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ABSTRACT. The method of operator identities is used to investigate inverse
problems of spectral theory for canonical systems of differential equations
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by including both the continuous and discrete cases at the same time. A
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1. INTRODUCTION AND PRELIMINARIES

The study of canonical differential equations [12] has generally proceeded under
positivity assumptions, which play an important role in key constructions in the
spectral theory of such equations. In [8] the authors considered a special case of
difference equations and showed that without positivity, inverse and direct prob-
lems can be treated if appropriate modifications are made in the classical theory.
We now consider the continuous case and obtain analogous results. We present
these results in a form that allows discrete as well as continuous components.

In the classical case, a canonical differential equation is an equation of the
form

dy
1.1 — =1 Y.
( ) dx IZJH($) ’

with boundary conditions

(12) D2Y1 (O7 Z) + D1Y2(O, Z) = 0,
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where H(z) is nonnegative and locally integrable on an interval [0, 1) with 2m x 2m
matrix values, z is a complex parameter,

(13) J= {10 Igl]7 Y(z,2) = [282]

Yi(z, 2),Ys(x, 2) have m x m matrix values, and D;, Ds are m x m matrices such
that

To add a discrete part, we may also allow the existence of points
O<z <mp < -+ <

having no limit point in [0, ), such that (1.1) holds in the subintervals determined
by the points, and Y (z, z) is left-continuous at each xj and

(1.5) Y(zp +0,2) — Y(ag, 2) = izJs(xg)Y (zg, 2)

for certain nonnegative matrices s(xy). Particular cases of such equations include
many special systems ([12]). The discrete case (1.5) with no continuous part (1.1)
is related to Jacobi systems (Chapter 8 in [11]). In [8] the authors generalized
the discrete theory to indefinite cases by allowing the matrices s(xy) to be selfad-
joint but not necessarily nonnegative. In this paper, we also admit a nontrivial
continuous part (1.1), where H(z) is selfadjoint but not necessarily nonnegative.

Section 1 concludes with a summary of the integration theory needed in what
follows. In Section 2 we introduce a notion of spectral data which is suitable for a
large class of indefinite problems.

The main results of the paper are in Section 3 and center around the operator
identity

AS — SA* = i(D1P5 + $oDT).

In Theorem 3.1 we show how to construct many identities of this type. A continual
factorization construction relative to a chain of invariant subspaces of A* is given
in Theorem 3.2. With the aid of this result we describe a solution of the inverse
problem in Theorem 3.5, which is the central result of the paper. Theorem 3.5
treats continuous and discrete problems at the same time, a feature that is new
even in the definite case. This approach to the inverse problem generalizes results
in [12]. Indefinite discrete problems are treated by the authors ([8]).

In Section 4 we discuss concrete examples of the theory which use the function

(1.6) mwzﬁwﬂufw (@],

p(x)

where p(z) and g(x) are m x m matrix-valued functions satisfying conditions which
we shall describe later and j is an invertible m xm matrix such that j = j* = j .
In this case, (1.1) is equivalent to an indefinite form of the generalized matrix string

equation ([12]): . .
LHawd @} =iy

Here A(z) = A*(x), p(x), and Y = Y (z,2) have m x m matrix values and z is
a complex parameter. Other special cases lead to de Branges’ theory of Hilbert
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spaces of entire functions ([1], [2] in the definite case) and to Pontryagin space
generalizations due to Kaltenbéack and Woracek ([5], [6]) and Kaltenback ([4]).
We hope to discuss these connections in a future work.

PRELIMINARIES ON INTEGRATION THEORY. In what follows we use integrals of
b
the form [ f(t)[dM(t)]g(t), where f(t), M(t),g(t) are matrix-valued functions on

a
a closed and bounded real interval [a,b], say of orders p x m, m X n, and n X q.
The integrals are defined as

/ FO1AME)g(t) = 1im 3 F(E)M (1) — Mti1)]g(E),

where the ¢ are the division points of a finite partition of [a, b], t; is a point in
the k-th subinterval, and the limit is taken as the mesh of the partition tends to
zero. Thus

/f ) an(t [ZZ/fm goe(H) dMap(D)|

a=1p=1}y pXq

where fiq(t), gsr(t), Mos(t) are the entries of the matrices f(t),g(¢), M(¢). The
integrals exist, for example, if f and g are continuous and M is of bounded variation
(that is, the entries of M (t) are of bounded variation, or, equivalently, there is a
constant C' > 0 such that > ||M(¢tx) — M (tx—1)|| < C for all finite partitions of
[a, b] with division points ¢, where || - || is the operator norm). The integrals also
exist if f and g are piecewise continuous and bounded, and M is both continuous
and of bounded variation.

Integrals are estimated in the operator norm using scalar majorants. For
example, let

pr(t) = sup Y [|M(tx) — M(ti—1)]| + const.,
where the supremum is over all finite partitions of [a,t] by points t;. Then
[M(y) = M(z)|| < pa(y) —pu(z), a<z<y<b,

H/f e o)o()| < /Ilf I a(®) dae(t)

whenever the integrals exist. The integration by parts formula
b

/ FOLAM(0)] = FB)MB) — f(a)M(a) - / [df ()] M (1)

a

and

holds if both f and M are continuous and of bounded variation on [a, b]. Suppose
f and g are continuous and M is of bounded variation on [a,b]. Put

x

— [folaM) ad Ry = [lamlg).

a
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a <z <b Then

/f (Mt /f HIdR,( /[dme

Integrals over non-closed intervals are interpreted in the improper sense. The
notion of a scalar majorant has an obvious modification for these cases.

We also consider similar integrals where the values of M (z) are operators on
a finite-dimensional Hilbert space, and the values of f(z) and g(x) are operators
between this space and possibly infinite-dimensional Hilbert spaces. Such integrals
are interpreted in the weak sense and thereby reduced to integrals of matrix-valued
functions as above.

