ON THE POLAR DECOMPOSITION

 OF THE ALUTHGE TRANSFORMATION AND RELATED RESULTSMASATOSHI ITO, TAKEAKI YAMAZAKI and MASAHIRO YANAGIDA

Dedicated to Professor Hisaharu Umegaki on his seventy-seventh birthday

Communicated by the Editors

Abstract

Let $T=U|T|$ be the polar decomposition of a bounded linear operator T on a Hilbert space. The transformation $\widetilde{T}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$ is called the Aluthge transformation and \widetilde{T}_{n} means the n-th Aluthge transformation. In this paper, firstly, we show that $\widetilde{T}=V U|\widetilde{T}|$ is the polar decomposition of \widetilde{T}, where $|T|^{\frac{1}{2}}\left|T^{*}\right|^{\frac{1}{2}}=V|T|^{\frac{1}{2}}\left|T^{*}\right|^{\frac{1}{2}}$ is the polar decomposition. Secondly, we show that $\widetilde{T}=U|\widetilde{T}|$ if and only if T is binormal, i.e., $\left[|T|,\left|T^{*}\right|\right]=0$, where $[A, B]=A B-B A$ for any operators A and B. Lastly, we show that \widetilde{T}_{n} is binormal for all non-negative integer n if and only if T is centered, i.e., $\left\{T^{n}\left(T^{n}\right)^{*},\left(T^{m}\right)^{*} T^{m}: n\right.$ and m are natural numbers $\}$ is commutative.

Keywords: Aluthge transformation, polar decomposition, binormal opera- tors, centered operators, weakly centered operators.

MSC (2000): 47A05, 47B20.

1. INTRODUCTION

In what follows, a capital letter means a bounded linear operator on a complex Hilbert space H. An operator T is said to be positive (denoted by $T \geqslant 0$) if $(T x, x) \geqslant 0$ for all $x \in H$. Let $T=U|T|$ be the polar decomposition of T. In [1], Aluthge defined a transformation $\widetilde{T}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$ which was later called the Aluthge transformation. Aluthge transformation is very useful, and many authors have obtained results by using it. Mainly, these results were on nonnormal operators, for example [2], [8] and [12]. Moreover, for each non-negative
integer n, Jung, Ko and Pearcy defined the n-th Aluthge transformation \widetilde{T}_{n} in [8] as

$$
\widetilde{T}_{n}=\left(\widetilde{\widetilde{T}_{n-1}}\right) \quad \text { and } \quad \widetilde{T}_{0}=T
$$

One of the authors showed some properties of the n-th Aluthge transformation on operator norms as parallel results to those of powers of operators in [13], [14], [15] and [16]. On the other hand, the polar decomposition of Aluthge transformation was discussed in [1], but the complete solution of this problem has not been obtained. In Section 2, we will obtain the polar decomposition of the Aluthge transformation.

An operator T is said to be binormal if $\left[|T|,\left|T^{*}\right|\right]=0$, where $|T|=\left(T^{*} T\right)^{\frac{1}{2}}$ and $[A, B]=A B-B A$ for operators A and B. Binormality of operators was defined by Campbell in [3], and he showed some properties of binormal operators in [4]. An operator T is said to be centered if the following sequence

$$
\ldots, T^{3}\left(T^{3}\right)^{*}, T^{2}\left(T^{2}\right)^{*}, T T^{*}, T^{*} T,\left(T^{2}\right)^{*} T^{2},\left(T^{3}\right)^{*} T^{3}, \ldots
$$

is commutative, which is defined in [10]. Morrel and Muhly showed some properties of centered operators, and obtained a nice structure of centered operators. An operator T is said to be quasinormal if $T^{*} T T=T T^{*} T$. Relations among these operator classes are easily obtained as follows:

$$
\text { quasinormal } \subset \text { centered } \subset \text { binormal. }
$$

We remark that binormal operators are called weakly centered operators in [11].
In Section 3, we obtain a characterization of binormal operators via Aluthge transformation. Most results on \widetilde{T} show that it generally has better properties than T. However, we have an example of a binormal operator T such that \widetilde{T} is not binormal. In this section, we also obtain an equivalent condition to the binormality of $\widetilde{T_{k}}$ for all $k=0,1,2, \ldots, n$.

In Section 4, we will show a characterization of centered operators.

2. POLAR DECOMPOSITION OF THE ALUTHGE TRANSFORMATION

In this section we show the polar decomposition of the Aluthge transformation as follows:

Theorem 2.1. Let $T=U|T|$ and

$$
\begin{equation*}
\left.|T|^{\frac{1}{2}}\left|T^{*}\right|^{\frac{1}{2}}=\left.V| | T\right|^{\frac{1}{2}}\left|T^{*}\right|^{\frac{1}{2}} \right\rvert\, \tag{2.1}
\end{equation*}
$$

be the polar decompositions. Then $\widetilde{T}=V U|\widetilde{T}|$ is also the polar decomposition.
By Theorem 2.1, we can obtain the polar decomposition of the n-th Aluthge transformation for all natural number n, because the partial isometry which appears in the polar decomposition of \widetilde{T} is only the product of two partial isometries.

Proof of Theorem 2.1. (i) Proof of $\widetilde{T}=V U|\widetilde{T}|$.

$$
\begin{aligned}
V U|\widetilde{T}| & =V U\left(|T|^{\frac{1}{2}} U^{*}|T| U|T|^{\frac{1}{2}}\right)^{\frac{1}{2}} U^{*} U=V\left(\left|T^{*}\right|^{\frac{1}{2}}|T|\left|T^{*}\right|^{\frac{1}{2}}\right)^{\frac{1}{2}} U \\
& =\left.\left.V| | T\right|^{\frac{1}{2}}\left|T^{*}\right|^{\frac{1}{2}}\left|U=|T|^{\frac{1}{2}}\right| T^{*}\right|^{\frac{1}{2}} U \quad \text { by }(2.1) \\
& =|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}=\widetilde{T}
\end{aligned}
$$

(ii) We will show $N(\widetilde{T})=N(V U)$.

$$
\begin{aligned}
V U x=0 & \Leftrightarrow|T|^{\frac{1}{2}}\left|T^{*}\right|^{\frac{1}{2}} U x=0 \quad \text { by } N(V)=N\left(|T|^{\frac{1}{2}}\left|T^{*}\right|^{\frac{1}{2}}\right) \\
& \Leftrightarrow|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}} x=0 \\
& \Leftrightarrow \widetilde{T} x=0
\end{aligned}
$$

that is, $N(V U)=N(\widetilde{T})$.
(iii) By (ii), we have $N(V U)^{\perp}=N(|\widetilde{T}|)^{\perp}=\overline{R(|\widetilde{T}|)}$. Then for any $x \in$ $N(V U)^{\perp}$, there exists a sequence $\left\{y_{n}\right\}_{n=1}^{\infty} \subset H$ such that $x=\lim _{n \rightarrow \infty}|\widetilde{T}| y_{n}$. Then we obtain

$$
\begin{aligned}
\|V U x\| & =\left\|V U \lim _{n \rightarrow \infty}|\widetilde{T}| y_{n}\right\|=\left\|\lim _{n \rightarrow \infty} V U|\widetilde{T}| y_{n}\right\|=\left\|\lim _{n \rightarrow \infty} \widetilde{T} y_{n}\right\| \quad \text { by }(\mathrm{i}) \\
& =\lim _{n \rightarrow \infty}\left\|\widetilde{T} y_{n}\right\|=\lim _{n \rightarrow \infty}\left\||\widetilde{T}| y_{n}\right\|=\left\|\lim _{n \rightarrow \infty}|\widetilde{T}| y_{n}\right\|=\|x\|
\end{aligned}
$$

that is, $V U$ is a partial isometry.
Therefore the proof is complete by (i), (ii) and (iii).

3. APPLICATIONS TO BINORMAL OPERATORS

In this section we first show a characterization of binormal operators via Aluthge transformation.

Theorem 3.1. Let $T=U|T|$ be the polar decomposition. Then

$$
\widetilde{T}=U|\widetilde{T}| \Longleftrightarrow T \text { is binormal. }
$$

Remark 3.2. Usually, $\widetilde{T}=U|\widetilde{T}|$ in Theorem 3.1 is not the polar decomposition since $N(U)=N(\widetilde{T})$ does not hold (see Proposition 3.9).

