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1. INTRODUCTION AND PRELIMINARIES

The study of canonical differential equations [12] has generally proceeded under
positivity assumptions, which play an important role in key constructions in the
spectral theory of such equations. In [8] the authors considered a special case of
difference equations and showed that without positivity, inverse and direct prob-
lems can be treated if appropriate modifications are made in the classical theory.
We now consider the continuous case and obtain analogous results. We present
these results in a form that allows discrete as well as continuous components.

In the classical case, a canonical differential equation is an equation of the
form

(1.1)
dY

dx
= izJH(x)Y,

with boundary conditions

(1.2) D2Y1(0, z) + D1Y2(0, z) = 0,
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where H(x) is nonnegative and locally integrable on an interval [0, l) with 2m×2m
matrix values, z is a complex parameter,

(1.3) J =
[

0 Im

Im 0

]
, Y (x, z) =

[
Y1(x, z)
Y2(x, z)

]
,

Y1(x, z), Y2(x, z) have m×m matrix values, and D1, D2 are m×m matrices such
that

(1.4) D1D
∗
2 + D2D

∗
1 = 0 and D1D

∗
1 + D2D

∗
2 = Im.

To add a discrete part, we may also allow the existence of points

0 < x1 < x2 < · · · < l

having no limit point in [0, l), such that (1.1) holds in the subintervals determined
by the points, and Y (x, z) is left-continuous at each xk and

(1.5) Y (xk + 0, z)− Y (xk, z) = izJs(xk)Y (xk, z)

for certain nonnegative matrices s(xk). Particular cases of such equations include
many special systems ([12]). The discrete case (1.5) with no continuous part (1.1)
is related to Jacobi systems (Chapter 8 in [11]). In [8] the authors generalized
the discrete theory to indefinite cases by allowing the matrices s(xk) to be selfad-
joint but not necessarily nonnegative. In this paper, we also admit a nontrivial
continuous part (1.1), where H(x) is selfadjoint but not necessarily nonnegative.

Section 1 concludes with a summary of the integration theory needed in what
follows. In Section 2 we introduce a notion of spectral data which is suitable for a
large class of indefinite problems.

The main results of the paper are in Section 3 and center around the operator
identity

AS − SA∗ = i(Φ1Φ∗2 + Φ2Φ∗1).

In Theorem 3.1 we show how to construct many identities of this type. A continual
factorization construction relative to a chain of invariant subspaces of A∗ is given
in Theorem 3.2. With the aid of this result we describe a solution of the inverse
problem in Theorem 3.5, which is the central result of the paper. Theorem 3.5
treats continuous and discrete problems at the same time, a feature that is new
even in the definite case. This approach to the inverse problem generalizes results
in [12]. Indefinite discrete problems are treated by the authors ([8]).

In Section 4 we discuss concrete examples of the theory which use the function

(1.6) H(x) =
[

q(x)
p(x)

]
j [ q∗(x) p∗(x) ] ,

where p(x) and q(x) are m×m matrix-valued functions satisfying conditions which
we shall describe later and j is an invertible m×m matrix such that j = j ∗ = j−1.
In this case, (1.1) is equivalent to an indefinite form of the generalized matrix string
equation ([12]):

d
dx

{
A(x)

d
dx

[
p∗−1(x)Y

]}
= zp(x) jY.

Here A(x) = A∗(x), p(x), and Y = Y (x, z) have m × m matrix values and z is
a complex parameter. Other special cases lead to de Branges’ theory of Hilbert
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spaces of entire functions ([1], [2] in the definite case) and to Pontryagin space
generalizations due to Kaltenbäck and Woracek ([5], [6]) and Kaltenbäck ([4]).
We hope to discuss these connections in a future work.

Preliminaries on integration theory. In what follows we use integrals of

the form
b∫

a

f(t)[ dM(t)]g(t), where f(t),M(t), g(t) are matrix-valued functions on

a closed and bounded real interval [a, b], say of orders p ×m, m × n, and n × q.
The integrals are defined as

b∫

a

f(t)[ dM(t)]g(t) = lim
∑

f(t∗k)[M(tk)−M(tk−1)]g(t∗k),

where the tk are the division points of a finite partition of [a, b], t∗k is a point in
the k-th subinterval, and the limit is taken as the mesh of the partition tends to
zero. Thus

b∫

a

f(t)[ dM(t)]g(t) =
[ m∑

α=1

n∑

β=1

b∫

a

fiα(t)gβk(t) dMαβ(t)
]

p×q

,

where fiα(t), gβk(t),Mαβ(t) are the entries of the matrices f(t), g(t),M(t). The
integrals exist, for example, if f and g are continuous and M is of bounded variation
(that is, the entries of M(t) are of bounded variation, or, equivalently, there is a
constant C > 0 such that

∑ ‖M(tk) − M(tk−1)‖ 6 C for all finite partitions of
[a, b] with division points tk, where ‖ · ‖ is the operator norm). The integrals also
exist if f and g are piecewise continuous and bounded, and M is both continuous
and of bounded variation.

Integrals are estimated in the operator norm using scalar majorants. For
example, let

µM (t) = sup
∑

‖M(tk)−M(tk−1)‖+ const.,

where the supremum is over all finite partitions of [a, t] by points tk. Then
‖M(y)−M(x)‖ 6 µM (y)− µM (x), a 6 x 6 y 6 b,

and ∥∥∥∥
b∫

a

f(t)[ dM(t)]g(t)
∥∥∥∥ 6

b∫

a

‖f(t)‖ ‖g(t)‖ dµM (t)

whenever the integrals exist. The integration by parts formula
b∫

a

f(t)[ dM(t)] = f(b)M(b)− f(a)M(a)−
b∫

a

[ df(t)]M(t)

holds if both f and M are continuous and of bounded variation on [a, b]. Suppose
f and g are continuous and M is of bounded variation on [a, b]. Put

Lf (x) =

x∫

a

f(t)[ dM(t)] and Rg(x) =

x∫

a

[ dM(t)]g(t),
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a 6 x 6 b. Then
b∫

a

f(t)[ dM(t)]g(t) =

b∫

a

f(t)[dRg(t)] =

b∫

a

[dLf (t)]g(t).

Integrals over non-closed intervals are interpreted in the improper sense. The
notion of a scalar majorant has an obvious modification for these cases.

We also consider similar integrals where the values of M(x) are operators on
a finite-dimensional Hilbert space, and the values of f(x) and g(x) are operators
between this space and possibly infinite-dimensional Hilbert spaces. Such integrals
are interpreted in the weak sense and thereby reduced to integrals of matrix-valued
functions as above.

Let L2
m(0, l) be the Hilbert space of measurable m-dimensional vector-valued

functions on a finite interval (0, l) which are square integrable with respect to
Lebesgue measure.

2. SPECTRAL DATA

The usual notion of spectral data ([12]) is too restrictive for the indefinite case,
and we must modify this notion for our generalization. The modification follows
[8], which adapts an idea from interpolation theory ([9]) and uses the Krĕın and
Langer integral representation of a generalized Nevanlinna function ([7]).