Let L2 (0,1) be the Hilbert space of measurable m-dimensional vector-valued
functions on a finite interval (0,1) which are square integrable with respect to
Lebesgue measure.

2. SPECTRAL DATA

The usual notion of spectral data ([12]) is too restrictive for the indefinite case,
and we must modify this notion for our generalization. The modification follows
[8], which adapts an idea from interpolation theory ([9]) and uses the Krein and
Langer integral representation of a generalized Nevanlinna function ([7]).

We use an integral form of (1.1). Combined with the boundary conditions
(1.4) and discrete part (1.5), this can be written formally as

(2.1) Y(z,2)=Y(0,2)+ in/[dB(t)]Y(t,z) +izJ Z s(zr)Y (zg, 2),

0 rp<x
(22) D2Y1(07 Z) + 1)1}/2(07 Z) =0.

The associated monodromy matrix is determined by the equation

x

(2.3) Wz, z) = Igpm + in/[dB(t)]W(t,z) +izJ Z s(x;)W(xj, 2).
0 ;<
Equations of the type (1.1) are included by choosing B(z f H(t)dt. More

generally, throughout the paper, B(z) denotes a continuous functlon on a bounded
interval [0, 1) which has selfadjoint 2m x 2m matrix values, and which is of bounded
variation on every compact subinterval. Let zj be points in [0,1) such that

O<z1 <22 < --- <.

If the set of such points is infinite, we assume that x; — I. For each zy, let s(xy)
be a 2m X 2m matrix satisfying

(2.4) s(zg) = s*(xr), s(zr)Js(xg) =0.
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We remark that the general form of a matrix satisfying (2.4) is
s(ze) = [pa(k)  p2(k)]"jk [pi(k) p3(K)],

where ji is an invertible m X m matrix such that ji = j; = j;l and p (k) and
p2(k) are m x m matrices such that

pi(k)p2(k) + p3(k)p1 (k) = 0.
See Proposition 3.1 from [8] for a slightly more precise result. The second relation
in (2.4) is used in the proof of the Lagrange relation (2.8).
Let J,Y (z,2), D1, D2 be as in (1.3) and (1.4). The meaning of (2.3) is that
for a fixed complex parameter z, W(z,z) is a 2m X 2m matrix-valued piecewise
continuous function of z in [0, 1) such that

(2.5) Wz, z) = Iy + in/[dB(t)]W(t, z), 0<z<a,
0

and for all r =1,2,...,

(2.6) Wi(xy+0,2) = [Iop +izJs(z,)|W (zy, 2),

(2.7) LWL@:WWW+&@+MJ/MEMW%J% Ty < T < T,
A similar meaning is attached to (2.1). Thus if W(z,z2) is a solution of (2.3),
then Y (z,2) = W(x,2)[Df D3] satisfies (2.1), and this solution satisfies (2.2)
by (1.4).

THEOREM 2.1. (i) The equation (2.3) has a unique solution W (x,z), and

this solution is an entire function of z for each x in [0,1).
(ii) The Lagrange relation

9
/W*(m,u)[dB(x)]W(m,z) + Z W*(xj,u)s(x;)W(z;, 2)
(2.8) 0 ;<
_WHEWIW(E ) )
i(z — 1)

holds for all £ in [0,1) and all complex z and u.

Proof. (i) By the method of successive approximations, (2.5) has a unique
solution, and this solution is a continuous function of z in [0, z1] for each fixed z
and an entire function of z for each fixed x. In the same way, we solve (2.7) with
W (z1 + 0, z) replaced by the right side of (2.6), and so on.

(ii) First consider 0 < & < 2. Using (2.5) we may set

mwzu/mmmwwazﬂW@@—bM,

L(z) = —iﬂ/W*(t,u)[dB(t)] = [W*(z,u) — I2m]J,
0
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and obtain

9 £
iz/W*(a:,u)[dB(m)]W(x,z) = [ W*(z,u)[dR(z)] = /W*(x,u)[dJW(x,z)],
0 0

S, O —— .

£ £
_im / W (2, ) AB@)W (2, 2) = [ [AL(2)]W (, 2) = / (AW (2, 0) )W (i, 2),
0 0

and hence (2.8), because

¢ 4
13
/W* NdJW (x, 2) +/dW* (z,w)]JW (z,2) = W*(z,u)JW (z, 2) .
0 0

=w (fa U)JW(€7 Z) -
Suppose (2.8) has been proved for £ < .., and consider £ € (z,,x,4+1]. The

function Wz, z), considered on the interval [z,,x,41], has a discontinuity at the

left endpoint. The function

is continuous on [z, x,41]. Since by (2.7),

W(z,2z) = Wz, 2) + in/[dB(t)]W(t, z), Xy LT < Tpyq,

Ty

in the same way as above, we can show that

9
/W*(x,u)[dB(x)W(x,z) 1 W* (2, u) JW (z, z) ¢

i(z—w) a==,

W (&, u)JW (&, z) — W*(zr + 0,u)JW (z, + 0, 2)
B i(z — 1) '
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Since B(x) is continuous at © = x,,
9

/W*(m,u)[dB(x)]W(x,z) + Z W*(xg, w)s(xg)W (g, 2)
0 T <&
= [/W*(m,u)[dB(x)}W(x,z) + z_:W*(xk,u)s(xk)W(xk,z)
k=1
05 - -
—I—/W*(%u)[dB(x)]W(:mz) + W*(xp, u)s(zr )W (2, 2)
B I;/T*(xr,u)JW(xr,z) —J
B i(z — 1)
N W*(&,u)JW(E, z) — I(V[; E:E;)Jr 0,u)JW(z, +0,2) W ) s W (2 2)
WG W)~
i(z — 1) ’

where the last equality is obtained from (2.6) and (2.4). 1

Given a boundary problem (2.1)—(2.2), define an operator V by V : f(z) —
F(u),

l
F(u) = / (D) Dy W* (e, m)[dB(2)]f(z)
(2.9) 0

+ Z (D1 Do |W*(wi,w)s(@k) f (k)
<l

on the set dom V' of piecewise continuous functions f(x) on [0,1) with values in
C?™ having compact support and only a finite number of simple discontinuities in
(0,1). The transform F(u) of any f(x) in dom V is a C™-valued entire function.

