1}$ we are done. Otherwise suppose that $n \geqslant 2, \mathcal{S}_{1}, \ldots, \mathcal{S}_{n-1}$ are chosen and $\mathcal{S} \backslash\left(\mathcal{S}_{1} \cup \cdots \cup \mathcal{S}_{n-1}\right) \neq \emptyset$. Let $\mathcal{S}_{n} \subset \mathcal{S} \backslash\left(\mathcal{S}_{1} \cup \cdots \cup \mathcal{S}_{n-1}\right)$ be a maximal sequence such that $\rho(z, \omega)>\sigma$ for every $z, \omega \in \mathcal{S}_{n}$ with $z \neq \omega$. By the maximality at the previous steps, if $z \in \mathcal{S}_{n}$ there is some $z_{i} \in \mathcal{S}_{i}$ such that $z \in K\left(z_{i}, \sigma\right)$ for every $1 \leqslant i \leqslant n-1$. Therefore $\left\{z, z_{1}, \ldots, z_{n-1}\right\} \subset K(z, \sigma) \cap \mathcal{S}$, and consequently $n \leqslant N$.

Lemma 2.2. For $1 \leqslant k \leqslant m$ let $\left\{a_{j}^{k}\right\}_{j \geqslant 1}$ be sequences in the unit ball of L^{∞} such that $\operatorname{supp} a_{j}^{k} \subset K\left(\alpha_{j}, r\right)$, where $K\left(\alpha_{j}, r\right) \cap K\left(\alpha_{i}, r\right)=\emptyset$ if $i \neq j$. Suppose that $1<p<\infty$ and $\left\{R_{j}\right\}_{j \geqslant 1}$ is a bounded sequence in $\mathfrak{L}\left(L^{p}\right)$. If $f \in L^{p}$ is such that $\sum_{j \geqslant 1} M_{a_{j}^{m}} R_{j} f \in L^{p}$ then

$$
\left\|\sum_{j \geqslant 1} P_{a_{j}^{1}} \cdots P_{a_{j}^{m}} R_{j} f\right\|_{p} \leqslant C_{p}^{m}\left\|\sum_{j \geqslant 1} M_{a_{j}^{m}} R_{j} f\right\|_{p}
$$

where C_{p} is the norm of the projection P acting on L^{p}.
Proof. Write $Q_{j}=P_{a_{j}^{2}} \cdots P_{a_{j}^{m-1}} P$ for all $j \geqslant 1$ and $S=\sum_{j \geqslant 1} M_{a_{j}^{1}} Q_{j} M_{a_{j}^{m}} R_{j}$. Then $\left\|Q_{j}\right\| \leqslant C_{p}^{m-1}$ and for $f \in L^{p}$ we have

$$
\begin{align*}
\|S f\|_{p}^{p} & =\left\|\sum_{j \geqslant 1} M_{a_{j}^{1}} Q_{j} M_{a_{j}^{m}} R_{j} f\right\|_{p}^{p}=\sum_{j \geqslant 1}\left\|M_{a_{j}^{1}} Q_{j} M_{a_{j}^{m}} R_{j} f\right\|_{p}^{p} \tag{2.1}\\
& \leqslant C_{p}^{(m-1) p} \sum_{j \geqslant 1}\left\|M_{a_{j}^{m}} R_{j} f\right\|_{p}^{p}=C_{p}^{(m-1) p}\left\|\sum_{j \geqslant 1}\left(M_{a_{j}^{m}} R_{j}\right) f\right\|_{p}^{p}
\end{align*}
$$

If the last quantity is finite then $S f \in L^{p}$ and the sums $S_{n} f=\sum_{j=1}^{n} M_{a_{j}^{1}} Q_{j} M_{a_{j}^{m}} R_{j} f$ converge to $S f$ in L^{p}-norm when $n \rightarrow \infty$. Therefore

$$
\left\|\sum_{j \geqslant 1} P_{a_{j}^{1}} \cdots P_{a_{j}^{m}} R_{j} f\right\|_{p}^{p}=\lim _{n}\left\|\sum_{j=1}^{n} P_{a_{j}^{1}} \cdots P_{a_{j}^{m}} R_{j} f\right\|_{p}^{p}=\lim _{n}\left\|P S_{n} f\right\|_{p}^{p} \leqslant C_{p}\|S f\|_{p}^{p}
$$

The lemma follows combining this inequality with (2.1).
Corollary 2.3. Taking $R_{j}=I$ for every j in Lemma 2.2 we obtain

$$
\left\|\sum_{j \geqslant 1} P_{a_{j}^{1}} \cdots P_{a_{j}^{m}}\right\|_{\mathfrak{L}\left(L^{p}\right)} \leqslant C_{p}^{m} .
$$

Proof. By the lemma,

$$
\left\|\sum_{j \geqslant 1} P_{a_{j}^{1}} \cdots P_{a_{j}^{m}} f\right\|_{p} \leqslant C_{p}^{m}\left\|\sum_{j \geqslant 1} M_{a_{j}^{m}} f\right\|_{p} \leqslant C_{p}^{m}\left\|M_{\left(\sum_{j \geqslant 1} a_{j}^{m}\right)} f\right\|_{p} \leqslant C_{p}^{m}\|f\|_{p}
$$

for every $f \in L^{p}$.
The next result is a particular case of Lemma 4.2.2 in [6].
Lemma 2.4. If $t>-1, c$ is real and

$$
F_{c, t}(z)=\int_{\mathbb{D}} \frac{\left(1-|\omega|^{2}\right)^{t}}{|1-z \bar{\omega}|^{2+t+c}} \mathrm{~d} A(\omega) \quad z \in \mathbb{D}
$$

then $F_{c, t}$ is bounded when $c<0$ and $\left|F_{c, t}(z)\right| \leqslant C\left(1-|z|^{2}\right)^{-c}$ when $c>0$.