We use an integral form of (1.1). Combined with the boundary conditions
(1.4) and discrete part (1.5), this can be written formally as

Y (x, z) = Y (0, z) + izJ

x∫

0

[dB(t)]Y (t, z) + izJ
∑

xk<x

s(xk)Y (xk, z),(2.1)

D2Y1(0, z) + D1Y2(0, z) = 0.(2.2)

The associated monodromy matrix is determined by the equation

(2.3) W (x, z) = I2m + izJ

x∫

0

[dB(t)]W (t, z) + izJ
∑
xj<x

s(xj)W (xj , z).

Equations of the type (1.1) are included by choosing B(x) =
x∫
0

H(t) dt. More

generally, throughout the paper, B(x) denotes a continuous function on a bounded
interval [0, l) which has selfadjoint 2m×2m matrix values, and which is of bounded
variation on every compact subinterval. Let xk be points in [0, l) such that

0 < x1 < x2 < · · · < l.

If the set of such points is infinite, we assume that xk → l. For each xk, let s(xk)
be a 2m× 2m matrix satisfying

(2.4) s(xk) = s∗(xk), s(xk)Js(xk) = 0.
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We remark that the general form of a matrix satisfying (2.4) is

s(xk) = [ p1(k) p2(k) ]tjk [ p∗1(k) p∗2(k) ] ,

where jk is an invertible m ×m matrix such that jk = j∗k = j−1
k and p1(k) and

p2(k) are m×m matrices such that

p∗1(k)p2(k) + p∗2(k)p1(k) = 0.

See Proposition 3.1 from [8] for a slightly more precise result. The second relation
in (2.4) is used in the proof of the Lagrange relation (2.8).

Let J, Y (x, z), D1, D2 be as in (1.3) and (1.4). The meaning of (2.3) is that
for a fixed complex parameter z, W (x, z) is a 2m × 2m matrix-valued piecewise
continuous function of x in [0, l) such that

(2.5) W (x, z) = I2m + izJ

x∫

0

[dB(t)]W (t, z), 0 6 x 6 x1,

and for all r = 1, 2, . . . ,

W (xr + 0, z) = [I2m + izJs(xr)]W (xr, z),(2.6)

W (x, z) = W (xr + 0, z) + izJ

x∫

xr

[dB(t)]W (t, z), xr < x 6 xr+1.(2.7)

A similar meaning is attached to (2.1). Thus if W (x, z) is a solution of (2.3),
then Y (x, z) = W (x, z)[ D∗

1 D∗
2 ]t satisfies (2.1), and this solution satisfies (2.2)

by (1.4).

Theorem 2.1. (i) The equation (2.3) has a unique solution W (x, z), and
this solution is an entire function of z for each x in [0, l).

(ii) The Lagrange relation

(2.8)

ξ∫

0

W ∗(x, u)[dB(x)]W (x, z) +
∑

xj<ξ

W ∗(xj , u)s(xj)W (xj , z)

=
W ∗(ξ, u)JW (ξ, z)− J

i(z − u)

holds for all ξ in [0, l) and all complex z and u.

Proof. (i) By the method of successive approximations, (2.5) has a unique
solution, and this solution is a continuous function of x in [0, x1] for each fixed z
and an entire function of z for each fixed x. In the same way, we solve (2.7) with
W (x1 + 0, z) replaced by the right side of (2.6), and so on.

(ii) First consider 0 6 ξ 6 x1. Using (2.5) we may set

R(x) = iz

x∫

0

[dB(t)]W (t, z) = J [W (x, z)− I2m],

L(x) = −iu

x∫

0

W ∗(t, u)[dB(t)] = [W ∗(x, u)− I2m]J,



120 J. Rovnyak and L.A. Sakhnovich

and obtain

iz

ξ∫

0

W ∗(x, u)[dB(x)]W (x, z) =

ξ∫

0

W ∗(x, u)[dR(x)] =

ξ∫

0

W ∗(x, u)[dJW (x, z)],

−iu

ξ∫

0

W ∗(x, u)[dB(x)]W (x, z) =

ξ∫

0

[dL(x)]W (x, z) =

ξ∫

0

[dW ∗(x, u)J ]W (x, z),

and hence (2.8), because

ξ∫

0

W ∗(x, u)[dJW (x, z)] +

ξ∫

0

[dW ∗(x, u)]JW (x, z) = W ∗(x, u)JW (x, z)
∣∣∣
ξ

x=0

= W ∗(ξ, u)JW (ξ, z)− J.

Suppose (2.8) has been proved for ξ 6 xr, and consider ξ ∈ (xr, xr+1]. The

function W (x, z), considered on the interval [xr, xr+1], has a discontinuity at the

left endpoint. The function

W̃ (x, z) =
{

W (xr + 0, z) x = xr,
W (x, z) xr < x 6 xr+1,

is continuous on [xr, xr+1]. Since by (2.7),

W̃ (x, z) = W̃ (xr, z) + izJ

x∫

xr

[dB(t)]W̃ (t, z), xr 6 x 6 xr+1,

in the same way as above, we can show that

ξ∫

xr

W̃ ∗(x, u)[dB(x)]W̃ (x, z) =
1

i(z − u)
W̃ ∗(x, u)JW̃ (x, z)

∣∣∣
ξ

x=xr

=
W ∗(ξ, u)JW (ξ, z)−W ∗(xr + 0, u)JW (xr + 0, z)

i(z − u)
.
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Since B(x) is continuous at x = xr,
ξ∫

0

W ∗(x, u)[dB(x)]W (x, z) +
∑

xk<ξ

W ∗(xk, u)s(xk)W (xk, z)

=
[ xr∫

0

W ∗(x, u)[dB(x)]W (x, z) +
r−1∑

k=1

W ∗(xk, u)s(xk)W (xk, z)
]

+

ξ∫

xr

W̃ ∗(x, u)[dB(x)]W̃ (x, z) + W ∗(xr, u)s(xr)W (xr, z)

=
W ∗(xr, u)JW (xr, z)− J

i(z − u)

+
W ∗(ξ, u)JW (ξ, z)−W ∗(xr + 0, u)JW (xr + 0, z)

i(z − u)
+ W ∗(xr, u)s(xr)W (xr, z)

=
W ∗(ξ, u)JW (ξ, z)− J

i(z − u)
,

where the last equality is obtained from (2.6) and (2.4).

Given a boundary problem (2.1)–(2.2), define an operator V by V : f(x) →
F (u),

(2.9)
F (u) =

l∫

0

[ D1 D2 ]W ∗(x, u)[dB(x)]f(x)

+
∑

xk<l

[ D1 D2 ] W ∗(xk, u)s(xk)f(xk)

on the set dom V of piecewise continuous functions f(x) on [0, l) with values in
C2m having compact support and only a finite number of simple discontinuities in
(0, l). The transform F (u) of any f(x) in dom V is a Cm-valued entire function.

