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INJECTIVE REAL FACTORS ARE HYPERFINITE

P.J. STACEY

Communicated by William B. Arveson

Abstract. Following the proof developed by Haagerup in the complex case,
it is shown that all injective real factors on separable Hilbert spaces are
hyperfinite.
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The purpose of this brief note is to indicate how the proof given by Haagerup in
[8] applies to the real situation, to show that all injective real factors on separable
Hilbert spaces are hyperfinite. This contradicts Theorem 2 and Corollary 2 of [9]
which claim the opposite.

It was shown in [6], [7] and [11] that there is a unique injective real factor
in both the II1 and II∞ cases and that this factor is hyperfinite. Thus it remains
only to consider the type III case, which is dealt with by slightly modifying the
arguments in [8].

Let N be an injective factor with a faithful normal state ψ, let Φ be an
involutory ∗-antiautomorphism of N , let R = {n ∈ N : Φ(n) = n∗} and let
ϕ = 1

2 (ψ + ψ ◦ Φ), which is faithful, normal and Φ-invariant. The GNS Hilbert
space Hϕ has an antilinear isometry K of order 2, defined by K[n]ϕ = [Φ(n∗)]ϕ
for each n ∈ N , such that πϕ(Φ(n)) = Kπϕ(n)∗K for each n ∈ N and such that
s 7→ Ks∗K gives an involutory antiautomorphism Φ′ of πϕ(N)′. In the following
lemma, which establishes the required version of semidiscreteness, ΦR will be used
for the transpose map on a matrix algebra Mm.
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Lemma 1. There exist positive integers (mλ)λ∈Λ and nets of completely
positive maps Sλ : N → Mmλ

and Tλ : Mmλ
→ N such that SλΦ = ΦRSλ,

ΦTλ = TλΦR, Sλ(1) = 1, Tλ(1) = 1 and, for each n ∈ N , (Tλ ◦ Sλ)(n) converges
to n in the σ-strong* topology.

Proof. Let N act on Hϕ and recall that the mapping n ⊗ s 7→ ns extends
to a representation of N ⊗min N

′ on Hϕ. The corresponding state k : n ⊗ s 7→
〈nsξϕ, ξϕ〉 is Φ⊗Φ′ invariant and, as in the proof of Lemma 2.2 of [3], is therefore
approximated by states p =

∑
ciωzi

and by the corresponding states p ◦ (Φ⊗Φ′).
Noting that 1

2 (ωz +ωz ◦ (Φ⊗Φ′)) = ω(z+(K⊗K)z)/2 +ωi(z−(K⊗K)z)/2, we can take
(K ⊗K)zi = zi. The vectors x1, . . . , xm, y1, . . . , ym ∈ Hϕ considered at the top of
page 68 of [3] can similarly be seen to be fixed by K, by noting that

(x⊗ y) + (Kx⊗Ky) =
1
2
[(x+Kx)⊗ (y +Ky)− i(x−Kx)⊗ i(y −Ky)].

It follows that

(σΦ)(n) = (〈Φ(n)xj , xi〉) = (〈Kn∗Kxj , xi〉) = (〈K2n∗Kxj ,Kxi〉)
= (〈xj , nxi〉) = (〈nxi, xj〉) = ΦRσ(n)

(where σ and τ are defined on page 68 of [3]).
The image of τ is easily seen to consist of normal maps, so τ : Mm → N ′

∗. The
map σ can be modified so that σ(1) = 1 (and still ΦRσ = σΦ) by using the proof of
Lemma 2.2 of [2] with x a unit vector with Kx = x. If b denotes the original value
of σ(1), which satisfies ΦR(b) = b∗ = b, then modifying τ to a 7→ τ(b1/2ab1/2) keeps
τ ◦σ unchanged. Thus, as in Lemma 2.2 of [3], the map L(k) can be approximated
in the pointwise weak topology by a net of maps τλ ◦ σλ, where σλ : N → Mmλ

and τλ : Mmλ
→ N ′

∗ for suitable integers mλ, where σλ(1) = 1 and ΦRσλ = σλΦ.
The argument outlined on pages 75 and 76 of [3] proceeds to modify τλ, using

the method of Lemmas 4.3 and 4.4 of [4], so that τλ(1) = p, where p (denoted by
L(k)(1) in [3]) satisfies p(s) = 〈sξϕ, ξϕ〉 for s ∈ N ′. It then uses the complete order
isomorphism θ from N onto [p] described on page 70 of [3] to produce completely
positive maps τ ′λ = (θ−1 ◦ τλ) so that the maps τ ′λ ◦σλ tend pointwise σ-weakly to
the identity map on N . The convexity argument outlined on page 71 of [3] shows
that the convergence is also σ-strong*. If we let Sλ = σλ and Tλ = 1

2 (τ ′λ +Φτ ′λΦR)
then Sλ and Tλ have the required properties since TλSλ = 1

2 (τ ′λσλ + Φτ ′λσλΦ).
(Note that if αR = ΦR◦∗ and α = Φ◦∗, then Φτ ′λΦR = ατ ′λαR, which is completely
positive.)