Lemma 2.5. Let $0<r<1$ and $\left\{\alpha_{j}\right\}_{j \geqslant 1} \subset \mathbb{D}$ such that $K\left(\alpha_{j}, r\right) \cap K\left(\alpha_{i}, r\right)=$ \emptyset if $i \neq j$. If $r<R<1$ and $0<\beta<1$ then

$$
\begin{equation*}
\int_{\mathbb{D}} \sum_{j}\left[\chi_{K\left(\alpha_{j}, r\right)}(z) \chi_{D \backslash K\left(\alpha_{j}, R\right)}(\omega)\right] \frac{\left(1-|\omega|^{2}\right)^{-\beta}}{|1-z \bar{\omega}|^{2}} \mathrm{~d} A(\omega) \leqslant c_{\beta}(R)\left(1-|z|^{2}\right)^{-\beta} \tag{2.2}
\end{equation*}
$$

where $c_{\beta}(R) \rightarrow 0$ when $R \rightarrow 1$.
Proof. If $z \in K\left(\alpha_{j}, r\right)$ and $\omega \in \mathbb{D} \backslash K\left(\alpha_{j}, R\right)$ then

$$
\rho(\omega, z) \geqslant \frac{\rho\left(\omega, \alpha_{j}\right)-\rho\left(\alpha_{j}, z\right)}{1-\rho\left(\alpha_{j}, z\right) \rho\left(\omega, \alpha_{j}\right)}>\frac{R-r}{1-R r}=\delta
$$

where $\delta=\delta(R) \rightarrow 1$ when $R \rightarrow 1$. Therefore $\mathbb{D} \backslash K\left(\alpha_{j}, R\right) \subset \mathbb{D} \backslash K(z, \delta)$ and

$$
\sum_{j} \chi_{K\left(\alpha_{j}, r\right)}(z) \chi_{D \backslash K\left(\alpha_{j}, R\right)}(\omega) \leqslant \sum_{j} \chi_{K\left(\alpha_{j}, r\right)}(z) \chi_{D \backslash K(z, \delta)}(\omega)
$$

Hence, the integral in (2.2) is bounded by

$$
\begin{align*}
& \sum_{j} \chi_{K\left(\alpha_{j}, r\right)}(z) \int_{\mathbb{D}} \chi_{D \backslash K(z, \delta)}(\omega) \frac{\left(1-|\omega|^{2}\right)^{-\beta}}{|1-z \bar{\omega}|^{2}} \mathrm{~d} A(\omega) \\
& \quad=\sum_{j} \chi_{K\left(\alpha_{j}, r\right)}(z) \int_{|v|>\delta} \frac{\left(1-\left|\varphi_{z}(v)\right|^{2}\right)^{-\beta}}{|1-z \bar{v}|^{2}} \mathrm{~d} A(v) \tag{2.3}\\
& \quad \leqslant \int_{|v|>\delta} \frac{\left(1-|v|^{2}\right)^{-\beta}}{|1-z \bar{v}|^{2-2 \beta}}\left(1-|z|^{2}\right)^{-\beta} \mathrm{d} A(v)
\end{align*}
$$

where the equality comes from the change of variables $v=\varphi_{z}(\omega)$ and the inequality because $K\left(\alpha_{j}, r\right)$ are pairwise disjoint. Pick some $p=p(\beta)>1$ satisfying simultaneously the conditions $p \beta<1$ and $p(2-\beta)<2$. If $p^{-1}+q^{-1}=1$, Holder's inequality gives

$$
\int_{|v|>\delta} \frac{\left(1-|v|^{2}\right)^{-\beta}}{|1-z \bar{v}|^{2-2 \beta}} \mathrm{~d} A(v) \leqslant\left(\int_{\mathbb{D}} \frac{\left(1-|v|^{2}\right)^{-p \beta}}{|1-z \bar{v}|^{2 p(1-\beta)}} \mathrm{d} A(v)\right)^{1 / p}\left(1-\delta^{2}\right)^{1 / q}
$$

Since $2 p(1-\beta)=2-p \beta+[p(2-\beta)-2]<2-p \beta$, then Lemma 2.4 says that the last expression is bounded by $C_{\beta}\left(1-\delta^{2}\right)^{1 / q}$, where C_{β} depends only on β. Going back to (2.3) we see that the integral in (2.2) is bounded by

$$
C_{\beta}\left(1-\delta(R)^{2}\right)^{1 / q(\beta)}\left(1-|z|^{2}\right)^{-\beta}
$$

proving the lemma.
Lemma 2.6. Let $0<r<1$ and $\alpha_{j} \in \mathbb{D}, j \geqslant 1$, such that $K\left(\alpha_{j}, r\right)$ are pairwise disjoint. Suppose that $R \in(r, 1)$ and $a_{j}, A_{j} \in L^{\infty}$ are functions of norm $\leqslant 1$ such that

$$
\operatorname{supp} a_{j} \subset K\left(\alpha_{j}, r\right) \quad \text { and } \quad \operatorname{supp} A_{j} \subset \mathbb{D} \backslash K\left(\alpha_{j}, R\right)
$$

