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Abstract. Let Mϕ be the operator of multiplication by a bounded analytic
function ϕ in a planar domain Ω on a Hilbert space of analytic functions in
Ω. We give a sufficient condition for Mϕ to be irreducible.
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1. INTRODUCTION

Let Ω be a bounded domain in the complex plane C and let H∞(Ω) be the space
of all bounded analytic functions in Ω. We will consider Hilbert spaces of analytic
functions in Ω and multiplication operators on such spaces induced by functions
from H∞(Ω).

More specifically, we are interested in the structure of the reducing subspace
lattice of the operator

Mϕ : H → H

for ϕ ∈ H∞(Ω). We mention some known results in this area that serve as a
motivation for the present paper.

First, if H is the classical Hardy space of the unit disk D, and if ϕ is an inner
function on D, then Mϕ is a pure isometry and a shift operator on H, and so its
reducing subspaces are in a one-to-one correspondence with the closed subspaces
of H ª (ϕH). Therefore, the reducing subspace lattice of such an operator Mϕ is
isomorphic to the lattice of closed subspaces of Hª(ϕH). In particular, if ϕ is any
inner function other than a Möbius map, then Mϕ has infinitely many reducing
subspaces. See [5] for this result and related references.
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Second, if H is the Bergman space of D and ϕ is a Blaschke product of two
zeros in D, then Mϕ : H → H has exactly two nontrivial reducing subspaces. See
[11] for proof and a description of these reducing subspaces.

Finally, if H is the Hilbert space on D induced by a positive weight sequence
{ωn} (with ωn+1/ωn 6 M for some constant M and all n > 0):

H =
{
f(z) =

∞∑
n=0

anz
n : ‖f‖2 =

∞∑
n=0

ωn|an|2 <∞
}
,

and if ϕ(z) = zN for some integer N > 1, then the operator Mϕ : H → H has
only a finite number of reducing subspaces if and only if there exist no integers i
and j, i 6= j, such that

ωi+kN
ωi

=
ωj+kN
ωj

for all k > 0. See [9] for details. In particular, MzN , N > 1, has infinitely many
reducing subspaces in the Hardy space, but it only has a finite number of reducing
subspaces in the Bergman space.

The purpose of this paper is to show that, in general, reducing subspaces are
hard to come by. For example, if Ω = D and if ϕ is a “random” polynomial, then
chances are that Mϕ will have no non-trivial reducing subspace. See Section 5.

In the rest of the paper we assume that H is a Hilbert space of analytic
functions in Ω with the following properties:

(1) Every point in Ω is a nonzero bounded linear functional on H, so that H
possesses a reproducing kernel K(z, w) with K(z, z) > 0 for all z ∈ Ω.

(2) Every function ϕ ∈ H∞(Ω) is a pointwise multiplier of H, so that the
operator of multiplication by ϕ, Mϕ, is a bounded linear operator on H (by the
closed-graph theorem).

(3) For every λ ∈ Ω the operator Mz−λ is bounded below on H, so that the
space (z − λ)H is closed in H.

(4) For every λ ∈ Ω the space H ª (z − λ)H is one dimensional.

Although our main theorem below is stated for any such Hilbert space, the
spaces that we are most interested in are the classical Hardy and Bergman spaces
on the open unit disk, which certainly satisfy all the conditions above.

Theorem 1.1. Suppose ϕ ∈ H∞(Ω). If there exists a nonempty open set
V ⊂ ϕ(Ω) such that Ω ∩ ϕ−1(z) is a singleton for every z ∈ V , then the operator
Mϕ : H → H has no nontrivial reducing subspace, and its commutant consists of
exactly the multiplication operators Mf with f ∈ H∞(Ω).

