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0. INTRODUCTION

Contractive projections play a useful role in the theory of operator algebras and
Banach spaces. The ranges of contractive projections on C∗-algebras form an
important subclass of those complex Banach spaces whose open unit balls are
bounded symmetric domains. An important feature of these spaces is that they
are equipped with a Jordan triple product, induced by the Lie algebra of the au-
tomorphism group of the open unit ball. Known as JB∗-triples, they have been
shown to be the appropriate category in which to study contractive projections;
indeed the fact that the category of JB∗-triples is stable under contractive projec-
tions played a key role in their structure theory.

Recently, contractive projections on von Neumann algebras have arisen in the
study of operator spaces as well as in the theory of harmonic functions on locally
compact groups. In [24], a family of Hilbertian operator spaces were studied and
used to classify, in an appropriate sense, the ranges of contractive projections on
B(H) which are atomic as Banach spaces. In [6], it was shown that the Banach
space of bounded matrix-valued harmonic functions on a locally compact group is
the range of a contractive projection on a type I finite von Neumann algebra.



282 Cho-Ho Chu, Matthew Neal and Bernard Russo

It has also been shown in [8] that the Banach space of harmonic functionals on
the Fourier algebra of a locally compact group G is the range of a contractive
projection on the group von Neumann algebra VN(G).

There is a Murray-von Neumann type classification for JBW∗-triples, that
is, JB∗-triples which are the dual of a Banach space. In view of the fact, noted
above, that the range of a contractive projection on a JB∗-triple is again a JB∗-
triple ([14], [23], [30]) the above investigations point to a natural and important
question, namely, how is the Murray-von Neumann classification of the domain
affected by a contractive projection? More precisely, given a JBW∗-triple Z of
type X, where X = I, II or III, is the range of a normal contractive projection
on Z of type Y with Y 6 X, meaning each summand of the range is of type
6 X? In this paper, we answer this question affirmatively. We shall see that it
suffices to prove this for JW∗-triples, that is, for JBW∗-triples which are linearly
isometric to a weak operator closed subspace of B(H), stable for the triple product
xy∗z+ zy∗x, where B(H) is the von Neumann algebra of bounded operators on a
Hilbert space H.

Tomiyama ([34]) has analysed the type structure of the range of a contractive
projection which is a von Neumann subalgebra of the domain. His arguments
depend on the crucial fact that the range is a subalgebra. In our investigation, the
range, which automatically has an algebraic structure, need not be a subalgebra
nor even a subtriple. This adds both generality and complexity to our question.

This paper is organized as follows. Section 1 is devoted to background and
motivation for the problem. In Section 2 we consider, as a preliminary tool, con-
tractive projections on JW∗-algebras. Propositions 2.7 and 2.8 show that if the
image of a normal contractive projection on a JW∗-algebra is a JW∗-subalgebra
(not necessarily with the same identity), then the properties of being semifinite
or of type I are passed on from the domain to the image. In Section 3 we study
normal contractive projections on a von Neumann algebra of type I and show in
Proposition 3.5 that the image is isometric to a JW∗-triple of type I. It is necessary
first to prove this (in Proposition 3.1) in the special case when the projection is
the Peirce 2-projection with respect to a partial isometry. Our main results, that
normal contractive projections on JW∗-triples preserve both type I and semifinite-
ness, appear in Section 4 as Theorems 4.2 and 4.4. Again, Propositions 4.1 and
4.3 deal with the special case of a Peirce 2-projection. Although Propositions 2.7
through 4.3 are each a special case of Theorems 4.2 or 4.4, they are essential steps
in the proofs of these theorems and they are new and of interest. In Section 5, we
extend Theorems 4.2 and 4.4 to arbitrary JBW∗-triples, and consider the case of
atomic JBW∗-triples.
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1. MOTIVATION AND BACKGROUND

Let M be a von Neumann algebra and let N be a von Neumann subalgebra of
M containing the identity element of M . A positive linear map E : M → N
satisfying Ex = x for x ∈ N and E(axb) = aE(x)b for x ∈ M and a, b ∈ N
is called a conditional expectation. Conditional expectations have played some
fundamental roles in the theory of von Neumann algebras, for instance in V. Jones’
theory of subfactors. Work in the 1950s of Tomiyama and Nakamura-Takesaki-
Umegaki established that conditional expectations are idempotent, contractive,
and completely positive mappings, and they preserve type when normal; see the
survey paper of Størmer ([32]). Conversely ([21], 10.5.85), a unital contractive
projection from one C∗-algebra onto a unital C∗-subalgebra extends to a normal
conditional expectation on the universal enveloping von Neumann algebra, and is
in particular a conditional expectation on the C∗-algebra.

A type theory for weakly closed Jordan operator algebras, based on modu-
larity of the lattice of projections, and parallel to the type classification theory for
von Neumann algebras, was introduced and developed in the 1960s by Topping
([35]) and Størmer ([31]). In particular, Størmer showed that a JW-algebra is of
type I if and only if its enveloping von Neumann algebra is of type I. This was ex-
tended to types II and III by Ayupov in 1982 ([1]). In some cases, the JW-algebra
in these results is required to be reversible. This is discussed in Remark 2.2 of [2]
and in Sections 1.1–1.3 of [3].

A special case of a result of Choi-Effros in 1977 ([5]), of fundamental impor-
tance in the rapidly advancing theory of operator spaces, states that the range
of a unital completely positive projection on a C∗-algebra, while not in general a
subalgebra, nevertheless carries the structure of a C∗-algebra. The proof hinges
on a conditional expectation formula (needed to prove that the abstract product is
associative) which is established using the Kadison-Schwarz inequality for positive
linear maps. We note that such a projection is completely contractive.

A special case of a result of Effros-Størmer in 1979 ([10]) states that the
range of a unital positive projection on a C∗-algebra, while not in general a Jor-
dan subalgebra, carries a natural Jordan algebra structure. As before, the proof
depends on a conditional expectation formula (needed to prove that the abstract
product satisfies the Jordan identity), and such a projection is contractive.

The above results raised the question of what algebraic structure exists in
the range of an arbitrary contractive projection on a C∗-algebra. A special case of
a result of Friedman and Russo in 1983 states that the range of such a projection
is linearly isometric to a subspace, closed under the triple product xy∗z+ zy∗x, of
the second dual of the C∗-algebra. Because of the lack of an order structure and
hence the unavailability of the Kadison-Schwarz inequality, new techniques were
needed and developed by Friedman-Russo in their theory of “operator algebras
without order” ([12]), including some conditional expectation formulas for the
triple product ([13], Corollary 1).

During the 1980s, the theory of JB∗-triples was developed extensively; for
a summary, see the survey [27]. In particular, a type I theory was developed for
JBW∗-triples by Horn in his thesis in 1984. In this theory, idempotents (projec-
tions) were replaced by tripotents (which are abstraction of partial isometries),
and the reduced algebra pAp was replaced by the Peirce 2-space of a tripotent.
Of special importance here is the algebraic fact that such a Peirce 2-space has
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an abstract structure of a Jordan algebra, and moreover Horn has proved that a
JBW∗-triple is of type I if, and only if, it contains a complete (= maximal) tripo-
tent whose Peirce 2-space is a Jordan algebra of type I. The remarkable structure
theorem of Horn states that type I JBW∗-triples are isometric to direct sums of
tensor products of a commutative von Neumann algebra by a Cartan factor.