Then $\sum_{j \geqslant 1} M_{a_{j}} P M_{A_{j}}$ is bounded on L^{p} for every $1<p<\infty$, with norm bounded by some constant $k_{p}(R) \rightarrow 0$ when $R \rightarrow 1$.

Proof. Write

$$
\Phi(z, \omega)=\sum_{j \geqslant 1} \chi_{K\left(\alpha_{j}, r\right)}(z) \chi_{D \backslash K\left(\alpha_{j}, R\right)}(\omega) \frac{1}{|1-\bar{\omega} z|^{2}} .
$$

Let $f \in L^{p}$. Since $\left\|a_{j}\right\|_{\infty},\left\|A_{j}\right\|_{\infty} \leqslant 1$ for all j, then

$$
\begin{aligned}
\left|\left(\sum_{j \geqslant 1} M_{a_{j}} P M_{A_{j}} f\right)(z)\right| & =\left|\sum_{j \geqslant 1} a_{j}(z) \int_{\mathbb{D}} A_{j}(\omega) f(\omega) \frac{\mathrm{d} A(\omega)}{(1-\bar{\omega} z)^{2}}\right| \\
& \leqslant \int_{\mathbb{D}} \Phi(z, \omega)|f(\omega)| \mathrm{d} A(\omega) .
\end{aligned}
$$

Taking $h(z)=\left(1-|z|^{2}\right)^{-1 / p q}$, where $p^{-1}+q^{-1}=1$, Lemma 2.5 asserts that

$$
\int_{\mathbb{D}} \Phi(z, \omega) h(\omega)^{q} \mathrm{~d} A(\omega) \leqslant c_{p^{-1}}(R) h(z)^{q}
$$

and Lemma 2.4 implies that there is some $C>0$ such that

$$
\int_{\mathbb{D}} \Phi(z, \omega) h(z)^{p} \mathrm{~d} A(z) \leqslant C h(\omega)^{p} .
$$

By Schur's theorem ([6], p. 42) the integral operator with kernel $\Phi(z, \omega)$ is bounded on L^{p} and its norm is bounded by $\left(c_{p^{-1}}(R)\right)^{1 / q} C^{1 / p} \rightarrow 0$ as $R \rightarrow 1$.

Let $a_{j}^{i}, b_{j} \in L^{\infty}, j \geqslant 1$ and $1 \leqslant i \leqslant m$, be functions of norm at most 1 supported on $K\left(\alpha_{j}, r\right)$, where the pseudo-hyperbolic disks are pairwise disjoint. By Lemma 2.1 for any $\sigma \in(r, 1)$ there is some $n=n(\sigma) \geqslant 1$ and a partition of the positive integers $\mathbb{N}=N_{1} \cup \cdots \cup N_{n}$ such that

$$
\rho\left(\alpha_{i}, \alpha_{j}\right)>\sigma \quad \text { for } i \neq j, i, j \in N_{k}, 1 \leqslant k \leqslant n
$$

Lemma 2.7. If $1<p<\infty$ then

$$
\begin{equation*}
\sum_{1 \leqslant k \leqslant n}\left[\left(\sum_{j \in N_{k}} P_{a_{j}^{1}} \cdots P_{a_{j}^{m}}\right) P\left(\sum_{i \in N_{k}} b_{i}\right)\right] \rightarrow \sum_{j \geqslant 1} P_{a_{j}^{1}} \cdots P_{a_{j}^{m}} P_{b_{j}} \tag{2.4}
\end{equation*}
$$

in operator norm when $\sigma \rightarrow 1$.
Proof. Write $B_{j}=\sum_{\substack{i \in N_{k} \\ i \neq j}} b_{i}$ when $j \in N_{k}$ for some $1 \leqslant k \leqslant n$. Since $P_{\left(\sum_{i \in N_{k}} b_{i}\right)}=P_{b_{j}}+P_{B_{j}}$, the first term in (2.4) can be decomposed as

$$
\sum_{k=1}^{n}\left[\sum_{j \in N_{k}} P_{a_{j}^{1}} \cdots P_{a_{j}^{m}} P_{b_{j}}+\sum_{j \in N_{k}} P_{a_{j}^{1}} \cdots P_{a_{j}^{m}} P_{B_{j}}\right]=S_{1}+S_{2}
$$

where

$$
S_{1}=\sum_{k=1}^{n} \sum_{j \in N_{k}} P_{a_{j}^{1}} \cdots P_{a_{j}^{m}} P_{b_{j}}=\sum_{j \geqslant 1} P_{a_{j}^{1}} \cdots P_{a_{j}^{m}} P_{b_{j}}
$$

and

$$
S_{2}=\sum_{k=1}^{n} \sum_{j \in N_{k}} P_{a_{j}^{1}} \cdots P_{a_{j}^{m}} P_{B_{j}}=\sum_{j \geqslant 1} P_{a_{j}^{1}} \cdots P_{a_{j}^{m}} P_{B_{j}} .
$$