We introduce topological notions in dom V by embedding dom V in a Hilbert
space. To do this, we suppose that B(x) is written in the form
(2.10) B(x) = B+(x)−B−(x),
where B±(x) are nondecreasing continuous functions on [0, l). In a similar way
write
(2.11) s(xk) = s+(xk)− s−(xk),
where the matrices s±(xk) are nonnnegative for all k. Then dom V has a natural
embedding in a Hilbert space L2

2m(B±, s±) determined by the inner product

〈f(·), g(·)〉 =

l∫

0

g∗(x)[dB+(x)]f(x) +
∑

xk<l

g∗(xk)s+(xk)f(xk)

+

l∫

0

g∗(x) [dB−(x)]f(x) +
∑

xk<l

g∗(xk)s−(xk)f(xk).
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We omit the standard details of the construction of such a Hilbert space. The
decompositions (2.10) and (2.11) are not unique, but any choice will suit our
purpose. No matter how (2.10) and (2.11) are chosen, a dense set in domV consists
of functions of the form

f(x) =
p∑

j=1

χ[0,ξj)(x)fj ,

where fj ∈ C2m and ξj ∈ (0, l), j = 1, . . . , p.
As in [8], we use certain forms which depend on complex numbers λk and

associated m × m matrix-valued polynomials Rk(λ) such that Rk(0) = 0, k =
1, . . . , ν. If F (z) and G(z) are entire functions whose values are m×m matrices,
we set

(2.12)

Fk(F (z), G(z)) = Res
λ=λk

[
G∗(λ)Rk

( 1
λ− λk

)
F (λ)

]
,

F̂k(F (z), G(z)) = Res
λ=λk

[
G∗(λ)R∗k

( 1

λ− λk

)
F (λ)

]
.

Explicitly, if Rk(λ) = τk1λ + τk2λ
2 + · · ·+ τkρk

λρk these expressions are given by

Fk(F (z), G(z)) =
{

G∗(λ)τk1F (λ) + [G∗(λ)τk2F (λ)]′ +
1
2!

[G∗(λ)τk3F (λ)]′′

+ · · ·+ 1
(ρk − 1)!

[G∗(λ)τkρk
F (λ)](ρk−1)

}∣∣∣
λ=λk

,

F̂k(F (z), G(z)) =
{

G∗(λ)τ∗k1F (λ) + [G∗(λ)τ∗k2F (λ)]′ +
1
2!

[G∗(λ)τ∗k3F (λ)]′′

+ · · ·+ 1
(ρk − 1)!

[G∗(λ)τ∗kρk
F (λ)](ρk−1)

}∣∣∣∣
λ=λk

.

Definition 2.2. (i) We define spectral data for the boundary problem (2.1)–
(2.2) as a tuple

(2.13) ττ = {τ(u); F1, . . . , Fν},
consisting of an m×m selfadjoint matrix-valued function τ(u) on (−∞,∞) which
is of bounded variation on all compact subintervals, together with forms F1, . . . , Fν

of the type (2.12), such that

(2.14)

l∫

0

g∗(x) [dB(x)]f(x) +
∑

xk<l

g∗(xk)s(xk)f(xk)

=

∞∫

−∞
G∗(u)[dτ(u)]F (u) +

ν∑

k=1

[Fk(F (z), G(z)) + F̂k(F (z), G(z))]

for all f(x) and g(x) in domV and their transforms F (u) and G(u). For emphasis,
we say that the boundary problem (2.1)–(2.2) has ττ as spectral data in the strong
sense when this condition is satisfied.

(ii) If (2.14) holds for all f(x) and g(x) in a dense subset of dom V , we say
that the boundary problem (2.1)–(2.2) has spectral data ττ in the weak sense.
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The integral on the right side of (2.14) is interpreted as

∞∫

−∞
= lim

c1→−∞
c2→+∞

c2∫

c1

,

and its existence is part of the condition in Definition 2.2.

Proposition 2.3. If the boundary problem (2.1)–(2.2) has spectral data (2.13)

in the weak sense and B(x) and τ(x) are nondecreasing, then the problem has spec-

tral data (2.13) in the strong sense as well.

Proof. Suppose that (2.14) holds for all f(x) in the dense set D in dom V .

Then given any f(x) in dom V we may choose an approximating sequence f1(x),

f2(x), . . . in D. If V : f(x) → F (u) and V : fn(x) → Fn(u) for all n, then

lim
n→∞

Fn(u) = F (u)

uniformly on compact sets. By assumption (2.14) holds for functions in D, and

hence for any m,n = 1, 2, . . . ,

∞∫

−∞
[F ∗m(u)− F ∗n(u)][dτ(u)][Fm(u)− Fn(u)]

=

l∫

0

[f∗m(x)− f∗n(x)] [dB(x)] [fm(x)− fn(x)]

+
∑

xk<l

[f∗m(xk)− f∗n(xk)]s(xk)[fm(xk)− fn(xk)]

−
ν∑

k=1

[Fk(Fm(z)− Fn(z), Fm(z)− Fn(z)) + F̂k(Fm(z)− Fn(z), Fm(z)− Fn(z))].

Letting m →∞, we obtain an identity which implies that

lim
n→∞

∞∫

−∞
[F ∗(u)− F ∗n(u)] [dτ(u)] [F (u)− Fn(u)] = 0.

It is now straightforward to verify that (2.14) holds for all f(x) and g(x) in the

domain of V .
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3. OPERATOR IDENTITIES AND THE INVERSE PROBLEM

The inverse problem is to find a boundary problem (2.1)–(2.2) which has a given
tuple ττ = {τ ;F1, . . . , Fν} as spectral data. Solutions are not unique, and, following
[12], to find them we impose extra conditions that restrict the search. These
conditions are formulated in terms of an operator identity

(3.1) AS − SA∗ = i(Φ1Φ∗2 + Φ2Φ∗1), A, S ∈ L(H), Φ1, Φ2 ∈ L(G, H), S = S∗,

where H is a Hilbert space and G = Cm. We assume that A is a Volterra operator,
that is, A is compact and the origin is the only point in its spectrum. In outline,
the strategy is first to choose operators A and Φ2. Then using ττ we construct
S = S∗ and Φ1 so that the operator identity (3.1) is satisfied (see Theorem 3.1).
As in the definite case by choosing A and Φ2 we define the class of systems in which
we search for a solution of the inverse problem. The main results of this section,
Theorems 3.2 and 3.5, exploit the relationship between invariant subspaces and
factorization to obtain a solution of the inverse problem within the chosen class of
systems.

Theorem 3.1. Let A ∈ L(H) be a Volterra operator on a Hilbert space H.
Let Φ2 ∈ L(G,H), where G = Cm. Suppose that ττ = {τ ; F1, . . . , Fν} is given as
in Definition 2.2, and assume that τ(u) has a scalar majorant µτ (u) satisfying

∞∫

−∞

dµτ (u)
1 + u2

< ∞(3.2)

and
∞∫

−∞

∥∥Φ∗2(I − uA∗)−1h
∥∥2

dµτ (u) < ∞, h ∈ H.(3.3)

Define S ∈ L(H) and Φ1 ∈ L(G,H) by

(3.4)

S =

∞∫

−∞
(I −Au)−1Φ2[dτ(u)]Φ∗2(I −A∗u)−1

+
ν∑

k=1

[Fk(Φ∗2(I −A∗z)−1, Φ∗2(I −A∗z)−1)

+ F̂k(Φ∗2(I −A∗z)−1, Φ∗2(I −A∗z)−1)]

and

(3.5)

Φ1 =− i

∞∫

−∞

[
A(I −Au)−1 +

u

u2 + 1
I
]
Φ2[dτ(u)]

− i
ν∑

k=1

[Fk(I, Φ∗2A
∗(I − zA∗)−1) + F̂k(I, Φ∗2A

∗(I − zA∗)−1)].
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Then the integrals in (3.4) and (3.5) exist in the weak sense, and the operators
A,S, Φ1, Φ2 satisfy (3.1).