We now recall some definitions. A Jordan triple system is a complex vector
space V with a Jordan triple product { · , · , · } : V × V × V → V which is symmet-
ric and linear in the outer variables, conjugate linear in the middle variable and
satisfies the Jordan triple identity

{a, b, {x, y, z}} = {{a, b, x}, y, z} − {x, {b, a, y}, z}+ {x, y, {a, b, z}}.
A complex Banach space Z is called a JB∗-triple if it is a Jordan triple system
such that for each z ∈ Z, the linear map

z¤ z : v ∈ Z 7→ {z, z, v} ∈ Z
is Hermitian, that is, ‖eit(z ¤ z)‖ = 1 for all t ∈ R, with non-negative spectrum
and ‖z¤ z‖ = ‖z‖2. A JB∗-triple Z is called a JBW∗-triple if it is a dual Banach
space, in which case its predual is unique, denoted by Z∗, and the triple product is
separately weak* continuous. The second dual Z∗∗ of a JB∗-triple is a JBW∗-triple.
A norm-closed subspace of a JB∗-triple is called a subtriple if it is closed with
respect to the triple product. A JBW∗-triple is called a JW∗-triple if it can be
embedded as a subtriple of some B(H).

The JB∗-triples form a large class of Banach spaces which include C∗-algebras,
Hilbert spaces and spaces of rectangular matrices. The triple product in a C∗-
algebra A is given by

{x, y, z} =
1
2
(xy∗z + zy∗x).

In fact, A is a Jordan algebra in the product

x ◦ y =
1
2
(xy + yx)

and we have {x, y, z} = (x ◦ y∗) ◦ z + (y∗ ◦ z) ◦ x − (z ◦ x) ◦ y∗. A norm-closed
subspace of a C∗-algebra is called a JC*-algebra if it is also closed with respect to
the involution ∗ and the Jordan product ◦ given above. A JC∗-algebra is called a
JW∗-algebra if it is a dual Banach space.

An element e in a JB∗-triple Z is called a tripotent if {e, e, e} = e in which
case the map e¤ e : Z → Z has eigenvalues 0, 1

2 and 1, and we have the following
decomposition in terms of eigenspaces

Z = Z2(e)⊕ Z1(e)⊕ Z0(e)

which is called the Peirce decomposition of Z. The k
2 -eigenspace Zk(e) is called

the Peirce k-space. The Peirce projections from Z onto the Peirce k-spaces are
given by

P2(e) = Q2(e), P1(e) = 2(e¤ e−Q2(e)), P0(e) = I − 2e¤ e+Q2(e),

where Q(e)z = {e, z, e} for z ∈ Z. The Peirce projections are contractive.
In later computation, we will use frequently the Peirce rules

{Zi(e)Zj(e)Zk(e)} ⊂ Zi−j+k(e),



Normal contractive projections preserve type 285

where Zl(e) = {0} for l 6= 0, 1, 2. We note that the Peirce 2-space Z2(e) = P2(e)(Z)
is a Jordan Banach algebra with identity e, the Jordan product a ◦ b = {a, e, b}
and involution a# = {e, a, e} which satisfy

‖a#‖ = ‖a‖, ‖{a, a#, a}‖ = ‖a‖3,
where {x, y, z} = (x ◦ y∗) ◦ z + (y∗ ◦ z) ◦ x− (z ◦ x) ◦ y∗, in other words, Z2(e) is a
unital JB∗-algebra. A JB*-algebra having a predual is called a JBW∗-algebra. As
shown in [36], the self-adjoint parts of JB∗-algebras (respectively JBW∗-algebras)
are exactly the JB-algebras (respectively JBW-algebras). For definitions and basic
results about JB-algebras, we refer the reader to [17]. If Z = Z2(e), then e is called
unitary. If Z0(e) = {0}, then the tripotent e is called complete. Two tripotents u
and v are said to be orthogonal if u¤ v = 0. The elements of the predual Z∗ of
a JBW∗-triple Z are exactly the normal functionals on Z, that is, the continuous
linear functionals on Z which are additive on orthogonal tripotents.

Given an orthogonal family of tripotents {ei}i∈Λ in a JB∗-triple Z, we can
form a joint Peirce decomposition

Z =
⊕

i,j∈Λ

Zij

where Peirce spaces Zij are defined by

Zii = Z2(ei), Zij = Z1(ei) ∩ Z1(ej), i 6= j,
Zi0 = Z1(ei) ∩

⋂
j 6=i

Z0(ej), Z00 =
⋂
i

Z0(ei).

We have, for zij ∈ Zij and e =
∑
ei,

(ek ¤ e)(zij) = (ek ¤ ek)(zij) =
{

0 if k /∈ {i, j},
1
2zij if k ∈ {i, j}.

JBW∗-triples have an abundance of tripotents. In fact, given a JBW∗-triple
Z and f in the predual Z∗, there is a unique tripotent vf ∈ Z, called the support
tripotent of f , such that f ◦ P2(vf ) = f and the restriction f |Z2(vf ) is a faithful
positive normal functional.

The Murray-von Neumann classification of the von Neumann algebras can
be extended to that of JBW∗-triples and a JBW∗-triple can be decomposed into
a direct sum of type j, j =I, II, III, summands (see [18], [20]). A JBW∗-triple is
called continuous if it does not contain a type I summand in which case, it is a
direct sum of a JW∗-algebraH(A,α) and a weak* closed right ideal of a continuous
von Neumann algebra, as shown in [20], where

H(A,α) = {a ∈ A : α(a) = a}
is the fixed-point set of a period 2 weak* continuous antiautomorphism α of a von
Neumann algebra A. It follows that continuous JBW∗-triples are JW∗-triples.

A JBW∗-triple Z is called of type I if it contains an abelian tripotent e such
that Z = U(e) where U(e) denotes the weak* closed triple ideal generated by e.
We recall that a tripotent e is said to be abelian if the Peirce 2-space P2(e)(Z)
is an abelian triple which is equivalent to saying that P2(e)(Z) is an associative
JBW∗-algebra in the usual Jordan product x ◦ y = {x, e, y}. Horn (4.14, [19]) has
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shown that a JBW∗-triple is type I if, and only if, every weak*-closed triple ideal
contains an abelian tripotent.