Proof of Theorem 3.1. Proof of (\Rightarrow). By the assumption $\widetilde{T}=U|\widetilde{T}|$, we have

$$
|T|^{\frac{1}{2}}\left|T^{*}\right|^{\frac{1}{2}}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}} U^{*}=\widetilde{T} U^{*}=U|\widetilde{T}| U^{*} \geqslant 0
$$

then $|T|^{\frac{1}{2}}\left|T^{*}\right|^{\frac{1}{2}}=\left|T^{*}\right|^{\frac{1}{2}}|T|^{\frac{1}{2}}$, that is, T is binormal.
Proof of (\Leftarrow). If T is binormal, then we have $\left.0 \leqslant|T|^{\frac{1}{2}}\left|T^{*}\right|^{\frac{1}{2}}=\left.\left||T|^{\frac{1}{2}}\right| T^{*}\right|^{\frac{1}{2}} \right\rvert\,$. Then

$$
\begin{aligned}
\widetilde{T} & \left.=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}=|T|^{\frac{1}{2}}\left|T^{*}\right|^{\frac{1}{2}} U=\left.\left||T|^{\frac{1}{2}}\right| T^{*}\right|^{\frac{1}{2}} \right\rvert\, U \\
& =U U^{*}\left(\left|T^{*}\right|^{\frac{1}{2}}|T|\left|T^{*}\right|^{\frac{1}{2}}\right)^{\frac{1}{2}} U=U\left(|T|^{\frac{1}{2}} U^{*}|T| U|T|^{\frac{1}{2}}\right)^{\frac{1}{2}}=U|\widetilde{T}| .
\end{aligned}
$$

Hence the proof is complete.

For each $p>0$, an operator T is said to be p-hyponormal if $\left(T^{*} T\right)^{p} \geqslant\left(T T^{*}\right)^{p}$. In particular, 1 -hyponormality is called hyponormality and $\frac{1}{2}$-hyponormality is called semi-hyponormality. An operator T is said to be ∞-hyponormal if T is p-hyponormal for all $p>0$ which is defined in [9]. An operator T is said to be paranormal if $\left\|T^{2} x\right\| \geqslant\|T x\|^{2}$ for all unit vector $x \in H$. It is well known that the following relations among these classes of operators hold for $0<q<p$:
∞-hyponormal $\subset p$-hyponormal $\subset q$-hyponormal \subset paranormal.
As an application of Theorem 3.1, we have a result on hyponormality of paranormal operators as follows:

Corollary 3.3. Let $T=U|T|$ be paranormal and $\widetilde{T}=U|\widetilde{T}|$. Then T is binormal and hyponormal.

We note that T is ∞-hyponormal in Corollary 3.3 since binormality and hyponormality ensure ∞-hyponormality.

To prove Corollary 3.3, we need the following result:
THEOREM A. ([4]) Let T be a binormal operator. If T is also paranormal, then T is hyponormal.

Proof of Corollary 3.3. By Theorem 3.1 and $\widetilde{T}=U|\widetilde{T}|, T$ is binormal. Hence T is binormal and paranormal, then T is hyponormal by Theorem A.

Campbell obtained a binormal operator T such that T^{2} is not binormal in [4], and Furuta obtained an equivalent condition for binormality of T^{2} when T is binormal as follows:

Theorem B. ([6]) Let $T=U|T|$ be the polar decomposition of T. If T is binormal, then T^{2} is binormal if and only if the following four properties hold:
(i) $\left[\left(U^{2}\right)^{*} U^{2}, U^{2}\left(U^{2}\right)^{*}\right]=0$;
(ii) $\left[U^{2}\left(U^{2}\right)^{*}, U^{*}|T|\left|T^{*}\right| U\right]=0$;
(iii) $\left[\left(U^{2}\right)^{*} U^{2}, U|T|\left|T^{*}\right| U^{*}\right]=0$;
(iv) $\left[U^{*}|T|\left|T^{*}\right| U, U|T|\left|T^{*}\right| U^{*}\right]=0$.

On the other hand, as a nice application of Furuta inequality [7], Aluthge showed that if T is p-hyponormal for $0<p \leqslant \frac{1}{2}$, then \widetilde{T} is $\left(p+\frac{1}{2}\right)$-hyponormal in [1]. This result states that \widetilde{T} has a better property than T. Hence one might expect that \widetilde{T} is also binormal if T is binormal. But there is a counterexample for this expectation as follows:

Example 3.4. There exists a binormal operator T such that \widetilde{T} is not binormal.

Let $T=\left(\begin{array}{ccc}0 & 0 & 5 \\ \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & \frac{-1}{2} & 0\end{array}\right)$ and $T=U|T|$ be the polar decomposition. Then T is binormal since

$$
T^{*} T \cdot T T^{*}=T T^{*} \cdot T^{*} T=\left(\begin{array}{ccc}
25 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 25
\end{array}\right)
$$

and also $|T|=\left(T^{*} T\right)^{\frac{1}{2}}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5\end{array}\right)$, so that $U=T|T|^{-1}=\left(\begin{array}{ccc}0 & 0 & 1 \\ \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & \frac{-1}{2} & 0\end{array}\right)$.
Therefore $\widetilde{T}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}=\left(\begin{array}{ccc}0 & 0 & \sqrt{5} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{15}}{2} & \frac{-\sqrt{5}}{2} & 0\end{array}\right)$. We get that

$$
(\widetilde{T})^{*} \widetilde{T} \cdot \widetilde{T}(\widetilde{T})^{*}=\left(\begin{array}{ccc}
20 & -\sqrt{3} & 0 \\
-5 \sqrt{3} & 2 & 0 \\
0 & 0 & 25
\end{array}\right)
$$

and

$$
\widetilde{T}(\widetilde{T})^{*} \cdot(\widetilde{T})^{*} \widetilde{T}=\left(\begin{array}{ccc}
20 & -5 \sqrt{3} & 0 \\
-\sqrt{3} & 2 & 0 \\
0 & 0 & 25
\end{array}\right)
$$

Hence \widetilde{T} is not binormal.
Here we shall show an equivalent condition for binormality of \widetilde{T} as follows:
Theorem 3.5. Let $T=U|T|$ be the polar decomposition of a binormal operator T. Then the following assertions are equivalent:
(i) \widetilde{T} is binormal;
(ii) $\left[U^{2}|T|\left(U^{2}\right)^{*},|T|\right]=0$.

As a preparation of this discussion, we shall state the following lemma which is a modification of Theorem 2 of [5].

Lemma C ([5]). Let $A, B \geqslant 0$ and $[A, B]=0$. Then

$$
\left[P_{N(A)^{\perp}}, P_{N(B)^{\perp}}\right]=\left[P_{N(A)^{\perp}}, B\right]=\left[A, P_{N(B)^{\perp}}\right]=0
$$

where $P_{\mathcal{M}}$ is the projection onto a closed subspace \mathcal{M}.
We remark that if T is binormal, then the following assertion holds by Lemma C.

$$
\begin{equation*}
\left[|T|,\left|T^{*}\right|\right]=\left[U^{*} U, U|T| U^{*}\right]=\left[|T|, U U^{*}\right]=\left[U^{*} U, U U^{*}\right]=0 \tag{3.1}
\end{equation*}
$$

Proof of Theorem 3.5. First, we note that T is binormal if and only if

$$
\begin{equation*}
\left[U|T| U^{*},|T|\right]=0 \tag{3.2}
\end{equation*}
$$

Then we obtain

$$
\begin{equation*}
\left[U|T| U^{*}, U^{2}|T|\left(U^{2}\right)^{*}\right]=0 \tag{3.3}
\end{equation*}
$$

since

$$
\begin{aligned}
U^{2}|T|\left(U^{2}\right)^{*} \cdot U|T| U^{*} & =U \cdot U|T| U^{*} \cdot|T| \cdot U^{*} \\
& =U \cdot|T| \cdot U|T| U^{*} \cdot U^{*} \quad \text { by }(3.2) \\
& =U|T| U^{*} \cdot U^{2}|T|\left(U^{2}\right)^{*}
\end{aligned}
$$

Therefore we have

$$
\begin{align*}
|\widetilde{T}|^{2}\left|\widetilde{T}^{*}\right|^{2} & =|T|^{\frac{1}{2}} U^{*}|T| U|T|^{\frac{1}{2}} \cdot|T|^{\frac{1}{2}} U|T| U^{*}|T|^{\frac{1}{2}} \\
& =U^{*} \cdot U|T|^{\frac{1}{2}} U^{*} \cdot|T| \cdot U|T| U^{*} \cdot U^{2}|T|\left(U^{2}\right)^{*} \cdot U|T|^{\frac{1}{2}} U^{*} \cdot U \tag{3.4}\\
& =U^{*}\left\{|T| \cdot U^{2}|T|\left(U^{2}\right)^{*}\right\} U|T|^{2} U^{*} U \quad \text { by (3.2) and (3.3) } \\
& =U^{*}\left\{|T| \cdot U^{2}|T|\left(U^{2}\right)^{*}\right\} U|T|^{2}
\end{align*}
$$

and

$$
\begin{align*}
\left|\widetilde{T}^{*}\right|^{2}|\widetilde{T}|^{2} & =|T|^{\frac{1}{2}} U|T| U^{*}|T|^{\frac{1}{2}} \cdot|T|^{\frac{1}{2}} U^{*}|T| U|T|^{\frac{1}{2}} \\
& =U^{*} \cdot U|T|^{\frac{1}{2}} U^{*} \cdot U^{2}|T|\left(U^{2}\right)^{*} \cdot U|T| U^{*} \cdot|T| \cdot U|T|^{\frac{1}{2}} U^{*} \cdot U \tag{3.5}\\
& =U^{*}\left\{U^{2}|T|\left(U^{2}\right)^{*} \cdot|T|\right\} U|T|^{2} U^{*} U \quad \text { by (3.2) and (3.3) } \\
& =U^{*}\left\{U^{2}|T|\left(U^{2}\right)^{*} \cdot|T|\right\} U|T|^{2} .
\end{align*}
$$

