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Abstract. We obtain several equivalent characterizations of linear maps on
a C∗-algebra A which are given by left multiplication by a fixed orthogonal
projection in (resp. fixed element in) A or its multiplier algebra. These re-
sults are connected to the ‘complete one-sided M -ideals’ in operator spaces
recently introduced by Blecher, Effros, and Zarikian. Part of the proof makes
use of a technique to ”solve” multi-linear equations in von Neumann algebras.
This technique is also applied to show that preduals of von Neumann alge-
bras have no nontrivial complete one-sided M -ideals. We also show that the
intersection of two complete one-sided M -summands need not be a one-sided
M -summand.
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1. INTRODUCTION

One of our main results is the following characterization of projections on C∗-
algebras. Notations are explained below.

Theorem 1.1. Let A be a C∗-algebra, and let P : A → A be a idempotent
linear map. Then the following are equivalent:

(i) there is an orthogonal projection e ∈ M(A) such that Px = ex for all
x ∈ A;

(ii) the map x 7→ [ Px x− Px ]t is isometric as a map from A to C2(A);
(iii) the map [ x y ]t 7→ [ Px y ]t on C2(A) is contractive;
(iv) the map (Px, y − Py) 7→ [Px y − Py ] is isometric as a map from

PA⊕∞ (Id− P )A to R2(A);
(v) (Px)∗Px 6 x∗x for all x ∈ A;
(vi) (Px)∗(y − Py) = 0 for all x, y ∈ A.

In the above, and throughout this paper, C2(A) and R2(A) are the first
column and row of M2(A), respectively; and ‘t’ is the transpose map. Since
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M2(A) is a C∗-algebra, C2(A) and R2(A) have canonical norms. Indeed, the
norm of a column (respectively row) with entries x and y from A is

√
‖x∗x + y∗y‖

(respectively
√
‖xx∗ + yy∗‖). We write M(A) for the multiplier algebra of A (see

[18] for example). Of course M(A) = A if A has an identity. An idempotent
map is a map P for which P ◦ P = P . A projection on a Hilbert space, or in a
C∗-algebra, will mean an orthogonal projection. If e is such a projection, then e⊥
will denote the complementary projection, 1− e. Throughout we use the symbol
H for a Hilbert space.

Let X be a general operator space (i.e. a closed linear subspace of some
B(H)). A linear map T from X to another operator space Y induces a canonical
map Tn : Mn(X) → Mn(Y ). We say that T is n-isometric if Tn is an isometry,
and that T is completely isometric if it is n-isometric for every n ∈ N. In [5],
we defined a complete left M -projection on X (respectively a left M -projection on
X) to be an idempotent linear map P on X such that the associated map in (ii)
above is completely isometric (respectively isometric). Indeed, in the rest of the
paper we will write ν c

P for this map (from X to C2(X)). We showed in [5] that
the complete left M -projections on a C∗-algebra A are exactly the maps in (i) of
the theorem above. Thus the equivalence of (i) and (ii) above may be interpreted
as the statement that every left M -projection on a C∗-algebra is a complete left
M -projection. Note also that (ii) is a non-commutative analog of the formula

‖x‖ = max{‖Px‖, ‖x− Px‖},
which characterizes classical M -projections on a Banach space ([1], [12]).

In [5] we proved that P being a complete left M -projection on a general
operator space X is equivalent to a number of other conditions. For example, it
is equivalent to saying that the associated map in (iii) of the theorem above is
completely contractive. It is also equivalent to a “matricial version” of (v) holding
on X (see [4], Section 4). Condition (iv) in fact also characterizes complete left M -
projections on general (possibly non-self-adjoint) operator algebras which possess
a contractive approximate identity, as we shall see.

The other main result in our paper is the fact that the predual or dual of
a von Neumann algebra possesses no nontrivial complete one-sided M -projections
(or complete one-sided M -ideals).

As the final result of the paper, we show that the intersection of finitely
many complete one-sided M -summands in a C∗-algebra need not be a complete
one-sided M -summand, unlike the classical situation.

The organization of the paper is as follows: Section 2 discusses the Glimm-
Halpern reduction theory, which is used in Section 3 to prove a result on “solving”
multi-linear equations in von Neumann algebras, Theorem 3.3. This, in turn, is
combined with a result of Sinclair, Lemma 4.3, to prove Theorem 4.5, whose con-
tent is the equivalence of conditions (i) and (ii) in Theorem 1.1. Also stated and
proven in Section 4 are the equivalences (i) ⇔ (iii) and (i) ⇔ (v) of Theorem
1.1. The former is encapsulated as Lemma 4.1, the latter as Corollary 4.2. An
indication of the proof of (i) ⇔ (vi) is provided at the end of Section 4. The
remaining equivalence, (i) ⇔ (iv), is addressed in Section 6 (Corollary 6.5) by en-
tirely different techniques. Historically, this result was the first result on complete
one-sided M -ideals ([26]). Sections 5 and 7 contain the aforementioned results on
the triviality of the complete left M -structure of von Neumann algebra preduals
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(Theorem 5.1) and the lack of closure under finite intersections of complete left
M -summands in C∗-algebras (Example 7.2). The proof of Theorem 5.1, like that
of Theorem 4.5, hinges on Theorem 3.3 and Lemma 4.3.

For the history of some of the topics discussed in our paper, and references
to some related work of others, we refer the reader to the discussion in the intro-
duction of [5]. One part of this history should be amplified. The equivalence (i)
⇔ (iii) of our Theorem 1.1 above, and its generalization below in Lemma 4.1, may
be viewed as a strengthening of the characterization of “left multipliers of opera-
tor spaces” given in Theorem 4.6 of [5], in the particular case that the operator
space is a C∗-algebra. We made much use of this Theorem 4.6 in [5] and else-
where. Historically, left multipliers for an operator system S were first considered
by W. Werner in [24] around 1998, where he obtained the version appropriate to
operator systems of our Theorem 4.6 of [5]; he also characterized left multipliers in
terms of the injective envelope I(S). A year later the first author, unaware of this
work, considered left multipliers of operator spaces (see [4] and also [6]). Theorem
4.6 in [5] was inspired by W. Werner’s characterization, but it was only recently,
via discussions with W. Werner, that we saw that our result can be deduced from
his original theorem from [24]. This is now explained in [25].

2. THE GLIMM-HALPERN REDUCTION THEORY

In this section we give a brief account of the Glimm-Halpern reduction theory (cf.
[10] and [11]). The use of this theory in the proof of the main result in the next
section was generously suggested by Edward Effros, who noticed its effective use
in [7].