We introduce topological notions in dom V' by embedding dom V' in a Hilbert
space. To do this, we suppose that B(x) is written in the form
(2.10) B(z) = B.(x) — B_(x),
where By (z) are nondecreasing continuous functions on [0,1). In a similar way
write

(2.11) s(xg) = s+(xk) — s—(zx),
where the matrices s () are nonnnegative for all k. Then dom V' has a natural

embedding in a Hilbert space L3,,(B+, s+) determined by the inner product
l

g0 = / @) ABy @) (@) + 3 g ()5 (o) f (o)
0 xp<l
l

+ [ @ [B- @) + 3 " s () (o).

0 x <l
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We omit the standard details of the construction of such a Hilbert space. The
decompositions (2.10) and (2.11) are not unique, but any choice will suit our
purpose. No matter how (2.10) and (2.11) are chosen, a dense set in dom V' consists
of functions of the form

p
flz) = ZX[o,gj)(x)fp
j=1

where f; € C*™ and &; € (0,1), j=1,...,p.
As in [8], we use certain forms which depend on complex numbers ), and
associated m x m matrix-valued polynomials Rj(A) such that Ri(0) = 0, k =

1,...,v. If F(z) and G(z) are entire functions whose values are m x m matrices,
we set
.~ 1
§u(F(2),G(2)) = Res [G ()\)Rk( )F(A)},
A=Ak A=Ak
(2.12)

Bu(F(2),G(2) = Res oA (=— WA

Explicitly, if Rx(\) = k1A + Tho A2 + -+ - 4 Tip, AP+ these expressions are given by

Sk(F(2),G(2))

{G*(X)TMF(A) +[G N2 FV)] + %[G* (N7sF(N)]”
1

+ot W[G*(X)Tkm}?()\)](%_l)}’
$i(F(2),G(2) = {G*(A)T?CHF()\) GNPV + %[G*(X)T&F(/\)]"

1 _
e G * (pr=1)
ot o6 M, O |
DEFINITION 2.2. (i) We define spectral data for the boundary problem (2.1)-
(2.2) as a tuple

A=Ay

A=Ak

(213) T = {T(u);317"'a%V}7
consisting of an m x m selfadjoint matrix-valued function 7(u) on (—oo, 0o) which
is of bounded variation on all compact subintervals, together with forms §1,...,3.

of the type (2.12), such that

!
[ 5@ WB@If@ + Y " @sten) o)
(2.14) ° et

= /G*(U)[dT(U)]F(U)+Z[&(F(2)7G(2))+Sk(F(Z)7G(Z))]
e k=1

for all f(z) and g(z) in dom V and their transforms F'(u) and G(u). For emphasis,
we say that the boundary problem (2.1)—(2.2) has 7 as spectral data in the strong
sense when this condition is satisfied.

(ii) If (2.14) holds for all f(x) and g(z) in a dense subset of dom V', we say
that the boundary problem (2.1)—(2.2) has spectral data 7 in the weak sense.
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The integral on the right side of (2.14) is interpreted as

o0 C2
= lim ,
c]——00
— 00 Cc2—+00 o)

and its existence is part of the condition in Definition 2.2.

PROPOSITION 2.3. If the boundary problem (2.1)—~(2.2) has spectral data (2.13)
in the weak sense and B(z) and T(x) are nondecreasing, then the problem has spec-

tral data (2.13) in the strong sense as well.

Proof. Suppose that (2.14) holds for all f(x) in the dense set © in dom V.
Then given any f(x) in domV we may choose an approximating sequence fi(x),
fo(x),...inD. IfV: f(x) = F(u) and V : f,(z) — F,(u) for all n, then

lim F,,(u) = F(u)

n—oo

uniformly on compact sets. By assumption (2.14) holds for functions in ®, and
hence for any m,n =1,2,...,

oo

/ [Fn (u) = Fy ()] [dr ()] [Fn (u) — Fp(u)]

() = fo (@) [AB(2)] [fm(2) = fu(@)]

+ 2 aer) = fo(@e)]s(en) [fm(zr) — fu(an)]

- [Sk(Fim(2) — Fu(2), Fin(2) — Fu(2)) +§k(Fm(z) — Fu(2), Fin(2) — Fu(2))]-

=
=

Letting m — oo, we obtain an identity which implies that

o0

Jim [ [F(u) = Fy(w)] [dr ()] [F(uw) = Fo(w)] = 0.

It is now straightforward to verify that (2.14) holds for all f(z) and g(z) in the

domain of V.. 1
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3. OPERATOR IDENTITIES AND THE INVERSE PROBLEM

The inverse problem is to find a boundary problem (2.1)—(2.2) which has a given
tuple 7 = {7;&1,..., 5.} as spectral data. Solutions are not unique, and, following
[12], to find them we impose extra conditions that restrict the search. These
conditions are formulated in terms of an operator identity

(3.1) AS — SA* =i(®,D} + 3o®F), A, S € £(H), D1, Dy € £(8,9), S = 5,

where §) is a Hilbert space and & = C™. We assume that A is a Volterra operator,
that is, A is compact and the origin is the only point in its spectrum. In outline,
the strategy is first to choose operators A and ®3. Then using 7 we construct
S = 5% and ®; so that the operator identity (3.1) is satisfied (see Theorem 3.1).
As in the definite case by choosing A and ®5 we define the class of systems in which
we search for a solution of the inverse problem. The main results of this section,
Theorems 3.2 and 3.5, exploit the relationship between invariant subspaces and
factorization to obtain a solution of the inverse problem within the chosen class of
systems.