Lemma 2. Let N be a properly infinite von Neumann algebra, let Φ be an
involutory ∗-antiautomorphism of N and let F be a Φ-invariant finite dimensional
subfactor of N with {f ∈ F : Φ(f) = f∗} isomorphic to Mm(R) for some m. If T
is a completely positive map from F to N with TΦ = ΦT then there exists a ∈ N
with Φ(a) = a∗ such that T (x) = a∗xa for each x ∈ F .

Proof. This is exactly the same as the proof of Proposition 2.1 of [8] if the
initial system (eij)i,j=1,...,m of matrix units for F is chosen to satisfy Φ(eij) = eji
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for each i, j. Then, in turn,

(Φ⊗ Φ)
( ∑

T (eij)⊗ eij

)
=

( ∑
T (eij)⊗ eij

)∗
,

(Φ⊗ Φ)
( ∑

bij ⊗ eij

)
=

( ∑
bij ⊗ eij

)∗

and

Φ(akl) = a∗kl,

where b =
∑
bij⊗eij is the positive square root of

∑
T (eij)⊗eij and akl =

∑
eilbki.

By choosing isometries v11, . . . , vmm in N ∩ F ′ to satisfy Φ(vij) = v∗ij it follows
that

T (x) =
( ∑

vijaij

)∗
x
( ∑

vijaij

)

with Φ
( ∑

vijaij

)
=

( ∑
vijaij

)∗
.

Theorem 3. Let N be an injective factor of type III on a separable Hilbert
space, let Φ be an involutory ∗-antiautomorphism of N and let R = {n ∈ N :
Φ(n) = n∗}. Then R is hyperfinite.

Proof. The proof of Theorem 2.2 of [8] applies, subject to suitable Φ-inva-
riance, so the notation of that proof is maintained here. For any m the properly
infinite real factor R contains a subfactor FR isomorphic to Mm(R) and hence N
contains a Φ-invariant subfactor F isomorphic to Mm. Using Lemma 1, the maps
S and T can be chosen to commute with Φ and, by Lemma 2, the isometry v can be
taken to satisfy Φ(v) = v∗. The unitary w which is strongly close to v can also be
taken to satisfy Φ(w) = w∗: to see this use, for example, the construction described
in Lemma 1 of [1] and the spatial description of Φ obtained in Theorem 3.7 of
[10]. Thus if Φ(uk) = u∗k then, with yk = w∗S(uk)w, Φ(yk) = y∗k. Unlike the
proof of Theorem 2.2 of [8], uk itself cannot be taken to be unitary. However,
it is a complex linear combination

∑
i

λk,iuk,i of unitaries uk,i for each of which

yk,i = w∗S(uk,i)w ∈ w∗Fw and ‖yk,i−uk,i‖#ϕ < ε
M , whereM =

∑ |λk,i|. Thus the
corresponding linear combination yk = w∗S(uk)w belongs to w∗FRw ∼= Mm(R)
with ‖yk−uk‖#ϕ < ε. The argument in Theorem 3 of [5] shows that this is sufficient
to guarantee the existence of a dense union of increasing real matrix algebras in
R. (The unitary u of Lemma 1 of [5] can be chosen with Φ(u) = u∗, the matrix
units epq in the proof of Theorem 3 can be chosen to satisfy Φ(epq) = eqp, the
projections εpp for 1 6 p 6 2k can be chosen with Φ(εpp) = εpp and hence the
matrix units fpq satisfy Φ(fpq) = fqp; this shows that the real subfactor w∗FRw
above can be taken to have size 2k for some k and then the rest of the proof of
Theorem 3 of [5] applies to the real setting to produce the required increasing
sequence of subfactors.)
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It remains to reconcile the theorem above with Theorem 2 of [9] which claims
that there is a unique conjugacy class of involutory antiautomorphisms of the
hyperfinite factor M of type IIIλ, for 0 < λ < 1, for which the associated real
algebra is hyperfinite. Since there are known to be two non conjugate involutory
antiautomorphisms of the hyperfinite function of type IIIλ when 0 < λ < 1, that
theorem implies that there is a real injective factor which is not hyperfinite. It
is implicitly claimed in the proof that an isomorphism between two weakly dense
unions of matrix subalgebras extends to an automorphism of M , which is not
clearly the case (unlike the situation of Corollary 2.10 of [11], on which the proof
of Theorem 2 of [9] is modelled).

Acknowledgements. I am grateful to A.A. Rakhimov for pointing out an error in
an earlier version of this note.
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