Let $f \in L^{p}$. By Lemmas 2.2 and 2.6

$$
\begin{equation*}
\left\|S_{2} f\right\|_{p} \leqslant C_{p}^{m}\left\|\sum_{j \geq 1} M_{a_{j}^{m}} P_{B_{j}} f\right\|_{p} \tag{2.5}
\end{equation*}
$$

If $\omega \in \operatorname{supp} B_{j}$ for $j \in N_{k}$ with $1 \leqslant k \leqslant n$, then there is $i \neq j$ in N_{k} such that $\omega \in K\left(\alpha_{i}, r\right)$. Then

$$
\rho\left(\omega, \alpha_{j}\right) \geqslant \frac{\rho\left(\alpha_{j}, \alpha_{i}\right)-\rho\left(\omega, \alpha_{i}\right)}{1-\rho\left(\alpha_{j}, \alpha_{i}\right) \rho\left(\omega, \alpha_{i}\right)}>\frac{\sigma-r}{1-\sigma r}=R(\sigma)
$$

meaning that supp $B_{j} \subset \mathbb{D} \backslash K\left(\alpha_{j}, R(\sigma)\right)$. Since $R(\sigma) \rightarrow 1$ when $\sigma \rightarrow 1,(2.5)$ and Lemma 2.6 prove (2.4).

Corollary 2.8. Under the conditions of Lemma 2.7,

$$
\begin{equation*}
\sum_{1 \leqslant k \leqslant n}\left[\left(\sum_{j \in N_{k}} T_{a_{j}^{1}} \cdots T_{a_{j}^{m}}\right) T_{\left(\sum_{i \in N_{k}} b_{i}\right)}\right] \rightarrow \sum_{j \geqslant 1} T_{a_{j}^{1}} \cdots T_{a_{j}^{m}} T_{b_{j}} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{1 \leqslant k \leqslant n}\left[T_{\left(\sum_{i \in N_{k}} b_{i}\right)}\left(\sum_{j \in N_{k}} T_{a_{j}^{1}} \cdots T_{a_{j}^{m}}\right)\right] \rightarrow \sum_{j \geqslant 1} T_{b_{j}} T_{a_{j}^{1}} \cdots T_{a_{j}^{m}} \tag{2.7}
\end{equation*}
$$

in operator norm when $\sigma \rightarrow 1$.
Proof. We obtain (2.6) by restricting the operators of (2.4) to L_{a}^{p}. To prove (2.7) use (2.6) with

$$
\sum_{1 \leqslant k \leqslant n}\left[\left(\sum_{j \in N_{k}} T_{\bar{a}_{j}^{m}} \cdots T_{\bar{a}_{j}^{1}}\right) T\left(\sum_{i \in N_{k}} \bar{b}_{i}\right)\right]
$$

acting on L_{a}^{q} and then take adjoints.
Proposition 2.9. Let $1<p<\infty$ and $c_{j}^{1}, \ldots, c_{j}^{l}, a_{j}, b_{j}, d_{j}^{1}, \ldots, d_{j}^{m} \in L^{\infty}$ be functions of norm $\leqslant 1$ supported on $K\left(\alpha_{j}, r\right)$ for $j \geqslant 1$, where $K\left(\alpha_{j}, r\right) \cap K\left(\alpha_{i}, r\right)$ $=\emptyset$ if $i \neq j$. Then

$$
\sum_{j \geqslant 1} T_{c_{j}^{1}} \cdots T_{c_{j}^{l}}\left(T_{a_{j}} T_{b_{j}}-T_{b_{j}} T_{a_{j}}\right) T_{d_{j}^{1}} \cdots T_{d_{j}^{m}} \in \mathfrak{C T}\left(L_{a}^{p}\right) .
$$

Proof. For $r<\sigma<1$ decompose $\mathbb{N}=N_{1} \cup \cdots \cup N_{n}$ as in the paragraph that precedes Lemma 2.7. By Corollary 2.8,

$$
\sum_{1 \leqslant k \leqslant n}\left[T\left(\sum_{j \in N_{k}} a_{j}\right)^{T}\left(\sum_{i \in N_{k}} b_{i}\right)-T\left(\sum_{i \in N_{k}} b_{i}\right)^{T}\left(\sum_{j \in N_{k}} a_{j}\right)\right] \rightarrow \sum_{j \geqslant 1}\left(T_{a_{j}} T_{b_{j}}-T_{b_{j}} T_{a_{j}}\right)
$$

in operator norm when $\sigma \rightarrow 1$. Since the first operators belong to the commutator ideal, so does their limit. Thus,

$$
\sum_{j \in F}\left(T_{a_{j}} T_{b_{j}}-T_{b_{j}} T_{a_{j}}\right) \in \mathfrak{C T}\left(L_{a}^{p}\right)
$$

for any subset $F \subset \mathbb{N}$. In particular, this hold for $F=N_{k}, 1 \leqslant k \leqslant n$. Then