THEOREM 3.1. Let A € £($) be a Volterra operator on a Hilbert space ).
Let @5 € £(6,9), where & = C™. Suppose that T = {1;F1,...,5,} s given as
in Definition 2.2, and assume that 7(u) has a scalar majorant p,(u) satisfying

[ dur(u)
(3.2) / T < 00
and
(3.3) / [®5(1 — wA®)""h)* dpr (u) < 00, h € H.

Define S € £(9) and @1 € £(6,9) by

o

S = /(I— Au) 0, [dr(u)] 05 (1 — A*u) ™t
(3.4) o
+ ) [B(@5(1 - A%2) " @5(1 - A72) )

k=1
F3R(@3(1 — A2) "L @5(1 — A*2) )

and
O =i / [A(I —Aw)h 11} By [dr(u)]
(3.5) o0

— i) Bl D3AT(I — 2A") 1) + Fu(L, DFA* (I — 2A") 1.
k=1
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Then the integrals in (3.4) and (3.5) exist in the weak sense, and the operators
A, S, @1, Do satisfy (3.1).

In the simplest case where Ri(z) = 7z for some operators 7, on &, k =

1,...,v, the formulas (3.4) and (3.5) take the form

S = / (I — Au) " 0y [dr(u)] P (T — A*u)™?

+ Z[(I — AkA)71¢QTk¢;(I — /\kA*)71 + (I — XkA)71q>272¢;(I — XkA*)il]
k=1

and
By = —i / (A= A0+ "1 @afdr(u)

— i STJAT = MA) Do + AT — N A) D07,
k=

—

Proof of Theorem 3.1. The integral in (3.4) converges by (3.3). The proof of
convergence of the integral in (3.5) also uses (3.2) and is similar to an argument
in p. 2 of [11].

To complete the proof, by linearity it is sufficient to assume that S is one
of the terms of (3.4) and ®; is the corresponding term of (3.5). For the integral
terms, (3.1) follows as in the definite case.

Suppose that S and ®; are given by

S =Fn(P5(1 — A*2) 1, ®5(1 — A*2)™h)
+ 3 (5T — A*2)"1, 51 — A*2)™Y)

= Res (1= AN~ 2Ry (ﬁ)@;(r - A7)
+ Res [(1- AA)*%R;(A_lAk)q»;(I — a1,

&y = —i[Fp(L, ®3A* (I — zA*) 1) + Fu(I, ®EA* (I — zA*) )]

= ~i Res [A(I — AN)T'0,R,, (A _1%)}

~i Res [A(I — AN ®,R: (A_lAk)]

For any operator-valued function F(A) which is holomorphic in a deleted neigh-
borhood of A1,

[ Res F(A)]* — Res F*(V).
A=A A=A\

Using this formula we verify (3.1) by straightforward calculations. 1
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Operator identities are useful in factorization problems. As a preliminary, we
recall the most basic result in a form which is convenient for our present purpose.

THEOREM 3.2. (Main Factorization Theorem, [12], p. 21.) Let Z,E,g €
E(Q)Nand I, 115,71, Ty € £(&,9), where H and & are Hilbert spaces. Assume
that S is invertible, and

AS — SB =1ILII;, STy =11, I%S=II.
Let W(z) be a holomorphic function such that, in a neighborhood of infinity,
W(z)=I-TiA—2)""T;, W '(2)=1+1(B—2I)"'T,.

Suppose that PQAVPQ = AVPQ and Plélfl = §P~1, where Py and Ps argthegrthogo-
nal projections onto the components $1 and $Ha of a decomposition H = $H1 D Ho.

Write
¥ A 0 > Bii B
A= B =
|:A21 1422}7 [ 0 By’

and

S _ S Si2 = g1 Tin T2
[321 522} ’ [Tm Tzz}

relative to this decomposition. Then if S11 is invertible, so is Tho, and
St =T — TioToy' Tor, Toy' = Sog — So0157,' Sia.
Moreover W (z) = Wa(2)W1(z), where
Wi(z) = I-TP S (Ay —2) Pl Wa(z2) = I-T5Py(Agy—21) "' Ty PoT'y.

A family of projections on a Hilbert space §) is called a chain if it is totally
ordered with respect to inclusion of ranges. It is called an eigenchain for an operator
A € £(9) if the range of each projection in the chain is invariant under A.

We use the Main Factorization Theorem in a continual form. Two versions
of this result are given in Theorems 3.2 and Theorem 3.4. These results generalize
constructions in pp. 40-41 of [12].

THEOREM 3.3. Let A, S, @1, ®o satisfy (3.1) where §) is a Hilbert space, & =
C™, and A is a Volterra operator. Let { Py }o<s<i, Po = 0, P = I, be an eigenchain
for A*. We assume that the chain is strongly continuous except at points 0 < 1 <
g < -+ < 1 which have no limit point in [0,1), and at such points the chain is
strongly continuous from the left. Set

Assume:

(i) The operators S, are invertible, and there is a constant C' such that
1S < C, 0 <z < 1. Moreover S;1P, is strongly continuous on [0,1) except
perhaps at the points xi, where it is strongly left continuous and a strong limit
from the right exists.

(ii) Define a function By(x) on [0,1) whose values are selfadjoint C*™ x C?™
matrices by

Bi(x) =*P,S; 'PII, TI=[®; ®,].
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Then By (z) is of bounded variation on all compact subintervals of [0,1).
(iii) There is a constant M > 0 such that

whenever 0 <z <z + Az < [.