Proof of (ii) \Rightarrow (i). By (3.4) and (3.5), we have (i).
Proof of (i) \Rightarrow (ii). Since \widetilde{T} is binormal, we have

$$
\begin{aligned}
\left\{U^{2}|T|\left(U^{2}\right)^{*} \cdot|T|\right\} U|T|^{2} & =U U^{*}\left\{U^{2}|T|\left(U^{2}\right)^{*} \cdot|T|\right\} U|T|^{2} \\
& =U U^{*}\left\{|T| \cdot U^{2}|T|\left(U^{2}\right)^{*}\right\} U|T|^{2} \quad \text { by }(3.4) \text { and (3.5) } \\
& =\left\{|T| U U^{*} \cdot U^{2}|T|\left(U^{2}\right)^{*}\right\} U|T|^{2} \quad \text { by (3.1) } \\
& =\left\{|T| \cdot U^{2}|T|\left(U^{2}\right)^{*}\right\} U|T|^{2},
\end{aligned}
$$

that is, $U^{2}|T|\left(U^{2}\right)^{*} \cdot|T|=|T| \cdot U^{2}|T|\left(U^{2}\right)^{*}$ on

$$
\overline{R\left(U|T|^{2}\right)}=N\left(|T|^{2} U^{*}\right)^{\perp}=N\left(U U^{*}\right)^{\perp}=R\left(U U^{*}\right)
$$

In other words,

$$
\begin{equation*}
U^{2}|T|\left(U^{2}\right)^{*} \cdot|T| \cdot U U^{*}=|T| \cdot U^{2}|T|\left(U^{2}\right)^{*} \cdot U U^{*} \tag{3.6}
\end{equation*}
$$

holds. Hence, we have

$$
\begin{aligned}
U^{2}|T|\left(U^{2}\right)^{*} \cdot|T| & =U^{2}|T|\left(U^{2}\right)^{*} \cdot U U^{*} \cdot|T| \\
& =U^{2}|T|\left(U^{2}\right)^{*} \cdot|T| \cdot U U^{*} \quad \text { by }(3.1) \\
& =|T| \cdot U^{2}|T|\left(U^{2}\right)^{*} \cdot U U^{*} \quad \text { by }(3.6) \\
& =|T| \cdot U^{2}|T|\left(U^{2}\right)^{*} .
\end{aligned}
$$

Therefore the proof is complete.
Next we show the following result on binormality of \widetilde{T}_{n} for a non-negative integer n.

Theorem 3.6. Let $T=U|T|$ be the polar decomposition. Then for each non-negative integer n, the following assertions are equivalent:
(i) \widetilde{T}_{k} is binormal for all $k=0,1,2, \ldots, n$;
(ii) $\left[U^{k}|T|\left(U^{k}\right)^{*},|T|\right]=0$ for all $k=1,2, \ldots, n+1$.

We prepare the following lemmas in order to prove Theorem 3.6.

Lemma 3.7. Let T be the polar decomposition. For each natural number n, if

$$
\left[U^{k}|T|\left(U^{k}\right)^{*},|T|\right]=0 \quad \text { for all } k=1,2, \ldots, n
$$

then the following properties hold:
(i) $U^{k}|T|^{\alpha}\left(U^{k}\right)^{*}=\left\{U^{k}|T|\left(U^{k}\right)^{*}\right\}^{\alpha}$ for any $\alpha>0$ and for all $k=1,2, \ldots$, $\ldots, n+1 ;$
(ii) $\left[U^{k}|T|^{\alpha}\left(U^{k}\right)^{*},|T|\right]=\left[U^{k}|T|^{\alpha}\left(U^{k}\right)^{*}, U^{*} U\right]=0$ for any $\alpha>0$ and all $k=1,2, \ldots, n$;
(iii) $U^{s}|T|^{\alpha}\left(U^{s}\right)^{*} U^{t}=U^{s}|T|^{\alpha}\left(U^{s-t}\right)^{*}$ and

$$
\left(U^{t}\right)^{*} U^{s}|T|^{\alpha}\left(U^{s}\right)^{*}=U^{s-t}|T|^{\alpha}\left(U^{s}\right)^{*}
$$

for any $\alpha>0$ and all natural numbers s and t such that $1 \leqslant t \leqslant s \leqslant n+1$;
(iv) $\left[U^{s}|T|^{\alpha}\left(U^{s}\right)^{*}, U^{t}|T|^{\alpha}\left(U^{t}\right)^{*}\right]=0$ for any $\alpha>0$ and all natural numbers s and t such that $s, t \in[1, n+1]$;
(v) $\left[\left(U^{k}\right)^{*}\left|T^{*}\right|^{\alpha} U^{k},\left|T^{*}\right|\right]=\left[\left(U^{k-1}\right)^{*}|T|^{\alpha} U^{k-1}, U|T| U^{*}\right]=0$ for any $\alpha>0$ and all $k=1,2, \ldots, n$;
(vi) $\left(U^{s}\right)^{*}|T|^{\alpha} U^{s}\left(U^{t}\right)^{*}=\left(U^{s}\right)^{*}|T|^{\alpha} U^{s-t}$ and

$$
U^{t}\left(U^{s}\right)^{*}|T|^{\alpha} U^{s}=\left(U^{s-t}\right)^{*}|T|^{\alpha} U^{s}
$$

for any $\alpha>0$ and all natural numbers s and t such that $1 \leqslant t \leqslant s \leqslant n$;
(vii) $U^{n+1}|\widetilde{T}|\left(U^{n+1}\right)^{*}=U^{n+1}|T|^{\frac{1}{2}}\left(U^{n+1}\right)^{*} \cdot U^{n}|T|^{\frac{1}{2}}\left(U^{n}\right)^{*}$.

Proof. (i) We have only to prove the following: If $\left[U^{k}|T|\left(U^{k}\right)^{*},|T|\right]=0$ for all $k=1,2, \ldots, n$, then $U^{n+1}|T|^{\alpha}\left(U^{n+1}\right)^{*}=\left\{U^{n+1}|T|\left(U^{n+1}\right)^{*}\right\}^{\alpha}$. We prove this by induction on n, and also we remark that

$$
\begin{equation*}
\left[U^{k}|T|\left(U^{k}\right)^{*}, U^{*} U\right]=0 \quad \text { for all } k=1,2, \ldots, n \tag{3.7}
\end{equation*}
$$

by Lemma C and the assumption.
Case $n=1$.

$$
\begin{aligned}
U^{2}|T|^{\alpha}\left(U^{2}\right)^{*} & =U\left(U|T| U^{*}\right)^{\alpha} U^{*} \\
& =U\left(U^{*} U\right)^{2 \alpha}\left(U|T| U^{*}\right)^{\alpha} U^{*} \\
& =U\left(U^{*} U \cdot U|T| U^{*} \cdot U^{*} U\right)^{\alpha} U^{*} \quad \text { by }(3.7) \\
& =\left(U U^{*} U U|T| U^{*} U^{*} U U^{*}\right)^{\alpha} \\
& =\left\{U^{2}|T|\left(U^{2}\right)^{*}\right\}^{\alpha} .
\end{aligned}
$$

Assume that (i) holds for some natural number n. We show that it holds for $n+1$.

$$
\begin{array}{rlr}
U^{n+2} & |T|^{\alpha}\left(U^{n+2}\right)^{*} & \\
& =U\left\{U^{n+1}|T|^{\alpha}\left(U^{n+1}\right)^{*}\right\} U^{*} & \text { by the inductive hypothesis } \\
& =U\left\{U^{n+1}|T|\left(U^{n+1}\right)^{*}\right\}^{\alpha} U^{*} & \\
& =U\left(U^{*} U\right)^{2 \alpha}\left\{U^{n+1}|T|\left(U^{n+1}\right)^{*}\right\}^{\alpha} U^{*} & \\
& =U\left\{U^{*} U \cdot U^{n+1}|T|\left(U^{n+1}\right)^{*} \cdot U^{*} U\right\}^{\alpha} U^{*} & \text { by }(3.7) \\
& =\left\{U U^{*} U U^{n+1}|T|\left(U^{n+1}\right)^{*} U^{*} U U^{*}\right\}^{\alpha} & \\
& =\left\{U^{n+2}|T|\left(U^{n+2}\right)^{*}\right\}^{\alpha} &
\end{array}
$$