An important class of type I JBW∗-triples are the following six types of
Cartan factors:

type 1 B(H,K) with triple product {x, y, z} = 1
2 (xy∗z + zy∗x);

type 2 {z ∈ B(H,H) : zt = −z};
type 3 {z ∈ B(H,H) : zt = z};
type 4 spin factor;
type 5 M1,2(O) with triple product {x, y, z} = 1

2 (x(y∗z) + z(y∗x));
type 6 M3(O);

where B(H,K) is the Banach space of bounded linear operators between complex
Hilbert spaces H and K, and zt is the transpose of z induced by a conjugation on
H. Cartan factors of type 2 and 3 are subtriples of B(H,H), the latter notation is
shortened to B(H). The type 3 and 4 are Jordan algebras with the usual Jordan
product x ◦ y = 1

2 (xy + yx). A spin factor is a Banach space that is equipped
with a complete inner product 〈 · , · 〉 and a conjugation j on the resulting Hilbert
space, with triple product

{x, y, z} =
1
2
(〈x, y〉z + 〈z, y〉x− 〈x, jz〉jy)

such that the given norm and the Hilbert space norm are equivalent.
By Horn’s result in [18], a JBW∗-triple Z is of type I if, and only if, it is

linearly isometric to an `∞-sum
⊕
α
L∞(Ωα) ⊗ Cα where Cα is a Cartan factor.

Such a type I JBW∗-triple will be called type Ifin if each Cartan factor Cα is finite-
dimensional. It has been shown in [9] that a JBW∗-triple Z is type Ifin if, and
only if, its predual Z∗ has the Dunford-Pettis property. We recall that a Banach
space W has the Dunford-Pettis property if every weakly compact operator on W
is completely continuous. Such property is inherited by complemented subspaces.

Horn’s type I structural result above also shows that a JBW∗-algebra is type
I as a JBW∗-triple if and only if its self-adjoint part is a type I JBW-algebra in
the sense of [17].

Lemma 1.1. Let Z be a JBW∗-subtriple of a type Ifin JBW∗-triple. Then Z
is type Ifin.

Proof. By Corollary 6 of [9], Z∗ has the Dunford-Pettis property.

We will begin our investigation of contractive projections in the next section.
A contractive projection P : Z → Z on a JB∗-triple Z is a bounded linear map
such that P 2 = P and ‖P‖ 6 1. We will exclude the trivial case of P = 0
which then implies ‖P‖ = 1. Given such a contractive projection P on Z with
the triple product { · , · , · }, one can show, using the holomorphic characterization
of JB∗-triples ([22], [30]) that the range P (Z) is also a JB∗-triple in the triple
product

[x, y, z] = P{x, y, z}, x, y, z ∈ P (Z).

Moreover, one has the following conditional expectation formula:

P{Px, Py, Pz} = P{Px, y, Pz}, x, y, z ∈ Z.
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The above result has also been proved in [14] for subtriples of C∗-algebras, via an
operator algebra approach which also yields the formula

P{Px, Py, Pz} = P{x, Py, Pz}.
A weak* continuous projection on a JBW∗-triple is called normal.

2. CONTRACTIVE PROJECTIONS ON JW ∗-ALGEBRAS

In this section, we consider a JW∗-algebra A ⊂ B(H) with positive part A+,
inheriting various topologies of B(H). A positive linear functional ϕ of A is called
a trace if ϕ(sxs) = ϕ(x) for all symmetries s ∈ A and all x ∈ A+, where a symmetry
in A is a self-adjoint element s such that s2 is the identity in A. A JW∗-algebra A
is called reversible if a1, . . . , an ∈ A implies a1 · · · an + an · · · a1 ∈ A. By Corollary
1.2.10 of [3], every normal trace on a reversible JW∗-algebra A can be extended to
a normal trace on its enveloping von Neumann algebra. Further, if ϕ is faithful,
so is its extension. In the sequel, our JW∗-subalgebras need not have the same
identity element as the JW∗-algebras which contain them.

The following lemma is a special case of Lemma 1.1, but the proof below is
intrinsic without using the Dunford-Pettis property.

Lemma 2.1. Every JW∗-subalgebra of a type Ifin JW∗-algebra is of type Ifin.

Proof. Let A be a JW∗-subalgebra of a type Ifin JW∗-algebra B. Then A is
finite since it is a subalgebra of a finite algebra. Let p ∈ A be a projection. Then
pAp is a subalgebra of the type Ifin algebra pBp. Suppose, for contradiction, that
pAp contains no abelian projection. By cutting down to a homogeneous summand,
we may assume that pBp is homogeneous. Then by Theorem 17 of [35], p can
be decomposed into any number of mutually orthogonal and strongly equivalent
projections in pAp. Since equivalent projections in pAp are also equivalent in pBp,
and since in a homogeneous type Ifin algebra there are at most a fixed number of
mutually orthogonal and strongly equivalent projections, we have a contradiction.
So pAp contains an abelian projection and A is of type Ifin.

Lemma 2.2. Let (A, ◦) be a JW∗-algebra with identity 1 and let P : A→ A
be a contractive projection. If P (A) contains a unitary tripotent u of P (A), then
P1 = P (uu∗u∗u) = P (u◦u∗). In particular, if u is a projection in A, then P1 = u.

Proof. Recall that the triple product in P (A) is given by
[x, y, z] = P{x, y, z}.

Since u is a unitary tripotent in P (A), we have by the main identity
P1 = [P1, u, [u, u, u]]

= [[P1, u, u], u, u]− [u, [u, P1, u], u] + [u, u, [P1, u, u]]

= P1− [u, [u, P1, u], u] + P1
and by the conditional expectation formula,

P1 = [u, [u, P1, u], u]

= P{u, P{u, P1, u}, u}
= P{u, P (u2), u} = P{u, u2, u} = P (uu∗u∗u).

Also, P1 = [u, u, P1] = P{u, u, P1} = P{u, u, 1} = P (u ◦ u∗).
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Remark 2.3. The above result shows that there is at most one unitary
tripotent in P (A) which is a projection in A. If P (A) is a JW∗-subalgebra of A,
then the identity in P (A) is a projection in A and P (1A) = 1P (A).

A JW∗-algebra A is said to be finite (or modular as in [35]) if its projections
form a modular lattice in which case A admits a centre-valued trace, and therefore
a separating family of normal traces. It has been shown in Theorem 1.1.14 of [3]
that a reversible JW∗-algebra is finite if, and only if, its enveloping von Neumann
algebra is finite. In fact, a reversible JW∗-algebra and its enveloping von Neumann
algebra have the same type, as shown in Theorem 1.3.2 of [3]. A projection p in a
JW∗-algebra A is called finite if the JW∗-algebra pAp is finite.

By 5.3.10 of [17], a JW∗-algebra A has a decomposition

A = A1 ⊕A2

where A1 is a reversible JW∗-algebra and A2 is a type I2 JW∗-algebra. Further,
by 6.3.14 of [17], every type I2 JW∗-algebra is a direct sum of JW∗-algebras of the
form C(X,V ) where C(X) is an abelian W*-algebra and V is a spin factor. Since
every infinite-dimensional spin factor V can be embedded as a JW∗-subalgebra
of a type II1 W*-factor R, with the canonical trace on V extended to the trace
of R (cf. Remark 1.2.11, [3]), it follows from the above remarks that a finite
(respectively semifinite) JW∗-algebra A can be embedded as a JW∗-subalgebra of
a von Neumann algebra A which is a direct sum of a finite (respectively semifinite)
von Neumann algebra and a type II1 von Neumann algebra, with the faithful
normal finite (respectively semifinite) trace on A extending to a faithful normal
finite (respectively semifinite) trace on A.