Then By (z) = B(z)+X(z), where B(x) is continuous on [0,1) and X(x) is constant
on the intervals determined by the points xy, and left continuous at every such point.
The jump s(xy) = B1(xr+0) — B1(xx) at x satisfies (2.4) with J defined by (1.3).
The formula

(3.6) W(x,2) = oy, +izJI* PSP Po(I — zA) I
defines the unique solution of (2.3) with this choice of B(x) and s(xy).

See Section 4 for a concrete case in which the conditions of Theorem 3.2 are
met.

Proof. By (i), the function Bj(x) is continuous on [0,1) except for possible
simple discontinuities at the points xx, and it is left continuous at these points.
Thus Bi(z) = B(x) + X(z) as in the theorem. For fixed x, W(x, z) is an entire
function of z because A is a Volterra operator. For fixed z, W(z, z) is continuous
on [0,1) except for possible simple discontinuities at the points zj, and it is left
continuous at these points by (i). For any x in [0,1), set A, = Py AP,|$,. Since
P,AP, = P, A, we have (I — zA,) 'P, = P,(I — zA)~! and hence
(3.7) W(z,2) = Ioy, +i2JIT*P,S; (I — 2A,) " PIL

Consider any points 0 < =z < z + Az =y < I. We shall apply the Main
Factorization Theorem with 53 Nys G =6 &6, 6 =C", A= Ay B A*

S = Sy, and W(z)=W(y,1/2) = Ipp— LI P, S, ' (A —2I) "' P,IL. ChooseH1
P,II, F1 =S, 1P, 115 = iJII* Py|$,, I = 1JH*P S‘l The conditions of the

Main Factorization Theorem are met relative to the decomposition 55 531 @ 562,
where §; = 9. and Hy = 9y © Hz. In the notation of that result, 411 = A,
S11 = S,, and

(3.8) Sl =Ty — T1oT5,' Tor, Toy' = Sop — 5215, 1S1s.

y (3.7), the identity W(l/z) = Wg(l/z)fﬁvfl(l/z) can be written in the form
(3.9) Wy, z) = V(z,y,2)W(x,2),
where

(310) V(I‘, Y, Z) = IQm + ZF;PQ(I - ZA22)71T2_21P2F1
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for every complex z. By the first relation in (3.8),
Bi(y) — Bi(x) =II"P,S, ' P,l1 - II" P, S; ' P, 11
=II"P, [S, ' — P1S,; ' P\] P,II

— 1 Tu Ti2| _[S;' 0
=1I Py{[T21 Ty [ 5 o P,II
(3.11) ToTo oy T
— TIT* 29 421 12
P, [ o TzJ F,1
* Ty Tis] [0 0 T Tia
=1II"P, Z P,II
Y [Tm Tzz} 10 ngl] [Tm T22] Y
=II"P, S, " P,T5,' PS5, " P,IL.
Thus
V(@,y,2) = Iam] —i2J[Bi(y) — Bi(z)]
=205 Py (I — 2A55) ' Toy' PaT'y — i2JI1 P, S, ' Py T3, Py S, P
(3.12) =T3P (I — 2A2) ™! — I|Ty' PoIy
= 22F§P2A22([ — ZA22)71T2_21P2F1
ef R(z, Ax).

We have shown that
W(x + Az, z) — W(z, z)
= {izJ[B1(z + Az) — By(x)] + R(x, Az)}W (z, 2).
We now verify (2.3), that is, the identities (2.5)—(2.7) hold for every fixed
complex number z. Clearly W (0, z) = I5,,. On [0,21], B1(z) = B(x) is continuous

and of bounded variation by (i) and (ii). Suppose 0 < x < x + Az =y < z1. We
show that in (3.13),

(3.14) |R(z, Az)|| = o(Azx), Az —0,

uniformly in z, that is, for every number ¢ > 0 there is a § > 0 such that
|R(z, Ax)|| < € Az whenever 0 < z < z+ Az =y < z1 and 0 < Az < 4. By
(), |2°T3 P = ||zQiJH*PySy_1P2|| < K for some constant K7 = K;(z). By (iii),
[[Az2ll = [(Potas — Pu)A(Prtaz — Pl < MAz. From (I — ZA22)_1(Py - P) =
(Py— P.)(I —zA)"Y(P, — P,) we get ||(I — 2A22) 7| < K3 for some Ky = K»(z).
By the second relation in (3.8) and (i), | 755" || < K3 for a constant K3. It remains
to estimate || P, || Since P,I'y = (P, — P,)P,S, ' Pl = (P, — P,)[P,S, ' P,Il —
P,S;'P,1], we have

| PTy ]| < ||PySy_1PyH - PSP

(3.13)

By the second part of (i) and the finite dimensionality of & = & & &, P, S, 1 P, Il
is norm-continuous on [0,2;]. Hence ||P.I'1]| can be made as small as we wish by
choosing Az = y — x sufficiently small. This yields (3.14). Then using (3.13) and
(3.14) we verify (2.5) by examining the partial sums of the integral.
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We obtain (2.6) with » = 1 and s(z1) = Bi(x1 + 0) — Bi(x1) by choosing
x = x1 in (3.13) and estimating R(x, Az) in a similar way; the only change is to use
the simpler estimate || PoI'1|| < K4 for the last part. It is clear that s*(z1) = s(z1).
We show that s(z1)Js(xz1) = 0. Using (3.11) with = x1 and y = 21 + Az, we set
def * _ — —
saz(r1) = Bi(z1 + Az) — By(z1) = II*P, S, T, P, S, " P11

y
Then by (3.1),

Sag(z1)Isaz (1)
=1"P,S, ' P, Ty, P, S, P,ILJII* P, S, P, Ty, PoS, P
AS — SA*
_ H*PyS;1P2T2_21P2S;1Py . f . PyS:le.PQTQ_QlPQS;leH

_ —IH*PySy_IPQTilPQS;le . AS - PyS;1P2T231P2S;1PyH

+ill* P, S, ' Py T3, P2S, ' Py - SA* - P,S, ' PyTy, P, S, ' PIIL

In the central parts of the last two terms, replace P,A and A*P, by P,AP, and
P,A*P,. This allows a cancellation of terms Sy and S, 1 yielding
$az(21)J5a0 (1) = —ilI* P, S, " Py T, Py S, [Py AP Toy' PSP

+ill*P, S, ' P T5, [P A*P))S, Py Ty, P25,  PyIL.