In the simplest case where Rk(z) = τkz for some operators τk on G, k =
1, . . . , ν, the formulas (3.4) and (3.5) take the form

S =

∞∫

−∞
(I −Au)−1Φ2[dτ(u)]Φ∗2(I −A∗u)−1

+
ν∑

k=1

[(I − λkA)−1Φ2τkΦ∗2(I − λkA∗)−1 + (I − λkA)−1Φ2τ
∗
k Φ∗2(I − λkA∗)−1]

and

Φ1 = −i

∞∫

−∞

[
A(I −Au)−1 +

u

u2 + 1
I
]
Φ2[dτ(u)]

− i
ν∑

k=1

[A(I − λkA)−1Φ2τk + A(I − λkA)−1Φ2τ
∗
k ].

Proof of Theorem 3.1. The integral in (3.4) converges by (3.3). The proof of
convergence of the integral in (3.5) also uses (3.2) and is similar to an argument
in p. 2 of [11].

To complete the proof, by linearity it is sufficient to assume that S is one
of the terms of (3.4) and Φ1 is the corresponding term of (3.5). For the integral
terms, (3.1) follows as in the definite case.

Suppose that S and Φ1 are given by

S = Fk(Φ∗2(I −A∗z)−1, Φ∗2(I −A∗z)−1)

+ F̂k(Φ∗2(I −A∗z)−1, Φ∗2(I −A∗z)−1)

= Res
λ=λk

[
(I −Aλ)−1Φ2Rk

( 1
λ− λk

)
Φ∗2(I −A∗λ)−1

]

+ Res
λ=λk

[
(I −Aλ)−1Φ2R

∗
k

( 1

λ− λk

)
Φ∗2(I −A∗λ)−1

]
,

Φ1 = −i[Fk(I, Φ∗2A
∗(I − zA∗)−1) + F̂k(I, Φ∗2A

∗(I − zA∗)−1)]

= −i Res
λ=λk

[
A(I −Aλ)−1Φ2Rk

( 1
λ− λk

)]

− i Res
λ=λk

[
A(I −Aλ)−1Φ2R

∗
k

( 1

λ− λk

)]
.

For any operator-valued function F (λ) which is holomorphic in a deleted neigh-
borhood of λ1, [

Res
λ=λ1

F (λ)
]∗

= Res
λ=λ1

F ∗(λ).

Using this formula we verify (3.1) by straightforward calculations.
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Operator identities are useful in factorization problems. As a preliminary, we
recall the most basic result in a form which is convenient for our present purpose.

Theorem 3.2. (Main Factorization Theorem, [12], p. 21.) Let Ã, B̃, S̃ ∈
L(H̃) and Π1, Π2,Γ1,Γ2 ∈ L(G̃, H̃), where H̃ and G̃ are Hilbert spaces. Assume
that S̃ is invertible, and

ÃS̃ − S̃B̃ = Π1Π∗2, S̃Γ1 = Π1, Γ∗2S̃ = Π∗2.

Let W̃ (z) be a holomorphic function such that, in a neighborhood of infinity,

W̃ (z) = I − Γ∗2(Ã− zI)−1Π1, W̃−1(z) = I + Π∗2(B̃ − zI)−1Γ1.

Suppose that P2ÃP2 = ÃP2 and P1B̃P1 = B̃P1, where P1 and P2 are the orthogo-
nal projections onto the components H̃1 and H̃2 of a decomposition H̃ = H̃1 ⊕ H̃2.
Write

Ã =
[

A11 0
A21 A22

]
, B̃ =

[
B11 B12

0 B22

]
,

and

S̃ =
[

S11 S12

S21 S22

]
, T̃ = S̃−1 =

[
T11 T12

T21 T22

]

relative to this decomposition. Then if S11 is invertible, so is T22, and

S−1
11 = T11 − T12T

−1
22 T21, T−1

22 = S22 − S21S
−1
11 S12.

Moreover W̃ (z) = W̃2(z)W̃1(z), where

W̃1(z) = I−Π∗2P1S
−1
11 (A11−zI)−1P1Π1, W̃2(z) = I−Γ∗2P2(A22−zI)−1T−1

22 P2Γ1.

A family of projections on a Hilbert space H is called a chain if it is totally
ordered with respect to inclusion of ranges. It is called an eigenchain for an operator
A ∈ L(H) if the range of each projection in the chain is invariant under A.

We use the Main Factorization Theorem in a continual form. Two versions
of this result are given in Theorems 3.2 and Theorem 3.4. These results generalize
constructions in pp. 40–41 of [12].

Theorem 3.3. Let A,S, Φ1, Φ2 satisfy (3.1) where H is a Hilbert space, G =
Cm, and A is a Volterra operator. Let {Px}06x6l, P0 = 0, Pl = I, be an eigenchain
for A∗. We assume that the chain is strongly continuous except at points 0 < x1 <
x2 < · · · < l which have no limit point in [0, l), and at such points the chain is
strongly continuous from the left. Set

Sx = PxSPx|Hx, Hx = PxH, 0 6 x 6 l.

Assume:
(i) The operators Sx are invertible, and there is a constant C such that

‖S−1
x ‖ 6 C, 0 6 x 6 l. Moreover S−1

x Px is strongly continuous on [0, l) except
perhaps at the points xk, where it is strongly left continuous and a strong limit
from the right exists.

(ii) Define a function B1(x) on [0, l) whose values are selfadjoint C2m×C2m

matrices by
B1(x) = Π∗PxS−1

x PxΠ, Π = [ Φ1 Φ2 ] .



Canonical differential equations 127

Then B1(x) is of bounded variation on all compact subintervals of [0, l).
(iii) There is a constant M > 0 such that

‖(Px+∆x − Px)A(Px+∆x − Px)‖ 6 M ∆x

whenever 0 6 x < x + ∆x < l.
Then B1(x) = B(x)+Σ(x), where B(x) is continuous on [0, l) and Σ(x) is constant
on the intervals determined by the points xk and left continuous at every such point.
The jump s(xk) = B1(xk +0)−B1(xk) at xk satisfies (2.4) with J defined by (1.3).
The formula

(3.6) W (x, z) = I2m + izJΠ∗PxS−1
x Px(I − zA)−1Π,

defines the unique solution of (2.3) with this choice of B(x) and s(xk).

See Section 4 for a concrete case in which the conditions of Theorem 3.2 are
met.

