BACKWARD SHIFT INVARIANT SUBSPACES
 IN THE BIDISC. II

KEIJI IZUCHI, TAKAHIKO NAKAZI and MICHIO SETO

Communicated by William B. Arveson

Abstract

For every invariant subspace M in the Hardy spaces $H^{2}\left(\Gamma^{2}\right)$, let V_{z} and V_{w} be multiplication operators on M. Then it is known that the condition $V_{z} V_{w}^{*}=V_{w}^{*} V_{z}$ on M holds if and only if M is a Beurling type invariant subspace. For a backward shift invariant subspace N in $H^{2}\left(\Gamma^{2}\right)$, two operators S_{z} and S_{w} on N are defined by $S_{z}=P_{N} L_{z} P_{N}$ and $S_{w}=P_{N} L_{w} P_{N}$, where P_{N} is the orthogonal projection from $L^{2}\left(\Gamma^{2}\right)$ onto N. It is given a characterization of N satisfying $S_{z} S_{w}^{*}=S_{w}^{*} S_{z}$ on N. Keywords: Backward shift invariant subspaces, Hardy space in the bidisc. MSC (2000): Primary 47A15, 32A35; Secondary 47B35.

1. INTRODUCTION

Let Γ^{2} be the 2-dimensional unit torus. We denote by $(z, w)=\left(\mathrm{e}^{\mathrm{i} \theta}, \mathrm{e}^{\mathrm{i} \varphi}\right)$ the variables in $\Gamma^{2}=\Gamma_{z} \times \Gamma_{w}$. Let $L^{2}=L^{2}\left(\Gamma^{2}\right)$ be the usual Lebesgue space on Γ^{2} with the norm $\|f\|_{2}=\left(\int_{\Gamma^{2}}\left|f\left(\mathrm{e}^{\mathrm{i} \theta}, \mathrm{e}^{\mathrm{i} \varphi}\right)\right|^{2} \mathrm{~d} \theta \mathrm{~d} \varphi /(2 \pi)^{2}\right)^{1 / 2}$. The space L^{2} is a Hilbert space with the usual inner product. For $f \in L^{2}$, the Fourier coefficients are given by

$$
\widehat{f}(n, m)=\frac{\int_{\Gamma^{2}} f\left(\mathrm{e}^{\mathrm{i} \theta}, \mathrm{e}^{\mathrm{i} \varphi}\right) \mathrm{e}^{-\mathrm{i} n \theta} \mathrm{e}^{-\mathrm{i} m \varphi} \mathrm{~d} \theta \mathrm{~d} \varphi}{(2 \pi)^{2}}=\left\langle f, z^{n} w^{m}\right\rangle .
$$

Let $H^{2}=H^{2}\left(\Gamma^{2}\right)$ be the Hardy space on Γ^{2}, that is,

$$
H^{2}=\left\{f \in L^{2}: \widehat{f}(n, m)=0 \text { if } n<0 \text { or } m<0\right\} .
$$

For $f \in H^{2}$, we can write f as

$$
f=\sum_{i, u=0}^{\infty} \oplus_{i, j} z^{i} w^{j}, \quad \text { where } \sum_{i, j=0}^{\infty}\left|a_{i, j}\right|^{2}<\infty .
$$

Let P be the orthogonal projection from L^{2} onto H^{2}. For a closed subspace M of L^{2}, we denote by P_{M} the orthogonal projection from L^{2} onto M. For a function $\psi \in L^{\infty}$, let $L_{\psi} f=\psi f$ for $f \in L^{2}$. The Toeplitz operator T_{ψ} on H^{2} is defined by $T_{\psi} f=P L_{\psi} f$ for $f \in H^{2}$. It is well known that $T_{\psi}^{*}=T_{\bar{\psi}}$. It holds that $T_{z^{n}}^{*} T_{w^{m}}=T_{w^{m}} T_{z^{n}}^{*}$ for $n, m \geqslant 1$. A function $f \in H^{2}$ is called to be inner if $|f|=1$ on Γ^{2} almost everywhere. A closed subspace M of H^{2} is called invariant if $z M \subset M$ and $w M \subset M$. In one variable case, an invariant subspace M of $H^{2}(\Gamma)$ has a form $M=q H^{2}(\Gamma)$, where q is inner. This is the well known Beurling theorem ([2]). In two variable case, the structure of invariant subspaces of H^{2} is more complicated; see [1], [9], [11].

Let M be an invariant subspace of H^{2}. Then $T_{z}^{*}\left(H^{2} \ominus M\right) \subset\left(H^{2} \ominus M\right)$ and $T_{w}^{*}\left(H^{2} \ominus M\right) \subset\left(H^{2} \ominus M\right)$. We call a closed subspace N of H^{2} to be backward shift invariant if $T_{z}^{*} N \subset N$ and $T_{w}^{*} N \subset N$. If N is a backward shift invariant subspace of H^{2}, then $H^{2} \ominus N$ is invariant. There are studies of backward shift invariant subspaces of the unit circle Γ; see [3] and [12].

Let M be an invariant subspace of H^{2} and $\psi \in L^{\infty}$. Let V_{ψ} be the operator on M defined by $V_{\psi}=P_{M} L_{\varphi} \mid M$. Then $V_{z}=T_{z}$ and $V_{z}^{*}=V_{\bar{z}}$ on M. In [8], Mandrekar proved that $V_{z} V_{w}^{*}=V_{w}^{*} V_{z}$ on M holds if and only if M is Beurling type, that is, $M=q H^{2}$ for some inner function q; see also [4], [9], [10].

In this paper, we study a similar type problem on a backward shift invariant subspace N of H^{2}. For $\psi \in L^{\infty}$, put

$$
S_{\psi}=P_{N} L_{\psi} \mid N \quad \text { on } N
$$

Then we have $S_{\psi}^{*}=S_{\bar{\psi}}$ and $S_{z}^{*}=T_{z}^{*}$ on N. Our purpose is to characterize backward shift invariant subspaces N which satisfiy the condition $S_{z} S_{w}^{*}=S_{w}^{*} S_{z}$ on N. Recently, this problem was studied in [5] and [6]. Our theorem in this paper is the following complete characterization.

Theorem 2.1. Let N be a backward shift invariant subspace of H^{2} and $N \neq H^{2}$. Then $S_{z} S_{w}^{*}=S_{w}^{*} S_{z}$ on N holds if and only if N has one of the following forms:
(i) $N=H^{2} \ominus q_{1}(z) H^{2}$;
(ii) $N=H^{2} \ominus q_{2}(w) H^{2}$;
(iii) $N=\left(H^{2} \ominus q_{1}(z) H^{2}\right) \cap\left(H^{2} \ominus q_{2}(w) H^{2}\right)$;
where $q_{1}(z)$ and $q_{2}(w)$ are one variable inner functions.
In Section 2, we prove our theorem as a continuation of the study of [6]. In Section 3, we study the above problem from another point of view.

Let $H^{2}\left(\Gamma_{z}\right)$ and $H^{2}\left(\Gamma_{w}\right)$ be the Hardy spaces on the unit circle Γ in variables z and w, respectively. We think that $H^{2}\left(\Gamma_{z}\right) \subset H^{2}$ and $H^{2}\left(\Gamma_{w}\right) \subset H^{2}$. In [6] it is proved that, if $S_{z} S_{w}^{*}=S_{w}^{*} S_{z}$ and $N \neq H^{2}$, then either $\left(H^{2} \ominus N\right) \cap H^{2}\left(\Gamma_{z}\right) \neq\{0\}$ or $\left(H^{2} \ominus N\right) \cap H^{2}\left(\Gamma_{w}\right) \neq\{0\}$ holds. We prove the following.

Theorem 3.1. Let N be a backward shift invariant subspace of H^{2} and $M=H^{2} \ominus N$. Suppose that $M \cap H^{2}\left(\Gamma_{z}\right) \neq\{0\}$. Put $M \cap H^{2}\left(\Gamma_{z}\right)=q_{1}(z) H^{2}\left(\Gamma_{z}\right)$, where $q_{1}(z)$ is an inner function. Put $\widetilde{M}=M \ominus q_{1}(z) H^{2}$. Then the following conditions are equivalent:
(i) $S_{z} S_{w}^{*}=S_{w}^{*} S_{z}$;
(ii) $T_{z}^{*} \bar{M} \subset \widetilde{M}$;
(iii) either $\widetilde{M}=\{0\}$ or $\widetilde{M}=q_{2}(w)\left(H^{2} \ominus q_{1}(z) H^{2}\right)$ holds for some inner function $q_{2}(w) \in H^{2}\left(\Gamma_{w}\right)$;
(iv) either $M=q_{1}(z) H^{2}$ or $M=q_{1}(z) H^{2}+q_{2}(w) H^{2}$ holds.