Since PyAPQ = Pm1+A:EA(P:E1+AI - le) = (le—i-Ar — le)A(Pz1+Az — P$1),
we have |PyAP;|| — 0 and ||P,A*P,|| — 0 as Az — 0. Hence s(z1)Js(z1) =
limaz—o0 Saz(21)Jsaz(z1) = 0, and so s(z1) satisfies (2.4) with k = 1.

In the same way as above, we show that for any small positive number ¢,

W(e,2) = Wiat +e,2) +ie] / B (t, )
x1+4€

for z1 + € < x < 3. Since B(t) is continuous and W (x, z) has at most a simple
discontinuity at x;, this yields (2.7) for » = 1. We continue in the same manner
for the points o, x3,.... 1

We show that the conditions of Theorem 3.2 are satisfied in a special case,
namely, whenever S is factorable ([3], [10]).

DEFINITION 3.4. Let $) be a Hilbert space. An operator S € £(9) is called
left factorable with respect to a chain B of projections on $) if S = LU, where
L,U € £(9) are invertible operators such that for every P € B,

PLF'P = PL* and PU*'P=U*'P

Suppose that S € £(9) is left factorable with respect to a chain 3, and let
S = LU as above. Given P € B, let Sp, Lp,Up be the compressions of S, L, U to
P9, thatis, Sp = PSP|P$), Lp = PLP|P$, Up = PUP|P$. These operators are
invertible, and their inverses are given by L' = PL™'P|P$, Up' = PU™'P|P#,
S;l = Ulle];1 = PU"'PL~'P|P$. We omit the elementary proofs.
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THEOREM 3.5. The conclusions of Theorem 3.2 hold if the hypotheses (i)
and (ii) are replaced by the condition that S is left factorable with respect to the
chain { P, }o<a<i-

Proof. In the notation of Theorem 3.2, let S = LU where L and U are in-
vertible and P, L*¥'P, = P,L*! and P,U*'P, = U*' P, for 0 < z < I. Condition

(i) is easily checked using the representation S; ! = P,U ' P,L~1P,|9,. To prove
(ii), note that By(z) = II*P, U~ 'P,L~1P,II, where the domain of II is finite-

dimensional. Hence it is sufficient to show that for any h € $, the vector-valued
functions f(x) = P,L~'P,h and g(x) = P,U*"1P,h are of bounded variation on

[0,{] relative to the norm of §. This is evident from the identities

P,L7'P,h — P.L7'P.h = (P, — P,)L™"h,
P,U**P,h — P,U*'P,h = (P, — P,)U* 'h,

which hold whenever 0 <z <y <I[. 1

The next result provides a solution of the inverse problem: given 7 and
operators A and ®,, we construct S and ®; by Theorem 3.1, and then Theorem 3.2
yields a system having 7 as spectral data.

THEOREM 3.6. Let 7 = {7(t); F1,.-.,8»} be given as in Definition 2.2. Let
A, S, ®q, Py satisfy (3.1) where $) is a Hilbert space, & = C™, and A is a Volterra
operator. Suppose moreover that S is given by (3.4), that is, it is constructed

from T as in Theorem 3.1. If {P,}o<a<i is an eigenchain for A* satisfying the
conditions of Theorem 3.2, then the boundary problem (2.1)—(2.2) determined by

Theorem 3.2 with [Dy Do) =1[0 I, ] has spectral data T in the weak sense.

By Proposition 2.3, if B(z) and 7(z) are nondecreasing, the boundary prob-
lem has the spectral data 7 in the strong sense as well. We hope to discuss this

case in a future work.

Proof. By linearity it is enough to verify (2.14) when f(z) = xjo,¢)(2)f and
9(z) = X[0,y)(2)g, where {,n € (0,1) and f,g € C*™. Write Fe(z ) d Gy (z) for
the corresponding entire functions defined by (2.9) with [D1 Do] = [0 I, ].

Then by (2.8) and (3.6),

Fe(z) =[0 I, {/W 2, Z)[dB(x)] + Y W*(zk,7)s (:ck)}f
TR <€
W*(&_.) —

= O3 (I — zA") " PSP

=0 I,] fz@ZPg(I—zA*)_ngsgngﬂf
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The last equality holds by the assumption that { P, }o<,<; is an eigenchain for A*.
Similarly, G, (z) = ®3(I — ZA*)_anS,TanHg. Thus the right side of (2.14) is

oo

/(ﬁ(ﬂ +§jsk& 2(2)) + Bk(Fe(2), Gy (2))]

— g*H*PnSn—an{ / (I — Au) " 0o [dr(u)] P4 (T — A*u)™?

+Zm S~ A%2) 31— A7)

(D5 — A*2) L, D51 — A*z)_l)}PgSglPEHf
= g'II"P, S, ' P, S P:S, ' PeIlf
= g*'II*P.S; P,
where ¢ = min(&, 7). The left side of (2.14) is

¢

/lg*X[o,n)( )AB(@)x,e) (@) f + > g™ s(ar)f *{/[dB(x)]‘F > S(xk)}f
0

z,<C 0 T <¢
= g* [B(O)+Z(O)f = ¢*Bi(Q)f = ¢TI P.S; ' PINf.
Thus (2.14) is satisfied, and the result follows. 1

ExampLE 3.7. To illustrate Theorem 3.5 with a concrete example, choose
the data 7 = {7(u)},

T(u)zaju—ka(u), —00 < u < 00,

where j = [(1)