Let R be a von Neumann algebra. Let Ω be the spectrum of the center
Z(R). Then Ω is an extremely disconnected compact Hausdorff space ([13], The-
orem 5.2.1), meaning that the closure of every open set is open. We have that
Z(R) ∼= C(Ω) via the Gelfand transform. For each ω ∈ Ω, let Mω = ker(ω) ⊂
Z(R) be the corresponding maximal ideal. Let Iω ⊂ R be the norm-closed, 2-sided
ideal generated by Mω. It is easy to check that

Iω = span{zr : z ∈Mω, r ∈ R}.
Define Rω = R/Iω, a C∗-algebra. We regard {Rω : ω ∈ Ω} as a decomposition
of R. It has several attractive features, which we now discuss. We include the
simpler proofs.

First some notation: for each x ∈ R and each ω ∈ Ω, let x(ω) = x+Iω ∈ Rω.

Theorem 2.1. ([10], Remarks before Lemma 9) Let x ∈ R. Then ‖x‖ =
sup{‖x(ω)‖ : ω ∈ Ω}.

Proof. Clearly, sup{‖x(ω)‖ : ω ∈ Ω} 6 ‖x‖. On the other hand, there exists
a pure state ϕ : R → C such that ‖x‖ = ϕ(x∗x)1/2 ([13], Theorem 4.3.8). We
claim that ω = ϕ|Z(R) ∈ Ω. Let us assume the claim for the moment. Because
ϕ|Mω = ω|Mω = 0, it follows that ϕ|Iω = 0, by the Cauchy-Schwarz inequality.

Thus for any y ∈ Iω,

‖x + y‖2 > ϕ((x + y)∗(x + y)) = ϕ(x∗x) = ‖x‖2,
giving ‖x(ω)‖ > ‖x‖.
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We now prove the claim. Let (πϕ,Hϕ) be the GNS construction for R cor-
responding to ϕ. Because ϕ is pure, πϕ(R) ⊂ B(Hϕ) is irreducible ([14], Theo-
rem 10.2.3). Thus C ⊂ πϕ(Z(R)) ⊂ Z(πϕ(R)) = C ([13], Theorem 5.4.1), which
implies that Z(R)/(ker(πϕ) ∩ Z(R)) ∼= C. Now let z1, z2 ∈ Z(R). By the pre-
vious discussion, there exist λ1, λ2 ∈ C and u1, u2 ∈ ker(πϕ) ∩ Z(R) such that
z1 = λ1 + u1 and z2 = λ2 + u2. Since ker(πϕ) ⊂ ker(ϕ),

ϕ(z1z2) = λ1λ2 = ϕ(z1)ϕ(z2).

Corollary 2.2. Let x, y ∈ R. Then x = y if and only if x(ω) = y(ω) for
all ω ∈ Ω.

Corollary 2.3. Let x ∈ R. Then x ∈ Z(R) if and only if x(ω) ∈ C for all
ω ∈ Ω.

Proof. Suppose x ∈ Z(R). Let ω ∈ Ω be arbitrary. Then ω(x − ω(x)) = 0
⇒ x−ω(x) ∈Mω ⊂ Iω. Thus, x(ω) = ω(x). Conversely, suppose x(ω) is a scalar
for all ω ∈ Ω. Then for any y ∈ R,

(xy)(ω) = x(ω)y(ω) = y(ω)x(ω) = (yx)(ω)
for all ω ∈ Ω. Thus xy = yx.

Corollary 2.4. Let f ∈ C(Ω). Then there exists an x ∈ Z(R) such that
x(ω) = f(ω) for all ω ∈ Ω.

Proof. Recall that Z(R) ∼= C(Ω) via the Gelfand transform. Thus, there
exists an x ∈ Z(R) such that ω(x) = f(ω) for all ω ∈ Ω. By the proof of the
previous corollary, x(ω) = ω(x) for all ω ∈ Ω.

Theorem 2.5. ([10], Lemma 10) Let x ∈ R. Then the map Ω → C : ω 7→
‖x(ω)‖ is continuous.

Theorem 2.6. ([11], Theorem 4.7) Let ω ∈ Ω. Then Iω is primitive (i.e.
Rω has a faithful irreducible representation).

3. A THEOREM ON “SOLVING” MULTI-LINEAR EQUATIONS
IN VON NEUMANN ALGEBRAS

In recent years, several authors have considered “elementary operators” on von
Neumann algebras (see e.g. [16]), and their relation to multi-linear equations in
von Neumann algebras. In this section we state and prove a theorem on “solving”
such equations. Many of the preliminary steps used in reaching this main result
are themselves quite interesting.

Let A be a C∗-algebra. Then the map θ : A⊗A → CB(A) defined by

θ
( n∑

j=1

aj ⊗ bj

)
(x) =

n∑

j=1

ajxbj

for all x ∈ A is well-defined. A result of Chatterjee and Smith ([7], Lemma 2.2)
identifies the kernel of an extension of θ to a certain completed tensor product,
in the case that A = R, a von Neumann algebra. We shall only need the follow-
ing algebraic result, for which a streamlined proof is provided (alternatively, see
Lemma 2.1 of [15]).
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Lemma 3.1. Let R be a von Neumann algebra and θ : R⊗R → CB(R) be
as in the preceding discussion. Let

J = span{az ⊗ b− a⊗ zb : a, b ∈ R, z ∈ Z(R)}.
Then ker(θ) = J .

Proof. Certainly J ⊂ ker(θ). On the other hand, suppose u =
n∑

k=1

rk ⊗ sk ∈
R⊗R and θ(u) = 0. Letting

r =




r1 r2 . . . rn

0 0 . . . 0
...

...
...

0 0 . . . 0


 and s =




s1 0 . . . 0
s2 0 . . . 0
...

...
...

sn 0 . . . 0


 ,

one has that r(x ⊗ In)s = 0 for all x ∈ R. Here In is the multiplicative identity
of Mn. Let L = spanWOT{Mn(R)r(R⊗ In)}, a WOT-closed left ideal of Mn(R).
Then (cf. Theorem 6.8.8, [14]) there exists a projection z ∈ Mn(R) such that
L = Mn(R)z. In particular, z ∈ L. We claim that z ∈ Mn(Z(R)). Indeed, for all
x ∈ R, L(x⊗ In) ⊂ L, which implies that z(x⊗ In)z = z(x⊗ In). Replacing x by
x∗, we conclude that z(x ⊗ In) = (x ⊗ In)z. Since the choice of x was arbitrary,
z ∈ (R⊗ In)′ = Mn(R′) and so z ∈ Mn(R) ∩Mn(R′) = Mn(Z(R)), proving the
claim. Since r ∈ L, rz = r. Since Ls = 0, zs = 0. Letting ¯ stand for the matrix
inner product (cf. Section 9.1, [9]), if a, b ∈ Mn(R), then

az ¯ b ≡ a¯ zb mod Mn(J )

since the (i, j) entry of the left-hand side is
n∑

k=1

(az)i,k ⊗ bk,j =
n∑

k=1

( n∑

l=1

ai,lzl,k

)
⊗ bk,j =

n∑

k=1

n∑

l=1

ai,lzl,k ⊗ bk,j

and the (i, j) entry of the right-hand side is
n∑

l=1

ai,l ⊗ (zb)l,j =
n∑

l=1

ai,l ⊗
( n∑

k=1

zl,kbk,j

)
=

n∑

k=1

n∑

l=1

ai,l ⊗ zl,kbk,j .