Theorem 3.1 follows from Theorem 2.1 without difficulty. We also give a proof of Theorem 3.1 without using Theorem 2.1. Since Theorem 2.1 follows from Theorem 3.1, this means that we give two different proofs of Theorem 2.1. In the forthcoming paper [7], we study backward shift invariant subspaces N satisfying $S_{z} S_{w}^{*} \neq S_{w}^{*} S_{z}$ and $S_{z^{2}} S_{w}^{*}=S_{w}^{*} S_{z^{2}}^{2}$. In [7], both ideas will be used effectively.

2. PROOF OF THEOREM 2.1

To prove our theorem, we need some lemmas. The following two lemmas are proved in [6].

Lemma 2.2. Let N be a backward shift invariant subspace of H^{2} and $M=$ $H^{2} \ominus N$. Then the following conditions are equivalent:
(i) $S_{z} S_{w}^{*}=S_{w}^{*} S_{z}$;
(ii) $S_{w} S_{z}^{*}=S_{z}^{*} S_{w}$;
(iii) $(M \ominus z M) \ominus\left(M \cap H^{2}\left(\Gamma_{w}\right)\right) \subset\left(M \cap H^{2}\left(\Gamma_{z}\right)\right) \oplus w M$;
(iv) $(M \ominus w M) \ominus\left(M \cap H^{2}\left(\Gamma_{z}\right)\right) \subset\left(M \cap H^{2}\left(\Gamma_{w}\right)\right) \oplus z M$.

Lemma 2.3. Let N be a backward shift invariant subspace of H^{2} such that $N \neq H^{2}$. Let $M=H^{2} \ominus N$. If $S_{z} S_{w}^{*}=S_{w}^{*} S_{z}$ holds, then either $M \cap H^{2}\left(\Gamma_{z}\right) \neq\{0\}$ or $M \cap H^{2}\left(\Gamma_{w}\right) \neq\{0\}$ holds.

Lemma 2.4. Let $q_{1}(z)$ and $q_{2}(w)$ be one variable inner functions. Then $M=q_{1}(z) H^{2}+q_{2}(w) H^{2}$ is an invariant subspace of H^{2}.

Proof. We need to prove that M is closed. Since

$$
H^{2} \ominus q_{2}(w) H^{2}=\sum_{j=0}^{\infty} \oplus^{j}\left(H^{2}\left(\Gamma_{w}\right) \ominus q_{2}(w) H^{2}\left(\Gamma_{w}\right)\right)
$$

$H^{2} \ominus q_{2}(w) H^{2}$ is z-invariant. Then $q_{1}(z)\left(H^{2} \ominus q_{2}(w) H^{2}\right) \perp q_{2}(w) H^{2}$ and

$$
\begin{aligned}
M & =q_{1}(z) H^{2}+q_{2}(w) H^{2} \\
& =q_{1}(z)\left(\left(H^{2} \ominus q_{2}(w) H^{2}\right) \oplus q_{2}(w) H^{2}\right)+q_{2}(w) H^{2} \\
& =\left(q_{1}(z)\left(H^{2} \ominus q_{2}(w) H^{2}\right)\right) \oplus q_{2}(w) H^{2} .
\end{aligned}
$$

Hence M is closed.

Proof of Theorem 2.1. Put $M=H^{2} \ominus N$. Then M is an invariant subspace. Suppose that (i) holds. Then $M=q_{1}(z) H^{2}$, so that $M \ominus w M=q_{1}(z) H^{2}\left(\Gamma_{z}\right)$ and $M \cap H^{2}\left(\Gamma_{z}\right)=q_{1}(z) H^{2}\left(\Gamma_{z}\right)$. Hence $(M \ominus w M) \ominus\left(M \cap H^{2}\left(\Gamma_{z}\right)\right)=\{0\}$. By Lemma 2.2, $S_{z} S_{w}^{*}=S_{w}^{*} S_{z}$ holds. Similarly if (ii) holds, then $S_{z} S_{w}^{*}=S_{w}^{*} S_{z}$.

Suppose that (iii) holds. By Lemma 2.4, we have $M=q_{1}(z) H^{2}+q_{2}(w) H^{2}$. Then we have

$$
\begin{equation*}
q_{1}(z), q_{2}(w) \in M \tag{2.1}
\end{equation*}
$$

If either $q_{1}(z)$ or $q_{2}(z)$ is constant, then we have $M=H^{2}$, so that $N=\{0\}$. In this case, trivially $S_{z} S_{w}^{*}=S_{w}^{*} S_{z}$ holds. Hence we may assume that both of $q_{1}(z)$ and $q_{2}(w)$ are not constant functions. We have $M \cap H^{2}\left(\Gamma_{z}\right)=q_{1}(z) H^{2}\left(\Gamma_{z}\right)$, $M \cap H^{2}\left(\Gamma_{w}\right)=q_{2}(w) H^{2}\left(\Gamma_{w}\right)$, and

$$
\begin{equation*}
M \ominus z M \subset q_{1}(z) H^{2}\left(\Gamma_{w}\right)+q_{2}(w) H^{2}\left(\Gamma_{w}\right) \tag{2.2}
\end{equation*}
$$

By Lemma 2.2, it is sufficient to prove

$$
\begin{equation*}
(M \ominus z M) \ominus q_{2}(w) H^{2}\left(\Gamma_{w}\right) \subset q_{1}(z) H^{2}\left(\Gamma_{z}\right) \oplus w M \tag{2.3}
\end{equation*}
$$

Let

$$
\begin{equation*}
f \in(M \ominus z M) \ominus q_{2}(w) H^{2}\left(\Gamma_{w}\right) \tag{2.4}
\end{equation*}
$$

Then by (2.2),

$$
\begin{equation*}
f=q_{1}(z) h_{1}(w)+q_{2}(w) h_{2}(w), \quad h_{1}(w), h_{2}(w) \in H^{2}\left(\Gamma_{w}\right) \tag{2.5}
\end{equation*}
$$

By (2.4), $f \perp z M$. Since $q_{2}(w) h_{2}(w) \perp z M$, we have

$$
q_{1}(z) h_{1}(w) \perp z\left(q_{1}(z) H^{2}+q_{2}(w) H^{2}\right)
$$

Since $q_{1}(z) h_{1}(w) \perp z q_{1}(z) H^{2}$, we have $q_{1}(z) h_{1}(w) \perp z q_{2}(w) H^{2}$. Since $q_{1}(z)$ is not constant, $q_{1}(z) \not \perp z^{n}$ for some $n \geqslant 1$. Since $q_{1}(z) h_{1}(w) \perp z^{n} q_{2}(w) H^{2}\left(\Gamma_{w}\right)$, we get $h_{1}(w) \perp q_{2}(w) H^{2}\left(\Gamma_{w}\right)$. Hence $q_{1}(z) h_{1}(w) \perp q_{2}(w) H^{2}\left(\Gamma_{w}\right)$. By (2.4), $f \perp q_{2}(w) H^{2}\left(\Gamma_{w}\right)$. Therefore by $(2.5), q_{2}(w) h_{2}(w) \perp q_{2}(w) H^{2}\left(\Gamma_{w}\right)$. Thus we get $h_{2}(w)=0$. Let $h_{1}(w)=\widehat{h}_{1}(0)+w h_{1}^{\prime}(w)$, where $h_{1}^{\prime}(w) \in H^{2}\left(\Gamma_{w}\right)$. By (2.1), $q_{1}(z) h_{1}^{\prime}(w) \in M$. Hence we get

$$
f=q_{1}(z) h_{1}(w)=\widehat{h}_{1}(0) q_{1}(z)+q_{1}(z) w h_{1}^{\prime}(w) \in q_{1}(z) H^{2}\left(\Gamma_{z}\right) \oplus w M
$$

Thus (2.3) holds. Therefore $S_{z} S_{w}^{*}=S_{w}^{*} S_{z}$ holds.
Next, we prove the converse assertion. We may assume that $N \neq\{0\}$. Suppose that $S_{z} S_{w}^{*}=S_{w}^{*} S_{z}$. By Lemma 2.3, we may further assume that $M \cap$ $H^{2}\left(\Gamma_{w}\right) \neq\{0\}$ holds. In this case, we shall prove that N has either the form (ii) or the form (iii). Similarly, if $M \cap H^{2}\left(\Gamma_{z}\right) \neq\{0\}$ holds, then we can prove that N has either the form either (i) or (iii).