Note that if Ω is the domain enclosed by a simple closed curve and ϕ is smooth
up to the boundary, then ϕ maps ∂Ω to a closed curve γ, and the condition in the
theorem above is equivalent to the following: there exists a point z0 ∈ ϕ(Ω) − γ

such that the winding number of γ about z0 is equal to 1 or −1.
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When Ω = D, no inner function ϕ satisfies the condition in the theorem
above unless it is a Möbius map. Furthermore, if ϕ = f(ψ), where f is a function
in H∞(D) and ψ is a non-Möbius inner function, then ϕ does not satisfy the
condition in the theorem above. In the final section of the paper we shall explain
that as long as the function ϕ is not a composition of another function with a
non-Möbius inner function, then the condition in the theorem above very likely
holds, at least in the case when ϕ is analytic in the closed disk.

2. PRELIMINARIES

For a positive integer n and a domain U ⊂ C, the Cowen-Douglas class Bn(U)
consists of bounded linear operators T on any fixed separable infinite dimensional
Hilbert space X with the following properties:

(a) Ran (λ− T ) = X for every λ ∈ U .
(b) dim[ker(λ− T )] = n for every λ ∈ U .
(c) Span {ker(λ− T ) : λ ∈ U} = X.

Here Span denotes the closed linear span of a collection of sets in X.
The classes Bn were introduced by Cowen and Douglas; see [3]. Among the

many subsequent contributions to the study of these classes we mention [4] and
[10]. We will need the following result from the Cowen-Douglas theory ([3]).

Lemma 2.1. Every operator T in B1(U) is irreducible.

Fix any w ∈ Ω. Since the point-evaluation at w is a bounded functional on
H, there exists a unique function Kw ∈ H such that

f(w) = 〈f,Kw〉
for all f ∈ H. The function

K : Ω× Ω → C

defined by
K(z, w) = Kw(z), z, w ∈ Ω,

is called the reproducing kernel of H. It is well known that K(z, w) is analytic in
z and conjugate analytic in w. In fact, we always have

K(z, w) = K(w, z)

for all z, w ∈ Ω.

Lemma 2.2. If V is a nonempty open set in Ω, then the functions Kz, where
z ∈ V , span the whole space H.
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Proof. Let H1 be the closed linear span of the functions Kz, z ∈ V . If
H1 6= H, then there exists a unit vector f ∈ H ª H1. In particular, for every
z ∈ V we have Kz ∈ H1 and so

f(z) = 〈f,Kz〉 = 0.

Since Ω is connected, the identity theorem tells us that f = 0, a contradiction to
‖f‖ = 1.

Note that condition (4) is not needed in the above lemma, nor is it necessary
for the following lemma.

Lemma 2.3. For any z ∈ Ω let Xz denote the subspace of H consisting
of functions f with f(z) = 0, and let Yz be the one-dimensional subspace of H
spanned by the reproducing kernel Kz. Then we have

H = Xz ⊕ Yz

for every z ∈ Ω.

Proof. It is obvious that Xz ⊥ Yz. Let Pz be the orthogonal projection from
H onto Yz. Given f ∈ H we can write f = g + Pz(f). Then

g(z) = 〈g,Kz〉 = 〈f −Pz(f),Kz〉 = 〈f,Kz〉 − 〈Pz(f),Kz〉 = 〈f,Kz〉 − 〈f,Kz〉 = 0,

so that g ∈ Xz.

It will be clear that condition (4) is the most crucial one in our analysis. We
will need the following consequences of this condition.

Lemma 2.4. If f ∈ H, a ∈ Ω, and f(a) = 0, then f = (z − a)g for some
g ∈ H.

Proof. See [7].

Lemma 2.5. If a and b are points in Ω, then

dim(H ª (z − a)(z − b)H) = 2.

Proof. If H satisfies condition (4), then so does the closed subspace (z−a)H
(see [7]). Thus the space

H ª (z − a)(z − b)H = (H ª (z − a)H)⊕ ((z − a)H ª (z − b)(z − a)H)

is two-dimensional.

We will need to use the following well-known result from general functional
analysis.

Lemma 2.6. Suppose S is a bounded linear operator on H. If S is bounded
below, then S∗ is onto.