In particular, letting 0n denote the additive identity of Mn(R⊗R), we have that

u⊕ 0n−1 = r ¯ s = rz ¯ z⊥s ≡ r ¯ zz⊥s = 0n mod Mn(J ).

Hence, u ∈ J .

Lemma 3.2. Let V be a vector space and a, b, c, d, e ∈ V , with e 6= 0. If

a⊗ e + e⊗ b + c⊗ d = 0,

then either a and c are multiples of e, or b and d are multiples of e.

Proof. Let ϕ be a linear functional on V such that ϕ(e) 6= 0. Applying ϕ⊗Id
to the above equation yields

ϕ(a)e + ϕ(e)b + ϕ(c)d = 0.
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Thus b, d, and e are linearly dependent. Let E = span{b, d, e}. Then dim(E) =
1 or 2.

Case 1. Suppose dim(E) = 1. Then b and d are multiples of e.
Case 2. Suppose b and e are linearly independent. Then d = λb + µe. Thus,

a⊗ e + e⊗ b + c⊗ (λb + µe) = 0 ⇒ (a + µc)⊗ e + (e + λc)⊗ b = 0

⇒ c = − 1
λe and a = µ

λe.
Case 3. Suppose d and e are linearly independent. Then b = λd + µe. Thus

a⊗ e + e⊗ (λd + µe) + c⊗ d = 0 ⇒ (a + µe)⊗ e + (λe + c)⊗ d = 0

⇒ a = −µe and c = −λe.

Theorem 3.3. Let R be a von Neumann algebra and a, b, c, d ∈ R. If

ax + xb + cxd = 0

for all x ∈ R, then there exists a central projection p ∈ R such that pa, pc, p⊥b, p⊥d
∈ Z(R). Conversely, if pa, pc, p⊥b, p⊥d ∈ Z(R) for a central projection p ∈ R,
and if a + b + cd = 0, then ax + xb + cxd = 0 for all x ∈ R.

Proof. For the converse, we observe that if pa, pc, p⊥b, p⊥d ∈ Z(R), then

ax + xb + cxd = p⊥ax + xap + xbp + p⊥bx + xcdp + p⊥cxd

= p⊥ax + xap + xbp + p⊥bx + xcdp + p⊥cdx

= p⊥(a + b + cd)x + x(a + b + cd)p,

giving the result.
For the direct statement, we will use the notation of Section 2 without further

explanation. By Lemma 3.1,

a⊗ 1 + 1⊗ b + c⊗ d =
n∑

k=1

(xkzk ⊗ yk − xk ⊗ zkyk)

for some x1, x2, . . . , xn, y1, y2, . . . , yn ∈ R and some z1, z2, . . . , zn ∈ Z(R). Fix
ω ∈ Ω and apply the map R ⊗ R → Rω ⊗ Rω : x ⊗ y 7→ x(ω) ⊗ y(ω) to the
previous equation. One obtains that

a(ω)⊗ 1(ω) + 1(ω)⊗ b(ω) + c(ω)⊗ d(ω)

=
n∑

k=1

[xk(ω)zk(ω)⊗ yk(ω)− xk(ω)⊗ zk(ω)yk(ω)] = 0

by Corollary 2.3. If 1(ω) 6= 0, Lemma 3.2 tells us that either a(ω) and c(ω)
are scalars, or b(ω) and d(ω) are scalars. If 1(ω) = 0, then Rω = 0 and so
a(ω) = b(ω) = c(ω) = d(ω) = 0. For each x ∈ R, set

Fx = {ω ∈ Ω : x(ω) is a scalar}.
Since Rω has a faithful irreducible representation for all ω ∈ Ω (Theorem 2.6),
Z(Rω) = C for all ω ∈ Ω. Hence

Fx = {ω ∈ Ω : x(ω)y(ω) = y(ω)x(ω) for all y ∈ R}
= {ω ∈ Ω : ‖x(ω)y(ω)− y(ω)x(ω)‖ = 0 for all y ∈ R}
= {ω ∈ Ω : ‖(xy − yx)(ω)‖ = 0 for all y ∈ R}
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is closed by Theorem 2.5. Set F = Fa ∩ Fc. Then G = Ω\F is open ⇒ G
is both open and closed. We have that G ⊂ Fb ∩ Fd ⇒ G ⊂ Fb ∩ Fd. Also,
Ω\G ⊂ Ω\G = F = Fa∩Fc. Let f = 1−χG. Then f ∈ C(Ω). Thus (Corollary 2.4)
there exists a p ∈ Z(R) such that p(ω) = f(ω) for all ω ∈ Ω. Clearly p is a
projection. Since

(pa)(ω) = p(ω)a(ω) = f(ω)a(ω) ∈ C
for all ω ∈ Ω, pa ∈ Z(R) (Corollary 2.3). Likewise, pc, p⊥b, p⊥d ∈ Z(R).

A shorter proof of the last theorem, avoiding reduction theory, may be given
using the Dixmier approximation theorem ([14]). However the above arguments
illustrate the Glimm-Halpern techniques, which we feel will be useful elsewhere
(see e.g. [22]).

We remark that there exists another global approach to solving similar op-
erator equations, which is developed in [2] and uses the theory of local multipliers.

4. ONE-SIDED M -PROJECTIONS ON C∗-ALGEBRAS

In this section, we give all but one of the promised characterizations of complete
one-sided M -projections on C∗-algebras. The following result, which gives the
equivalence of (i) and (iii) in Theorem 1.1, was used in [5]. This result, and indeed
the Corollary which follows it, follow very quickly from Paschke’s Theorem 2.8
from [17]. (We thank G. Skandalis for pointing out to us that the contractivity
of τ c

ϕ below immediately implies that ϕ(x)∗ϕ(x) 6 x∗x. Simply replace y by
(‖x‖21 − x∗x)

1
2 , in the unital case.) We provide an alternative simple proof. In

the statement below, LM(A) is the left multiplier algebra [18].

Lemma 4.1.
Suppose that A is a C∗-algebra. Then a linear mapping ϕ : A → A has

the form ϕ(x) = bx for some b ∈ LM(A)with ‖b‖ 6 1 if and only if the column
mapping

τ c
ϕ : C2(A) → C2(A) :

[
x
y

]
7→

[
ϕ(x)

y

]

is contractive. Moreover if these conditions hold, then b is an orthogonal projection
in M(A) if and only if ϕ is an idempotent linear map.