By the Beurling theorem ([2]),

$$
\begin{equation*}
M \cap H^{2}\left(\Gamma_{w}\right)=q_{2}(w) H^{2}\left(\Gamma_{w}\right) \tag{2.6}
\end{equation*}
$$

where $q_{2}(w)$ is an inner function. By Lemma 2.2,

$$
(M \ominus z M) \ominus q_{2}(w) H^{2}\left(\Gamma_{w}\right) \subset\left(M \cap H^{2}\left(\Gamma_{z}\right)\right) \oplus w M
$$

Put

$$
\begin{equation*}
K_{0}=(M \ominus z M) \ominus q_{2}(w) H^{2}\left(\Gamma_{w}\right) \tag{2.7}
\end{equation*}
$$

Then

$$
\begin{equation*}
K_{0} \subset\left(M \cap H^{2}\left(\Gamma_{z}\right)\right) \oplus w M \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{0} \perp\left(z M \oplus q_{2}(w) H^{2}\left(\Gamma_{w}\right)\right) \tag{2.9}
\end{equation*}
$$

We have

$$
\begin{equation*}
q_{2}(w) H^{2}=q_{2}(w) H^{2}\left(\Gamma_{w}\right) \oplus z q_{2}(w) H^{2} \tag{2.10}
\end{equation*}
$$

By (2.6), we have $q_{2}(w) \in M$. Then $z q_{2}(w) H^{2} \subset z M$. Hence, by (2.9) and (2.10),

$$
\begin{equation*}
K_{0} \perp q_{2}(w) H^{2} . \tag{2.11}
\end{equation*}
$$

We also have

$$
\begin{equation*}
q_{2}(w) H^{2}=\sum_{j=0}^{\infty} \oplus z^{j} q_{2}(w) H^{2}\left(\Gamma_{w}\right) \tag{2.12}
\end{equation*}
$$

Then

$$
\begin{aligned}
M & =\sum_{j=0}^{\infty}{ }^{\oplus} z^{j}(M \ominus z M) \\
& =\sum_{j=0}^{\infty} \oplus^{j} z^{j}\left(K_{0} \oplus q_{2}(w) H^{2}\left(\Gamma_{w}\right)\right) \quad \text { by }(2.7) \\
& =\left(\sum_{j=0}^{\infty}{ }^{\oplus} z^{j} q_{2}(w) H^{2}\left(\Gamma_{w}\right)\right) \oplus\left(\sum_{j=0}^{\infty} \oplus^{j} K_{0}\right) \\
& =q_{2}(w) H^{2} \oplus\left(\sum_{j=0}^{\infty}{ }^{\oplus} z^{j} K_{0}\right)
\end{aligned} \quad \text { by }(2.12) .
$$

Hence

$$
\begin{equation*}
M=q_{2}(w) H^{2} \oplus\left(\sum_{j=0}^{\infty} \oplus_{z^{j}} K_{0}\right) . \tag{2.13}
\end{equation*}
$$

Since (2.8) holds, it occurs one of the following three cases:

$$
K_{0}=\{0\}, \quad K_{0} \subset w M, \quad \text { and } \quad K_{0} \not \subset w M
$$

Case 1. $K_{0}=\{0\}$.

In this case, by (2.13) it follows that $M=q_{2}(w) H^{2}$. Therefore $N=H^{2} \ominus$ $M=H^{2} \ominus q_{2}(w) H^{2}$. Hence (ii) holds.

Case 2. $K_{0} \subset w M$.
In this case, we shall prove that $K_{0}=\{0\}$. Let $F \in K_{0}$. By our assumption of Case 2,

$$
\begin{equation*}
F=w f, \quad f \in M \tag{2.14}
\end{equation*}
$$

We shall prove that

$$
\begin{equation*}
f \in K_{0} \tag{2.15}
\end{equation*}
$$

We have

$$
\begin{aligned}
\left\langle f, q_{2}(w) H^{2} \oplus \sum_{j=1}^{\infty}{ }^{\oplus} z^{j} K_{0}\right\rangle & =\left\langle w f, w\left(q_{2}(w) H^{2} \oplus \sum_{j=1}^{\infty}{ }^{\oplus} z^{j} K_{0}\right)\right\rangle \\
& =\left\langle F, z\left(\sum_{j=1}^{\infty}{ }^{\oplus} z^{j-1} w K_{0}\right)\right\rangle \quad \text { by }(2.11) \text { and }(2.14) \\
& =0
\end{aligned}
$$

The last equation follows from the facts

$$
z\left(\sum_{j=1}^{\infty} \oplus z^{j-1} w K_{0}\right) \subset z M, \quad F \in K_{0}, \quad \text { and } \quad K_{0} \perp z M
$$

Then by (2.13), we have (2.15). Hence $F \in \bigcap_{n=1}^{\infty} w^{n} K_{0}$ holds, so that $F=0$.
Case 3. $K_{0} \not \subset w M$.
In this case, by (2.8) it follows that $M \cap H^{2}\left(\Gamma_{z}\right) \neq\{0\}$. By the Beurling theorem,

$$
\begin{equation*}
M \cap H^{2}\left(\Gamma_{z}\right)=q_{1}(z) H^{2}\left(\Gamma_{z}\right), \quad \text { where } q_{1}(z) \text { is inner. } \tag{2.16}
\end{equation*}
$$

By (2.8) again, $K_{0} \subset q_{1}(z) H^{2}\left(\Gamma_{z}\right) \oplus w M$ holds. Let $G \in K_{0}$. Then $G=$ $q_{1}(z) h_{0}(z) \oplus w h_{1}$, where $h_{0}(z) \in H^{2}\left(\Gamma_{z}\right)$ and $h_{1} \in M$. We have

$$
\begin{equation*}
G=\widehat{h}_{0}(0) q_{1}(z) \oplus z q_{1}(z) h_{2}(z) \oplus w h_{1} \quad \text { for some } h_{2}(z) \in H^{2}\left(\Gamma_{z}\right) \tag{2.17}
\end{equation*}
$$

By (2.16), we have $q_{1}(z) \in M$. Hence $z q_{1}(z) h_{2}(z) \in z M$. Then by (2.9), $G \perp$ $z q_{1}(z) h_{2}(z)$ holds. Therefore by $(2.17), z q_{1}(z) h_{2}(z)=0$, so that $G=\widehat{h}_{0}(0) q_{1}(z) \oplus$ $w h_{1}$ holds. Thus we get

$$
\begin{equation*}
G=a_{0} q_{1}(z) \oplus w h_{1}, \quad h_{1} \in M \tag{2.18}
\end{equation*}
$$

Here we shall prove that

$$
\begin{equation*}
h_{1} \in K_{0} \tag{2.19}
\end{equation*}
$$

Since $q_{2}(w) \in M, M=q_{2}(w) H^{2} \oplus\left(M \ominus q_{2}(w) H^{2}\right)$. Put $h_{1}=h_{1}^{\prime} \oplus h_{2}^{\prime \prime} \in q_{2}(w) H^{2} \oplus$ $\left(M \ominus q_{2}(w) H^{2}\right)$. Then we have $G=a_{0} q_{1}(z) \oplus w h_{1}^{\prime} \oplus w h_{2}^{\prime \prime}$. Since $w h_{1}^{\prime} \in q_{2}(w) H^{2}$, by (2.11) $w h_{1}^{\prime} \perp K_{0}$ holds. Since $G \in K_{0}$, we have $h_{1}^{\prime}=0$. Thus we get

$$
\begin{equation*}
h_{1} \perp q_{2}(w) H^{2} . \tag{2.20}
\end{equation*}
$$

We have

$$
\begin{equation*}
q_{1}(z) \perp w\left(\sum_{j=1}^{\infty} \oplus z^{j} K_{0}\right) . \tag{2.21}
\end{equation*}
$$