Proof. See Theorem 4.15 of [8].
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3. IRREDUCIBLE MULTIPLICATION OPERATORS

In this section we show that a lot of multiplication operators on Hilbert spaces of
analytic functions belong to the Cowen-Douglas class B1 and hence are irreducible.
Our analysis also reveals an interesting fact about the Cowen-Douglas classes: an
operator may simultaneously belong to Bn for several different n; an example is
included in Section 5.

Proposition 3.1. Suppose ϕ ∈ H∞(Ω) and there exists a domain V ⊂
ϕ(Ω) such that Ω ∩ ϕ−1(z) is a singleton for every z ∈ V . Then the adjoint
of the operator Mϕ : H → H belongs to the Cowen-Douglas class B1(U), where
U = {z : z ∈ V }.

Proof. Let T be the adjoint of Mϕ : H → H. For λ = w ∈ U , with w ∈ V ,
consider the operator

Sλ = λ− T = w −M∗
ϕ = M∗

w−ϕ
on H. If z0 is the pre-image in Ω of w under ϕ, then

w − ϕ(z) = ϕ(z0)− ϕ(z) = (z − z0)ψ(z), z ∈ Ω,
where ψ belongs to H∞(Ω) and is nonvanishing on Ω.

The function ψ is also bounded below on Ω. In fact, if we choose σ > 0 such
that the closed disk D centered at w with radius σ is contained in V , then the
pre-image in Ω of D under ϕ is a compact set C in Ω (since there is an analytic
branch of ϕ−1 mapping V back into Ω), which must have a positive distance δ
to ∂Ω. Now, if ψ is not bounded below on Ω, then there exists a sequence {zn}
in Ω − {z0} such that ψ(zn) → 0 as n → ∞. Since ψ is zero-free in Ω, we must
have zn → ∂Ω as n→∞. On the other hand, the boundedness of Ω implies that
ϕ(zn) → ϕ(z0), so there exists a positive integer N such that ϕ(zn) ∈ D for all
n > N , or zn ∈ C for all n > N , a contradiction to zn → ∂Ω.

Since ψ(z) is bounded above and below on Ω, the operator Mψ is invertible
on H. Thus the operator

Mw−ϕ = Mz−z0Mψ

is bounded below on H. By Lemma 2.6, the operator Sλ = M∗
w−ϕ must be onto.

With notation from the previous paragraphs, we also see that f ∈ ker(Sλ) if
and only if

〈M∗
w−ϕf, g〉 = 0, g ∈ H,

if and only if
〈f, (z − z0)ψg〉 = 0, g ∈ H.

By Lemma 2.4, the condition above is equivalent to
〈f, g〉 = 0, g ∈ H, g(z0) = 0.

If Kz0(w) = K(w, z0) is the reproducing kernel of H at z0, then according to
Lemma 2.3, the condition above is equivalent to f = cKz0 , where c is some con-
stant. This shows that ker(Sλ) = CKz0 , and so

dim(ker(Sλ)) = 1
for each λ ∈ U . Also, an application of Lemma 2.2 gives

Span {ker(Sλ) : λ ∈ U} = H.

Combining Lemma 2.1 and Proposition 3.1, we have proved the first part of
the main theorem.
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4. THE COMMUTANT OF MULTIPLICATION OPERATORS

Recall that if T is a bounded linear operator on H, then the commutant of T ,
denoted (T )′, consists of all bounded linear operators S on H such that TS = ST .

Proposition 4.1. Suppose ϕ ∈ H∞(Ω) and there exists a domain V ⊂
ϕ(Ω) such that Ω ∩ ϕ−1(z) is a singleton for every z ∈ V . Then

(Mϕ)′ = {Mh : h ∈ H∞(Ω)} .