Proof. Suppose that ϕ(x) = bx for some b ∈ LM(A) with ‖b‖ 6 1. The fact
that x∗b∗bx + y∗y 6 x∗x + y∗y, for any x, y ∈ A, yields immediately that τ c

ϕ is
contractive. It is fairly clear that b2 = b if and only if this ϕ is idempotent, and
since ‖b‖ 6 1 it follows that b∗ = b ∈ M(A).

For the remaining implication, we suppose that τ c
ϕ is contractive. We first

claim that it suffices to prove the result in the case that A is a von Neumann
algebra. To see this, note that the second dual (τ c

ϕ)∗∗ is contractive, and may be
equated with the map τ c

ϕ∗∗ on C2(A∗∗). If the lemma is true in the von Neumann
algebra case, then there exists an element b ∈ A∗∗ with ‖b‖ 6 1 such that ϕ∗∗(x) =
bx for all x ∈ A∗∗. Thus ϕ(a) = ba for a ∈ A. Since ϕ(a) ∈ A, we see that
b ∈ LM(A).
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Henceforth assume that A is a von Neumann algebra, and apply τ c
ϕ to the

column in C2(A) with entries e and 1− e, for an orthogonal projection e ∈ A. We
obtain ϕ(e)∗ϕ(e) + (1− e) 6 1 and thus

(1− e)ϕ(e)∗ϕ(e)(1− e) = 0,

giving ϕ(e)(1 − e) = 0. But this relation also holds for the projection 1 − e, i.e.,
we have ϕ(1− e)e = 0. We conclude that

ϕ(e) = ϕ(e)e = ϕ(1)e.

Since the linear span of the projections is norm dense in A, ϕ(x) = bx for all
x ∈ A, where b = ϕ(1).

As we pointed out in [5], unitary elements in a C∗-algebra may be charac-
terized in terms of the maps ϕ on A such that τϕ is a surjective isometry.

The following result, a “sharpening” of the “order-bounded” condition in
Section 4 of [4], gives the equivalence of (i) and (v) in Theorem 1.1:

Corollary 4.2. Suppose that A is a C∗-algebra. Then a linear mapping
ϕ : A → A has the form ϕ(x) = bx for some b ∈ LM(A) with ‖b‖ 6 1 if and
only if for all x ∈ A, there is a 2-isometric linear embedding σ : A → B(H)
such that σ(ϕ(x))∗σ(ϕ(x)) 6 σ(x)∗σ(x). This is also equivalent to saying that
ϕ(x)∗ϕ(x) 6 x∗x for all x ∈ A.

Proof. If ϕ(x) = bx for some b ∈ LM(A) with ‖b‖ 6 1, then ϕ(x)∗ϕ(x) =
x∗b∗bx 6 x∗x for all x ∈ A.

Conversely, if x ∈ A, and if a 2-isometric σ exists as above, then for y ∈ A
we have

∥∥∥∥
[

ϕ(x)
y

]∥∥∥∥
2

=
∥∥∥∥
[

σ(ϕ(x))
σ(y)

]∥∥∥∥
2

= ‖σ(ϕ(x))∗σ(ϕ(x)) + σ(y)∗σ(y)‖

6 ‖σ(x)∗σ(x) + σ(y)∗σ(y)‖ =
∥∥∥∥
[

x
y

]∥∥∥∥
2

.

By the previous result, ϕ(x) = bx for some b ∈ LM(A) with ‖b‖ 6 1.

Theorem 3.3 will give our next characterization, the equivalence of (i) and
(ii) in Theorem 1.1. First we need some preliminary results.

We recall that an element b of a unital Banach algebra B is said to be
Hermitian if ‖eitb‖ = 1 for all t ∈ R. Accordingly, a bounded linear map T of a
Banach space X into itself is said to be Hermitian if it is a Hermitian element of
the unital Banach algebra B(X).

The following result is well known; a proof may be found in Theorem 4.1.28
of [2], for example.
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Lemma 4.3. (Sinclair-Sakai) Let R be a von Neumann algebra. If T : R →
R is Hermitian, then there exist h, k ∈ Rsa such that Tx = hx+xk for all x ∈ R.

Lemma 4.4. Let X be an operator space and let P : X → X be a linear
idempotent. If ν c

P : X → C2(X) is an isometry, then P is Hermitian.

Proof. Let t ∈ R. Then for any x ∈ X,

‖eitP x‖ =

∥∥∥∥∥
∞∑

k=0

(itP )k

k!
x

∥∥∥∥∥ =

∥∥∥∥∥x +
∞∑

k=1

(it)k

k!
Px

∥∥∥∥∥
= ‖x + (eit − 1)Px‖ = ‖ν c

P (x + (eit − 1)Px)‖C2(X)

=
∥∥∥∥
[

Px + (eit − 1)Px
(Id− P )x

]∥∥∥∥
C2(X)

=
∥∥∥∥
[

eitPx
(Id− P )x

]∥∥∥∥
C2(X)

=
∥∥∥∥
[

eit 0
0 1

] [
Px

(Id− P )x

]∥∥∥∥
C2(X)

=
∥∥∥∥
[

Px
(Id− P )x

]∥∥∥∥
C2(X)

= ‖ν c
P (x)‖C2(X) = ‖x‖.

Hence ‖eitP ‖ = 1. Since the choice of t was arbitrary, P is Hermitian.

In the language of [5], the last result says that any “one-sided M -projection”
(as opposed to “complete one-sided M -projection”) is Hermitian. An almost iden-
tical argument shows that any “one-sided L-projection” is Hermitian.

Theorem 4.5. Let A be a C∗-algebra and let P : A → A be a linear idem-
potent. Then P is a complete left M -projection if and only if ν c

P : A → C2(A) is
an isometry.

Proof. If P is a complete left M -projection, then ν c
P is a complete isometry.

For the converse, it suffices (as in Lemma 4.1) to prove the assertion under the
assumption that A = R, a von Neumann algebra. Indeed, if the assertion is true
for von Neumann algebras then given a C∗-algebra A and a linear idempotent
P : A → A such that ν c

P : A → C2(A) is an isometry, we have that (ν c
P )∗∗ :

A∗∗ → C2(A)∗∗ is an isometry. This implies that ν c
P∗∗ : A∗∗ → C2(A∗∗) is an

isometry, so that P ∗∗ is a complete left M -projection. Thus P is a complete left
M -projection by Corollary 3.5, [5] for example.