(ii) By the assumption, (i) and Lemma C, we have (ii).
(iii) By using (ii) repeatedly, we have

$$
\begin{array}{rlr}
U^{s}|T|^{\alpha}\left(U^{s}\right)^{*} U^{t} & =U\left\{U^{s-1}|T|^{\alpha}\left(U^{s-1}\right)^{*} \cdot U^{*} U\right\} U^{t-1} & \\
& =U\left\{U^{*} U \cdot U^{s-1}|T|^{\alpha}\left(U^{s-1}\right)^{*}\right\} U^{t-1} & \text { by (ii) } \\
& =U^{2}\left\{U^{s-2}|T|^{\alpha}\left(U^{s-2}\right)^{*} \cdot U^{*} U\right\} U^{t-2} & \\
& =U^{2}\left\{U^{*} U \cdot U^{s-2}|T|^{\alpha}\left(U^{s-2}\right)^{*}\right\} U^{t-2} & \text { by (ii) } \\
& =U^{3}\left\{U^{s-3}|T|^{\alpha}\left(U^{s-3}\right)^{*} \cdot U^{*} U\right\} U^{t-3} & \\
& =\cdots & \\
& =U^{t}\left\{U^{s-t}|T|^{\alpha}\left(U^{s-t}\right)^{*} \cdot U^{*} U\right\} & \\
& =U^{t}\left\{U^{*} U \cdot U^{s-t}|T|^{\alpha}\left(U^{s-t}\right)^{*}\right\} & \text { by (ii) } \\
& =U^{t} \cdot U^{s-t}|T|^{\alpha}\left(U^{s-t}\right)^{*} & \\
& =U^{s}|T|\left(U^{s-t}\right)^{*} &
\end{array}
$$

so that $U^{s}|T|^{\alpha}\left(U^{s}\right)^{*} U^{t}=U^{s}|T|^{\alpha}\left(U^{s-t}\right)^{*}$ and $\left(U^{t}\right)^{*} U^{s}|T|^{\alpha}\left(U^{s}\right)^{*}=U^{s-t}|T|^{\alpha}\left(U^{s}\right)^{*}$.
(iv) We may assume $t<s$.

$$
\begin{aligned}
U^{s}|T|^{\alpha}\left(U^{s}\right)^{*} \cdot U^{t}|T|^{\alpha}\left(U^{t}\right)^{*} & =U^{s}|T|^{\alpha}\left(U^{s-t}\right)^{*} \cdot|T|^{\alpha}\left(U^{t}\right)^{*} & \text { by (iii) } \\
& =U^{t}\left\{U^{s-t}|T|^{\alpha}\left(U^{s-t}\right)^{*} \cdot|T|^{\alpha}\right\}\left(U^{t}\right)^{*} & \\
& =U^{t}\left\{|T|^{\alpha} \cdot U^{s-t}|T|^{\alpha}\left(U^{s-t}\right)^{*}\right\}\left(U^{t}\right)^{*} & \text { by (ii) } \\
& =U^{t}|T|^{\alpha} \cdot U^{s-t}|T|^{\alpha}\left(U^{s}\right)^{*} & \\
& =U^{t}|T|^{\alpha}\left(U^{t}\right)^{*} U^{t} \cdot U^{s-t}|T|^{\alpha}\left(U^{s}\right)^{*} & \text { by (iii) } \\
& =U^{t}|T|^{\alpha}\left(U^{t}\right)^{*} \cdot U^{s}|T|^{\alpha}\left(U^{s}\right)^{*} . &
\end{aligned}
$$

(v) Since $\left|T^{*}\right|=U|T| U^{*}$, we easily obtain

$$
\left[\left(U^{k}\right)^{*}\left|T^{*}\right|^{\alpha} U^{k},\left|T^{*}\right|\right]=\left[\left(U^{k-1}\right)^{*}|T|^{\alpha} U^{k-1}, U|T| U^{*}\right]
$$

for any $\alpha>0$ and all $k=1,2, \ldots, n$, and also we have

$$
\begin{array}{rlrl}
\left(U^{k-1}\right)^{*} \mid & \left.T\right|^{\alpha} U^{k-1} \cdot U|T| U^{*} & \\
& =\left(U^{k-1}\right)^{*}|T|^{\alpha} \cdot U^{k}|T| U^{*} & & \\
& =\left(U^{k-1}\right)^{*}\left\{|T|^{\alpha} \cdot U^{k}|T|\left(U^{k}\right)^{*}\right\} U^{k-1} & & \text { by (iii) } \\
& =\left(U^{k-1}\right)^{*}\left\{U^{k}|T|\left(U^{k}\right)^{*} \cdot|T|^{\alpha}\right\} U^{k-1} & & \text { by the assumption } \\
& =U|T| \cdot\left(U^{k}\right)^{*}|T|^{\alpha} U^{k-1} & & \text { by (iii) } \\
& =U|T| U^{*} \cdot\left(U^{k-1}\right)^{*}|T|^{\alpha} U^{k-1} & &
\end{array}
$$

for any $\alpha>0$ and all $k=1,2, \ldots, n$.
(vi) Since $T^{*}=U^{*}\left|T^{*}\right|$ is polar decomposition of T^{*}, we have

$$
\left(U^{s+1}\right)^{*}\left|T^{*}\right|^{\alpha} U^{s+1}\left(U^{t}\right)^{*}=\left(U^{s+1}\right)^{*}\left|T^{*}\right|^{\alpha} U^{s+1-t}
$$

and

$$
U^{t}\left(U^{s+1}\right)^{*}\left|T^{*}\right|^{\alpha} U^{s+1}=\left(U^{s+1-t}\right)^{*}\left|T^{*}\right|^{\alpha} U^{s+1}
$$

for any $\alpha>0$ and all natural numbers s and t such that $1 \leqslant t \leqslant s \leqslant n$ by (v) and (iii). So we get

$$
\left(U^{s}\right)^{*}|T|^{\alpha} U^{s}\left(U^{t}\right)^{*}=\left(U^{s}\right)^{*}|T|^{\alpha} U^{s-t} \quad \text { and } \quad U^{t}\left(U^{s}\right)^{*}|T|^{\alpha} U^{s}=\left(U^{s-t}\right)^{*}|T|^{\alpha} U^{s}
$$

(vii) By using (ii) and (iii), we have

$$
\begin{array}{rlr}
U^{n+1}|\widetilde{T}|\left(U^{n+1}\right)^{*} & =U^{n+1}\left(|T|^{\frac{1}{2}} U^{*}|T| U|T|^{\frac{1}{2}}\right)^{\frac{1}{2}}\left(U^{n+1}\right)^{*} \\
& =U^{n}\left(U|T|^{\frac{1}{2}} U^{*} \cdot|T| \cdot U|T|^{\frac{1}{2}} U^{*}\right)^{\frac{1}{2}}\left(U^{n}\right)^{*} & \\
& =U^{n} \cdot U|T|^{\frac{1}{2}} U^{*} \cdot|T|^{\frac{1}{2}} \cdot\left(U^{n}\right)^{*} & \text { by (ii) } \\
& =U^{n+1}|T|^{\frac{1}{2}}\left(U^{n+1}\right)^{*} \cdot U^{n}|T|^{\frac{1}{2}}\left(U^{n}\right)^{*} & \text { by (iii). }
\end{array}
$$

Therefore the proof of Lemma 3.7 is complete.
Lemma 3.8. Let $T=U|T|$ be the polar decomposition and n be a natural number. If

$$
\left[U^{k}|T|\left(U^{k}\right)^{*},|T|\right]=0 \quad \text { for all } k=1,2, \ldots, n
$$

then the following assertions are equivalent:
(i) $\left[U^{n+1}|T|\left(U^{n+1}\right)^{*},|T|\right]=0$.
(ii) $\left[U^{n}|\widetilde{T}|\left(U^{n}\right)^{*},|\widetilde{T}|\right]=0$.

Proof. At first, we remark that $\left[U|T|^{\frac{1}{2}} U^{*},|T|\right]=0$ by (ii) of Lemma 3.7, and also we have

$$
\begin{align*}
|\widetilde{T}| & =\left(|T|^{\frac{1}{2}} U^{*}|T| U|T|^{\frac{1}{2}}\right)^{\frac{1}{2}}=U^{*}\left(U|T|^{\frac{1}{2}} U^{*} \cdot|T| \cdot U|T|^{\frac{1}{2}} U^{*}\right)^{\frac{1}{2}} U \\
& =U^{*} \cdot|T|^{\frac{1}{2}} \cdot U|T|^{\frac{1}{2}} U^{*} \cdot U=U^{*}|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}} . \tag{3.8}
\end{align*}
$$

Case $n=1$. Since $\left[U|T|^{\frac{1}{2}} U^{*},|T|\right]=0$, we have

$$
\begin{aligned}
U|\widetilde{T}| U^{*} & =U\left(|T|^{\frac{1}{2}} U^{*}|T| U|T|^{\frac{1}{2}}\right)^{\frac{1}{2}} U^{*}=\left(U|T|^{\frac{1}{2}} U^{*} \cdot|T| \cdot U|T|^{\frac{1}{2}} U^{*}\right)^{\frac{1}{2}} \\
& =\left(|T|^{\frac{1}{2}} \cdot U|T| U^{*} \cdot|T|^{\frac{1}{2}}\right)^{\frac{1}{2}}=\left|(\widetilde{T})^{*}\right| .
\end{aligned}
$$

Hence $\left[U|\widetilde{T}| U^{*},|\widetilde{T}|\right]=\left[\left|(\widetilde{T})^{*}\right|,|\widetilde{T}|\right]$, i.e. \widetilde{T} is binormal, so that we can prove this case by Theorem 3.5.