Proof. By (i), the function B1(x) is continuous on [0, l) except for possible
simple discontinuities at the points xk, and it is left continuous at these points.
Thus B1(x) = B(x) + Σ(x) as in the theorem. For fixed x, W (x, z) is an entire
function of z because A is a Volterra operator. For fixed z, W (x, z) is continuous
on [0, l) except for possible simple discontinuities at the points xk, and it is left
continuous at these points by (i). For any x in [0, l), set Ax = PxAPx|Hx. Since
PxAPx = PxA, we have (I − zAx)−1Px = Px(I − zA)−1 and hence

(3.7) W (x, z) = I2m + izJΠ∗PxS−1
x (I − zAx)−1PxΠ.

Consider any points 0 6 x < x + ∆x = y < l. We shall apply the Main
Factorization Theorem with H̃ = Hy, G̃ = G ⊕ G, G = Cm, Ã = Ay, B̃ = A∗y,
S̃ = S∗y , and W̃ (z) = W (y, 1/z) = I2m−iJΠ∗PyS−1

y (Ay−zI)−1PyΠ. Choose Π1 =
PyΠ, Γ1 = S−1

y PyΠ, Π∗2 = iJΠ∗Py|Hy, Γ∗2 = iJΠ∗PyS−1
y . The conditions of the

Main Factorization Theorem are met relative to the decomposition H̃ = H̃1 ⊕ H̃2,
where H̃1 = Hx and H̃2 = Hy ª Hx. In the notation of that result, A11 = Ax,
S11 = Sx, and

(3.8) S−1
x = T11 − T12T

−1
22 T21, T−1

22 = S22 − S21S
−1
x S12.

By (3.7), the identity W̃ (1/z) = W̃2(1/z)W̃1(1/z) can be written in the form

(3.9) W (y, z) = V (x, y, z)W (x, z),

where

(3.10) V (x, y, z) = I2m + zΓ∗2P2(I − zA22)−1T−1
22 P2Γ1
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for every complex z. By the first relation in (3.8),

(3.11)

B1(y)−B1(x) = Π∗PyS−1
y PyΠ−Π∗PxS−1

x PxΠ

= Π∗Py

[
S−1

y − P1S
−1
x P1

]
PyΠ

= Π∗Py

{[
T11 T12

T21 T22

]
−

[
S−1

x 0
0 0

]}
PyΠ

= Π∗Py

[
T12T

−1
22 T21 T12

T21 T22

]
PyΠ

= Π∗Py

[
T11 T12

T21 T22

] [
0 0
0 T−1

22

] [
T11 T12

T21 T22

]
PyΠ

= Π∗PyS−1
y P2T

−1
22 P2S

−1
y PyΠ.

Thus

(3.12)

[V (x, y, z)− I2m]− izJ [B1(y)−B1(x)]

= zΓ∗2P2(I − zA22)−1T−1
22 P2Γ1 − izJΠ∗PyS−1

y P2T
−1
22 P2S

−1
y PyΠ

= zΓ∗2P2

[
(I − zA22)−1 − I

]
T−1

22 P2Γ1

= z2Γ∗2P2A22(I − zA22)−1T−1
22 P2Γ1

def= R(x, ∆x).

We have shown that

(3.13)
W (x + ∆x, z)−W (x, z)

= {izJ [B1(x + ∆x)−B1(x)] + R(x, ∆x)}W (x, z).

We now verify (2.3), that is, the identities (2.5)–(2.7) hold for every fixed
complex number z. Clearly W (0, z) = I2m. On [0, x1], B1(x) = B(x) is continuous
and of bounded variation by (i) and (ii). Suppose 0 6 x < x + ∆x = y 6 x1. We
show that in (3.13),

(3.14) ‖R(x, ∆x)‖ = o(∆x), ∆x → 0,

uniformly in x, that is, for every number ε > 0 there is a δ > 0 such that
‖R(x, ∆x)‖ < ε ∆x whenever 0 6 x < x + ∆x = y 6 x1 and 0 < ∆x < δ. By
(i), ‖z2Γ∗2P2‖ = ‖z2iJΠ∗PyS−1

y P2‖ 6 K1 for some constant K1 = K1(z). By (iii),
‖A22‖ = ‖(Px+∆x − Px)A(Px+∆x − Px)‖ 6 M∆x. From (I − zA22)−1(Py − Px) =
(Py −Px)(I − zA)−1(Py −Px) we get ‖(I − zA22)−1‖ 6 K2 for some K2 = K2(z).
By the second relation in (3.8) and (i), ‖T−1

22 ‖ 6 K3 for a constant K3. It remains
to estimate ‖P2Γ1‖. Since P2Γ1 = (Py −Px)PyS−1

y PyΠ = (Py −Px)[PyS−1
y PyΠ−

PxS−1
x PxΠ], we have

‖P2Γ1‖ 6 ‖PyS−1
y PyΠ− PxS−1

x PxΠ‖.
By the second part of (i) and the finite dimensionality of G̃ = G⊕G, PxS−1

x PxΠ
is norm-continuous on [0, x1]. Hence ‖P2Γ1‖ can be made as small as we wish by
choosing ∆x = y − x sufficiently small. This yields (3.14). Then using (3.13) and
(3.14) we verify (2.5) by examining the partial sums of the integral.
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We obtain (2.6) with r = 1 and s(x1) = B1(x1 + 0) − B1(x1) by choosing
x = x1 in (3.13) and estimating R(x, ∆x) in a similar way; the only change is to use
the simpler estimate ‖P2Γ1‖ 6 K4 for the last part. It is clear that s∗(x1) = s(x1).
We show that s(x1)Js(x1) = 0. Using (3.11) with x = x1 and y = x1 +∆x, we set

s∆x(x1)
def= B1(x1 + ∆x)−B1(x1) = Π∗PyS−1

y P2T
−1
22 P2S

−1
y PyΠ.

Then by (3.1),

s∆x(x1)Js∆x(x1)

= Π∗PyS−1
y P2T

−1
22 P2S

−1
y PyΠJΠ∗PyS−1

y P2T
−1
22 P2S

−1
y PyΠ

= Π∗PyS−1
y P2T

−1
22 P2S

−1
y Py · AS − SA∗

i
· PyS−1

y P2T
−1
22 P2S

−1
y PyΠ

= −iΠ∗PyS−1
y P2T

−1
22 P2S

−1
y Py ·AS · PyS−1

y P2T
−1
22 P2S

−1
y PyΠ

+ iΠ∗PyS−1
y P2T

−1
22 P2S

−1
y Py · SA∗ · PyS−1

y P2T
−1
22 P2S

−1
y PyΠ.

In the central parts of the last two terms, replace PyA and A∗Py by PyAPy and
PyA∗Py. This allows a cancellation of terms Sy and S−1

y , yielding

s∆x(x1)Js∆x(x1) = −iΠ∗PyS−1
y P2T

−1
22 P2S

−1
y [PyAP2]T−1

22 P2S
−1
y PyΠ

+ iΠ∗PyS−1
y P2T

−1
22 [P2A

∗Py]S−1
y P2T

−1
22 P2S

−1
y PyΠ.