By Lemmas 4.4 and 4.3, there exist h, k ∈ Rsa such that Px = hx + xk for
all x ∈ R. Since P is idempotent,

(h2 − h)x + x(k2 − k) + 2hxk = 0

for all x ∈ R. By Theorem 3.3, there exists a central projection p ∈ R such that
p(h2 − h), ph, p⊥(k2 − k), p⊥k ∈ Z(R). Thus

Px = phx + p⊥hx + xpk + xp⊥k = p⊥(h + k)x + xp(h + k) = p⊥ex + xpe,

where e = h + k ∈ Rsa. Note that P (1) = e, so that

e = P (1) = P 2(1) = P (e) = P (h + k) = h2 + 2hk + k2

= (h + k)2 + (hk − kh) = e2 + (hk − kh).
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Since e is self-adjoint, we also have that e = e2 + (kh− hk). Averaging, we obtain
that e = e2 and so e is a projection. Also,

‖x‖2 = ‖ν c
P (x)‖2C2(R) =

∥∥∥∥
[

Px
(Id− P )x

]∥∥∥∥
2

C2(R)

= ‖[Px]∗[Px] + [(Id− P )x]∗[(Id− P )x]‖
= ‖(p⊥ex + xpe)∗(p⊥ex + xpe) + (p⊥e⊥x + xpe⊥)∗(p⊥e⊥x + xpe⊥)‖
= ‖x∗exp⊥ + ex∗xep + x∗e⊥xp⊥ + e⊥x∗xe⊥p‖
= ‖x∗xp⊥ + (ex∗xe + e⊥x∗xe⊥)p‖ = max{‖xp⊥‖, ‖xep‖, ‖xe⊥p‖}2

for all x ∈ R. In particular, for all x ∈ Rp,

‖x‖ = max{‖xe‖, ‖xe⊥‖},
which says that the map Rp → Rp : x 7→ xe is a (classical) M -projection. Thus
ep ∈ Z(Rp) (cf. V.4.7 in [12]). But then

Px = p⊥ex + xpe = p⊥ex + pex = ex

for all x ∈ R. Hence, P is a complete left M -projection.

Remark 4.6. This theorem is not valid for general operator spaces. For
any Hilbert space H and any nontrivial projection P ∈ B(H), P regarded as a
linear map of the operator space X = max(H) into itself, is an idempotent such
that ν c

P : X → C2(X) is an isometry. Yet P is not a complete left M -projection
([5], Proposition 6.10). The same example shows that Lemma 4.1 is not valid for
general operator spaces.

The equivalence of (i) and (iv) in Theorem 1.1 is taken up in Section 6.
The equivalence of (i) and (vi) is straightforward and is left to the interested
reader (hint: (i) implies (vi) is trivial, and (vi) implies (v) by the “Pythagorean
theorem”).

5. ONE-SIDED M -PROJECTIONS IN VON NEUMANN ALGEBRA PREDUALS

Using the techniques of the previous section, we can prove that von Neumann
algebra preduals and duals have trivial complete one-sided M -structure.

Theorem 5.1. Let R be a von Neumann algebra. Then R has no nontrivial
complete right L-projections. Hence, R∗ has no nontrivial complete right M -ideals.

Proof. First we prove the second assertion. So assume the first assertion and
suppose J ⊂ R∗ is a nontrivial complete right M -ideal. Then J⊥ ⊂ R is a com-
plete left L-summand ([5], Corollary 3.6). Let P : R → R be the corresponding
complete right L-projection. By assumption, P = 0 or Id. Thus, J⊥ = {0} or R
⇒ J = J

wk
= J⊥⊥ ∩R∗ = {0} or R∗, a contradiction.

Now we prove the first assertion. So suppose P : R → R is a complete
right L-projection. Then P is Hermitian (by the remark after Lemma 4.4; or by
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Lemma 4.4 and the duality results in [5]). Arguing exactly as in the proof of
Theorem 4.5, there exist projections e, p ∈ R, with p central, such that

Px = p⊥ex + xpe

for all x ∈ R. Since P is nontrivial, e is nontrivial. Thus there exist unit vectors
ξ, η ∈ H (the Hilbert space on which R acts) such that eξ = ξ and eη = 0. Define
f ∈ R∗ by

f(x) = 〈xξ, ξ〉+ 〈xη, η〉
for all x ∈ R. Then

‖f‖ > |f(1)| = |〈ξ, ξ〉+ 〈η, η〉| = 2.

On the other hand,

|P ∗(f)(x)| = |f(Px)| = |f(p⊥ex) + f(xpe)|
= |〈p⊥exξ, ξ〉+ 〈p⊥exη, η〉+ 〈xpeξ, ξ〉+ 〈xpeη, η〉|
= |〈p⊥xξ, ξ〉+ 〈xpξ, ξ〉| = |〈xξ, ξ〉| 6 ‖x‖

and

|(Id− P ∗)(f)(x)| = |f((Id− P )x)| = |f(p⊥e⊥x) + f(xpe⊥)|
= |〈p⊥e⊥xξ, ξ〉+ 〈p⊥e⊥xη, η〉+ 〈xpe⊥ξ, ξ〉+ 〈xpe⊥η, η〉|
= |〈p⊥xη, η〉+ 〈xpη, η〉| = |〈xη, η〉| 6 ‖x‖

for all x ∈ R. Thus ‖P ∗(f)‖, ‖(Id− P ∗)f‖ 6 1, which leads to the contradiction

2 6 ‖f‖ = ‖ν c
P∗(f)‖C2(R∗) =

∥∥∥∥
[

P ∗f
(Id− P ∗)f

]∥∥∥∥
C2(R∗)

6
√
‖P ∗f‖2 + ‖(Id− P ∗)f‖2 6

√
2.

We remark that an analysis of the proof shows in fact that there are no
nontrivial “strong right L-projections”, in the language of [5], on a von Neumann
algebra. Indeed there are no nontrivial projections P on a von Neumann algebra,
such that P ∗ is a one-sided M -projection.

The following result, the classical analog of Theorem 5.1, is surely well-
known. However, we could not find a reference for it. While it may be proven
by a slight modification to the proof of Theorem 5.1, we will give an elementary
argument. Note the crucial use of extreme points of classical L-summands, a
technology which is not available yet in the one-sided theory.

Proposition 5.2. Let R be a von Neumann algebra. Then R has no non-
trivial classical L-summands.

Proof. Suppose that R = X ⊕1 Y . By Lemma 1.5 in [12],

ext(ball(R)) = ext(ball(X)) ∪ ext(ball(Y )).

Thus for every u ∈ U(R), the unitary group of R, either u ∈ X or u ∈ Y . Without
loss of generality, we may assume 1 ∈ Y . Now let u ∈ U(R) ∩X. For any θ ∈ R,
one has that

‖u + eiθ1‖ = ‖u‖+ ‖eiθ1‖ = 2.
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On the other hand,

‖u + eiθ1‖ = r(u + eiθ1) = sup
λ∈σ(u)

|λ + eiθ|.