Remark 2.4. Let A be a JW∗-algebra with the decomposition A = A1⊕A2,
where A1 is a reversible JW∗-algebra and A2 is a type I2 JW∗-algebra. In the rest
of this section, we always assume that A is embedded in the von Neumann algebra
A = A1 ⊕N , where A1 is the enveloping von Neumann algebra of A1 and N is a
type II1 von Neumann algebra containing A2. The above remarks imply that A is
finite if, and only if, A1 is finite. We also note that if e is a finite projection in A,
then it is also a finite projection in A.

We recall that, for a net (xα) in a von Neumann algebra, we say that

xα → 0 strongly ⇔ x∗αxα → 0 weakly

and
xα → 0 strongly∗ ⇔ x∗αxα + xαx

∗
α → 0 weakly,

where “weakly” refers to the weak operator topology. Plainly, strong* convergence
implies strong convergence.

Given a JW∗-algebra A ⊂ A, we define A2 = {ab : a, b ∈ A} which is
contained in A and inherits various topologies of A.
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Lemma 2.5. Let A ⊂ A be a JW∗-algebra as in Remark 2.4. Then the
following conditions are equivalent:

(i) A is finite;
(ii) the map x ∈ A2 7→ x∗ ∈ A2 is strongly continuous on bounded spheres;
(iii) the net (yαxα) → 0 strongly, whenever (xα) and (yα) are bounded nets

of self-adjoint elements in A with (xαyα) → 0 strongly in A2.

Proof. (i) ⇒ (ii) This follows from the above remarks that A is finite and
the fact that the map x 7→ x∗ is continuous on bounded spheres in a finite von
Neumann algebra.

(ii) ⇒ (iii) Obvious.
(iii) ⇒ (i) If A is not finite, then by Lemma 23 of [35], there is an infinite

orthogonal sequence {pn} of projections in A such that, for every n,

p1 = snpnsn

where sn is a symmetry. Given any normal state ψ of the von Neumann algebra
A, we have ∑

ψ(pn) = ψ
(∑

pn

)
6 ψ(1) <∞.

So ψ((snpn)∗(snpn)) = ψ(pn) → 0. But ψ((pnsn)∗(pnsn)) = ψ(p1) 6→ 0 for some
ψ, a contradiction.

Lemma 2.6. Let P : A→ A be a contractive projection on a JW∗-algebra A
such that P (A) is a JW∗-subalgebra of A. Then:

(i) P (x ◦ x∗) > 0 for all x ∈ A;
(ii) P (a ◦ x) = P (a) ◦ x for a ∈ A, x ∈ P (A);
(iii) if P is weak* continuous, then P is strong* continuous on bounded

spheres.

Proof. (i) By Lemma 2.2, P1 is the identity in P (A). Let ϕ be a state of
P (A). Then ϕ ◦ P (1) = ϕ(P1) = 1 implies that ϕ ◦ P is a state of A. Hence
ϕ(P (x ◦ x∗)) > 0. As ϕ was arbitrary, we have P (x ◦ x∗) > 0. This implies that P
is self-adjoint.

(ii) This is proved in [10]. We give a short alternate proof here. We have

P (a ◦ x) = P (a ◦ (x ◦ P (1))) =
1
2
P{a, x, P (1)}+

1
2
P{a, P (1), x}

=
1
2
(P{Pa, x, P (1)}+ P{Pa, P (1), x})

=
1
2
({Pa, x, P (1)}+ {Pa, P (1), x}) = Pa ◦ x.

(iii) Let xα → 0 strongly*. Then xα◦x∗α → 0 weakly and hence P (xα◦x∗α) →
0 weakly. Using (i), (ii), and the self-adjointness of P , we have

0 6 P ((Pxα − xα) ◦ (Pxα − xα)∗) = P (xα ◦ x∗α)− P (xα) ◦ P (xα)∗

which implies that P (xα) ◦ P (xα)∗ → 0 weakly.

A JW∗-algebra A is semifinite if every nonzero projection in A contains a
nonzero finite projection. This is equivalent to saying that A does not contain any
type III summand.
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Proposition 2.7. Let A be a semifinite (respectively finite) JW∗-algebra
and P a normal contractive projection on A such that P (A) is a JW∗-subalgebra
of A. Then P (A) is semifinite (respectively finite).

Proof. Let A ⊂ A as in Remark 2.4. Suppose P (A) is of type III. We show
that P (A) = 0. Let e ∈ A be a finite projection. Suppose P (e) 6= 0. We have
P (e) > 0 and by spectral theory there exists a nonzero projection p ∈ P (A) such
that λp 6 P (e) for some λ > 0. Let (xα) and (yα) be bounded nets of self-adjoint
elements in pP (A)p such that (xαyα) converges to 0 strongly. We shall show
that (yαxα) converges to 0 strongly. Since, as remarked above, e is also a finite
projection in A, by pp. 97–98 of [28], the nets (yαxαe) and (eyαxα) converge to 0
strongly in A. Since the nets (exαyα) and (xαyαe) both converge to 0 strongly, we
have (exαyα) and (eyαxα) both converging to 0 strongly*. Let zα = xαyα + yαxα

which belongs to pP (A)p. Then (ezα) and (zαe) both converge strongly* to 0.
Therefore {e, zα, P (e)} → 0 strongly* in A. Since P is strongly* continuous on
bounded spheres and P (A) is in particular a subtriple of A, we have

P (e)zαP (e) = P{Pe, zα, P (e)} = P{e, zα, P (e)} → 0

strongly*, and hence strongly. It follows that

[pP (e)p+ (1− p)]zα[pP (e)p+ (1− p)] = pP (e)zαP (e)p→ 0

strongly, which gives

zα = [pP (e)p+ (1− p)]−1pP (e)zαP (e)p[pP (e)p+ (1− p)]−1 → 0

strongly and therefore yαxα → 0 strongly. By Lemma 2.5, pP (A)p is finite,
contradicting that P (A) is type III. Hence P vanishes on every finite projection
in A and P (A) = 0.

If we apply the above argument to the identity element of a finite A we obtain
that P (A) is finite.

It will follow from Theorems 4.2 and 4.4 in Section 4 that Proposition 2.7,
and Proposition 2.8 which follows, remain true without the assumption that P (A)
is a subalgebra. The proof of Proposition 2.8 is an adaptation to the Jordan
algebra setting of the proof for von Neumann algebras in [34].

Proposition 2.8. Let P be a normal contractive projection on a type I
JW∗-algebra A and suppose P (A) is a JW∗-subalgebra of A. Then P (A) is of
type I.

Proof. By Proposition 2.7, P (A) is a semifinite JW∗-algebra. Suppose that
P (A) contains a type II summand. By following P by the projection onto the type
II part, we can assume that P (A) is of type II. We show P (A) = 0. It suffices to
show that for any finite projection q in P (A), we have qP (A)q = 0. By following P
with the projection q · q, we may further assume that P (A) is of type II1. Suppose
B = P (A) 6= 0, we deduce a contradiction.