$$
\sum_{1 \leqslant k \leqslant n}\left[\left(\sum_{j \in N_{k}}\left(T_{a_{j}} T_{b_{j}}-T_{b_{j}} T_{a_{j}}\right)\right) T_{\left.\left(\sum_{i \in N_{k}} d_{i}^{1}\right)\right] \in \mathfrak{C T}\left(L_{a}^{p}\right), ~, ~, ~}\right.
$$

and since (2.6) says that the above operators converge to

$$
\sum_{j \geqslant 1}\left(T_{a_{j}} T_{b_{j}}-T_{b_{j}} T_{a_{j}}\right) T_{d_{j}^{1}}
$$

when $\sigma \rightarrow 1$, this operator is also in $\mathfrak{C T}\left(L_{a}^{p}\right)$. Clearly, the same holds if the sum is over any set $F \subset \mathbb{N}$. We can repeat this process $m-1$ more times using (2.6) and then l times using (2.7) to obtain the desired result.

3. AN INVERTIBLE OPERATOR IN $\mathfrak{C T}\left(L_{a}^{2}\right)$

Let $a \in L^{\infty}$ be a real-valued function such that $a(\omega) \geqslant \delta>0$ for every $\omega \in \mathbb{D}$. Then T_{a} is self-adjoint and

$$
\left\langle T_{a} f, f\right\rangle=\int_{\mathbb{D}} a|f|^{2} \mathrm{~d} A \geqslant \delta \int_{\mathbb{D}}|f|^{2} \mathrm{~d} A=\delta\|f\|_{2}^{2}
$$

for every $f \in L_{a}^{2}$. Therefore T_{a} is invertible. Theorem 1.1 will be proved by constructing a function a as above such that $T_{a} \in \mathfrak{C T}\left(L_{a}^{2}\right)$.

We need to summarize several basic features of Toeplitz operators. If $a, b \in$ L^{∞} then $T_{a} T_{b}=T_{a b}$ when $\bar{a} \in H^{\infty}$ or $b \in H^{\infty}$. If $z \in \mathbb{D}$ then $U_{z} f=\left(f \circ \varphi_{z}\right) \varphi_{z}^{\prime}$ defines a unitary self-adjoint operator on L_{a}^{2}. Therefore, if $a \in L^{\infty}$ and $f, g \in L_{a}^{2}$,

$$
\left\langle U_{z} T_{a} U_{z} f, g\right\rangle=\left\langle T_{a} U_{z} f, U_{z} g\right\rangle=\left\langle a\left(f \circ \varphi_{z}\right) \varphi_{z}^{\prime},\left(g \circ \varphi_{z}\right) \varphi_{z}^{\prime}\right\rangle=\left\langle\left(a \circ \varphi_{z}\right) f, g\right\rangle
$$

where the last equality comes from changing variables inside the integral. Thus

$$
\begin{equation*}
U_{z} T_{a_{1}} \cdots T_{a_{n}} U_{z}=U_{z} T_{a_{1}} U_{z} \cdots U_{z} T_{a_{n}} U_{z}=T_{a_{1} \circ \varphi_{z}} \cdots T_{a_{n} \circ \varphi_{z}} \tag{3.1}
\end{equation*}
$$

for $a_{j} \in L^{\infty}, 1 \leqslant j \leqslant n$. By diagonal operator we always mean diagonal with respect to the orthonormal basis $\left\{\sqrt{n+1} z^{n}\right\}_{n \geqslant 0}$.

A straightforward calculation with polar coordinates shows that if $a \in L^{\infty}$ is a radial function (i.e. $a(z)=a(|z|))$, then T_{a} is diagonal with n-entry

$$
\begin{equation*}
\lambda_{n}(a)=\int_{0}^{1} a\left(t^{1 / 2}\right)(n+1) t^{n} \mathrm{~d} t \tag{3.2}
\end{equation*}
$$

If χ_{r} denotes the characteristic function of the ball $\{|\omega| \leqslant r\}$, where $0<r<1$, then (3.2) yields $T_{\chi_{r}} \omega^{n}=r^{2(n+1)} \omega^{n}$.

Lemma 3.1. Let $a \in L^{\infty}$ be a radial function and $0<r<1$. Then

$$
T_{\chi_{r}} T_{a}=T_{\chi_{r}(\omega) a(\omega / r)}
$$

Proof. The operator $T_{\chi_{r}(\omega) a(\omega / r)}$ is diagonal, and its n-entry is

$$
\begin{aligned}
\int_{0}^{1} \chi_{[0, r]}\left(t^{1 / 2}\right) a\left(\frac{t^{1 / 2}}{r}\right)(n+1) t^{n} \mathrm{~d} t & =\int_{0}^{r^{2}} a\left(\frac{t^{1 / 2}}{r}\right)(n+1) t^{n} \mathrm{~d} t \\
& =r^{2 n+2} \int_{0}^{1} a\left(u^{1 / 2}\right)(n+1) u^{n} \mathrm{~d} u
\end{aligned}
$$

where the last equality comes from the change of variables $u=t / r^{2}$. By (3.2) $T_{\chi_{r}} T_{a}$ is also diagonal and has the same entries.