Next, we shall prove that Lemma 3.8 holds for each natural number n such that $n \geqslant 2$.

Here, suppose that $\left[U^{k}|T|\left(U^{k}\right)^{*},|T|\right]=0$ for all $k=1,2, \ldots, n$. Then we
have

$$
\begin{align*}
& U^{n}|\widetilde{T}|\left(U^{n}\right)^{*} \cdot|\widetilde{T}| \\
& =\left\{U^{n}|T|^{\frac{1}{2}}\left(U^{n}\right)^{*} \cdot U^{n-1}|T|^{\frac{1}{2}}\left(U^{n-1}\right)^{*}\right\} \cdot\left\{U^{*}|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}\right\} \\
& \quad \text { by }(3.8) \text { and Lemma } 3.7 \text { (vii) } \\
& =U^{n}|T|^{\frac{1}{2}}\left(U^{n}\right)^{*} \cdot U^{n-1}|T|^{\frac{1}{2}}\left(U^{n-1}\right)^{*} \cdot\left(U^{*} U\right)^{2} U^{*}|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}} \\
& =U^{*} U \cdot U^{n}|T|^{\frac{1}{2}}\left(U^{n}\right)^{*} \cdot U^{*} U \cdot U^{n-1}|T|^{\frac{1}{2}}\left(U^{n-1}\right)^{*} \cdot U^{*}|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}} \\
& \quad \text { by Lemma } 3.7 \text { (ii) } \tag{3.9}\\
& =U^{*} \cdot U^{n+1}|T|^{\frac{1}{2}}\left(U^{n+1}\right)^{*} \cdot U^{n}|T|^{\frac{1}{2}}\left(U^{n}\right)^{*} \cdot|T|^{\frac{1}{2}} \cdot U|T|^{\frac{1}{2}} \\
& =U^{*}\left\{U^{n+1}|T|^{\frac{1}{2}}\left(U^{n+1}\right)^{*} \cdot|T|^{\frac{1}{2}}\right\} U^{n}|T|^{\frac{1}{2}}\left(U^{n}\right)^{*} U|T|^{\frac{1}{2}} \\
& \quad \text { by Lemma } 3.7(\mathrm{ii}) \\
& =U^{*}\left\{U^{n+1}|T|^{\frac{1}{2}}\left(U^{n+1}\right)^{*} \cdot|T|^{\frac{1}{2}}\right\} U^{n}|T|^{\frac{1}{2}}\left(U^{n-1}\right)^{*}|T|^{\frac{1}{2}}
\end{align*}
$$

and

$$
\begin{aligned}
& |\widetilde{T}| \cdot U^{n}|\widetilde{T}|\left(U^{n}\right)^{*} \\
& =\left\{U^{*}|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}\right\} \cdot\left\{U^{n}|T|^{\frac{1}{2}}\left(U^{n}\right)^{*} \cdot U^{n-1}|T|^{\frac{1}{2}}\left(U^{n-1}\right)^{*}\right\}
\end{aligned}
$$

by (3.8) and Lemma 3.7 (vii)
$=U^{*}|T|^{\frac{1}{2}} U \cdot U^{n}|T|^{\frac{1}{2}}\left(U^{n}\right)^{*} \cdot U^{n-1}|T|^{\frac{1}{2}}\left(U^{n-1}\right)^{*} \cdot|T|^{\frac{1}{2}}$
by Lemma 3.7 (ii)
$=U^{*}|T|^{\frac{1}{2}} \cdot U^{n+1}|T|^{\frac{1}{2}}\left(U^{n+1}\right)^{*} U \cdot U^{n-1}|T|^{\frac{1}{2}}\left(U^{n-1}\right)^{*} \cdot|T|^{\frac{1}{2}}$
by Lemma 3.7 (iii)
$=U^{*}\left\{|T|^{\frac{1}{2}} \cdot U^{n+1}|T|^{\frac{1}{2}}\left(U^{n+1}\right)^{*}\right\} U^{n}|T|^{\frac{1}{2}}\left(U^{n-1}\right)^{*}|T|^{\frac{1}{2}}$.
Proof of (i) \Rightarrow (ii). Since $\left[U^{n+1}|T|\left(U^{n+1}\right)^{*},|T|\right]=0$, we have $\left[U^{n}|\widetilde{T}|\left(U^{n}\right)^{*}\right.$, $|\widetilde{T}|]=0$, that is, (ii) holds for n by (3.9) and (3.10).

Proof of (ii) \Rightarrow (i). Assume $\left[U^{n}|\widetilde{T}|\left(U^{n}\right)^{*},|\widetilde{T}|\right]=0$. Then we have

$$
\begin{aligned}
& \left\{U^{n+1}|T|^{\frac{1}{2}}\left(U^{n+1}\right)^{*} \cdot|T|^{\frac{1}{2}}\right\} U^{n}|T|^{\frac{1}{2}}\left(U^{n-1}\right)^{*}|T|^{\frac{1}{2}} \\
& =U U^{*}\left\{U^{n+1}|T|^{\frac{1}{2}}\left(U^{n+1}\right)^{*} \cdot|T|^{\frac{1}{2}}\right\} U^{n}|T|^{\frac{1}{2}}\left(U^{n-1}\right)^{*}|T|^{\frac{1}{2}} \\
& =U U^{*}\left\{|T|^{\frac{1}{2}} \cdot U^{n+1}|T|^{\frac{1}{2}}\left(U^{n+1}\right)^{*}\right\} U^{n}|T|^{\frac{1}{2}}\left(U^{n-1}\right)^{*}|T|^{\frac{1}{2}} \quad \text { by (3.9) and (3.10) } \\
& =\left\{|T|^{\frac{1}{2}} \cdot U U^{*} \cdot U^{n+1}|T|^{\frac{1}{2}}\left(U^{n+1}\right)^{*}\right\} U^{n}|T|^{\frac{1}{2}}\left(U^{n-1}\right)^{*}|T|^{\frac{1}{2}} \quad \text { by (3.1) } \\
& =\left\{|T|^{\frac{1}{2}} \cdot U^{n+1}|T|^{\frac{1}{2}}\left(U^{n+1}\right)^{*}\right\} U^{n}|T|^{\frac{1}{2}}\left(U^{n-1}\right)^{*}|T|^{\frac{1}{2}} .
\end{aligned}
$$

It is equivalent to

$$
U^{n+1}|T|^{\frac{1}{2}}\left(U^{n+1}\right)^{*} \cdot|T|^{\frac{1}{2}}=|T|^{\frac{1}{2}} \cdot U^{n+1}|T|^{\frac{1}{2}}\left(U^{n+1}\right)^{*}
$$

on $\overline{R\left(U^{n}|T|^{\frac{1}{2}}\left(U^{n-1}\right)^{*}|T|^{\frac{1}{2}}\right)}$. On the other hand, since $N(U)=N(|T|)$, we obtain

$$
\begin{aligned}
\overline{R\left(U^{n}|T|^{\frac{1}{2}}\left(U^{n-1}\right)^{*}|T|^{\frac{1}{2}}\right)} & =N\left(|T|^{\frac{1}{2}} U^{n-1}|T|^{\frac{1}{2}}\left(U^{n}\right)^{*}\right)^{\perp} \\
& =N\left(U^{n}|T|^{\frac{1}{2}}\left(U^{n}\right)^{*}\right)^{\perp} \\
& =N\left(|T|^{\frac{1}{4}}\left(U^{n}\right)^{*}\right)^{\perp} \\
& =N\left(U\left(U^{n}\right)^{*}\right)^{\perp} \\
& =\overline{R\left(U^{n} U^{*}\right)} .
\end{aligned}
$$

Therefore we have

$$
\begin{equation*}
U^{n+1}|T|^{\frac{1}{2}}\left(U^{n+1}\right)^{*} \cdot|T|^{\frac{1}{2}} \cdot U^{n}\left(U^{n}\right)^{*}=|T|^{\frac{1}{2}} \cdot U^{n+1}|T|^{\frac{1}{2}}\left(U^{n+1}\right)^{*} \cdot U^{n}\left(U^{n}\right)^{*}, \tag{3.11}
\end{equation*}
$$

so that

$$
\begin{aligned}
U^{n+1} & |T|^{\frac{1}{2}}\left(U^{n+1}\right)^{*} \cdot|T|^{\frac{1}{2}} & & \\
& =U^{n+1}|T|^{\frac{1}{2}}\left(U^{n+1}\right)^{*} \cdot|T|^{\frac{1}{2}} \cdot U^{n}\left(U^{n}\right)^{*} & & \text { by Lemma } 3.7(\mathrm{vi}) \\
& =|T|^{\frac{1}{2}} \cdot U^{n+1}|T|^{\frac{1}{2}}\left(U^{n+1}\right)^{*} \cdot U^{n}\left(U^{n}\right)^{*} & & \text { by }(3.11) \\
& =|T|^{\frac{1}{2}} \cdot U^{n+1}|T|^{\frac{1}{2}} U^{*} \cdot\left(U^{n}\right)^{*} & & \text { by Lemma } 3.7(\mathrm{iii}) \\
& =|T|^{\frac{1}{2}} \cdot U^{n+1}|T|^{\frac{1}{2}}\left(U^{n+1}\right)^{*}, & &
\end{aligned}
$$

that is, (i) holds for n.
Hence the proof is complete.
In order to prove Theorem 3.6, we also use the following:
Proposition 3.9. Let $T=U|T|$ be the polar decomposition of a binormal operator T. Then $\widetilde{T}=U^{*} U U|\widetilde{T}|$ is also the polar decomposition of \widetilde{T}.