Let A ⊂ A as in Remark 2.4. There are faithful normal semifinite traces
τ, τ0, τ̃0 on B,A,A respectively such that τ is finite and τ̃0 is an extension of τ0.
Since τ ◦P is a normal positive functional on A, by the Radon–Nikodym theorem
(Theorem 2.4, [2]) there is an element h ∈ L1(A, τ0)+ such that

(2.1) τ ◦ P (x) = τ0({h1/2xh1/2}) for x ∈ A.
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Note that for self-adjoint x ∈ A and y ∈ B, τ ◦ P (y2 ◦ x) = τ(P (y2 ◦ x)) =
τ(y2 ◦ Px) by Lemma 2.6(ii). On the other hand, τ ◦ P ({yxy}) = τ(P{yxy}) =
τ({y, Px, y}) = τ(y2◦Px), the latter by [25]. Hence τ ◦P ({yxy}) = τ ◦P (y2◦Px),
for self-adjoint x ∈ A, y ∈ B. Applying this to a projection p ∈ B and using the
extension property and (2.1), we have

τ̃0

(
h

[
xp+ px

2
− pxp

])
= 0 for every x ∈ A.

Expanding τ̃0(h ◦ (p ◦ x)) = τ̃0(h ◦ (pxp)) and using the associative trace
properties of τ̃0 yields

τ̃0

(
xhp+ xph+ xhp+ xph

4

)
= τ̃0

(
xphp+ xphp

2

)
.

Hence,
τ̃0(x(ph+ hp− 2php)) = 0,

which is the same as τ0(x ◦ (ph+ hp− 2php)) = 0. Since this is true for all x ∈ A,
we have ph = php = hp, so that h is affiliated with B′, the commutant of B (see
[2]). Note that, since p is a finite projection, all of the strong products above are
in L1(Ã, τ̃0).

Since h ∈ L1(A, τ0), we may pick a nonzero finite projection e ∈ A ∩ B′
(a spectral projection of h). It is easy to see that eB is a JW∗-subalgebra of A
and that eB′′ = (eB)′′. Since B is reversible, B of type II1 ⇒ B′′ of type II1 ⇒
eB′′ of type II1 ⇒ (eB)′′ of type II1 ⇒ eB of type II1. But eB = eBe ⊂ eAe is
of type Ifin by Lemma 2.1, giving a contradiction. Hence B = 0.

3. CONTRACTIVE PROJECTIONS ON VON NEUMANN ALGEBRAS

Proposition 3.1. Let M be a von Neumann algebra of type I and let e be
a partial isometry of M . Then the Peirce 2-space P2(e)M is a JW∗-algebra of
type I.

Proof. We note that P2(e)M is a von Neumann algebra with identity e, under
the product x · y = xe∗y and involution x] = ex∗e as well as a JW∗-algebra under
x ◦ y = {xey} = (xe∗y + ye∗x)/2 and x]. Also, (P2(e)M, ·) is a von Neumann
algebra of type I if and only if (P2(e)M, ◦) is a JW∗-algebra of type I.

Now suppose that v is a nonzero central projection in (P2(e)M, · ). Below we
shall verify the following:

(i) v is a tripotent in M ;
(ii) v · P2(e)M = P2(v)M as sets;
(iii) the identity map : (v · P2(e)M, ·) → (P2(v)M,×), where x × y = xv∗y

and x 7→ vx∗v is the involution in (P2(v)M,×), is a *-isomorphism of von Neumann
algebras;

(iv) (P2(v)M,×) has a non-zero abelian projection.
Assuming that (i)–(iv) have been proved, if there is a nonzero central pro-

jection v such that v · P2(e)M is a continuous von Neumann algebra, we obtain
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a contradiction that it contains a nonzero abelian projection. So (P2(e)M, · ) is a
von Neumann algebra of type I.

It remains to verify (i)–(iv) above.
Since v = v · v = v], we have v = v · v · v = ve∗ve∗v = v(ev∗e)∗v = vv∗v.

This proves (i).
Since v = ee∗ve∗e, we have v = ee∗v = ve∗e so that vv∗e = v(ev∗e)∗e =

ve∗ve∗e = ve∗v = v and similarly ev∗v = v. Hence, for y ∈ M , v · P2(e)y =
v · P2(e)y · v = ve∗(P2(e)y)e∗v = vv∗ee∗(P2(e)y)e∗ev∗v = P2(v)y (since v∗v 6 e∗e
and vv∗ 6 ee∗). This proves (ii).

For x, y ∈ P2(v)M , we have, by (ii), x = xe∗v and y = ve∗y. Therefore
x · y = xe∗y = xe∗ve∗ve∗y = xv∗ve∗y = xv∗y = x × y. As for the involution,
ex∗e = e(ve∗xe∗v)∗e = ev∗ex∗ev∗e = vx∗v. This proves (iii).

Let p = vv∗. We shall show that:
(a) there is a non-zero abelian projection h ∈M with h 6 p and c(h) = c(p),

where c(·) denotes central support;
(b) with z = hv, z is a non-zero abelian projection in the von Neumann

algebra (P2(v)M,×) and this will prove (iv).
Since pMp is of type I, there is a non-zero abelian projection h ∈ pMp such

that cpMp(h) = p. Since h 6 p, we have c(h) 6 c(p). To show equality here, take
a central projection r ∈ M with h 6 r. Then pr is a central projection in pMp,
so that pr = prp > cpMp(h) = p and thus p 6 r gives c(p) 6 r. Taking r = c(h),
we get c(p) 6 c(h). This proves (a).

We next show that z is a non-zero projection in (P2(v)M,×). We have z =
hv = phvv∗v = vv∗hvv∗v ∈ P2(v)M , vz∗v = v(vv∗hvv∗v)∗v = vv∗hv = hv = z,
z × z = zv∗z = hvv∗hv = hphv = hv = z, and zz∗ = hvv∗h = h 6= 0.

It remains to show that for x, y ∈M , we have

(3.1)
[z × (vv∗xv∗v)× z]v∗[z × (vv∗yv∗v)× z]

= [z × (vv∗yv∗v)× z]v∗[z × (vv∗xv∗v)× z].

The left and right sides of (3.1) collapse to hxv∗hyv∗hv and hyv∗hxv∗hv respec-
tively, which are equal since hMh is an abelian subalgebra of M . For example,
the left side is equal to

zv∗vv∗xv∗vv∗zv∗zv∗vv∗yv∗vv∗z = hvv∗xv∗hvv∗hvv∗yv∗hv = hxv∗hyv∗hv.

This proves (b), hence (iv) and the Proposition 3.1.

Let P be a normal contractive projection on a JBW∗-triple Z and let f ∈
P∗(Z∗) have the support tripotent (partial isometry in this case) vf . Let Pk =
Pk(vf ) denote the Peirce projections induced by vf . The following commutativity
formulas were proved in [16]. These will be used freely in the remainder of the
paper.