A simple calculation shows that if $n \geqslant 1$ then $\left\langle T_{\bar{\omega}} \omega^{n}, \omega^{k}\right\rangle=\left\langle\omega^{n}, \omega^{k+1}\right\rangle=$ $\left\langle(n / n+1) \omega^{n-1}, \omega^{k}\right\rangle$. A recursive argument then gives that for every nonnegative integer k,

$$
T_{\bar{\omega}^{k}} \omega^{n}=\left(\frac{n+1-k}{n+1}\right) \omega^{n-k} \quad \text { if } n \geqslant k
$$

and $T_{\bar{\omega}^{k}} \omega^{n}=0$ if $n<k$. Thus

$$
T_{\bar{\omega}^{k}} T_{\chi_{r}} \omega^{n}=r^{2(n+1)}\left(\frac{n+1-k}{n+1}\right) \omega^{n-k} \quad \text { if } n \geqslant k
$$

and since $T_{\chi_{r}} T_{\omega^{k}} \omega^{n}=r^{2(n+k+1)} \omega^{n+k}$ then

$$
\begin{equation*}
\left(T_{\bar{\omega}^{k}} T_{\chi_{r}}\right)\left(T_{\chi_{r}} T_{\omega^{k}}\right) \omega^{n}=r^{4(n+k+1)}\left(\frac{n+1}{n+k+1}\right) \omega^{n}=r^{4 k} T_{\chi_{r^{2}}} T_{\bar{\omega}^{k}} T_{\omega^{k}} \omega^{n} \tag{3.3}
\end{equation*}
$$

where the second equality comes from the limit case $r=1$ in the first equality and from $T_{\chi_{r^{2}}} \omega^{n}=r^{4(n+1)} \omega^{n}$. Since $T_{\chi_{r}}$ and $T_{\omega^{k}} T_{\bar{\omega}^{k}}$ are diagonal, they commute, and since $T_{\chi_{r}}^{2}=T_{\chi_{r^{2}}}$ then

$$
\begin{equation*}
T_{\chi_{r}} T_{\omega^{k}} T_{\bar{\omega}^{k}} T_{\chi_{r}}=T_{\chi_{r}}^{2} T_{\omega^{k}} T_{\bar{\omega}^{k}}=T_{\chi_{r^{2}}} T_{\omega^{k}} T_{\bar{\omega}^{k}} \tag{3.4}
\end{equation*}
$$

By (3.3), (3.4) and Lemma 3.1,
(3.5) $S_{k} \stackrel{\text { def }}{=}\left[T_{\omega^{k} \chi_{r}}, T_{\bar{\omega}^{k} \chi_{r}}\right]=T_{\chi_{r^{2}}}\left(T_{\omega^{k}} T_{\bar{\omega}^{k}}-r^{4 k} T_{\bar{\omega}^{k}} T_{\omega^{k}}\right)=T_{\chi_{r^{2}}} T_{\omega^{k}} T_{\bar{\omega}^{k}}-T_{\chi_{r^{2}}|\omega|^{2 k}}$.

Let $P_{0} \in \mathfrak{L}\left(L_{a}^{2}\right)$ be the operator $P_{0} f=f(0)$. Straightforward evaluations on the basis $\left\{z^{n}\right\}_{n} \geqslant 0$ give the following identities

$$
\begin{equation*}
T_{\omega} T_{\bar{\omega}}=T_{1+\log |\omega|^{2}}, \quad T_{\omega^{2}} T_{\bar{\omega}^{2}}=T_{1+2 \log |\omega|^{2}}+P_{0} \quad \text { and } \quad T_{\chi_{r^{2}}} P_{0}=r^{4} P_{0} \tag{3.6}
\end{equation*}
$$

Then

$$
\begin{align*}
& 2 S_{1}-S_{2} \stackrel{\text { by }}{\stackrel{(3.5)}{=}} T_{\chi_{r^{2}}}\left(2 T_{\omega} T_{\bar{\omega}}-T_{\omega^{2}} T_{\bar{\omega}^{2}}\right)+T_{\chi_{r^{2}}\left(|\omega|^{4}-2|\omega|^{2}\right)} \\
& \quad \stackrel{\text { by }}{\stackrel{(3.6)}{=}} T_{\chi_{r^{2}}\left(1+|\omega|^{4}-2|\omega|^{2}\right)}-r^{4} P_{0}=T_{\chi_{r^{2}}\left(1-|\omega|^{2}\right)^{2}}-r^{4} P_{0} \tag{3.7}
\end{align*}
$$

Since $2 S_{1}-S_{2}, T_{\chi_{r}}$ and P_{0} are diagonal operators, they commute. Consequently

$$
P_{0} T_{\chi_{r}} T_{\omega}=T_{\chi_{r}} P_{0} T_{\omega}=0
$$

which together with Lemma 3.1 and (3.7) gives

$$
\begin{equation*}
T_{\chi_{r} \bar{\omega}}\left(2 S_{1}-S_{2}\right) T_{\chi_{r} \omega}=T_{\bar{\omega}} T_{\chi_{r}}\left(2 S_{1}-S_{2}\right) T_{\chi_{r}} T_{\omega}=T_{\chi_{r^{4}}\left(1-|\omega|^{2} / r^{4}\right)^{2}|\omega|^{2}} \tag{3.8}
\end{equation*}
$$