Since $w\left(\sum_{j=1}^{\infty} \oplus z^{j} K_{0}\right) \subset z M, G \in K_{0}$, and $K_{0} \perp z M$, we have

$$
\begin{equation*}
G \perp w\left(\sum_{j=1}^{\infty}{ }^{\oplus} z^{j} K_{0}\right) . \tag{2.22}
\end{equation*}
$$

Then we have

$$
\begin{aligned}
& \left\langle h_{1}, \sum_{j=1}^{\infty}{ }^{\oplus} z^{j} K_{0}\right\rangle=\left\langle w h_{1}, w\left(\sum_{j=1}^{\infty}{ }^{\oplus} z^{j} K_{0}\right)\right\rangle \\
& =\left\langle G-a_{0} q_{1}(z), w\left(\sum_{j=1}^{\infty}{ }^{\infty} z^{j} K_{0}\right)\right\rangle \quad \text { by }(2.18) \\
& =0 \quad \text { by (2.21) and (2.22). }
\end{aligned}
$$

Hence $h_{1} \perp \sum_{j=1}^{\infty} \oplus z^{j} K_{0}$. Therefore by (2.13) and (2.20), we get (2.19)
Applying (2.18) and (2.19) infinitely many times, we have

$$
G=\sum_{j=0}^{\infty}{ }^{\oplus} a_{j} q_{1}(z) w^{j}=q_{1}(z)\left(\sum_{j=0}^{\infty}{ }^{\oplus} a_{j} w^{j}\right) \in q_{1}(z) H^{2}\left(\Gamma_{w}\right) .
$$

Hence $K_{0} \subset q_{1}(z) H^{2}\left(\Gamma_{w}\right)$, so

$$
\sum_{j=0}^{\infty}{ }^{\oplus} z^{j} K_{0} \subset q_{1}(z) H^{2}
$$

Therefore by (2.13), $M \subset q_{1}(z) H^{2}+q_{2}(w) H^{2}$. By (2.6) and (2.16), we have $q_{1}(z), q_{2}(w) \in M$. Then $q_{1}(z) H^{2}+q_{2}(w) H^{2} \subset M$. Thus we get $M=q_{1}(z) H^{2}+$ $q_{2}(w) H^{2}$. Hence $N=\left(H^{2} \ominus q_{1}(z) H^{2}\right) \cap\left(H^{2} \ominus q_{2}(w) H^{2}\right)$.

Corollary 2.5. Let N be a backward shift invariant subspace of H^{2} and $N \neq H^{2}$. Let $M=H^{2} \ominus N$. Then $S_{z} S_{w}^{*}=S_{w}^{*} S_{z}$ holds if and only if M has one of the following forms:
(i) $M=q_{1}(z) H^{2}$;
(ii) $M=q_{2}(w) H^{2}$;
(iii) $M=q_{1}(z) H^{2}+q_{2}(w) H^{2}$;
where $q_{1}(z)$ and $q_{2}(w)$ are one variable inner functions.
3. ANOTHER PROOF OF THEOREM 2.1

Let N be a backward shift invariant subspace of H^{2} and $M=H^{2} \ominus N$. Then M is an invariant subspace. Let $q_{1}(z)$ be an inner function in $H^{2}\left(\Gamma_{z}\right)$. In this section, we assume that

$$
\begin{equation*}
q_{1}(z) H^{2} \subset M \quad \text { and } \quad M \cap H^{2}\left(\Gamma_{z}\right)=q_{1}(z) H^{2}\left(\Gamma_{z}\right) \tag{3.1}
\end{equation*}
$$

Then $q_{1}(z) H^{2} \subset M$. Put

$$
\begin{equation*}
\widetilde{M}=M \ominus q_{1}(z) H^{2} \tag{3.2}
\end{equation*}
$$

Then

$$
\begin{equation*}
H^{2} \ominus q_{1}(z) H^{2}=\widetilde{M} \oplus N \tag{3.3}
\end{equation*}
$$

and \widetilde{M} is w-invariant. The following is the main theorem in this section.
Theorem 3.1. Let N be a backward shift invariant subspace of H^{2} and $M=H^{2} \ominus N$. Suppose that $M \cap H^{2}\left(\Gamma_{z}\right) \neq\{0\}$. Put $M \cap H^{2}\left(\Gamma_{z}\right)=q_{1}(z) H^{2}\left(\Gamma_{z}\right)$, where $q_{1}(z)$ is an inner function. Put $\widetilde{M}=M \ominus q_{1}(z) H^{2}$. Then the following conditions are equivalent:
(i) $S_{z} S_{w}^{*}=S_{w}^{*} S_{z}$;

(iii) either $\widetilde{M}=\{0\}$ or $\widetilde{M}=q_{2}(w)\left(H^{2} \ominus q_{1}(z) H^{2}\right)$ holds for some inner function $q_{2}(w) \in H^{2}\left(\Gamma_{w}\right)$;
(iv) either $M=q_{1}(z) H^{2}$ or $M=q_{1}(z) H^{2}+q_{2}(w) H^{2}$ holds.

To prove our theorem, we need to study the properties of \widetilde{M}.
Lemma 3.2. Let $f \in \widetilde{M}$. Then we have the following:
(i) $T_{w}^{*} f \in \widetilde{M}$ if and only if $f \in w \widetilde{M}$;
(ii) $T_{w}^{*} f \perp \widetilde{M}$ if and only if $f \in \widetilde{M} \ominus w \widetilde{M}$.

Proof. (i) Suppose that $T_{w}^{*} f \in \widetilde{M}$. Put

$$
\begin{equation*}
f=\sum_{j=0}^{\infty} \oplus w^{j} f_{j}(z), \quad f_{j}(z) \in H^{2}\left(\Gamma_{z}\right) \tag{3.4}
\end{equation*}
$$

Then

$$
\begin{equation*}
\sum_{j=1}^{\infty}{ }^{\oplus} w^{j-1} f_{j}(z) \in \widetilde{M} \tag{3.5}
\end{equation*}
$$

Since $w \widetilde{M} \subset \widetilde{M}$, it follows that $\sum_{j=1}^{\infty} \oplus^{j} f_{j}(z) \in \widetilde{M}$. By (3.4), we have $f_{0}(z) \in \widetilde{M}$.
Then by (3.1),

$$
f_{0}(z) \in \widetilde{M} \cap H^{2}\left(\Gamma_{z}\right) \subset M \cap H^{2}\left(\Gamma_{z}\right)=q_{1}(z) H^{2}\left(\Gamma_{z}\right)
$$

Then by (3.2), $f_{0}(z) \perp \widetilde{M}$. Thus we get $f_{0}(z)=0$. Hence, by (3.4) and (3.5), $f \in w \widetilde{M}$ holds. The converse is trivial.
(ii) follows from the fact that $T_{w}^{*} f \perp \widetilde{M}$ if and only if $f \perp w \widetilde{M}$.