(i) P2P = P2PP2, PP2 = PP2P ;
(ii) PP0 = P0PP0 = PP0P ;
(iii) PP1 = PP1P, P1PP0 = 0 .
In the next lemma, we shall use these formulas to extend the first two of

them to the case where the tripotent is not assumed to be the support of a normal
functional. We shall use the fact that, by Zorn’s lemma, every tripotent in a
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JBW∗-triple Z is the sum of an orthogonal family of tripotents which are support
tripotents of normal functionals on Z.

The following lemma is needed in the next section. In this section, it will be
used only in the case that Z is a von Neumann algebra, considered as a JW∗-triple
under 1

2 (xy∗z + zy∗x).

Lemma 3.2. Let P be a normal contractive projection on a JBW∗-triple Z
and suppose that v is a tripotent of the JBW∗-triple P (Z). Choose a set S = {fi :
i ∈ I} of pairwise orthogonal normal functionals on P (Z) such that v =

∑
i∈I

vfi ,

where vfi
is the support tripotent of fi in P (Z). Let wi be the support tripotent of

fi in Z, necessarily pairwise orthogonal, and let w be the partial isometry
∑
i∈I

wi.

Then

P2(w)P = P2(w)PP2(w), PP2(w) = PP2(w)P.

Proof. Since w =
∑
wi, we have P2(w) =

∑
i

P2(wi)+
∑
j 6=k

P1(wj)P1(wk) and

therefore

P2(w)PP2(w)

=
∑

i,i′
P2(wi)PP2(wi′) +

∑

j 6=k,j′ 6=k′
P1(wj)P1(wk)PP1(wj′)P1(wk′)

+
∑

j′ 6=k′, all i

P2(wi)PP1(wj′)P1(wk′) +
∑

j 6=k, all i′

P1(wj)P1(wk)PP2(wi′).

Because P2(wi)P = P2(wi)PP2(wi), by properties of the joint Peirce decom-
position, the first sum reduces to

∑
i

P2(wi)P and each term in the third sum is
zero.

Each term in the fourth sum is zero as well. Indeed, since in the following
we may assume k 6= i′,

P1(wj)P1(wk)PP2(wi′) = P1(wj)[I − P2(wk)− P0(wk)]PP2(wi′)

= P1(wj)[PP2(wi′)− P2(wk)PP2(wi′)− P0(wk)PP2(wi′)]

= P1(wj)[PP2(wi′)− 0− P0(wk)PP0(wk)P2(wi′)]

= P1(wj)[PP2(wi′)− PP0(wk)P2(wi′)]

= P1(wj)[PP2(wi′)− PP2(wi′)] = 0.

The second sum reduces to
∑
j 6=k

P1(wj)P1(wk)P . Indeed, if k 6∈ {j′, k′},
then [P1(wk)PP1(wj′)]P1(wk′) = 0 since we have P1(wj′)P1(wk′)Z ⊂ P0(wk)Z
and P1(wk)PP0(wk) = 0. Thus, it follows that the second sum is reduced to
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∑
j 6=k

P1(wj)P1(wk)PP1(wj)P1(wk). However,

P1(wj)P1(wk)PP1(wj)P1(wk)

= P1(wj)P1(wk)P [I − P2(wj)− P0(wj)]P1(wk)

= P1(wj)P1(wk)PP1(wk)− P1(wj)P1(wk)PP2(wj)P1(wk)

− P1(wj)P1(wk)PP0(wj)P1(wk)

= P1(wj)P1(wk)P [I − P2(wk)− P0(wk)] + 0 + 0

= P1(wj)P1(wk)P − P1(wj)P1(wk)PP2(wk)− P1(wj)P1(wk)PP0(wk)

= P1(wj)P1(wk)P − P1(wk)P1(wj)PP2(wk)

= P1(wj)P1(wk)P.

This proves the first formula.
For the second formula, we have

PP2(w)P = P
(∑

i

P2(wi) +
∑

j 6=k

P1(wj)P1(wk)
)
P

=
∑

i

PP2(wi)P +
∑

j 6=k

PP1(wj)P1(wk)P

=
∑

i

PP2(wi) +
∑

j 6=k

PP1(wj)P1(wk) = PP2(w)

since

PP1(wj)P1(wk)P = (PP1(wj)P )P1(wk)P

= PP1(wj)(PP1(wk)) = PP1(wj)P1(wk).

The following lemma is probably known. We include a proof for complete-
ness.

Lemma 3.3. Let p be a projection in a JB∗-algebra A and let A1(p) be the
Peirce 1-space. Then A1(p) ∩A+ = 0.

Proof. If x ∈ A1(p)∩A+, then let y = x1/2 ∈ Asa and let y = y2 +y1 + y0 be
its Peirce decomposition with respect to p. Then x = y2

2 + y2
1 + y2

0 + 2(y2 + y0)y1.
Since x ∈ A1(p), we have y2

2 + y2
1 + y2

0 = 0 and because the JB-algebra Asa is
formally real, y = 0.

Lemma 3.4. Let P,Z, v, S, w be as in Lemma 3.2. Then:
(i) the map Q = P2(w)P : Z2(w) → Z2(w) is a normal faithful unital

contractive projection with range P2(w)P (Z);
(ii) the map P2(w) is a linear surjective isometry of P (Z)2(v) onto

P2(w)P (Z).

Proof. (i) By Lemma 3.2, Q2 = P2(w)PP2(w)P = P2P = Q and Q(Z2(w))
= P2(w)PP2(w)(Z) = P2(w)P (Z). To show that Q is unital, note first that by
Lemma 2.7 of [11], vi = wi + P0(wi)vi so that wi ⊥ (vi − wi). By taking sums
and limits, one obtains (v − w) ⊥ w and ‖v − w‖ 6 1. Indeed, it is easy to see
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that for any finite set F of indices,
∑
F

wi is the support tripotent of the normal

functional
∑
F

fi. Hence,
∑
F

wi ⊥
∑
F

(vi − wi) so that
∑
F

(vi − wi) ∈ Z0(
∑
F

wi) and
∥∥∥ ∑

F

wi±
∑
F

(vi−wi)
∥∥∥ = 1. By passing to the limit and noting that each fi has the

value 1 on w± (v−w), we have ‖w± (v−w)‖ = 1, and since P2(w) is contractive,
‖w ± P2(w)(v − w)‖ 6 1, and since w is an extreme point of the unit ball of
Z2(w), P2(w)(v − w) = 0, that is, P2(w)v = w. Now v = w + P1(w)v + P0(w)v,
so by Lemma 1.6 of [15], P1(w)v = 0 and thus v = w + P0(w)v and v = Pv =
Pw + PP0(w)x so that Qw = P2(w)Pw = P2(w)(v − PP0(w)v) = P2(w)v = w
and Q is unital.

Finally, we show that Q is faithful. Suppose that b ∈ Z, P2(w)b > 0,
and P2(w)Pb = 0. We shall show that P2(w)b = 0. In the first place, since
P2(wi) is a positive operator on the JB∗-algebra P2(w)Z (3.3.6, [17]), P2(wi)b =
P2(wi)P2(w)b > 0 for every i ∈ I. Since P1(wk)P1(wl)b ⊥ wi, we have

0 = 〈P2(w)Pb, fi〉 = 〈PP2(w)Pb, fi〉 = 〈PP2(w)b, fi〉 = 〈P2(w)b, fi〉
=

∑

j

〈P2(wj)b, fi〉+
∑

k 6=l

〈P1(wk)P1(wl)b, fi〉 = 〈P2(wi)b, fi〉.