If $\alpha \in \mathbb{D}$ then (3.1), (3.5) and (3.8) yield

$$
\begin{align*}
& T_{\left(\chi_{r} \circ \varphi_{\alpha}\right) \bar{\varphi}_{\alpha}}\left(2\left[T_{\left(\chi_{r} \circ \varphi_{\alpha}\right) \varphi_{\alpha}}, T_{\left(\chi_{r} \circ \varphi_{\alpha}\right) \bar{\varphi}_{\alpha}}\right]-\left[T_{\left(\chi_{r} \circ \varphi_{\alpha}\right) \varphi_{\alpha}^{2}}, T_{\left(\chi_{r} \circ \varphi_{\alpha}\right) \bar{\varphi}_{\alpha}^{2}}\right]\right) T_{\left(\chi_{r} \circ \varphi_{\alpha}\right) \varphi_{\alpha}} \tag{3.9}\\
& \quad=U_{\alpha} T_{\chi_{r} \bar{\omega}}\left(2 S_{1}-S_{2}\right) T_{\chi_{r} \omega} U_{\alpha}=T_{\left(\chi_{r} \circ \varphi_{\alpha}\right)\left(1-\left|\varphi_{\alpha}\right|^{2} / r^{4}\right)^{2}\left|\varphi_{\alpha}\right|^{2}} .
\end{align*}
$$

Suppose that $0<r<1$ and $\left\{\alpha_{j}\right\} \subset \mathbb{D}$ is a sequence such that $K\left(\alpha_{i}, r\right) \cap K\left(\alpha_{j}, r\right)$ $=\emptyset$ for $i \neq j$. Since $\left(\chi_{r^{4}} \circ \varphi_{\alpha}\right)(\omega)=\chi_{K\left(\alpha, r^{4}\right)}(\omega)$, the characteristic function of $K\left(\alpha, r^{4}\right)$, then

$$
A(\omega) \stackrel{\text { def }}{=} \sum_{j \geqslant 1} \chi_{r^{4}}\left(\varphi_{\alpha_{j}}(\omega)\right)\left(1-\frac{\left|\varphi_{\alpha_{j}}(\omega)\right|^{2}}{r^{4}}\right)^{2}\left|\varphi_{\alpha_{j}}(\omega)\right|^{2}
$$

is in L^{∞} with $\|A\|_{\infty} \leqslant 1$. In conjunction with (3.9), Proposition 2.9 tells us that

$$
\begin{equation*}
T_{A}=\sum_{j \geqslant 1} T_{\left(\chi_{r^{4}} \circ \varphi_{\alpha_{j}}\right)\left(1-\left|\varphi_{\alpha_{j}}\right|^{2} / r^{4}\right)^{2}\left|\varphi_{\alpha_{j}}\right|^{2} \in \mathfrak{C T}\left(L_{a}^{2}\right)} \tag{3.10}
\end{equation*}
$$

When $\omega \in \mathbb{D}$ satisfies $r^{4} / 4<\rho\left(\omega, \alpha_{j}\right) \leqslant(3 / 4) r^{4}$ for some α_{j} we have

$$
\left(1-\frac{\left|\varphi_{\alpha_{j}}(\omega)\right|^{2}}{r^{4}}\right)^{2}\left|\varphi_{\alpha_{j}}(\omega)\right|^{2} \geqslant\left(1-\frac{3^{2} r^{8}}{4^{2} r^{4}}\right)^{2} \overline{r^{8}} 4^{2} \geqslant \frac{r^{8}}{2^{8}}
$$

meaning that

$$
\begin{equation*}
A(\omega) \geqslant\left(\frac{r}{2}\right)^{8} \quad \text { when } \omega \in K\left(\alpha_{j},\left(\frac{3}{4}\right) r^{4}\right) \backslash K\left(\alpha_{j}, \frac{r^{4}}{4}\right) \text { for some } \alpha_{j} . \tag{3.11}
\end{equation*}
$$

Lemma 3.2. Given $0<\sigma<1$ there is a separated sequence $\left\{\alpha_{j}\right\}$ in \mathbb{D} such that every $z \in \mathbb{D}$ is in $K\left(\alpha_{j}, 3 \sigma / 4\right) \backslash K\left(\alpha_{j}, \sigma / 4\right)$ for some α_{j}.

Proof. Take a sequence $\left\{\alpha_{j}\right\} \subset \mathbb{D}$ such that $\rho\left(\alpha_{i}, \alpha_{j}\right)>\sigma / 100$ if $i \neq j$ and

$$
\begin{equation*}
\rho\left(\left\{\alpha_{j}\right\}_{j \geqslant 1}, \omega\right) \leqslant \frac{\sigma}{8} \quad \text { for every } \omega \in \mathbb{D} . \tag{3.12}
\end{equation*}
$$