Since PyAP2 = Px1+∆xA(Px1+∆x − Px1) = (Px1+∆x − Px1)A(Px1+∆x − Px1),
we have ‖PyAP2‖ → 0 and ‖P2A

∗Py‖ → 0 as ∆x → 0. Hence s(x1)Js(x1) =
lim∆x→0 s∆x(x1)Js∆x(x1) = 0, and so s(x1) satisfies (2.4) with k = 1.

In the same way as above, we show that for any small positive number ε,

W (x, z) = W (x1 + ε, z) + izJ

x∫

x1+ε

[dB(t)]W (t, z)

for x1 + ε < x 6 x2. Since B(t) is continuous and W (x, z) has at most a simple
discontinuity at x1, this yields (2.7) for r = 1. We continue in the same manner
for the points x2, x3, . . ..

We show that the conditions of Theorem 3.2 are satisfied in a special case,
namely, whenever S is factorable ([3], [10]).

Definition 3.4. Let H be a Hilbert space. An operator S ∈ L(H) is called
left factorable with respect to a chain P of projections on H if S = LU , where
L,U ∈ L(H) are invertible operators such that for every P ∈ P,

PL±1P = PL±1 and PU±1P = U±1P.

Suppose that S ∈ L(H) is left factorable with respect to a chain P, and let
S = LU as above. Given P ∈ P, let SP , LP , UP be the compressions of S, L, U to
PH, that is, SP = PSP |PH, LP = PLP |PH, UP = PUP |PH. These operators are
invertible, and their inverses are given by L−1

P = PL−1P |PH, U−1
P = PU−1P |PH,

S−1
P = U−1

P L−1
P = PU−1PL−1P |PH. We omit the elementary proofs.
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Theorem 3.5. The conclusions of Theorem 3.2 hold if the hypotheses (i)
and (ii) are replaced by the condition that S is left factorable with respect to the
chain {Px}06x6l.

Proof. In the notation of Theorem 3.2, let S = LU where L and U are in-
vertible and PxL±1Px = PxL±1 and PxU±1Px = U±1Px for 0 6 x 6 l. Condition
(i) is easily checked using the representation S−1

x = PxU−1PxL−1Px|Hx. To prove
(ii), note that B1(x) = Π∗PxU−1PxL−1PxΠ, where the domain of Π is finite-
dimensional. Hence it is sufficient to show that for any h ∈ H, the vector-valued
functions f(x) = PxL−1Pxh and g(x) = PxU∗−1Pxh are of bounded variation on
[0, l] relative to the norm of H. This is evident from the identities

PyL−1Pyh− PxL−1Pxh = (Py − Px)L−1h,

PyU∗−1Pyh− PxU∗−1Pxh = (Py − Px)U∗−1h,

which hold whenever 0 6 x < y 6 l.

The next result provides a solution of the inverse problem: given ττ and
operators A and Φ2, we construct S and Φ1 by Theorem 3.1, and then Theorem 3.2
yields a system having ττ as spectral data.

Theorem 3.6. Let ττ = {τ(t); F1, . . . , Fν} be given as in Definition 2.2. Let
A,S, Φ1, Φ2 satisfy (3.1) where H is a Hilbert space, G = Cm, and A is a Volterra
operator. Suppose moreover that S is given by (3.4), that is, it is constructed
from ττ as in Theorem 3.1. If {Px}06x6l is an eigenchain for A∗ satisfying the
conditions of Theorem 3.2, then the boundary problem (2.1)–(2.2) determined by
Theorem 3.2 with [D1 D2 ] = [ 0 Im ] has spectral data ττ in the weak sense.

By Proposition 2.3, if B(x) and τ(x) are nondecreasing, the boundary prob-
lem has the spectral data ττ in the strong sense as well. We hope to discuss this
case in a future work.

Proof. By linearity it is enough to verify (2.14) when f(x) = χ[0,ξ)(x)f and
g(x) = χ[0,η)(x)g, where ξ, η ∈ (0, l) and f, g ∈ C2m. Write Fξ(z) and Gη(z) for
the corresponding entire functions defined by (2.9) with [D1 D2 ] = [ 0 Im ].
Then by (2.8) and (3.6),

Fξ(z) = [ 0 Im ]
{ ξ∫

0

W ∗(x, z)[dB(x)] +
∑

xk<ξ

W ∗(xk, z)s(xk)
}

f

= [ 0 Im ]
W ∗(ξ, z)J − J

−iz
f = Φ∗2Pξ(I − zA∗)−1PξS

−1
ξ PξΠf

= Φ∗2(I − zA∗)−1PξS
−1
ξ PξΠf.
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The last equality holds by the assumption that {Px}06x6l is an eigenchain for A∗.
Similarly, Gη(z) = Φ∗2(I − zA∗)−1PηS−1

η PηΠg. Thus the right side of (2.14) is

∞∫

−∞
G∗η(u)[dτ(u)]Fξ(u) +

ν∑

k=1

[Fk(Fξ(z), Gη(z)) + F̂k(Fξ(z), Gη(z))]

= g∗Π∗PηS−1
η Pη

{ ∞∫

−∞
(I −Au)−1Φ2[dτ(u)]Φ∗2(I −A∗u)−1

+
ν∑

k=1

Fk(Φ∗2(I −A∗z)−1, Φ∗2(I −A∗z)−1)

+ F̂k(Φ∗2(I −A∗z)−1,Φ∗2(I −A∗z)−1)
}

PξS
−1
ξ PξΠf

= g∗Π∗PηS−1
η Pη S PξS

−1
ξ PξΠf

= g∗Π∗PζS
−1
ζ PζΠf,

where ζ = min(ξ, η). The left side of (2.14) is

l∫

0

g∗χ[0,η)(x)[dB(x)]χ[0,ξ)(x)f +
∑

xk<ζ

g∗s(xk)f = g∗
{ ζ∫

0

[dB(x)] +
∑

xk<ζ

s(xk)
}

f

= g∗[B(ζ) + Σ(ζ)]f = g∗B1(ζ)f = g∗Π∗PζS
−1
ζ PζΠf.

Thus (2.14) is satisfied, and the result follows.

Example 3.7. To illustrate Theorem 3.5 with a concrete example, choose
the data ττ = {τ(u)},

τ(u) =
1
2π

ju + σ(u), −∞ < u < ∞,

where j =
[

1 0
0 −1

]
and

σ(u) =
{

0 u 6 λ0,
τ0 u > λ0;

τ0 =
[

0 a
a 0

]
,

for some real number λ0 and complex number a. In Theorem 3.1 choose H =
L2

2(0, l) for any l > 0, G = C2, and

A : f(x) → i

x∫

0

f(t) dt,(3.15)

Φ2 : g → g,(3.16)
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for all f(x) in H and g in G. The operators S and Φ1 defined by (3.4) and (3.5)
are given by