Hence P2(wi)b = 0 for all i. Therefore P2(w)b =
∑
i

P2(wi)b+
∑
j 6=k

P1(wj)P1(wk)b =
∑
j 6=k

P1(wj)P1(wk)b = 0 by Lemma 3.3, since each P1(wk)P1(wl)b must be positive.

This proves that Q is faithful, and hence (i) holds.
(ii) Let B denote the JBW∗-algebra P (Z)2(v). Then, by definition, B =

{{v, {vxv}P (Z), v}P (Z) : x ∈ P (Z)}. But

{v, {vxv}P (Z), v}P (Z) = P{v, P{vxv}, v} = P{v, {vxv}, v} = PQ(v)2x

so that B = PQ(v)2P (Z) and

P2(w)B = P2(w)PQ(v)2P (Z) = P2(w)PP2(w)Q(v)2P (Z) = P2(w)P (Z).

Now let Fv be the normal state space of B, that is

Fv = {` ∈ B∗ : ‖`‖ = 1 = `(v)}.
Recall from the first part of the proof that v = Pw + PP0(w)v. Also, P (w) =
P{v, Pw, v} = P (w)] implies that for ` ∈ Fv, `(P (w)) is real and 1 = `(v) =
`(P (w)) + `(PP0(w)v). Therefore `(P (w)) > 0, so that in fact 0 6 P (w) 6 v,
that is, v − P (w) ∈ B+. Now for each i, we have fi(v − Pw) = fi(PP0(w)v) =
fi(P0(w)v) = fi(P2(wi)P0(w)v) = 0. It follows, using Lemma 3.3 as above, that
v − Pw = 0.

Now, for arbitrary ` ∈ Fv, as Pw = v, we have `(w) = `(P (w)) = `(v) = 1
and by Lemma 3.1 of [11],

(3.2) ` = P2(w)∗`.

By linearity and the Jordan decomposition for self-adjoint functionals, (3.2) ex-
tends to all ` ∈ B∗. Hence for b ∈ B, we have ‖b‖ = sup{|`(b)| : ‖`‖ = 1, ` ∈
B∗} = sup{|`(P2(w)b)| : ‖`‖ = 1, ` ∈ B∗} 6 ‖P2(w)b‖. This proves (ii).
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Proposition 3.5. Let P be a normal contractive projection on a von Neu-
mann algebra M of type I. Then P (M) is a JW∗-triple of type I.

Proof. Let v be any nonzero tripotent of P (M) and choose w ∈ M as in
Lemma 3.2. By Proposition 3.1,M2(w) is a JW∗-algebra of type I. By Lemma 3.4 (i)
and Corollary 1.5 of [10], P2(w)P (M) = Q(M2(w)) is a JW∗-subalgebra of M2(w),
where Q = P2(w)P . By Proposition 2.8, Q(M2(w)) is a JBW∗-algebra of type
I, and by Lemma 3.4(ii), P (M)2(v) (the Peirce 2-space of the tripotent v of the
JW∗-triple P (M)) is also of type I since a unital surjective linear isometry is a
Jordan *-isomorphism. One can now choose v to be a complete tripotent of P (Z)
to obtain from 4.14 of [19] that P (M) is a JW∗-triple of type I.

4. CONTRACTIVE PROJECTIONS ON JW∗-TRIPLES

Proposition 4.1. Let Z be a JBW∗-triple of type I and let v be a tripotent
in Z. Then P2(v)Z is a JBW∗-algebra of type I.

Proof. By Horn’s structure theorem, we may assume that Z = L∞(Ω, C)
where C is a Cartan factor. If C is of types 1, 2, or 3, then there is a normal
contractive projection Q on L∞(Ω, C̃), where C̃ is the von Neumann envelope
of C with range Z. Since P2(v)Q is a normal contractive projection from the
type I von Neumann algebra L∞(Ω, C̃) onto P2(v)Z, the latter is of type I by
Proposition 3.5. If C is of type 4, then P2(v)Z = L∞(Ω2, C) ⊕ L∞(Ω1), where
Ωk = {ω ∈ Ω : rank of v(ω) is k}, k = 1, 2. Indeed, if f ∈ Z and g = P2(v)f ,
then g = 0 on Ω0, g(ω) = 〈f(ω), v̂(ω)〉v(ω) for ω ∈ Ω1 and g = f on Ω2. Here we
use the notation v̂ for the normal functional with support tripotent v. It follows
that the map g = P2(v)f ∈ P2(v)Z 7→ (g2, g1) ∈ L∞(Ω2, C) ⊕ L∞(Ω1), where
g1(ω) = 〈f(ω), v̂(ω)〉 for ω ∈ Ω1 and g2 = g|Ω2, is a surjective linear isometry.

If C is of types 5 or 6, then it is finite-dimensional and L∞(Ω, C) is of type
Ifin. By Lemma 1.1, the subtriple P2(v)(Z) is of the same type.

Theorem 4.2. Let P be a normal contractive projection on a JW∗-triple Z
of type I. Then P (Z) is of type I.

Proof. By 4.14 of [19], we need only to show that P (Z)2(v) is of type I for a
complete tripotent v ∈ P (Z). Choose w ∈ Z as in Lemma 3.2. By Proposition 4.1,
P2(w)Z is a JW∗-algebra of type I. One can now argue exactly as in the proof
of Proposition 3.5, using Lemma 3.4, to show that P2(w)P is a faithful, normal,
unital contractive projection of P2(w)Z onto P2(w)P (Z) (which is again a subal-
gebra by Corollary 1.5 of [10]) and that P2(w) is a unital isometry of P (Z)2(v)
onto P2(w)P (Z). As in the proof of Proposition 3.5 and using Proposition 2.8,
P2(w)P (Z) is of type I and so is P (Z)2(v).
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Proposition 4.3. Let Z be a semifinite JW∗-triple and let v be a partial
isometry in Z. Then Z2(v) is a semifinite JW∗-algebra.

Proof. We prove this first in the case that Z is a von Neumann algebra
M . If M2(v) had a type III part, we could follow P2(v) by the projection of
M2(v) onto that type III part and obtain a Peirce 2-space of M of type III. So
we may assume that M2(v) is of type III. Let p be a finite nonzero projection
in M dominated by v∗v. Then vp is a nonzero projection in M2(v) dominated
by v (cf. Proposition 3.1). We shall show that M2(vp) is finite by showing that
its involution is strongly continuous on bounded spheres. Recall that M2(vp) =
{x = vp(vp)∗a(vp)∗vp = vpv∗ap : a ∈ M} is a von Neumann algebra under
x · y = x(vp)∗y and x] = vpx∗vp.