The proof is easily obtained by applying the following result.
Theorem $\mathrm{D}([5])$. Let $T_{1}=U_{1}\left|T_{1}\right|$ and $T_{2}=U_{2}\left|T_{2}\right|$ be the polar decompositions of T_{1} and T_{2} respectively. If T_{1} doubly commutes with T_{2} (i.e., $\left[T_{1}, T_{2}\right]=0$ and $\left[T_{1}, T_{2}^{*}\right]=0$), then $T_{1} T_{2}=U_{1} U_{2}\left|T_{1}\right|\left|T_{2}\right|$ is also the polar decomposition of $T_{1} T_{2}$, that is, $U_{1} U_{2}$ is a partial isometry with $N\left(U_{1} U_{2}\right)=N\left(\left|T_{1}\right|\left|T_{2}\right|\right)$ and $\left|T_{1}\right|\left|T_{2}\right|=\left|T_{1} T_{2}\right|$.

Proof of Proposition 3.9. Since $|T|^{\frac{1}{2}}=U^{*} U|T|^{\frac{1}{2}}$ and $\left|T^{*}\right|^{\frac{1}{2}}=U U^{*}\left|T^{*}\right|^{\frac{1}{2}}$ are the polar decompositions of $|T|^{\frac{1}{2}}$ and $\left|T^{*}\right|^{\frac{1}{2}}$ respectively, then $|T|^{\frac{1}{2}}\left|T^{*}\right|^{\frac{1}{2}}=$ $U^{*} U U U^{*}|T|^{\frac{1}{2}}\left|T^{*}\right|^{\frac{1}{2}}$ is the polar decomposition of $|T|^{\frac{1}{2}}\left|T^{*}\right|^{\frac{1}{2}}$ by Theorem D. Therefore we have that

$$
\widetilde{T}=U^{*} U U U^{*} \cdot U|\widetilde{T}|=U^{*} U U|\widetilde{T}|
$$

is also the polar decomposition of \widetilde{T} by Theorem 2.1.

Proof of Theorem 3.6. We shall prove Theorem 3.6 by induction on n. We remark that if $\left[U^{k}|T|\left(U^{k}\right)^{*},|T|\right]=0$ for all $k=1,2, \ldots, n+1$, then we have

$$
\begin{equation*}
\left[U^{n+1}|\widetilde{T}|\left(U^{n+1}\right)^{*},|T|\right]=\left[U^{n+1}|\widetilde{T}|\left(U^{n+1}\right)^{*}, U^{*} U\right]=0 \tag{3.12}
\end{equation*}
$$

by (vii) of Lemma 3.7 and Lemma C.
Case $n=1$. Was already shown in Theorem 3.5.
Suppose that Theorem 3.6 holds for some natural number n. (i) holds for $n+1$ if and only if

$$
\widetilde{T}_{k} \text { is binormal for all } k=0,1,2, \ldots, n+1
$$

By putting $S=\widetilde{T}$, it is equivalent to

$$
\begin{equation*}
T \text { and } \widetilde{S}_{k} \text { are binormal for all } k=0,1,2, \ldots, n . \tag{3.13}
\end{equation*}
$$

Since $S=U^{*} U U|S|$ is the polar decomposition by Proposition 3.9, (3.13) holds if and only if

$$
T \text { is binormal and }
$$

$$
\begin{gather*}
{\left[\left(U^{*} U U\right)^{k}|S|\left\{\left(U^{*} U U\right)^{k}\right\}^{*},|S|\right]=\left[U^{*} U \cdot U^{k}|\widetilde{T}|\left(U^{k}\right)^{*} \cdot U^{*} U,|\widetilde{T}|\right]=0} \tag{3.14}\\
\text { for all } k=1,2, \ldots, n+1
\end{gather*}
$$

by the inductive hypothesis. On the other hand, if we assume (i) or (ii), then

$$
\left[U^{k}|T|\left(U^{k}\right)^{*},|T|\right]=0 \quad \text { for all } k=1,2, \ldots, n+1
$$

by the inductive hypothesis, so that (3.14) is equivalent to

$$
\begin{equation*}
T \text { is binormal and }\left[U^{k}|\widetilde{T}|\left(U^{k}\right)^{*},|\widetilde{T}|\right]=0 \quad \text { for all } k=1,2, \ldots, n+1 \tag{3.15}
\end{equation*}
$$

by (3.12) and $U^{*} U|\widetilde{T}|=U^{*} U\left(|T|^{\frac{1}{2}} U^{*}|T| U|T|^{\frac{1}{2}}\right)^{\frac{1}{2}}=|\widetilde{T}|$. Moreover Lemma 3.8 assures that (3.15) is equivalent to

$$
\left[U^{k}|T|\left(U^{k}\right)^{*},|T|\right]=0 \quad \text { for all } k=1,2, \ldots, n+2
$$

i.e. (ii) holds for $n+1$.

Hence the proof is complete.

4. CHARACTERIZATION OF CENTERED OPERATORS

In [10], Morrel and Muhly obtained properties of centered operators as follows:
Theorem E. ([10]) Let $T=U|T|$ be the polar decomposition of a centered operator T. Then the following assertions hold:
(i) U^{n} is a partial isometry for all natural number n;
(ii) the operators $\left\{\left(U^{n}\right)^{*}|T| U^{n}\right\}_{n=1}^{\infty}$ commute with one another;
(iii) $T^{n}=U^{n}\left\{|T| \cdot U^{*}|T| U \cdots\left(U^{n-1}\right)^{*}|T| U^{n-1}\right\}$ is the polar decomposition for all natural number n.

Moreover, they showed a characterization of centered operators as follows:

Theorem F. ([10]) Let $T=U|T|$ be the polar decomposition and U be unitary. Then T is a centered operator if and only if the operators

$$
\left\{\left(U^{n}\right)^{*}|T| U^{n}\right\}_{n=-\infty}^{\infty}
$$

commute with one another.
In this section, we show the following characterization of centered operators which is an extension of (ii) of Theorem E and Theorem F.

Theorem 4.1. Let $T=U|T|$ be the polar decomposition. Then the following assertions are mutually equivalent:
(i) T is centered;
(ii) $\left[\left|T^{n}\right|,\left|\left(T^{m}\right)^{*}\right|\right]=0$ for all natural numbers n and m;
(iii) $\left[\left|T^{n}\right|,\left|T^{*}\right|\right]=0$ for all natural number n;
(iv) operators $\left\{\left(U^{n}\right)^{*}|T| U^{n}, U^{n}|T|\left(U^{n}\right)^{*},|T|\right\}_{n=1}^{\infty}$ commute with one another;
(v) $\left[U^{n}|T|\left(U^{n}\right)^{*},|T|\right]=0$ for all natural number n;
(vi) \widetilde{T}_{n} is binormal for all non-negative integer n.

To prove Theorem 4.1, we will prepare the following lemmas.
Lemma 4.2. Let T be the polar decomposition. For each natural numbers n and m, if

$$
\begin{equation*}
\left[U^{k}|T|\left(U^{k}\right)^{*},|T|\right]=0 \quad \text { for all } k=0,1,2, \ldots, m+n-2 \tag{4.1}
\end{equation*}
$$

then the following assertions are equivalent:
(i) $\left[U^{m}|T|\left(U^{m}\right)^{*},\left|T^{n}\right|\right]=0$;
(ii) $\left[U^{m+n-1}|T|\left(U^{m+n-1}\right)^{*},|T|\right]=0$.

Proof. We prove Lemma 4.2 by induction on n. The case $n=1$ is obvious.
Assume that Lemma 4.2 holds for some natural number n and each natural number m. Then we prove that it holds for $n+1$ and each natural number m.