We denote by P_{\perp} the orthogonal projection from H^{2} onto $H^{2} \ominus q_{1}(z) H^{2}$. Then we have a Toeplitz type operator Q_{z} on $H^{2} \ominus q_{1}(z) H^{2}$ such that

$$
\begin{equation*}
Q_{z}: H^{2} \ominus q_{1}(z) H^{2} \ni f \rightarrow P_{\perp}\left(T_{z} f\right) \in H^{2} \ominus q_{1}(z) H^{2} \tag{3.6}
\end{equation*}
$$

Since $z M \subset M$, by (3.2) it follows that $Q_{z} \widetilde{M} \subset \widetilde{M}$. By (3.3), Q_{z} has the following matrix form:

$$
Q_{z}=\left(\begin{array}{cc}
* & P_{\widetilde{M}} T_{z} \mid N \tag{3.7}\\
0 & S_{z}
\end{array}\right) \quad \text { on } H^{2} \ominus q_{1}(z) H^{2}=\left(\begin{array}{c}
\widetilde{M} \\
\oplus \\
N
\end{array}\right) .
$$

Since $H^{2} \ominus q_{1}(z) H^{2}$ is backward shift invariant, it follows that $T_{w}^{*}\left(H^{2} \ominus q_{1}(z) H^{2}\right) \subset$ $H^{2} \ominus q_{1}(z) H^{2}$. Since $T_{w}^{*} N \subset N$, the operator T_{w}^{*} on $H^{2} \ominus q_{1}(z) H^{2}$ has the following matrix form:

$$
T_{w}^{*}=\left(\begin{array}{cc}
* \tag{3.8}\\
P_{N} T_{w}^{*} \mid \widetilde{M} & 0 \\
S_{w}^{*}
\end{array}\right) \quad \text { on } H^{2} \ominus q_{1}(z) H^{2}=\left(\begin{array}{c}
\widetilde{M} \\
\oplus \\
N
\end{array}\right) .
$$

Put

$$
\begin{equation*}
A=P_{\widetilde{M}} T_{z} \mid N \quad \text { and } \quad B=P_{N} T_{w}^{*} \mid \widetilde{M} \tag{3.9}
\end{equation*}
$$

Lemma 3.3. We have the following:
(i) $T_{w}^{*} Q_{z}=Q_{z} T_{w}^{*}$ on $H^{2} \ominus q_{1}(z) H^{2}$;
(ii) $T_{w} Q_{z}=Q_{z} T_{w}$ on $H^{2} \ominus q_{1}(z) H^{2}$.

Proof. Let $f \in H^{2} \ominus q_{1}(z) H^{2}$. Put

$$
\begin{equation*}
z f=f_{1} \oplus f_{2} \in\left(H^{2} \ominus q_{1}(z) H^{2}\right) \oplus q_{1}(z) H^{2} \tag{3.10}
\end{equation*}
$$

Then $Q_{z} f=f_{1}$. Hence $T_{w}^{*} Q_{z} f=T_{w}^{*} f_{1}$. On the other hand, by (3.10) we have

$$
z T_{w}^{*} f=T_{w}^{*} z f=T_{w}^{*} f_{1}+T_{w}^{*} f_{2}
$$

Since $T_{w}^{*} q_{1}(z) H^{2} \subset q_{1}(z) H^{2}$, then $T_{w}^{*} f_{2} \in q_{1}(z) H^{2}$. Since $T_{w}^{*} f_{1} \in H^{2} \ominus q_{1}(z) H^{2}$, by the above we have $Q_{z} T_{w}^{*} f=T_{w}^{*} f_{1}$. Thus we get $T_{w}^{*} Q_{z}=Q_{z} T_{w}^{*}$.

Since $T_{w}\left(H^{2} \ominus q_{1}(z) H^{2}\right) \subset H^{2} \ominus q_{1}(z) H^{2}$, similarly we have $T_{w} Q_{z}=Q_{z} T_{w}$ on $H^{2} \ominus q_{1}(z) H^{2}$.

Lemma 3.4. $S_{z} S_{w}^{*}=S_{w}^{*} S_{z}$ holds if and only if $B A=0$.
Proof. By Lemma 3.3(i), $T_{w}^{*} Q_{z}=Q_{z} T_{w}^{*}$ on $H^{2} \ominus q_{1}(z) H^{2}$. Then by (3.7) and (3.8), we have $B A+S_{w}^{*} S_{z}=S_{z} S_{w}^{*}$. Then $S_{z}^{*} S_{w}^{*}=S_{w}^{*} S_{z}$ if and only if $B A=0$.

Theorem 3.5. Let N be a backward shift invariant subspace of H^{2} and $M=H^{2} \ominus N$. Suppose that $M \cap H^{2}\left(\Gamma_{z}\right) \neq\{0\}$. Put $M \cap H^{2}\left(\Gamma_{z}\right)=q_{1}(z) H^{2}\left(\Gamma_{z}\right)$, where $q_{1}(z)$ is a one variable inner function. Put $\widetilde{M}=M \ominus q_{1}(z) H^{2}$. Then the following conditions are equivalent:
(i) $S_{z} S_{w}^{*}=S_{w}^{*} S_{z}$;
(ii) $\widetilde{M} \ominus\left\{f \in \widetilde{M}: T_{z}^{*} f \in \widetilde{M}\right\} \subset w \widetilde{M}$;
(iii) $T_{z}^{*} \widetilde{M} \subset \widetilde{M}$.

Proof. (i) \Leftrightarrow (ii) By Lemma 3.4, condition (i) is equivalent to $B A=0$. By (3.3), (3.9), and Lemma 3.2(i), we have that

$$
\operatorname{ker} B=\left\{f \in \widetilde{M}: T_{w}^{*} f \in \widetilde{M}\right\}=w \widetilde{M}
$$

We denote by $[\operatorname{ran} A]$ the closed range of A. Let $A_{1}=P_{\widetilde{M}} T_{z} P_{N}$ on $\widetilde{M} \oplus N$. Then we have $[\operatorname{ran} A]=\left[\operatorname{ran} A_{1}\right]$. Since $A_{1}^{*}=P_{N} T_{z}^{*} P_{\widetilde{M}}$, we have

$$
\operatorname{ker} A_{1}^{*}=N \oplus\left\{f \in \widetilde{M}: T_{z}^{*} f \in \widetilde{M}\right\}
$$

Then

$$
[\operatorname{ran} A]=\left[\operatorname{ran} A_{1}\right]=(\widetilde{M} \oplus N) \ominus \operatorname{ker} A_{1}^{*}=\widetilde{M} \ominus\left\{f \in \widetilde{M}: T_{z}^{*} f \in \widetilde{M}\right\}
$$

Therefore, it follows that $B A=0$ if and only if

$$
\widetilde{M} \ominus\left\{f \in \widetilde{M}: T_{z}^{*} f \in \widetilde{M}\right\} \subset w \widetilde{M}
$$

Thus we get (i) \Leftrightarrow (ii).
(ii) \Rightarrow (iii) Suppose that

$$
\begin{equation*}
\widetilde{M} \ominus\left\{f \in \widetilde{M}: T_{z}^{*} f \in \widetilde{M}\right\} \subset w \widetilde{M} \tag{3.11}
\end{equation*}
$$

Since $\left\{f \in \widetilde{M}: T_{z}^{*} f \in \widetilde{M}\right\}$ is a closed subspace, by (3.11) we have

$$
\begin{equation*}
\widetilde{M} \ominus w \widetilde{M} \subset\left\{f \in \widetilde{M}: T_{z}^{*} f \in \widetilde{M}\right\} \tag{3.12}
\end{equation*}
$$

Since $w \widetilde{M} \subset \widetilde{M}$, we have

$$
\begin{equation*}
\widetilde{M}=\sum_{j=0}^{\infty} \oplus w^{j}(\widetilde{M} \ominus w \widetilde{M}) \tag{3.13}
\end{equation*}
$$

To prove (iii), let $f \in \widetilde{M}$. Then by (3.13),

$$
f=\sum_{j=0}^{\infty} w^{j} g_{j}, \quad \text { where } g_{j} \in \widetilde{M} \ominus w \widetilde{M}
$$

Since $T_{z}^{*} T_{w}=T_{w} T_{z}^{*}$ on H^{2}, by (3.12) we have

$$
T_{z}^{*} f=\sum_{j=0}^{\infty} w^{j} T_{z}^{*} g_{j} \in \widetilde{M}
$$

(iii) \Rightarrow (ii) is trivial.

For a one variable inner function $q(z)$, put $q^{*}(z)=\bar{z}(q(z)-\widehat{q}(0))$.
Lemma 3.6. Let $q_{1}(z)$ and $q_{2}(z)$ be inner functions. Then we have the following:
(i) $T_{z}^{*} q_{1}(z)=q_{1}^{*}(z)$ and $q_{1}^{*}(z) \perp q_{1}(z) H^{2}\left(\Gamma_{z}\right)$;
(ii) if $q_{1}(z) H^{2}\left(\Gamma_{z}\right) \varsubsetneqq q_{2}(z) H^{2}\left(\Gamma_{z}\right)$, then the smallest closed T_{z}^{*}-invariant subspace of $H^{2}\left(\Gamma_{z}\right)$ containing $q_{2}(z) H^{2}\left(\Gamma_{z}\right) \ominus q_{1}(z) H^{2}\left(\Gamma_{z}\right)$ is equal to $H^{2}\left(\Gamma_{z}\right) \ominus$ $q_{1}(z) H^{2}\left(\Gamma_{z}\right)$;
(iii) the closed subspace generated by $T_{z}^{* n} q_{1}^{*}(z), n=0,1,2, \ldots$, it is equal to $H^{2}\left(\Gamma_{z}\right) \ominus q_{1}(z) H^{2}\left(\Gamma_{z}\right)$.