Thus, we must have that eiθ ∈ σ(u). Since the choice of θ was arbitrary, σ(u) = T.
Now let a ∈ ball(Rsa). Then a = u+u∗

2 = Re(u), where u = a + i
√

1− a2 ∈ U(R).
Suppose u ∈ X. Then, as we just saw, σ(u) = T, so that σ(a) = σ(Re(u)) =
Re(σ(u)) = [−1, 1]. Likewise, since a = Re(u∗), one has that if u∗ ∈ X then
σ(a) = [−1, 1]. Thus if a is a projection in R, it must be that a ∈ Y . Consequently
Y = R, and X = {0}.

As a consequence of the previous two results, we have:

Corollary 5.3. Let A be a C∗-algebra. Then A has no nontrivial classical
L-projections or complete right L-projections.

Proof. Let P : A → A be a complete right L-projection. Then P ∗∗ : A∗∗ →
A∗∗ is also a complete right L-projection ([5], Corollary 3.5). By Theorem 5.1,
P ∗∗ = 0 or Id. Thus P = P ∗∗|A = 0 or Id. A similar proof gives the other
assertion.

In fact (cf. the discussion after Theorem 5.1), there are no nontrivial projec-
tions P on a C∗-algebra such that P ∗ is a one-sided M -projection.

6. ONE-SIDED PSEUDO-ORTHOGONALITY

In this section we give our final characterization of the complete one-sided M -
projections on a C∗-algebra (the equivalence of (i) and (iv) in Theorem 1.1). This
characterization is also valid for operator algebras having a contractive approxi-
mate identity. The definitions and results of this section, with the exception of
the last two corollaries, are from the thesis of the last author ([26]).

Let X be an operator space and x, y ∈ X. We recall [5] that x and y are
left orthogonal (written x ⊥L y) if there exists a complete isometry σ : X → B(H)
such that σ(x)∗σ(y) = 0. We say that x and y are left pseudo-orthogonal (and
write x>Ly) if ‖[x y ]‖R2(X) = max{‖x‖, ‖y‖}. We have that x ⊥L y ⇒ x>Ly.
Indeed, if σ : X → B(H) is a complete isometry (or even a 2-isometry) such that
σ(x)∗σ(y) = 0, then

‖[ x y ]‖2R2(X) = ‖[ σ(x) σ(y) ]‖2R2(B(H)) =
∥∥∥∥
[

σ(x)∗
σ(y)∗

]
[ σ(x) σ(y) ]

∥∥∥∥
M2(B(H))

=
∥∥∥∥
[

σ(x)∗σ(x) σ(x)∗σ(y)
σ(y)∗σ(x) σ(y)∗σ(y)

]∥∥∥∥
M2(B(H))

=
∥∥∥∥
[

σ(x)∗σ(x) 0
0 σ(y)∗σ(y)

]∥∥∥∥
M2(B(H))

= max{‖σ(x)‖, ‖σ(y)‖}2 = max{‖x‖, ‖y‖}2.
In [5], Theorem 5.1, it is shown that an idempotent linear map P : X → X
is a complete left M -projection if and only if Px ⊥L (Id − P )y for all x, y ∈
X. Combining this with the previous observation, if P is a complete left M -
projection then Px>L(Id − P )y for all x, y ∈ X. The converse is false in general
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(Remark 6.6), but true for operator algebras having a contractive approximate
identity (Theorem 6.4).

We begin with some lemmas. The first lemma concerns the concept of “peak-
ing”. We say that an operator x ∈ B(H) peaks at ξ ∈ H if ‖ξ‖ = 1 and ‖xξ‖ = ‖x‖.

Lemma 6.1. Let x, y ∈ B(H). If x>Ly, ‖x‖ > ‖y‖, and x peaks at ξ ∈ H,
then xξ ⊥ yH.

Proof. We may assume that x 6= 0, for otherwise the lemma is trivially true.
Suppose that it is false that xξ ⊥ yH. Then there exists a unit vector η ∈ H such
that yη = αxξ + ζ, where α > 0 and ζ ∈ H is orthogonal to xξ. For all β, γ > 0,
we have that

∥∥∥∥[ x y ]
[

βξ
γη

]∥∥∥∥
2

= ‖βxξ + γyη‖2 = ‖βxξ + γ(αxξ + ζ)‖2

= ‖(β + γα)xξ + γζ‖2 = (β + γα)2‖xξ‖2 + γ2‖ζ‖2 > (β + γα)2‖x‖2

and ∥∥∥∥
[

βξ
γη

]∥∥∥∥
2

= β2‖ξ‖2 + γ2‖η‖2 = β2 + γ2.

Thus,

‖[ x y ]‖2R2(B(H)) > (β + γα)2‖x‖2
β2 + γ2

for all β, γ > 0. Choosing β = 1
α and γ = 1 yields

‖[x y ]‖2R2(B(H)) > (1 + α2)‖x‖2 > ‖x‖2 = max{‖x‖, ‖y‖}2,
a contradiction. Thus xξ ⊥ yH.

Lemma 6.2. Let X ⊂ B(H) be an operator space and let P : X → X be an
idempotent linear map such that Px>L(Id − P )y for all x, y ∈ X. Set Y = PX
and Z = (Id− P )X. If y ∈ Y peaks at ξ ∈ H, then yξ ⊥ ZH.

Proof. We may assume that y 6= 0, for otherwise the lemma is trivially true.
Let z ∈ Z. There exists a κ > 0 such that ‖κy‖ > ‖z‖. Since κy ∈ Y , κy>Lz.
Since y peaks at ξ, the same is true for κy. By Lemma 6.1, κyξ ⊥ zH. Thus,
yξ ⊥ zH. Since the choice of z was arbitrary, yξ ⊥ ZH.

Lemma 6.3. Let X be an operator space and let P : X → X be an idempo-
tent linear map such that Px>L(Id−P )y for all x, y ∈ X. Then P is contractive.

Proof. By Ruan’s theorem ([9], Theorem 2.3.5), we may assume that X ⊂
B(H). By passing to the universal representation of B(H), if necessary, we may
assume that every x ∈ X peaks at some ξ ∈ H. Now let x ∈ X. Then x = y + z,
where y = Px and z = (Id − P )x. Let ξ ∈ H be such that y peaks at ξ. Then
yξ ⊥ zH by Lemma 6.2. Hence,

‖Px‖ = ‖y‖ = ‖yξ‖ 6
√
‖yξ‖2 + ‖zξ‖2 = ‖yξ + zξ‖ = ‖xξ‖ 6 ‖x‖.

Since the choice of x was arbitrary, P is contractive.
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Theorem 6.4. Let B be a unital operator algebra and P : B → B be an
idempotent linear map. Then P is a complete left M -projection if and only if
Px>L(Id− P )y for all x, y ∈ B.