—01 } and

o(u) = 0 u< A, o 0 a
To U > Ag; 0 a 0|’

for some real number Ag and complex number a. In Theorem 3.1 choose $ =
L3(0,1) for any [ > 0, & = C?, and

(3.15) A: f(z) — 1/f(t) dt
0

(3.16) Dy:9— g,
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for all f(z) in $ and g in &. The operators S and ®; defined by (3.4) and (3.5)
are given by

l

S flz) — jfl@)+ / e @t 7 £(¢) dt,
0
1

@ :9—q(z)g, q(r)= 254 —i(

ei>‘°‘” —1 I )\0 )

.
Ao X241/

for all f(z) in $ and g in &. In Theorem 3.2, let P: be the projection onto

the subspace ¢ of functions supported on (0,§). Then S¢ : f(z) — jf(z) +

¢
[ero@=t 7 £(¢) dt for all f(z) in He. This operator is invertible with inverse
0

13
. 1 _ 2
S?zf(az)ﬂf(m/ o0 po(€) £(8) dt, po(f)w{ £lal fIZIQ}
0

for all f(z) in $¢. All conditions of Theorem 3.2 are met. Thus according to
Theorem 3.5, the boundary problem (2.1)—(2.2) with B(x) constructed as in The-
orem 3.2 and [D; D2]=[0 I, ] has spectral data 7 in the weak sense. Explic-
itly,

x

s = [ 70510 B+ @ @mew

2

T

where Q(z) = [[q(t) Iz]e **!dt. Alternatively, the boundary problem (1.1)-
0

(1.2) with H(x) = [¢*(z) Ig]tj [q(x) L]+ %[Q*(m)po(ac)Q(m)] has spectral
data 7 in the weak sense.

REMARK 3.8. In Example 3.7, we can replace ¢(z) by g(z)+iC for any 2 x 2
matrix C such that C* = ', and the same conclusions hold. For then A, S, &1, ®5
satisfy (3.1) and the hypotheses of Theorem 3.2 are met.

ExAMPLE 3.9. We modify Example 3.7 by splitting the discontinuity of 7(u)
at the point \g into a part in the upper half-plane and a part in the lower half-
plane. Thus we now construct a solution of the inverse problem for the data

T= {T(U);Sl},

where 7(u) = i,}u, —00 < u < 00,

F1(F(2),G(2)) = G*O)nF (M), §1(F(2),G(2)) = G ()i F (),

. |1 0 10 a
J=1o 1|0 ™= o ol

Here we assume that A; and a are fixed complex numbers such that A\; — A\; =
in; # 0. As in Example 3.7 take § = L2(0,() for any [ > 0 and & = C2, and define

and
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A and @5 by (3.15) and (3.16). The operators S and ®; defined by (3.4) and (3.5)
are given by

l

S f@)— jf +/ [P0y M D £ () dt,
0

1 ) 1)\12:_1 1>\1$_1
CI)lzg—>q1(a?)g, Q1(x):§.] _1( A 1+ N Tik)a
1

for all f(x) in $ and ¢ in &. Calculations as in Example 3.7 produce weak-sense
solutions of the inverse problem with

B(z) = / [(H](;)] Jla(t) L] dt+Qi(x)p(2)Qu(x),
0

) = |50 ) Rl Q@n @),
with ¢1(x) as above and

aw= [ S| na

1 [—71(33)%12 a ]

L+ y(@)y2(z)lal? a v2(z)lal* |’
, and y(z) = 1= —""  Thus for Ay — Ao,

¢1(z) = q(z) +iC and Q1(z) — Q(z),

where C* = C. That is, the solution in Example 3.9 passes into the form obtained
in Example 3.7 in the limit as A\; — Ao (see Remark 3.8).

p1(z) =

e 1

where 7, (z) =

4. GENERALIZED MATRIX STRING EQUATION

Throughout this section, p(z) and ¢(z) denote continuously differentiable m x m
matrix-valued functions on [0,!] such that p(z) has invertible values. Let j be an
invertible m x m matrix such that j = j* = j~

THEOREM 4.1. Let = L2,(0,1) and & = C™. Then the operators A, S €
£(9) and 1, D5 € £(6,9H) defined by

S f(x) = jf(=),
2) =1 [0 @a(0) + ¢ (@)p(0) 3 5(0)

Q1 :9—q"(x)g, P2:g—p(2)g,
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satisfy (3.1), and A is Volterra. The hypotheses of Theorems 3.2 and 3.4 are met
if P, is the projection onto the subspace of functions supported on (0,x) for each x
(the set of points xy, in Theorem 3.2 is empty). The function Bi(z) = B(x) in
Theorem 3.2 is given by

:ju(x)dx, H(x) = [gg%] jla*(z) p*(x)],

0 <z <. The solution of

(4.1) %W(x z) =1zJH(z)W (z,z), W(0,z) = Iz,

provided by formula (3.6) in Theorem 3.2 is given by

x

W (z, z)_Ingrlz/JH()dtJr iz) //JH )JH () du dt

(iz) ///JH VJH(u)JH(s) dsdudt + - -

000

(4.2)

for all z in [0,1) and all complex z.

We omit the straightforward proof and only remark that (4.2) coincides with
the solution of (4.1) obtained by successive approximations.

The assumption that p(z) has invertible values is not always needed, but it
is convenient in some places. In particular, it guarantees that the function H(x)
constructed in Theorem 4.1 satisfies

rank H(z) =m

for all x.
The next result generalizes Theorem 1.2, p. 156, from [12].