Here, let m be a natural number and suppose that (4.1) holds for $n+1$, i.e.,

$$
\begin{equation*}
\left[U^{k}|T|\left(U^{k}\right)^{*},|T|\right]=0 \quad \text { for all } k=0,1,2, \ldots, m+n-1 \tag{4.2}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left[U|T| U^{*},\left|T^{n}\right|\right]=\left[U U^{*},\left|T^{n}\right|\right]=0 \tag{4.3}
\end{equation*}
$$

holds by the inductive assumption and Lemma C, and also we have

$$
\begin{align*}
\left|T^{n+1}\right|^{2} & =|T| U^{*}\left|T^{n}\right|^{2} U|T| \\
& =U^{*} \cdot U|T| U^{*} \cdot\left|T^{n}\right|^{2} \cdot U|T| \\
& =U^{*} \cdot\left|T^{n}\right|^{2} \cdot U|T| U^{*} \cdot U|T| \quad \text { by }(4.3) \tag{4.4}\\
& =U^{*}\left|T^{n}\right|^{2} U|T|^{2} .
\end{align*}
$$

Therefore, we have

$$
\begin{array}{rlrl}
\left|T^{n+1}\right|^{2} \cdot U^{m}|T|\left(U^{m}\right)^{*} & =U^{*}\left|T^{n}\right|^{2} U|T|^{2} \cdot U^{m}|T|\left(U^{m}\right)^{*} & & \text { by }(4.4) \\
& =U^{*}\left|T^{n}\right|^{2} U \cdot U^{m}|T|\left(U^{m}\right)^{*} \cdot|T|^{2} & & \text { by }(4.2) \tag{4.5}\\
& =U^{*}\left\{\left|T^{n}\right|^{2} \cdot U^{m+1}|T|\left(U^{m+1}\right)^{*}\right\} U|T|^{2} &
\end{array}
$$

and

$$
\begin{align*}
U^{m} \mid & \left.T\left|\left(U^{m}\right)^{*} \cdot\right| T^{n+1}\right|^{2} & & \\
& =U^{m}|T|\left(U^{m}\right)^{*} \cdot U^{*}\left|T^{n}\right|^{2} U|T|^{2} & & \text { by }(4.4) \tag{4.6}\\
& =U^{*}\left\{U^{m+1}|T|\left(U^{m+1}\right)^{*} \cdot\left|T^{n}\right|^{2}\right\} U|T|^{2} & & \text { by Lemma } 3.7 \text { (iii). }
\end{align*}
$$

Proof of (ii) \Rightarrow (i). Assume that (ii) holds for $n+1$. Since

$$
\left[U^{m+(n+1)-1}|T|\left(U^{m+(n+1)-1}\right)^{*},|T|\right]=\left[U^{(m+1)+n-1}|T|\left(U^{(m+1)+n-1}\right)^{*},|T|\right]=0
$$

we have

$$
\left[U^{m+1}|T|\left(U^{m+1}\right)^{*},\left|T^{n}\right|\right]=0
$$

by the inductive assumption. Hence we obtain

$$
\left[\left|T^{n+1}\right|, U^{m}|T|\left(U^{m}\right)^{*}\right]=0
$$

that is, (i) holds for $n+1$ by (4.5) and (4.6).
Proof of (i) \Rightarrow (ii). Assume that (i) holds for $n+1$. Then we have

$$
\begin{aligned}
U^{m+1} & |T|\left(U^{m+1}\right)^{*} \cdot\left|T^{n}\right|^{2} \cdot U|T|^{2} \\
& =U U^{*}\left\{U^{m+1}|T|\left(U^{m+1}\right)^{*} \cdot\left|T^{n}\right|^{2}\right\} U|T|^{2} \\
& =U U^{*}\left\{\left|T^{n}\right|^{2} \cdot U^{m+1}|T|\left(U^{m+1}\right)^{*}\right\} U|T|^{2} \quad \text { by (4.5) and (4.6) } \\
& =\left|T^{n}\right|^{2} \cdot U U^{*} \cdot U^{m+1}|T|\left(U^{m+1}\right)^{*} \cdot U|T|^{2} \quad \text { by (4.3) } \\
& =\left|T^{n}\right|^{2} \cdot U^{m+1}|T|\left(U^{m+1}\right)^{*} \cdot U|T|^{2}
\end{aligned}
$$

that is,

$$
U^{m+1}|T|\left(U^{m+1}\right)^{*} \cdot\left|T^{n}\right|^{2}=\left|T^{n}\right|^{2} \cdot U^{m+1}|T|\left(U^{m+1}\right)^{*}
$$

holds on

$$
\overline{R\left(U|T|^{2}\right)}=N\left(|T|^{2} U^{*}\right)^{\perp}=N\left(U U^{*}\right)^{\perp}=R\left(U U^{*}\right)
$$

Then we have

$$
\begin{equation*}
U^{m+1}|T|\left(U^{m+1}\right)^{*} \cdot\left|T^{n}\right|^{2} \cdot U U^{*}=\left|T^{n}\right|^{2} \cdot U^{m+1}|T|\left(U^{m+1}\right)^{*} \cdot U U^{*} \tag{4.7}
\end{equation*}
$$

so we obtain

$$
\begin{aligned}
U^{m+1}|T|\left(U^{m+1}\right)^{*} \cdot\left|T^{n}\right|^{2} & =U^{m+1}|T|\left(U^{m+1}\right)^{*} \cdot U U^{*} \cdot\left|T^{n}\right|^{2} \\
& =U^{m+1}|T|\left(U^{m+1}\right)^{*} \cdot\left|T^{n}\right|^{2} \cdot U U^{*} \quad \text { by }(4.3) \\
& =\left|T^{n}\right|^{2} \cdot U^{m+1}|T|\left(U^{m+1}\right)^{*} \cdot U U^{*} \quad \text { by }(4.7) \\
& =\left|T^{n}\right|^{2} \cdot U^{m+1}|T|\left(U^{m+1}\right)^{*}
\end{aligned}
$$

Hence we have

$$
\left[U^{(m+1)+n-1}|T|\left(U^{(m+1)+n-1}\right)^{*},|T|\right]=\left[U^{m+(n+1)-1}|T|\left(U^{m+(n+1)-1}\right)^{*},|T|\right]=0
$$

that is, (ii) holds for $n+1$ by the inductive assumption.
Therefore the proof is complete.

Lemma 4.3. Let $T=U|T|$ be the polar decomposition. For each natural number n, if

$$
\left[U^{k}|T|\left(U^{k}\right)^{*},|T|\right]=0 \quad \text { for all } k=0,1,2, \ldots, n-1
$$

then

$$
\left|\left(T^{n}\right)^{*}\right|=U|T| U^{*} \cdot U^{2}|T|\left(U^{2}\right)^{*} \cdots U^{n}|T|\left(U^{n}\right)^{*}
$$

Proof. We prove Lemma 4.3 by induction on n.
The case $n=1$ is obvious. Assume that Lemma 4.3 holds for some natural number n. Then we show that it holds for $n+1$.

By the inductive assumption, we have

$$
\begin{equation*}
\left|\left(T^{n}\right)^{*}\right|=U|T| U^{*} \cdot U^{2}|T|\left(U^{2}\right)^{*} \cdots U^{n}|T|\left(U^{n}\right)^{*} \tag{4.8}
\end{equation*}
$$

Then we obtain

$$
\begin{aligned}
&\left|\left(T^{n+1}\right)^{*}\right| \\
&=\left(U|T| \cdot\left|\left(T^{n}\right)^{*}\right|^{2} \cdot|T| U^{*}\right)^{\frac{1}{2}} \\
&=\left\{U|T|\left(U|T| U^{*} \cdot U^{2}|T|\left(U^{2}\right)^{*} \cdots U^{n}|T|\left(U^{n}\right)^{*}\right)^{2}|T| U^{*}\right\}^{\frac{1}{2}} \\
&=\left\{U|T| \cdot U|T|^{2} U^{*} \cdot U^{2}|T|^{2}\left(U^{2}\right)^{*} \cdots U^{n}|T|^{2}\left(U^{n}\right)^{*} \cdot|T| U^{*}\right\}^{\frac{1}{2}} \text { by }(4.8) \\
&=\left\{U|T|\left(U^{*} U\right)^{n+1} \cdot U|T|^{2} U^{*} \cdot U^{2}|T|^{2}\left(U^{2}\right)^{*} \cdots U^{n}|T|^{2}\left(U^{n}\right)^{*} \cdot|T| U^{*}\right\}^{\frac{1}{2}} \\
&=\left\{U|T| \cdot U^{*} U \cdot U|T|^{2} U^{*} \cdot U^{*} U \cdot U^{2}|T|^{2}\left(U^{2}\right)^{*} \cdot U^{*} U \cdots U^{*} U\right. \\
&\left.\cdot U^{n}|T|^{2}\left(U^{n}\right)^{*} \cdot U^{*} U \cdot|T| U^{*}\right\}^{\frac{1}{2}} \\
&=\left\{U|T| U^{*} \cdot U^{2}|T|^{2}\left(U^{2}\right)^{*} \cdot U^{3}|T|^{2}\left(U^{3}\right)^{*} \cdots U^{n+1}|T|^{2}\left(U^{n+1}\right)^{*} \cdot U|T| U^{*}\right\}^{\frac{1}{2}} \\
&= U|T| U^{*} \cdot U^{2}|T|\left(U^{2}\right)^{*} \cdot U^{3}|T|\left(U^{3}\right)^{*} \cdots U^{n+1}|T|\left(U^{n+1}\right)^{*} \\
& \text { by Lemma } 3.7 \text { (iv). }
\end{aligned}
$$

Therefore the proof is complete.
Proof of Theorem 4.1. Proofs of (i) \Rightarrow (ii), (ii) \Rightarrow (iii) and (iv) \Rightarrow (v) are obvious, and also the equivalence relation between (v) and (vi) was already proved in Theorem 3.6. Thus, we have only to prove (iii) \Rightarrow (v), (v) \Rightarrow (iv), (v) \Rightarrow (ii) and (ii) \Rightarrow (i).