Proof. We have already indicated the proof of the forward implication. For
the reverse implication, represent B faithfully on a Hilbert space H in such a way
that every x ∈ B peaks at some ξ ∈ H (e.g. use the universal representation
of the C∗-algebra generated by B). Let X = PB and Y = (Id − P )B, so that
x>Ly for all x ∈ X and all y ∈ Y . Then there exists a unique decomposition
I = x0 + y0 with x0 ∈ X and y0 ∈ Y . It suffices to prove that x0 is a projection in
B, because if so, setting e = x0 and invoking Lemma 6.2, we have that eH ⊥ Y H
and (I − e)H ⊥ XH. But then ey = 0 for all y ∈ Y and (I − e)x = 0 for all x ∈ X,
and so P (x + y) = x = e(x + y) for all x ∈ X and all y ∈ Y .

By Lemma 6.3, we know that ‖x0‖ 6 1 and ‖y0‖ 6 1. Thus, the closed linear
subspaces L = {ξ ∈ H : x0ξ = ξ} and M = {η ∈ H : y0η = η} of H are orthogonal,
since L ⊥ Y H ⊃ M by Lemma 6.2. To complete the proof it suffices to show that
N = L⊥ ∩M⊥ = {0}, because if that is the case, one quickly deduces (using the
fact that x0 + y0 = I) that

x0 =
[

I 0
0 0

]

with respect to the decomposition H = L⊕M.
We claim that if 0 6= x ∈ X peaks at ξ ∈ H, then xξ ∈ L. By Lemma 6.2,

xξ ⊥ Y H. Thus with respect to the decomposition H = Cxξ ⊕ (Cxξ)⊥,

x0 =
[

x11 x12

x21 x22

]
and y0 =

[
0 0

y21 y22

]
.

Combining this with the fact that x0 + y0 = I implies that

x0 =
[

I 0
x21 x22

]
.

Thus

x0xξ =
[

I 0
x21 x22

] [
xξ
0

]
=

[
xξ

x21xξ

]
.

If x21xξ 6= 0, then

‖x0xξ‖2 = ‖xξ‖2 + ‖x21xξ‖2 > ‖xξ‖2,
a contradiction to the fact that ‖x0‖ 6 1.

Now suppose that N 6= {0}. With respect to the decomposition H = L ⊕
M⊕N,

x0 =

[
I ∗ ∗
0 0 0
0 ∗ ∗

]
and y0 =

[
0 0 0
∗ I ∗
∗ 0 ∗

]
,

where the ∗’s represent (possibly) nonzero bounded linear operators. Because
x0 + y0 = I,

x0 =

[
I 0 0
0 0 0
0 0 z

]
and y0 =

[
0 0 0
0 I 0
0 0 I − z

]
,
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where z ∈ B(N). It must be that

x0y0 =

[ 0 0 0
0 0 0
0 0 z − z2

]
6= 0.

To see this, we first note that if z = 0, then for any 0 6= ξ ∈ N,

y0ξ =

[
0 0 0
0 I 0
0 0 I

][
0
0
ξ

]
=

[
0
0
ξ

]
= ξ,

which means that ξ ∈ M, a contradiction. If z − z2 = 0, then for any ξ ∈ N with
zξ 6= 0,

x0zξ =

[
I 0 0
0 0 0
0 0 z

] [ 0
0
zξ

]
=

[ 0
0

z2ξ

]
= z2ξ = zξ,

which means that zξ ∈ L, a contradiction.
Now there exists a unique decomposition x0y0 = x1 + y1 with x1 ∈ X and

y1 ∈ Y . Without loss of generality, we may assume that x1 6= 0. With respect to
the decomposition H = L⊕M⊕N,

x1 =

[ ∗ ∗ ∗
0 0 0
∗ ∗ ∗

]
and y1 =

[
0 0 0
∗ ∗ ∗
∗ ∗ ∗

]
.

Because x1 + y1 = x0y0,

x1 =

[
0 0 0
0 0 0
∗ ∗ ∗

]
.

If x1 peaks at ξ1 ∈ H, then by a previous claim we have that x1ξ1 ∈ L. On the
other hand, we plainly have that x1ξ1 ∈ N, a contradiction.

Corollary 6.5. Let B be an operator algebra having a contractive approx-
imate identity and P : B → B be an idempotent linear map. Then P is a complete
left M -projection if and only if Px>L(Id− P )y for all x, y ∈ B.

Proof. Again, we need only prove the reverse implication. Recall that B∗∗
is a unital operator algebra with respect to the Arens product (cf. Theorem 2.1,
[8]). Since P is a linear idempotent such that Px>L(Id−P )y for all x, y ∈ B, the
map

Φ : PB ⊕∞ (Id− P )B → R2(B) : (Px, (Id− P )y) 7→ [ Px (Id− P )y ]
is an isometry. By usual duality arguments, Φ∗∗ : (PB⊕∞ (Id−P )B)∗∗ → R2(B)∗∗
is also an isometry. Now under the isometric identifications

(PB ⊕∞ (Id−P )B)∗∗∼=(PB)∗∗ ⊕∞ ((Id−P )B)∗∗, (PB)∗∗ ∼= (PB)⊥⊥=P ∗∗B∗∗,
((Id−P )B)∗∗∼=((Id−P )B)⊥⊥=(Id−P ∗∗)B∗∗, R2(B)∗∗∼=R2(B∗∗),

Φ∗∗ corresponds to the map

Ψ : P ∗∗B∗∗ ⊕∞ (Id− P ∗∗)B∗∗ → R2(B∗∗) :

(P ∗∗x, (Id− P ∗∗)y) 7→ [ P ∗∗x (Id− P ∗∗)y ] .

Thus P ∗∗x>L(Id − P ∗∗)y for all x, y ∈ B∗∗. By Theorem 6.4, P ∗∗ is a complete
left M -projection. By Corollary 3.5, [5], P is a complete left M -projection.
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Remark 6.6. Theorem 6.4 is not true for general operator spaces. Let X ⊂
M3 be the linear subspace spanned by

s =



√

2 0 0
0 1 0
0 0 0


 and t =

[ 0 0 0
0 1 0
0 0

√
2

]
.

Then P : X → X : αs+βt 7→ αs is an idempotent linear map such that Px>L(Id−
P )y for all x, y ∈ X. However P is not a complete left M -projection (cf. Section 2.9,
[26]).

Indeed, with a little more work, the last example reveals that the “matricial
version” of one-sided pseudo-orthogonality does not characterize one-sided com-
plete M -projections on general operator spaces. However we do have the following
result:

Corollary 6.7. Let X be a TRO (or, equivalently, a Hilbert C∗-module)
and let P : X → X be an idempotent linear map. Then P is a complete left
M -projection if and only if Pnx>L(Id−Pn)y for all x, y ∈ Mn(X) and all n ∈ N.