Proof. (i) Trivially $T_{z}^{*} q_{1}(z)=q_{1}^{*}(z)$ holds. For $h \in H^{2}\left(\Gamma_{z}\right)$, we have

$$
\left\langle q_{1}^{*}(z), q_{1}(z) h\right\rangle=\left\langle T_{z}^{*} q_{1}(z), q_{1}(z) h\right\rangle=\left\langle q_{1}(z), z q_{1}(z) h\right\rangle=\langle 1, z h\rangle=0 .
$$

Thus we get (i).
(ii) Let L be the smallest backward shift invariant subspace of $H^{2}\left(\Gamma_{z}\right)$ containing $q_{2}(z) H^{2}\left(\Gamma_{z}\right) \ominus q_{1}(z) H^{2}\left(\Gamma_{z}\right)$. Then $L \subset H^{2}\left(\Gamma_{z}\right) \ominus q_{1}(z) H^{2}\left(\Gamma_{z}\right)$. Let $f \in H^{2}\left(\Gamma_{z}\right) \ominus q_{1}(z) H^{2}\left(\Gamma_{z}\right)$ such that $f \perp L$. Since $H^{2}\left(\Gamma_{z}\right) \ominus L$ is invariant, $z^{k} f \perp L$ for $k \geqslant 0$. Hence

$$
z^{k} f \perp q_{2}(z) H^{2}\left(\Gamma_{z}\right) \ominus q_{1}(z) H^{2}\left(\Gamma_{z}\right) \quad \text { for every } k \geqslant 0
$$

Since $q_{2}(z) H^{2}\left(\Gamma_{z}\right) \subset L \oplus q_{1}(z) H^{2}\left(\Gamma_{z}\right)$, we have $f \perp q_{2}(z) H^{2}\left(\Gamma_{z}\right)$. Hence

$$
f \perp z^{n}\left(q_{2}(z) H^{2}\left(\Gamma_{z}\right) \ominus q_{1}(z) H^{2}\left(\Gamma_{z}\right)\right) \quad \text { for every } k \geqslant 0 .
$$

Since $q_{2}(z) H^{2}\left(\Gamma_{z}\right) \ominus q_{1}(z) H^{2}\left(\Gamma_{z}\right) \neq\{0\}$, we have $f=0$. Thus we get $L=$ $H^{2}\left(\Gamma_{z}\right) \ominus q_{1}(z) H^{2}\left(\Gamma_{z}\right)$.
(iii) Let E be the closed subspace generated by $T_{z}^{* n} q_{1}^{*}(z), n \geqslant 0$. By (i), $E \subset H^{2}\left(\Gamma_{z}\right) \ominus q_{1}(z) H^{2}\left(\Gamma_{z}\right)$ and E is a backward shift invariant subspace of $H^{2}\left(\Gamma_{z}\right)$. Then $H^{2}\left(\Gamma_{z}\right) \ominus E=q_{3}(z) H^{2}\left(\Gamma_{z}\right)$ for some inner function $q_{3}(z)$ and $q_{1}(z) H^{2}\left(\Gamma_{z}\right) \subset$ $q_{3}(z) H^{2}\left(\Gamma_{z}\right)$. If $q_{1}(z) H^{2}\left(\Gamma_{z}\right)=q_{3}(z) H^{2}\left(\Gamma_{z}\right)$ our assertion holds.

Suppose that $q_{1}(z) H^{2}\left(\Gamma_{z}\right) \nsubseteq q_{3}(z) H^{2}\left(\Gamma_{z}\right)$. Put $q_{4}(z)=q_{1}(z) / q_{3}(z)$. Then $q_{4}(z)$ is a nonconstant inner function, and $q_{1}^{*}(z)=q_{3}(z) q_{4}^{*}(z)+\widehat{q}_{4}(0) q_{3}^{*}(z)$. We have $q_{4}^{*}(z) \neq 0$, so that $q_{3}(z) q_{4}^{*}(z) \not \perp q_{3}(z) H^{2}\left(\Gamma_{z}\right)$. By (i), $q_{3}^{*}(z) \perp q_{3}(z) H^{2}\left(\Gamma_{z}\right)$. Hence $q_{1}^{*}(z) \not \perp q_{3}(z) H^{2}\left(\Gamma_{z}\right)$. Since $q_{1}^{*}(z) \in E, E \not \perp \quad q_{3}(z) H^{2}\left(\Gamma_{z}\right)$. This is a contradiction. Hence we get our assertion.

Proof of Theorem 3.1. First, we shall prove our theorem using Corollary 2.5 and Theorem 3.5.
(i) \Leftrightarrow (ii) follows from Theorem 3.5.
(i) \Rightarrow (iv) follows from Corollary 2.5.
(iv) \Leftrightarrow (iii) If $M=q_{1}(z) H^{2}$, then $\widetilde{M}=\{0\}$. Suppose that $M=q_{1}(z) H^{2}+$ $q_{2}(w) H^{2}$. Then

$$
\begin{aligned}
M & =q_{1}(z) H^{2}+q_{2}(w)\left(q_{1}(z) H^{2} \oplus\left(H^{2} \ominus q_{1}(z) H^{2}\right)\right) \\
& =q_{1}(z) H^{2}+q_{2}(w)\left(H^{2} \ominus q_{1}(z) H^{2}\right)
\end{aligned}
$$

Since $H^{2} \ominus q_{1}(z) H^{2}$ is w-invariant, we have

$$
M=q_{1}(z) H^{2} \oplus q_{2}(w)\left(H^{2} \ominus q_{1}(z) H^{2}\right)
$$

Thus we get $\widetilde{M}=q_{2}(w)\left(H^{2} \ominus q_{1}(z) H^{2}\right)$.
The converse assertion is not difficult to prove.
(iii) \Rightarrow (ii) is easy.

Here we give another proof of (ii) \Rightarrow (iii) without using Corollary 2.5. We may assume that $\widetilde{M} \neq\{0\}$. By condition (ii), we have $T_{z}^{*} \widetilde{M} \subset \widetilde{M}$. Then $T_{z}^{*} \widetilde{M} \perp N$, so that $\widetilde{M} \perp z N$. Hence by (3.3) and (3.6),

$$
\begin{equation*}
Q_{z} N \subset N \tag{3.14}
\end{equation*}
$$

Since $\widetilde{M} \neq\{0\}$ and $w \widetilde{M} \subset \widetilde{M}, \widetilde{M} \ominus w \widetilde{M} \neq\{0\}$ holds. Let $f \in \widetilde{M} \ominus w \widetilde{M}$. Then by (3.3) and Lemma 3.2(ii), we have $T_{w}^{*} f \in N$. Hence $T_{w}^{*} T_{z}^{*} f=T_{z}^{*} T_{w}^{*} f \in N$. Since $T_{z}^{*} \widetilde{M} \subset \widetilde{M}, T_{z}^{*} f \in \widetilde{M}$ holds. Hence by Lemma 3.2(ii) again, $T_{z}^{*} f \in \widetilde{M} \ominus w \widetilde{M}$ holds. Thus we get

$$
\begin{equation*}
T_{z}^{*}(\widetilde{M} \ominus w \widetilde{M}) \subset \widetilde{M} \ominus w \widetilde{M} \tag{3.15}
\end{equation*}
$$

By (3.2), we have $f \in M$ and $z f=f_{1}+f_{2} \in \widetilde{M} \oplus q_{1}(z) H^{2}$. Then by (3.6), we have $Q_{z} f=f_{1} \in \widetilde{M}$. Since $T_{w}^{*} f \in N$, by (3.14) and Lemma 3.3(i) we have $T_{w}^{*} Q_{z} f=Q_{z} T_{w}^{*} f \in N$. Then by (3.3) and Lemma 3.2(ii), $Q_{z} f \in \widetilde{M} \ominus w \widetilde{M}$ holds. Thus we get

$$
\begin{equation*}
Q_{z}(\widetilde{M} \ominus w \widetilde{M}) \subset \widetilde{M} \ominus w \widetilde{M} \tag{3.16}
\end{equation*}
$$