Proof of (iii) \Rightarrow (v). Firstly $\left[U|T| U^{*},|T|\right]=0$ and $\left[U|T| U^{*},\left|T^{2}\right|\right]=0$ ensures $\left[U^{2}|T|\left(U^{2}\right)^{*},|T|\right]=0$ by Lemma 4.2. Secondly $\left[U^{k}|T|\left(U^{k}\right)^{*},|T|\right]=0$ for $k=1,2$ and $\left[U|T| U^{*},\left|T^{3}\right|\right]=0$ ensures $\left[U^{3}|T|\left(U^{3}\right)^{*},|T|\right]=0$ by Lemma 4.2. By repeating this method, we have (v).

Proof of (v) \Rightarrow (iv). By (v), $\left[U^{n}|T|\left(U^{n}\right)^{*},|T|\right]=0$ holds for all natural numbers n. Then we have

$$
\begin{equation*}
\left[\left(U^{n-1}\right)^{*}|T|\left(U^{n-1}\right), U|T| U^{*}\right]=0 \tag{4.9}
\end{equation*}
$$

by (v) of Lemma 3.7. Hence

$$
\begin{aligned}
\left(U^{n}\right)^{*}|T| U^{n} \cdot|T| & =U^{*}\left\{\left(U^{n-1}\right)^{*}|T| U^{n-1} \cdot U|T| U^{*}\right\} U \\
& =U^{*}\left\{U|T| U^{*} \cdot\left(U^{n-1}\right)^{*}|T| U^{n-1}\right\} U \quad \text { by }(4.9) \\
& =|T| \cdot\left(U^{n}\right)^{*}|T| U^{n}
\end{aligned}
$$

that is, $\left[\left(U^{n}\right)^{*}|T| U^{n},|T|\right]=0$ holds for all natural numbers n.
Moreover we obtain

$$
\begin{array}{rlrl}
\left(U^{n}\right)^{*}|T| U^{n} \cdot U^{m}|T|\left(U^{m}\right)^{*} & \\
& =\left(U^{n}\right)^{*}\left\{|T| \cdot U^{n+m}|T|\left(U^{n+m}\right)^{*}\right\} U^{n} & & \text { by Lemma } 3.7 \text { (iii) } \\
& =\left(U^{n}\right)^{*}\left\{U^{n+m}|T|\left(U^{n+m}\right)^{*} \cdot|T|\right\} U^{n} & & \text { by (v) } \\
& =U^{m}|T|\left(U^{m}\right)^{*} \cdot\left(U^{n}\right)^{*}|T| U^{n} & & \text { by Lemma } 3.7 \text { (iii) }
\end{array}
$$

that is, $\left[\left(U^{n}\right)^{*}|T| U^{n}, U^{m}|T|\left(U^{m}\right)^{*}\right]=0$ holds for all natural numbers n and m.
Hence we have (iv).
Proof of (v) \Rightarrow (ii). By (v) and Lemma 4.3, we have

$$
\begin{align*}
& \left|\left(T^{m}\right)^{*}\right| \tag{4.10}\\
& \quad=U|T| U^{*} \cdot U^{2}|T|\left(U^{2}\right)^{*} \cdots U^{m}|T|\left(U^{m}\right)^{*} \quad \text { for all natural number } m
\end{align*}
$$

and also by (v) and Lemma 4.2, we have

$$
\begin{equation*}
\left[U^{m}|T|\left(U^{m}\right)^{*},\left|T^{n}\right|\right]=0 \quad \text { for all natural numbers } m \text { and } n . \tag{4.11}
\end{equation*}
$$

Hence we obtain (ii) from (4.10) and (4.11).
Finally, we show (ii) \Rightarrow (i). For $s>t$, we have

$$
\begin{aligned}
\left|T^{s}\right|^{2}\left|T^{t}\right|^{2} & =\left(T^{t}\right)^{*} \cdot\left|T^{s-t}\right|^{2} \cdot\left|\left(T^{t}\right)^{*}\right|^{2} \cdot T^{t} \\
& =\left(T^{t}\right)^{*} \cdot\left|\left(T^{t}\right)^{*}\right|^{2} \cdot\left|T^{s-t}\right|^{2} \cdot T^{t} \quad \text { by (ii) } \\
& =\left|T^{t}\right|^{2}\left|T^{s}\right|^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\left|\left(T^{s}\right)^{*}\right|^{2}\left|\left(T^{t}\right)^{*}\right|^{2} & =T^{t} \cdot\left|\left(T^{s-t}\right)^{*}\right|^{2} \cdot\left|T^{t}\right|^{2} \cdot\left(T^{t}\right)^{*} \\
& =T^{t} \cdot\left|T^{t}\right|^{2} \cdot\left|\left(T^{s-t}\right)^{*}\right|^{2} \cdot\left(T^{t}\right)^{*} \quad \text { by (ii) } \\
& =\left|\left(T^{t}\right)^{*}\right|^{2}\left|\left(T^{s}\right)^{*}\right|^{2}
\end{aligned}
$$

so that we have (i).
Therefore the proof is complete.

Acknowledgements. This research was supported by Grant-in-Aid Research No. 13740105.

REFERENCES

1. A. Aluthge, On p-hyponormal operators for $0<p<1$, Integral Equations Operator Theory 13(1990), 307-315.
2. A. Aluthge, D. Wang, w-Hyponormal operators, Integral Equations Operator Theory 36(2000), 1-10.
3. S.L. Campbell, Linear operators for which $T^{*} T$ and $T T^{*}$ commute, Proc. Amer. Math. Soc. 34(1972), 177-180.
4. S.L. CAmpbell, Linear operators for which $T^{*} T$ and $T T^{*}$ commute. II, Pacific J. Math. 53(1974), 355-361.
5. T. Furuta, On the polar decomposition of an operator, Acta Sci. Math. (Szeged) 46(1983), 261-268.
6. T. Furuta, Applications of the polar decomposition of an operator, Yokohama Math. J. 32(1984), 245-253.
7. T. Furdta, $A \geqslant B \geqslant 0$ assures $\left(B^{r} A^{p} B^{r}\right)^{1 / q} \geqslant B^{(p+2 r) / q}$ for $r \geqslant 0, p \geqslant 0, q \geqslant 1$ with $(1+2 r) q \geqslant p+2 r$, Proc. Amer. Math. Soc. 101(1987), 85-88.
8. I.B. Jung, E. Ko, C. Pearcy, Aluthge transforms of operators, Integral Equations Operator Theory 37(2000), 437-448.
9. S. Miyajima, I. Saito, ∞-hyponormal operators and their spectral properties, Acta Sci. Math. (Szeged) 67(2001), 357-371.
10. B.B. Morrel, P.S. Muhly, Centered operators, Studia Math. 51(1974), 251-263.
11. V. Paulsen, C. Pearcy, S. Petrović, On centered and weakly centered operators, J. Funct. Anal. 128(1995), 87-101.
12. K. TANAHASHI, On log-hyponormal operators, Integral Equation Operator Theory 34(1999), 364-372.
13. T. Yamazaki, Parallelisms between Aluthge transformation and powers of operators, Acta Sci. Math. (Szeged) 67(2001), 809-820.
14. T. Yamazaki, On numerical range of the Aluthge transformation, Linear Algebra Appl. 341(2002), 111-117.
15. T. Yamazaki, An expression of spectral radius via Aluthge transformation, Proc. Amer. Math. Soc. 130(2002), 1131-1137.
16. T. Yamazaki, Characterizations of $\log A \geqslant \log B$ and normaloid operators via Heinz inequality, Integral Equations Operator Theory, to appear.

MASATOSHI ITO
Department of Mathematical Information Science Faculty of Science
Tokyo University of Science Tokyo 162-8601 JAPAN
E-mail: m-ito@boat.zero.ad.jp

MASAHIRO YANAGIDA

Department of Mathematical
Information Science
Faculty of Science
Tokyo University of Science
Tokyo 162-8601
JAPAN
E-mail: yanagida@rs.kagu.tus.ac.jp

Received April 26, 2002.