S : f(x) → j f(x) +

l∫

0

eiλ0(x−t)τ0f(t) dt,

Φ1 : g → q(x)g, q(x) =
1
2

j − i
(eiλ0x − 1

λ0
+

λ0

λ2
0 + 1

)
τ0,

for all f(x) in H and g in G. In Theorem 3.2, let Pξ be the projection onto
the subspace Hξ of functions supported on (0, ξ). Then Sξ : f(x) → j f(x) +
ξ∫
0

eiλ0(x−t)τ0f(t) dt for all f(x) in Hξ. This operator is invertible with inverse

S−1
ξ : f(x) → j f(x)+

ξ∫

0

eiλ0(x−t)ρ0(ξ)f(t) dt, ρ0(ξ) =
1

1 + ξ2|a|2
[
−ξ|a|2 a

a ξ|a|2
]

for all f(x) in Hξ. All conditions of Theorem 3.2 are met. Thus according to
Theorem 3.5, the boundary problem (2.1)–(2.2) with B(x) constructed as in The-
orem 3.2 and [ D1 D2 ] = [ 0 Im ] has spectral data ττ in the weak sense. Explic-
itly,

B(x) =

x∫

0

[
q∗(t)
I2

]
j [ q(t) I2 ] dt + Q∗(x)ρ0(x)Q(x)

where Q(x) =
x∫
0

[ q(t) I2 ] e−iλ0t dt. Alternatively, the boundary problem (1.1)–

(1.2) with H(x) = [ q∗(x) I2 ]t j [ q(x) I2 ] + d
dx [Q∗(x)ρ0(x)Q(x)] has spectral

data ττ in the weak sense.

Remark 3.8. In Example 3.7, we can replace q(x) by q(x)+iC for any 2×2
matrix C such that C∗ = C, and the same conclusions hold. For then A, S, Φ1,Φ2

satisfy (3.1) and the hypotheses of Theorem 3.2 are met.

Example 3.9. We modify Example 3.7 by splitting the discontinuity of τ(u)
at the point λ0 into a part in the upper half-plane and a part in the lower half-
plane. Thus we now construct a solution of the inverse problem for the data

ττ = {τ(u); F1},
where τ(u) = 1

2π ju, −∞ < u < ∞,

F1(F (z), G(z)) = G∗(λ1)τ1F (λ1), F̂1(F (z), G(z)) = G∗(λ1)τ∗1 F (λ1),

and

j =
[

1 0
0 −1

]
, τ1 =

[
0 a
0 0

]
.

Here we assume that λ1 and a are fixed complex numbers such that λ1 − λ1 =
iη1 6= 0. As in Example 3.7 take H = L2

2(0, l) for any l > 0 and G = C2, and define
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A and Φ2 by (3.15) and (3.16). The operators S and Φ1 defined by (3.4) and (3.5)
are given by

S : f(x) → j f(x) +

l∫

0

[eiλ1(x−t)τ1 + eiλ1(x−t)τ∗1 ]f(t) dt,

Φ1 : g → q1(x)g, q1(x) =
1
2

j − i
(eiλ1x − 1

λ1
τ1 +

eiλ1x − 1

λ1

τ∗1
)
,

for all f(x) in H and g in G. Calculations as in Example 3.7 produce weak-sense
solutions of the inverse problem with

B(x) =

x∫

0

[
q∗1(t)
I2

]
j [ q1(t) I2 ] dt + Q∗1(x)ρ1(x)Q1(x),

or

H(x) =
[

q∗1(x)
I2

]
j [ q1(x) I2 ] +

d
dx

[
Q∗

1(x)ρ1(x)Q1(x)
]
,

with q1(x) as above and

Q1(x) =

x∫

0

[
e−λ1t 0

0 e−λ1t

]
[ q1(t) I2 ] dt,

ρ1(x) =
1

1 + γ1(x)γ2(x)|a|2
[
−γ1(x)|a|2 a

a γ2(x)|a|2
]

,

where γ1(x) = eη1x−1
η1

, and γ2(x) = 1−e−η1x

η1
. Thus for λ1 → λ0,

q1(x) → q(x) + iC and Q1(x) → Q(x),

where C∗ = C. That is, the solution in Example 3.9 passes into the form obtained
in Example 3.7 in the limit as λ1 → λ0 (see Remark 3.8).

4. GENERALIZED MATRIX STRING EQUATION

Throughout this section, p(x) and q(x) denote continuously differentiable m×m
matrix-valued functions on [0, l] such that p(x) has invertible values. Let j be an
invertible m×m matrix such that j = j ∗ = j−1.

Theorem 4.1. Let H = L2
m(0, l) and G = Cm. Then the operators A,S ∈

L(H) and Φ1,Φ2 ∈ L(G,H) defined by

S : f(x) → j f(x),

A : f(x) → i

x∫

0

[p∗(x)q(t) + q∗(x)p(t)] j f(t) dt,

Φ1 : g → q∗(x)g, Φ2 : g → p∗(x)g,
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satisfy (3.1), and A is Volterra. The hypotheses of Theorems 3.2 and 3.4 are met
if Px is the projection onto the subspace of functions supported on (0, x) for each x
(the set of points xk in Theorem 3.2 is empty). The function B1(x) = B(x) in
Theorem 3.2 is given by

B(x) =

x∫

0

H(x) dx, H(x) =
[

q(x)
p(x)

]
j [ q∗(x) p∗(x) ] ,

0 6 x < l. The solution of

(4.1)
d
dx

W (x, z) = izJH(x)W (x, z), W (0, z) = I2m,

provided by formula (3.6) in Theorem 3.2 is given by

(4.2)

W (x, z) = I2m + iz

x∫

0

JH(t) dt + (iz)2
x∫

0

t∫

0

JH(t)JH(u) dudt

+ (iz)3
x∫

0

t∫

0

u∫

0

JH(t)JH(u)JH(s) ds dudt + · · ·

for all x in [0, l) and all complex z.

We omit the straightforward proof and only remark that (4.2) coincides with
the solution of (4.1) obtained by successive approximations.

The assumption that p(x) has invertible values is not always needed, but it
is convenient in some places. In particular, it guarantees that the function H(x)
constructed in Theorem 4.1 satisfies

rank H(x) = m

for all x.
The next result generalizes Theorem 1.2, p. 156, from [12].

Theorem 4.2. (i) In the situation of Theorem 4.1, for any matrices D1 and
D2 satisfying (1.4) the function

(4.3) Y (x, z) = [ q∗(x) p∗(x) ] W (x, z)
[

D∗
1

D∗
2

]

satisfies

(4.4) Y (x, z) = iz

x∫

0

[q∗(x)p(t) + p∗(x)q(t)] jY (t, z) dt + q∗(x)D∗
1 + p∗(x)D∗

2

and is the unique solution of this equation.
(ii) Assume in addition that

(4.5) q∗(x)p(x) + p∗(x)q(x) = 0

for all x, and that the values of

r(x) =
d
dx

[p∗−1(x)q∗(x)]
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are invertible. Set A(x) = −ir−1(x). Then (4.4) is equivalent to the system

(4.6)
d
dx

{
A(x)

d
dx

[p∗−1(x)Y (x, z)]
}

= zp(x) jY (x, z)

with the boundary conditions

(4.7) Y (0, z) = q∗(0)D∗
1 + p∗(0)D∗

2 ,
d
dx

[p∗−1(x)Y (x, z)]
∣∣∣
x=0

= r(0)D∗
1 .

Equation (4.4) is the generalized string equation.