For an arbitrary $z \in \mathbb{D}$ write $\beta_{j}=\varphi_{z}\left(\alpha_{j}\right)$. The conformal invariance of ρ implies that $\left\{\beta_{j}\right\}_{j \geqslant 1}$ satisfies (3.12). We claim that there is some β_{j} such that $\sigma / 4<$ $\left|\beta_{j}\right| \leqslant(3 / 4) \sigma$. Otherwise
$\rho\left(\frac{\sigma}{2},\left\{\beta_{j}\right\}_{j} \geqslant 1\right) \geqslant \rho\left(\frac{\sigma}{2}, \mathbb{D} \backslash\left\{\frac{\sigma}{4}<|\omega| \leqslant \frac{3}{4} \sigma\right\}\right)=\rho\left(\frac{\sigma}{2},\left\{\frac{\sigma}{4}, \frac{3 \sigma}{4}\right\}\right) \geqslant \frac{\frac{\sigma}{4}}{1-\frac{\sigma}{4} \cdot \frac{\sigma}{2}}>\frac{\sigma}{4}$.
This contradicts (3.12) with respect to $\left\{\beta_{j}\right\}_{j \geqslant 1}$ for $\omega=\sigma / 2$. If $\sigma / 4<\left|\beta_{j_{0}}\right| \leqslant$ (3/4) σ then

$$
\rho\left(\alpha_{j_{0}}, z\right)=\rho\left(\varphi_{z}\left(\alpha_{j_{0}}\right), \varphi_{z}(z)\right)=\rho\left(\beta_{j_{0}}, 0\right)=\left|\beta_{j_{0}}\right| \in\left(\frac{\sigma}{4}, \frac{3 \sigma}{4}\right]
$$

and since $z \in \mathbb{D}$ is arbitrary, the lemma follows.

Returning to our construction, fix $0<r<1$ and suppose that $\mathcal{S}=\left\{\alpha_{j}\right\}_{j \geqslant 1}$ is a sequence satisfying Lemma 3.2 for $\sigma=r^{4}$. Since \mathcal{S} is separated, by Lemma 2.1 we can decompose $\mathcal{S}=\mathcal{S}_{1} \cup \cdots \cup \mathcal{S}_{N}$, where for each $1 \leqslant k \leqslant N, K\left(\alpha_{i}, r\right) \cap K\left(\alpha_{j}, r\right)=\emptyset$ if $\alpha_{i}, \alpha_{j} \in \mathcal{S}_{k}$ with $i \neq j$. For $1 \leqslant k \leqslant N$ write

$$
A_{k}(\omega)=\sum_{\alpha_{j} \in \mathcal{S}_{k}} \chi_{r^{4}}\left(\varphi_{\alpha_{j}}(\omega)\right)\left(1-\frac{\left|\varphi_{\alpha_{j}}(\omega)\right|^{2}}{r^{4}}\right)^{2}\left|\varphi_{\alpha_{j}}(\omega)\right|^{2}
$$

Then $\left\|A_{k}\right\|_{\infty} \leqslant 1$ and (3.10) says that $T_{A_{k}} \in \mathfrak{C T}\left(L_{a}^{2}\right)$. Consequently

$$
\sum_{k=1}^{N} T_{A_{k}}=T_{\left(\sum_{k=1}^{N} A_{k}\right)} \in \mathfrak{C T}\left(L_{a}^{2}\right)
$$

In addition, (3.11) says that for every $1 \leqslant k \leqslant N$,

$$
A_{k}(\omega) \geqslant\left(\frac{r}{2}\right)^{8} \quad \text { when } \omega \in K\left(\alpha_{j},\left(\frac{3}{4}\right) r^{4}\right) \backslash K\left(\alpha_{j}, \frac{r^{4}}{4}\right) \text { for some } \alpha_{j} \in \mathcal{S}_{k}
$$

and since Lemma 3.2 asserts that

$$
\mathbb{D}=\bigcup_{1 \leqslant k \leqslant N} \bigcup_{\alpha_{j} \in \mathcal{S}_{k}} K\left(\alpha_{j},\left(\frac{3}{4}\right) r^{4}\right) \backslash K\left(\alpha_{j}, \frac{r^{4}}{4}\right)
$$

then $\sum_{k=1}^{N} A_{k}(\omega) \geqslant(r / 2)^{8}$ for every $\omega \in \mathbb{D}$. This completes the construction and proves Theorem 1.1.

Acknowledgements. I am grateful to the referee for pointing out a mistake in the proof of Lemma 2.6.

REFERENCES

1. S. Axler, D. Zheng, The Berezin transform on the Toeplitz algebra, Studia Math. 127(1998), 113-136.
2. L.A. Coburn, Singular integral operators and Toeplitz operators on odd spheres, Indiana Univ. Math. J. 23(1973), 433-439.
3. M. Engliš, Toeplitz operators on Bergman-type spaces, Ph.D. Dissertation, MU CSAV, Praha 1991.
4. G. McDonald, C. Sundberg, Toeplitz operators on the disc, Indiana Univ. Math. J. 28(1979), 595-611.
5. N.K. Nikolski, Treatise on the Shift Operator, Springer-Verlag, Berlin-New York, 1986.
6. K. Zhu, Operator Theory in Function Spaces, Marcel Dekker Inc., New York 1990.

DANIEL SUÁREZ
Departamento de Matemática
Facultad de Cientas Exactas y Naturales
UBA, Pab. I, Ciudad Universitaria
(1428) Núñez, Capital Federal ARGENTINA
E-mail: dsuarez@dm.uba.ar
Received November 27, 2001.