THEOREM 4.2. (i) In the situation of Theorem 4.1, for any matrices Dy and
Dy satisfying (1.4) the function

) Vw2 = @) p @)W D]

satisfies

(4.4)  Y(z,2) :iZ/[q*(x)p(t) + p*(x)q(1)]j Y (t, z) dt + ¢*(x) D} + p*(x) D}
0

and is the unique solution of this equation.
(ii) Assume in addition that

(4.5) ¢* (x)p(x) + p*(z)q(z) =0
for all x, and that the values of
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are invertible. Set A(x) = —ir—1(x). Then (4.4) is equivalent to the system

(1.6 A S @Y @)} = )5V (5, 2)
with the boundary conditions
@) Y(0.2) =g OD; +pOD5 @Y )| =rO)D

Equation (4.4) is the generalized string equation.

Proof. (i) Write W (z, z) = [Wix(x, Z)]?,k:la where the values of Wy (z, z) are
m x m matrices. Then setting
p1(z,2) = p*(2)War (2, 2) + ¢* (2) Wi (2, 2),
p2(x, 2) = p(2)Was(x, 2) + ¢* (2)Wha(z, 2),
we can write (4.3) in the form
(4.8) Y(x,2) = p1(x,2) D} + po(x, z)D3.

By (4.1), CIW%JE””) = izp(x) j i (z, 2), dw%im’z) = izq(z) jpr(z, z), and hence

Wik(z,2) = i / p(0)§ it 2) At + Wi(0, 2),

0
T

Wak(z, 2) = iz / 0(0) 3 or (b, ) dt + Wak (0, 2).
0
We deduce from the definitions of ¢ (z, z) and @o(x, z) that
x

or(z,7) = iz / (¢"@)p(t) + P (@)a(®)] i o1 (t, 2) dt + " (@),

0
T

ooz, 2) = iz / l¢*@)p(t) + p* (@)a(8)]j alt, 2) dt + p* (2).
0

Hence by (4.8), (4.3) satisfies (4.4). The solution of (4.4) is unique by standard
estimates.
(if) Write (4.4) in the form

P @)Y (2,2) = izp*_l(w)q*(x)/p(t).iY(tZ) dt
0

€T

+ iz/q(t)j Y (t,z)dt +p*~(x)q* (x) D} + Dj.
0
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Then differentiate and use (4.5) to obtain

d x

Ll @)Y (@, 2)] =izr(as)/1’(t)jy(taz) dt +izp™ ! (2)q" (2)p() ]V (2, 2)

+izq(2)jY(z,2) + r(z) D]
= izr(x) /p(t)j Y (t,2)dt + r(z)D7.
0
Multiply both sides by A(x) = —ir~!(z) and differentiate again to obtain (4.6).
The boundary conditions (4.7) are immediate from the preceding formulas. 1

There is a natural notion of spectral data for the generalized string equation
(4.4) (or (4.6)—(4.7)). Given an equation (4.4), define an operator V' by

l
(4.9) V. fa) - Flu), Flu)= / Y™ (2,7)] f(z) de,
0

on the set dom V of piecewise continuous functions f(z) on [0,1) with values in
C™ having compact support and only a finite number of simple discontinuities in
(0,1). For each f(as) in domV, F(u) is an entire function of u with values in C™.
We give dom V the topology of L2,(0,1).

DEFINITION 4.3. (i) By spectral data for a generalized string equation (4.4)
we mean a tuple 7 = {7(u); §1,..., 5.} as in Definition 2.2 such that

l
/ 7 (2)] f(x) da
(4100 °

~ o~ ~

— [ G @r@IF@ + Y (EFE). G@) + (), 6)

k=1

for all f(:c) and §(z) in domV and their transforms F(u) and G(u) defined by
(4.9). In this case, we also say that (4.4) has T as spectral data in the strong sense.

(ii) If (4.10) holds for all f(z) and §(x) in a dense subset of dom V, we say
that (4.4) has 7 as spectral data in the weak sense.
Thus when a generalized string equation (4.4) and boundary problem (2.1)—

(2.2) are related as in Theorems 4.1 and 4.2, we have two notions of spectral data
given by Definitions 2.2 and 4.3. To relate them, notice that there is a natural

correspondence between the domains of the operators V' and V. Namely, if f(z)
is in dom V/, then

(4.11) f@)=1q"(x) p*(x)] f(z)

defines a function in dom V. Every function in dom V occurs in this way. In fact,
if Vf(z) is in domV and s(x) = ¢*(z)g(x) + p*(z)p(x), then s(x) has invertible
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values and f(z) = [q(z) p(z)]" s (z )f(z) defines an element of dom V satisfying
(4.11). If f(= ) and f(z) are related by (4.11), then

froses- [

Hence we may choose the topology on dom V' so that under the correspondence
(4.11), dense sets in dom V' correspond to dense sets in dom V.

13
ZL’

i@ rlwa

THEOREM 4.4. Let a generalized string equation (4.4) and boundary problem
(2.1)~(2.2) be related as in Theorems 4.1 and 4.2. Then (4.4) has spectral data T
in the strong (respectively weak) sense as defined in Definition 4.3 if and only if
(2.1)~(2.2) has spectral data T in the strong (respectively weak) sense as defined in
Definition 2.2.

Proof. Assume that (4.4) has spectral data 7 in the strong sense defined in
Definition 4.3. Let f(x) and g(x) be arbitrary elements of dom V', and let

(4.12) f@)=1a"@) p@)]f@), ) =[a"(@) p"@)]g(),
be the elements of dom V obtained from the correspondence (4.11). Let F(u), G(u)

and F(u), G(u) be the transforms of f(z), g(z) and f(x),§(z) defined by (2.9) and
(4.9). By (4.3),

Il
@)
*
8
~
~
Kﬁ?
—~
8
~
jol
8
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Thus the boundary problem (2.1)-(2.2) has spectral data 7 in the strong sense as
defined in Definition 2.2. Since arbitrary elements f(z) and g(z) of dom V have
the form (4.12), these steps are reversible, and so the result follows for the strong
case.

In the weak case, we repeat the preceding arguments but applied to appropri-
ate dense subsets of dom V' and dom V' which correspond by means of the relation
(4.11). n
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