We define the operator W_{z} on \widetilde{M} to $q_{1}(z) H^{2}$ by

$$
\begin{equation*}
W_{z}=P_{q_{1}(z) H^{2}} T_{z}=T_{z}-Q_{z} \tag{3.17}
\end{equation*}
$$

Then by Lemma 3.3(ii),

$$
\begin{equation*}
W_{z} T_{w}=T_{w} W_{z} \quad \text { on } \widetilde{M} \tag{3.18}
\end{equation*}
$$

Then $w W_{z} \widetilde{M}=W_{z}(w \widetilde{M}) \subset W_{z} \widetilde{M}$. Hence we get

$$
\begin{equation*}
w \overline{W_{z} \widetilde{M}} \subset \overline{W_{z} \widetilde{M}} \tag{3.19}
\end{equation*}
$$

where $\overline{W_{z} \widetilde{M}}$ is the norm closure of the space $W_{z} \widetilde{M}$. Since $\widetilde{M} \perp q_{1}(z) H^{2}, z \widetilde{M} \perp$ $z q_{1}(z) H^{2}$ holds. Then by (3.17), we obtain

$$
W_{z} \widetilde{M} \subset q_{1}(z) H^{2} \ominus z q_{1}(z) H^{2}=q_{1}(z) H^{2}\left(\Gamma_{w}\right)
$$

Hence $\bar{q}_{1}(z) \overline{W_{z} \widetilde{M}} \subset H^{2}\left(\Gamma_{w}\right)$, so that by (3.19) and the Beurling theorem,

$$
\begin{equation*}
\bar{q}_{1}(z) \overline{W_{z} \widetilde{M}}=q_{2}(w) H^{2}\left(\Gamma_{w}\right) \tag{3.20}
\end{equation*}
$$

for some inner function $q_{2}(w)$.
Let $f \in \widetilde{M} \ominus w \widetilde{M}$ and $g \in \widetilde{M}$. Since $Q_{z} \widetilde{M} \subset \widetilde{M}$, by Lemma 3.3(ii) we have $Q_{z} w \widetilde{M} \subset w \widetilde{M}$. Then by (3.16), $Q_{z} f \perp Q_{z} w g$ holds. Since $z f \perp z w g$, by (3.17) we have

$$
0=\langle z f, z w g\rangle=\left\langle Q_{z} f \oplus W_{z} f, Q_{z} w g \oplus W_{z} w g\right\rangle=\left\langle W_{z} f, W_{z} w g\right\rangle
$$

Then $W_{z}(\widetilde{M} \ominus w \widetilde{M}) \perp W_{z}(w \widetilde{M})$. Hence by (3.18), we get

$$
W_{z}(\widetilde{M} \ominus w \widetilde{M}) \perp w \overline{W_{z} \widetilde{M}}
$$

Therefore by (3.20), we obtain

$$
W_{z}(\widetilde{M} \ominus w \widetilde{M}) \subset \overline{W_{z} \widetilde{M}} \ominus w \overline{W_{z} \widetilde{M}}=\left[q_{1}(z) q_{2}(w)\right]
$$

where $\left[q_{1}(z) q_{2}(w)\right]$ is the linear span of $q_{1}(z) q_{2}(w)$. If $W_{z}(\widetilde{M} \ominus w \widetilde{M})=\{0\}$, by (3.16) and (3.17) it follows that $z(\widetilde{M} \ominus w \widetilde{M}) \subset \widetilde{M} \ominus w \widetilde{M}$. Then $z^{n}(\widetilde{M} \ominus w \widetilde{M}) \subset$ $\widetilde{M} \ominus w \widetilde{M}$ for every positive integer n. Since $\widetilde{M} \ominus w \widetilde{M} \neq\{0\}$, we have that $z^{n}(\widetilde{M} \ominus w \widetilde{M}) \not \perp q_{1}(z) H^{2}$ for some n. These contradict with (3.2). Thus there exists f_{0} in $\widetilde{M} \ominus w \widetilde{M}$ such that

$$
\begin{equation*}
W_{z} f_{0}=a q_{1}(z) q_{2}(w) \quad \text { and } \quad a \neq 0 \tag{3.21}
\end{equation*}
$$

Since $z f_{0}=Q_{z} f_{0}+W_{z} f_{0}$, we have

$$
\begin{aligned}
f_{0} & =T_{z}^{*} Q_{z} f_{0}+T_{z}^{*} W_{z} f_{0} \\
& =T_{z}^{*} Q_{z} f_{0}+a q_{1}^{*}(z) q_{2}(w) \quad \text { by }(3.21) \text { and Lemma 3.6(i). }
\end{aligned}
$$

Hence by (3.15) and (3.16), it follows that $q_{1}^{*}(z) q_{2}(w) \in \widetilde{M} \ominus w \widetilde{M}, n \geqslant 0$. By Lemma 3.6(iii), we obtain

$$
\begin{equation*}
q_{2}(w)\left(H^{2}\left(\Gamma_{z}\right) \ominus q_{1}(z) H^{2}\left(\Gamma_{z}\right)\right) \subset \widetilde{M} \ominus w \widetilde{M} \tag{3.22}
\end{equation*}
$$

We shall prove that

$$
\begin{equation*}
\widetilde{M} \ominus w \widetilde{M}=q_{2}(w)\left(H^{2}\left(\Gamma_{z}\right) \ominus q_{1}(z) H^{2}\left(\Gamma_{z}\right)\right) . \tag{3.23}
\end{equation*}
$$

Let

$$
\begin{equation*}
F \in(\widetilde{M} \ominus w \widetilde{M}) \ominus q_{2}(w)\left(H^{2}\left(\Gamma_{z}\right) \ominus q_{1}(z) H^{2}\left(\Gamma_{z}\right)\right) \tag{3.24}
\end{equation*}
$$

Let i, j be nonnegative integers. Since $q_{2}(w)\left(H^{2}\left(\Gamma_{z}\right) \ominus q_{1}(z) H^{2}\left(\Gamma_{z}\right)\right)$ is invariant for the operator T_{z}^{*},

$$
T_{z}^{* i}\left(q_{2}(w)\left(H^{2}\left(\Gamma_{z}\right) \ominus q_{1}(z) H^{2}\left(\Gamma_{z}\right)\right)\right) \in q_{2}(w)\left(H^{2}\left(\Gamma_{z}\right) \ominus q_{1}(z) H^{2}\left(\Gamma_{z}\right)\right)
$$

Since $\widetilde{M} \ominus w \widetilde{M} \perp w^{n}(\widetilde{M} \ominus w \widetilde{M})$ for every positive integer n, by (3.22) and (3.24) we have

$$
w^{j} F \perp T_{z}^{* i}\left(q_{2}(w)\left(H^{2}\left(\Gamma_{z}\right) \ominus q_{1}(z) H^{2}\left(\Gamma_{z}\right)\right)\right)
$$

and

$$
F \perp w^{j} T_{z}^{* i}\left(q_{2}(w)\left(H^{2}\left(\Gamma_{z}\right) \ominus q_{1}(z) H^{2}\left(\Gamma_{z}\right)\right)\right)
$$

Hence

$$
\begin{equation*}
w^{j} F \perp \bar{z}^{i} q_{2}(w)\left(H^{2}\left(\Gamma_{z}\right) \ominus q_{1}(z) H^{2}\left(\Gamma_{z}\right)\right) \tag{3.25}
\end{equation*}
$$

and

$$
\begin{equation*}
F \perp \bar{z}^{i} w^{j} q_{2}(w)\left(H^{2}\left(\Gamma_{z}\right) \ominus q_{1}(z) H^{2}\left(\Gamma_{z}\right)\right) \tag{3.26}
\end{equation*}
$$