Proof. (i) Write W (x, z) = [Wik(x, z)]2i,k=1, where the values of Wik(x, z) are
m×m matrices. Then setting

ϕ1(x, z) = p∗(x)W21(x, z) + q∗(x)W11(x, z),

ϕ2(x, z) = p∗(x)W22(x, z) + q∗(x)W12(x, z),

we can write (4.3) in the form

(4.8) Y (x, z) = ϕ1(x, z)D∗
1 + ϕ2(x, z)D∗

2 .

By (4.1), dW1k(x,z)
dx = izp(x) jϕk(x, z), dW2k(x,z)

dx = izq(x) jϕk(x, z), and hence

W1k(x, z) = iz

x∫

0

p(t) jϕk(t, z) dt + W1k(0, z),

W2k(x, z) = iz

x∫

0

q(t) jϕk(t, z) dt + W2k(0, z).

We deduce from the definitions of ϕ1(x, z) and ϕ2(x, z) that

ϕ1(x, z) = iz

x∫

0

[q∗(x)p(t) + p∗(x)q(t)] jϕ1(t, z) dt + q∗(x),

ϕ2(x, z) = iz

x∫

0

[q∗(x)p(t) + p∗(x)q(t)] jϕ2(t, z) dt + p∗(x).

Hence by (4.8), (4.3) satisfies (4.4). The solution of (4.4) is unique by standard
estimates.

(ii) Write (4.4) in the form

p∗−1(x)Y (x, z) = izp∗−1(x)q∗(x)

x∫

0

p(t) jY (t, z) dt

+ iz

x∫

0

q(t) jY (t, z) dt + p∗−1(x)q∗(x)D∗
1 + D∗

2 .
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Then differentiate and use (4.5) to obtain

d
dx

[p∗−1(x)Y (x, z)] = izr(x)

x∫

0

p(t) jY (t, z) dt + izp∗−1(x)q∗(x)p(x) jY (x, z)

+ izq(x) jY (x, z) + r(x)D∗
1

= izr(x)

x∫

0

p(t) jY (t, z) dt + r(x)D∗
1 .

Multiply both sides by A(x) = −ir−1(x) and differentiate again to obtain (4.6).
The boundary conditions (4.7) are immediate from the preceding formulas.

There is a natural notion of spectral data for the generalized string equation
(4.4) (or (4.6)–(4.7)). Given an equation (4.4), define an operator Ṽ by

(4.9) Ṽ : f̃(x) → F̃ (u), F̃ (u) =

l∫

0

Y ∗(x, u) j f̃(x) dx,

on the set dom Ṽ of piecewise continuous functions f̃(x) on [0, l) with values in
Cm having compact support and only a finite number of simple discontinuities in
(0, l). For each f̃(x) in dom Ṽ , F̃ (u) is an entire function of u with values in Cm.
We give dom Ṽ the topology of L2

m(0, l).

Definition 4.3. (i) By spectral data for a generalized string equation (4.4)
we mean a tuple ττ = {τ(u); F1, . . . , Fν} as in Definition 2.2 such that

(4.10)

l∫

0

g̃∗(x) j f̃(x) dx

=

∞∫

−∞
G̃∗(u)[dτ(u)]F̃ (u) +

ν∑

k=1

[Fk(F̃ (z), G̃(z)) + F̂k(F̃ (z), G̃(z))]

for all f̃(x) and g̃(x) in dom Ṽ and their transforms F̃ (u) and G̃(u) defined by
(4.9). In this case, we also say that (4.4) has ττ as spectral data in the strong sense.

(ii) If (4.10) holds for all f̃(x) and g̃(x) in a dense subset of dom Ṽ , we say
that (4.4) has ττ as spectral data in the weak sense.

Thus when a generalized string equation (4.4) and boundary problem (2.1)–
(2.2) are related as in Theorems 4.1 and 4.2, we have two notions of spectral data
given by Definitions 2.2 and 4.3. To relate them, notice that there is a natural
correspondence between the domains of the operators V and Ṽ . Namely, if f(x)
is in dom V , then

(4.11) f̃(x) = [ q∗(x) p∗(x) ] f(x)

defines a function in dom Ṽ . Every function in dom Ṽ occurs in this way. In fact,
if Ṽ f(x) is in dom Ṽ and s(x) = q∗(x)q(x) + p∗(x)p(x), then s(x) has invertible
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values and f(x) = [ q(x) p(x) ]t s−1(x)f̃(x) defines an element of dom V satisfying
(4.11). If f(x) and f̃(x) are related by (4.11), then

l∫

0

f̃∗(x)f̃(x) dx =

l∫

0

f∗(x)
[

q(x)
p(x)

]
[ q∗(x) p∗(x) ] f(x) dx.

Hence we may choose the topology on dom V so that under the correspondence
(4.11), dense sets in dom V correspond to dense sets in dom Ṽ .

Theorem 4.4. Let a generalized string equation (4.4) and boundary problem
(2.1)–(2.2) be related as in Theorems 4.1 and 4.2. Then (4.4) has spectral data ττ
in the strong (respectively weak) sense as defined in Definition 4.3 if and only if
(2.1)–(2.2) has spectral data ττ in the strong (respectively weak) sense as defined in
Definition 2.2.

Proof. Assume that (4.4) has spectral data ττ in the strong sense defined in
Definition 4.3. Let f(x) and g(x) be arbitrary elements of dom V , and let

(4.12) f̃(x) = [ q∗(x) p∗(x) ] f(x), g̃(x) = [ q∗(x) p∗(x) ] g(x),

be the elements of dom Ṽ obtained from the correspondence (4.11). Let F (u), G(u)
and F̃ (u), G̃(u) be the transforms of f(x), g(x) and f̃(x), g̃(x) defined by (2.9) and
(4.9). By (4.3),

F (u) =

l∫

0

[D1 D2 ] W ∗(x, u)H(x)f(x) dx

=

l∫

0

[D1 D2 ] W ∗(x, u)
[

q(x)
p(x)

]
j [ q∗(x) p∗(x) ] f(x) dx

=

l∫

0

Y ∗(x, u) j f̃(x) dx = F̃ (u),

and similarly, G(u) = G̃(u). Since (4.4) has spectral data ττ ,
l∫

0

g∗(x)H(x)f(x) dx =

l∫

0

g∗(x)
[

q(x)
p(x)

]
j [ q∗(x) p∗(x) ] f(x) dx

=

l∫

0

g̃∗(x) j f̃(x) dx

=

∞∫

−∞
G̃∗(u)[dτ(u)]F̃ (u) +

ν∑

k=1

[Fk(F̃ (z), G̃(z)) + F̂k(F̃ (z), G̃(z))]

=

∞∫

−∞
G∗(u)[dτ(u)]F (u) +

ν∑

k=1

[Fk(F (z), G(z)) + F̂k(F (z), G(z))].
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Thus the boundary problem (2.1)–(2.2) has spectral data ττ in the strong sense as
defined in Definition 2.2. Since arbitrary elements f̃(x) and g̃(x) of dom Ṽ have
the form (4.12), these steps are reversible, and so the result follows for the strong
case.

In the weak case, we repeat the preceding arguments but applied to appropri-
ate dense subsets of dom V and dom Ṽ which correspond by means of the relation
(4.11).
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