Let xα be a bounded net in M2(vp). Then

xα
s→ 0 in M2(vp) ⇒ vpx∗αvp(vp)

∗xα
w→ 0 ⇒ vpx∗αxα

w→ 0

⇒ px∗αxα
w→ 0 ⇒ px∗αxαp

w→ 0 ⇒ xαp
s→ 0 ⇒ (by pp. 97–98 of [28])

x∗α = px∗α
s→ 0 ⇒ xαx

∗
α

w→ 0 ⇒ xαx
∗
αvp

w→ 0 ⇒ xα(vp)∗vpx∗αvp
w→ 0

⇒ xα · x]
α

w→ 0 ⇒ x]
α

s→ 0 in M2(vp).

Thus vp is a finite projection which is a contradiction.
To prove the general case, write Z = ZI⊕ZII where ZI is of type I and ZII is of

type II. Since P2(v)Z = P2(v1)ZI⊕P2(v2)ZII for suitable partial isometries v1 ∈ ZI

and v2 ∈ ZII, and we already know that P2(v1)ZI is of type I, we may assume by
[20] that Z is triple isomorphic to pM⊕H(N,α), whereM andN are von Neumann
algebras of type II. Accordingly, v2 = v′2 + v′′2 so that P2(v2)ZII = P2(v′2)(pM) ⊕
P2(v′′2 )(H(N,α)) = M2(v′2)⊕H(N2(v′′2 ), α) and Q(N2(v′′2 )) = H(N2(v′′2 ), α) where
Q is the projection Q(x) = (x+α(x))/2 for x ∈ N . By the first part of the proof,
both M2(v′2) and N2(v′′2 ) are semifinite. Then by Proposition 2.7, P2(v′′2 )H(N,α)
is semifinite and the result follows.

Theorem 4.4. Let P be a normal contractive projection on a semifinite
JW∗-triple Z. Then P (Z) is a semifinite JW∗-triple.

Proof. By passing to the type III part of P (Z), assuming it is nonzero for
contradiction, and using [20], we may assume that P (Z) = pM ⊕H(N,α) where
M and N are von Neumann algebras of type III. As in the proof of Proposi-
tion 3.5, using Lemma 3.4, Proposition 4.3, and Proposition 2.7, one shows that
P (Z)2(v) is semifinite for any tripotent v of P (Z). Choosing v = 0⊕ 1N leads to
P (Z)2(v) = H(N,α), a contradiction unless H(N,α) = 0. Choosing v = p ⊕ 0
leads to P (Z)2(v) = pMp, again a contradiction unless pMp = 0, which implies
that p = 0, another contradiction.
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5. CONTRACTIVE PROJECTIONS ON JBW∗-TRIPLES

In this section we extend Theorems 4.2 and 4.4 to arbitrary JBW∗-triples and make
some remarks on the atomic case. A close examination of the proof of Theorem 4.2
reveals that it carries over to the case of JBW∗-triples if we can show that the
range of a faithful normal positive unital projection on a type I JBW∗-algebra is
olso type I. This is proved in the following proposition, of which (i) was proved in
[10] for JC-algebras.

Proposition 5.1. Let P be a faithful, positive, unital, normal projection on
a JBW∗-algebra A. Then:

(i) P (A) is a ∗-subalgebra of A;
(ii) if A is of type I, then P (A) is of type I.

Proof. Using the Kadison-Schwarz inequality, extended to JB-algebras in
Theorem 1.2 of [26], if x ∈ P (A), then P (x2) − x2 > P (x)2 − x2 = 0 (cf.
Lemma 1.2 (3), [10]). Since P is faithful, and P (P (x2) − x2) = 0, we have
P (x2)− x2 = 0 so that x2 ∈ P (A). Since P is self-adjoint, this proves (i).

To prove (ii), let A be of type I, and suppose for contradiction, that P (A)
has type II or III summands. As before, by following P by the projection onto
these summands, we may assume that P (A) is of type II or III. In each of these
cases, P (A) remains a subalgebra of A. By the halving lemma (5.2.15, [17]) there
exist four orthogonal projections with sum the identity of P (A), with each pair
exchanged by a symmetry (see p. 122, [17]). By the argument in 5.2.8 of [17], the
elements of each such pair are strongly connected. Since P is unital and P (A) is a
subalgebra of A, the above also holds in A. By the coordinatization theorem (2.8.9,
[17]) A is a Jordan matrix algebra, that is, A is isomorphic to H4(R) for some *-
algebra R. By 2.7.6 of [17], R is associative and therefore A is a JW∗-algebra. But
this leads to a contradiction because we have already shown in Proposition 2.8
that P (A) is of type I in this case.

Now, proceeding exactly as in the proof of Theorem 4.2 we have the result
for JBW∗-triples.

Theorem 5.2. Let P be a normal contractive projection on a JBW∗-triple
Z of type I. Then P (Z) is of type I.

As noted before, a type II JBW∗-triple is a JW∗-triple. It follows from
Proposition 4.1 and Theorem 4.4 that if Z is a semifinite JBW∗-triple, then P2(e)Z
is also a semifinite JBW∗-algebra. Using this fact, now there is no difficulty of
extending the proof of Theorem 4.4 to the case of JBW∗-triples.

Theorem 5.3. Let P be a normal contractive projection on a semifinite
JBW∗-triple Z. Then P (Z) is a semifinite JBW∗-triple.

Tomiyama ([34]) has proved that a von Neumann algebra which is the range
of a normal contractive projection on an atomic von Neumann algebra is itself
atomic. It is also known (see Exercise 8, p. 334, [33]) that a von Neumann algebra
M ⊂ B(H) is atomic if and only if there is a faithful family of normal conditional
expectations of B(H) onto M . We end with a very simple proof of a result which
extends Tomiyama’s theorem to JBW∗-triples. The proof follows from a result in
[7] which states that a JBW∗-triple is atomic if, and only if, its predual has the
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Radon–Nikodym property. It is clearly false without the normality assumption on
P . We first state a lemma of independent interest.

Lemma 5.4. Let Z be a type Ifin JBW∗-triple and let P : Z → Z be a normal
contractive projection. Then P (Z) is a type Ifin JBW∗-triple.

Proof. We note that P (Z) is norm-closed. By weak* continuity of P and the
Krein–Smulyan Theorem, P (Z) is also weak* closed. Also, P induces a contractive
projection P∗ : f ∈ Z∗ 7→ f ◦ P ∈ Z∗ on the predual Z∗. By [9], Z∗ has the
Dunford–Pettis property. The predual of P (Z) identifies with Z∗/P−1

∗ (0) which is
linearly isometric to the complemented subspace P∗(Z∗) of Z∗, and therefore has
the Dunford–Pettis property. Hence by [9] again, P (Z) is of type Ifin.

Proposition 5.5. Let Z be an atomic JBW∗-triple and let P : Z → Z be a
normal contractive projection. Then the range P (Z) is (linearly isometric to) an
atomic JBW∗-triple.

Proof. As in the proof of Lemma 5.4, the predual of P (Z) is linearly isometric
to a complemented subspace of the predual Z∗ which has the Radon-Nikodym
property. So P (Z) is atomic by [7].
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