Since $q_{2}(w)\left(H^{2}\left(\Gamma_{z}\right) \ominus q_{1}(z) H^{2}\left(\Gamma_{z}\right)\right)$ is invariant for the operator Q_{z}, similarly we have

$$
\begin{equation*}
w^{j} F \perp Q_{z}^{i}\left(q_{2}(w)\left(H^{2}\left(\Gamma_{z}\right) \ominus q_{1}(z) H^{2}\left(\Gamma_{z}\right)\right)\right) \tag{3.27}
\end{equation*}
$$

and

$$
\begin{equation*}
F \perp w^{j} Q_{z}^{i}\left(q_{2}(w)\left(H^{2}\left(\Gamma_{z}\right) \ominus q_{1}(z) H^{2}\left(\Gamma_{z}\right)\right)\right) \tag{3.28}
\end{equation*}
$$

By (3.6),

$$
Q_{z}^{i}\left(q_{2}(w)\left(H^{2}\left(\Gamma_{z}\right) \ominus q_{1}(z) H^{2}\left(\Gamma_{z}\right)\right)\right)=P_{\perp}\left(z^{i} q_{2}(w)\left(H^{2}\left(\Gamma_{z}\right) \ominus q_{1}(z) H^{2}\left(\Gamma_{z}\right)\right)\right)
$$

Since $\widetilde{M} \perp q_{1}(z) H^{2}$ and $w^{j} F \in \widetilde{M}$, by (3.27) and (3.28) we have

$$
\begin{equation*}
w^{j} F \perp z^{i} q_{2}(w)\left(H^{2}\left(\Gamma_{z}\right) \ominus q_{1}(z) H^{2}\left(\Gamma_{z}\right)\right) \tag{3.29}
\end{equation*}
$$

and

$$
\begin{equation*}
F \perp z^{i} w^{j} q_{2}(w)\left(H^{2}\left(\Gamma_{z}\right) \ominus q_{1}(z) H^{2}\left(\Gamma_{z}\right)\right) \tag{3.30}
\end{equation*}
$$

Since $\widetilde{M} \neq\{0\}$, by (3.2) $q_{1}(z)$ is not constant. Hence $H^{2}\left(\Gamma_{z}\right) \ominus q_{1}(z) H^{2}\left(\Gamma_{z}\right) \neq\{0\}$. Therefore by (3.25), (3.26), (3.29), and (3.30), we get $F=0$. Thus we get (3.23).

By (3.23), we obtain

$$
\widetilde{M}=\sum_{j=0}^{\infty}{ }^{\oplus} w^{j}(\widetilde{M} \ominus w \widetilde{M})=q_{2}(w)\left(H^{2} \ominus q_{1}(z) H^{2}\right)
$$

The following is a consequence sufficiently interesting in its own right.
Corollary 3.7. Let $q_{1}(z)$ be a nonconstant inner function. Let L be a closed subspace of $H^{2} \ominus q_{1}(z) H^{2}$ and $L \neq\{0\}$. Suppose that $w L \subset L, Q_{z} L \subset$ L, and $Q_{z}^{*} L \subset L$. Then, there exists an inner function $q_{2}(w)$ such that $L=$ $q_{2}(w)\left(H^{2} \ominus q_{1}(z) H^{2}\right)$.

Proof. We note that $Q_{z}^{*}=T_{z}^{*}$ on $H^{2} \ominus q_{1}(z) H^{2}$. Put $M=L \oplus q_{1}(z) H^{2}$. Then, by our assumption, M is an invariant subspace and $q_{1}(z) H^{2}\left(\Gamma_{z}\right) \subset M \cap H^{2}\left(\Gamma_{z}\right)$. Put $M \cap H^{2}\left(\Gamma_{z}\right)=q_{3}(z) H^{2}\left(\Gamma_{z}\right)$, where $q_{3}(z)$ is inner. Then $q_{1}(z) H^{2}\left(\Gamma_{z}\right) \subset$ $q_{3}(z) H^{2}\left(\Gamma_{z}\right)$.

Suppose that $q_{1}(z) H^{2}\left(\Gamma_{z}\right) \neq q_{3}(z) H^{2}\left(\Gamma_{z}\right)$. Let L_{1} be the smallest closed subspace of $H^{2}\left(\Gamma_{z}\right) \ominus q_{1}(z) H^{2}\left(\Gamma_{z}\right)$ containing $q_{3}(z) H^{2}\left(\Gamma_{z}\right) \ominus q_{1}(z) H^{2}\left(\Gamma_{z}\right)$ such that $T_{z}^{*} L_{1} \subset L_{1}$. By Lemma 3.6(ii), $L_{1}=H^{2}\left(\Gamma_{z}\right) \ominus q_{1}(z) H^{2}\left(\Gamma_{z}\right)$. Since $M \cap H^{2}\left(\Gamma_{z}\right)=$ $q_{3}(z) H^{2}\left(\Gamma_{z}\right)$,

$$
q_{3}(z) H^{2}\left(\Gamma_{z}\right) \ominus q_{1}(z) H^{2}\left(\Gamma_{z}\right) \subset L .
$$

Since $T_{z}^{*} L=Q_{z}^{*} L \subset L$, we have $L_{1} \subset L$. Hence we have

$$
H^{2} \ominus q_{1}(z) H^{2}=\sum_{j=0}^{\infty}{ }^{\oplus} w^{j} L_{1} \subset L \subset H^{2} \ominus q_{1}(z) H^{2}
$$

Therefore, $L=H^{2} \ominus q_{1}(z) H^{2}$. Thus, we get our assertion.
Suppose that $q_{1}(z) H^{2}\left(\Gamma_{z}\right)=q_{3}(z) H^{2}\left(\Gamma_{z}\right)$. We have $L=M \ominus q_{1}(z) H^{2}$. By our assumption, $T_{z}^{*} L=Q_{z}^{*} L \subset L$. Then by Theorem 3.1, we have $L=$ $q_{2}(w)\left(H^{2} \ominus q_{1}(z) H^{2}\right)$ for an inner function $q_{2}(w)$.

Acknowledgements. The first author has been supported by Grant-in-Aid for Scientific Research (No. 13440043), Ministry of Education, Science and Culture.

REFERENCES

1. P.R. Ahern, D.N. Clark, Invariant subspaces and analytic continuation in several variables, J. Math. Mech. 19(1970), 963-969.
2. A. Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math. 81(1949), 239-255.
3. J.A. Cima, W.T. Ross, The Backward Shift on the Hardy Space, Math. Surveys Monogr., vol. 79, Amer. Math. Soc., Providence, RI, 2000.
4. M. Cotlar, C. Sadosky, A polydisk version of Beurling's characterization for invariant subspaces of finite multi-codimension, Contemp. Math. 212 (1998), 51-56.
5. R.G. Douglas, R. Yang, Operator theory in the Hardy space over the bidisk. I, Integral Equations Operator Theory 38(2000), 207-221.
6. K. Izuchi, T. Nakazi, Backward shift invariant subspaces in the bidisc, Hokkaido Math. J., to appear.
7. K. Izuchi, T. Nakazi, M. Seto, Backward shift invariant subspaces in the bidisc. III, preprint.
8. V. Mandrekar, The validity of Beurling theorems in polydiscs, Proc. Amer. Math. Soc. 103(1988), 145-148.
9. T. NAKAZI, Certain invariant subspaces of H^{2} and L^{2} on a bidisc, Canad. J. Math. 40 (1988), 1272-1280.
10. T. NakAZI, Invariant subspaces in the bidisc and commutators, J. Austral. Math. Soc. Ser. A 56(1994), 232-242.
11. W. Rudin, Function Theory in Polydiscs, Benjamin, New York 1969.
12. D. Sarason, Generalized interpolation in H^{∞}, Trans. Amer. Math. Soc. 127(1967), 179-203.

SKEIJI IZUCHI
Department of Mathematics Niigata University Niigata 950-2181 JAPAN
E-mail: izuchi@math.sc.niigata-u.ac.jp

TAKAHIKO NAKAZI
Department of Mathematics
Hokkaido University Sapporo 060-0810

JAPAN
E-mail: nakazi@math.sci.hokudai.ac.jp

MICHI SETO
Department of Mathematics
Tohoku University
Senndai 980-8578
JAPAN
E-mail: s98m21@math.tohoku.ac.jp
Current address
Department of Mathematics
Hokkaido University Sapporo 060-0810 JAPAN
E-mail: seto@@math.sci.hokudai.ac.jp

Received May 20, 2002.