Proof. The idea is similar to that of the proof of Theorem 4.6 in [5], so we
will simply sketch the argument. Suppose that Pnx>L(Id − Pn)y for all x, y ∈
Mn(X) and all n ∈ N. Then it is easy to see that P ∗∗x>L(Id − P ∗∗)y for all
x, y ∈ Mn(X∗∗) and all n ∈ N. Thus, by Corollary 3.5 of [5], we may assume
X is self-dual. By Lemma 4.4 of [5], there exists a cardinal J such that MJ (X)
is completely isometrically isomorphic to a von Neumann algebra. Because P is
completely contractive (Lemma 6.3), the amplification PJ : MJ(X) → MJ(X)
is well-defined. Since Pnx>L(Id − Pn)y for all x, y ∈ Mn(X) and all n ∈ N,
one has that PJ ([ xi,j ])>L(Id − PJ) ([ yi,j ]) for all [ xi,j ] , [ yi,j ] ∈ MJ(X). By
Theorem 6.4, PJ is a complete left M -projection. Fixing j0 ∈ J and restricting
PJ to those elements of MJ(X) with zeros everywhere except possibly the (j0, j0)
position, we conclude that P is a complete left M -projection. The converse is
trivial.

We saw in Section 4 that the condition that ν c
P is isometric is sufficient to

characterize complete left M -projections on C∗-algebras. It would be interesting
to know if this was also true for general operator algebras. As another corollary
to the methods of this section, we do at least have the following:

Corollary 6.8. Let B be an operator algebra with contractive approximate
identity, and suppose that P is an idempotent linear map on B. Then P is a
complete left M -projection if and only if ν c

P : B → C2(B) is 2-isometric.
Proof. Indeed, in the case that ν c

P is 2-isometric, one has for x, y ∈ B that
‖[ Px (Id− P )y ]‖R2(B) = ‖[ ν c

P (Px) ν c
P ((Id− P )y) ]‖M2(B)

=
∥∥∥∥
[

P (Px) P ((Id− P )y)
(Id− P )(Px) (Id− P )((Id− P )y)

]∥∥∥∥
M2(B)

=
∥∥∥∥
[

Px 0
0 (Id− P )y

]∥∥∥∥
M2(B)

= max{‖Px‖, ‖(Id− P )y‖},
which says that Px>L(Id− P )y. The result then follows from Corollary 6.5.
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7. INTERSECTIONS OF ONE-SIDED M -SUMMANDS

In the classical theory, there is a well known “calculus” of M -summands, L-
summands, and M -ideals (see Section I.1 in [12]). Many of these results go through
in the quantized, one-sided case considered in [5]. A few do fail without extra hy-
potheses. The “calculus” of complete one-sided M -summands and ideals will be
described in a forthcoming paper. We display next one classical result, namely
that the intersection of two M -summands is again an M -summand, which fails
for general complete one-sided M -summands. (We remark however that if the
complete one-sided M -projections corresponding to these summands commute,
then this result is valid.) Indeed for a unital C∗-algebra A, the (complete) right
M -summands are exactly the principal right ideals pA, for a projection p ∈ A.
However for projections p, q ∈ A, it need not be the case (unless A is a von Neu-
mann algebra) that (pA) ∩ (qA) = rA for any projection r ∈ A. Although this
may be known, we could not find this fact in the literature.

The following is a modification of an example shown to us by Stephen Dil-
worth.

Example 7.1. There exists a unital C∗-algebra A ⊂ B(H) and projections
P, Q ∈ A such that

(i) P ∧Q /∈ A;
(ii) H1 = ran(P ∧Q) is separable with orthonormal basis {ξn};
(iii) the one-dimensional subprojection of P ∧ Q with range Cξn lies in A

for all n ∈ N.

Proof. Let H1 be a separable Hilbert space with orthonormal basis {ξn}, H2

be a separable Hilbert space with orthonormal basis {ηn}, and H = H1 ⊕ H2.
Define

H3 = span{η2n−1 : n ∈ N} ⊂ H2 and H4 = span
{

η2n−1 +
1
n

η2n : n ∈ N
}
⊂ H2

and set
H5 = H1 ⊕ H3 ⊂ H and H6 = H1 ⊕ H4 ⊂ H.

Let P, Q ∈ B(H) be the projections onto H5 and H6, respectively, and let En ∈
B(H) be the projection onto Cξn for all n ∈ N. Denote by A the unital C∗-
subalgebra of B(H) generated by P,Q, and the family {En : n ∈ N}. We claim
that P ∧Q, the projection onto H1 = H5 ∩ H6, is not an element of A. Suppose,
to the contrary, that P ∧ Q ∈ A. Pick ε > 0 arbitrarily. Then there exists an
operator

T =
M∑

k=1

αkQrk(PQ)skP tk +
N∑

l=1

βlEl,

where rk, tk ∈ {0, 1} and sk ∈ N0 for all k = 1, 2, . . . , M , such that ‖P∧Q−T‖ < ε.
It follows that for any x ∈ H1 ∩ {ξ1, ξ2, . . . , ξN}⊥,

∣∣∣1−
M∑

k=1

αk

∣∣∣‖x‖ =
∥∥∥x−

M∑

k=1

αkx
∥∥∥ = ‖(P ∧Q− T )x‖ 6 ε‖x‖.
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Thus ∣∣∣1−
M∑

k=1

αk

∣∣∣ 6 ε.

On the other hand, it is easy to check that

Qrk(PQ)skP tkη2n−1 =
( n2

n2 + 1

)sk+rk
[
η2n−1 +

rk

n
η2n

]

⇒ Tη2n−1 =
M∑

k=1

αk

( n2

n2 + 1

)sk+rk
[
η2n−1 +

rk

n
η2n

]
.

But then
ε > ‖(P ∧Q− T )η2n−1‖ = ‖Tη2n−1‖

=

√√√√∣∣∣
M∑

k=1

αk

( n2

n2 + 1

)sk+rk
∣∣∣
2

+
∣∣∣

M∑

k=1

αk

( n2

n2 + 1

)sk+rk rk

n

∣∣∣
2

→
∣∣∣

M∑

k=1

αk

∣∣∣ > 1− ε

as n →∞, a contradiction.

Example 7.2. There exists a unital C∗-algebra A, and projections p, q ∈ A,
such that (pA) ∩ (qA) 6= rA for any projection r ∈ A.

Proof. Let A be the C∗-algebra from Example 7.1, J1 = PA, and J2 = QA.
If J1 ∩ J2 = RA for some projection R ∈ B(H), then necessarily R ∈ A (since
A is unital). Since PR = QR = R, we have R 6 P ∧ Q. By construction,
En ∈ A. Since En 6 P ∧ Q, we have that PEn = En and QEn = En, so that
En ∈ J1 ∩ J2 = RA. It follows that En 6 R. Since n was arbitrary, we obtain the
contradiction that R = P ∧Q.
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