Proof. It is obvious that every Mh, where h ∈ H∞(Ω), commutes with Mϕ.
Let S be a bounded linear operator on H satisfying SMϕ = MϕS. Then

S also commutes with Mλ−ϕ for every complex number λ. It follows that S∗
commutes with M∗

λ−ϕ for every constant λ.
Fix any w ∈ V , say, w = ϕ(u) with u being the unique pre-image in Ω of w

under the mapping ϕ. That S∗ commutes with M∗
w−ϕ implies that

S∗ : ker(M∗
w−ϕ) → ker(M∗

w−ϕ).

Since (see the proof of Proposition 3.1)

ker(M∗
w−ϕ) = CKu,

there must exist a complex-valued function h defined on

U = Ω ∩ ϕ−1(V )

such that
S∗Ku = h(u)Ku

for all u ∈ U .
If g is any function in H, then

〈g, S∗Ku〉 = 〈g, h(u)Ku〉 = h(u)g(u)

for all u ∈ U . Since Ku is conjugate-analytic in u, and since for every z ∈ Ω there
exists g ∈ H such that g(z) 6= 0 (by condition (1)), the equation above shows that
h is analytic in U and h has an analytic extension to Ω as well. Thus we extend
h to the whole domain Ω and still use h to denote the resulting function. The
identity theorem then gives

S∗Kz = h(z)Kz

for all z ∈ Ω. Since

|h(z)| =
∣∣∣∣
〈S∗Kz,Kz〉
〈Kz,Kz〉

∣∣∣∣ 6 ‖S‖

for every z ∈ Ω, we conclude that h ∈ H∞(Ω).
Finally, for any f ∈ H and z ∈ Ω, we have

Sf(z) = 〈Sf,Kz〉 = 〈f, S∗Kz〉 = 〈f, h(z)Kz〉 = h(z)f(z),

so that S = Mh.
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5. AN EXAMPLE AND SOME REMARKS

Consider the case Ω = D, the open unit disk, and the function

ϕ(z) = z(z + 1), z ∈ D.
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Figure 1. The image of the unit circle under ϕ(z) = z(z + 1)

Let γ be the closed curve

γ(t) = ϕ(eit), 0 6 t 6 2π;

γ is the image of the unit circle under the mapping ϕ. The image ϕ(D) is then the
region enclosed by γ; see Figure 1. Let V1 be the part of ϕ(D) wrapped around
once by γ and let V2 be the part of ϕ(D) wrapped around twice by γ. Note that
V1 and V2 are both invariant under complex conjugation.

It is clear that D∩ϕ−1(z) is a singleton for every z ∈ V1. Thus the adjoint of
the operator Mz(z+1) : H → H belongs to the Cowen-Douglas class B1(V1), and
hence Mz(z+1) is irreducible on H.

Proposition 5.1. The adjoint of the operator Mz(z+1) : H → H also be-
longs to the Cowen-Douglas class B2(V2).

Proof. For every λ ∈ V2, the set D ∩ ϕ−1(λ) consists of two (not necessarily
distinct) points a1 and a2 in D. It follows that

z(z + 1)− λ = (z − a1)(z − a2),
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and so

M∗
z(z+1) − λ = M∗

(z−a1)(z−a2)
.

Since M(z−a1)(z−a2) is bounded below, Lemma 2.6 gives us

Ran (M∗
z(z+1) − λ) = H,

proving condition (a) in the definition of B2. Also,

ker(M∗
z(z+1) − λ) = H ª Ran (M(z−a1)(z−a2)) = H ª [(z − a1)(z − a2)H] .

Thus Lemma 2.5 gives us

dim(ker(λ−M∗
z(z+1))) = 2,

and we obtain condition (b) in the definition of B2.
The above computation also shows that the kernel functions Ka1 and Ka2

both belong to ker(M∗
z(z+1) − λ). When λ varies in V2, a1 and a2 cover an open

set in D. Condition (c) in the definition of B2 then follows from Lemma 2.2.

The arguments used in the proofs of Propositions 3.1 and 5.1 can easily be
modified to yield the following generalization, whose proof is left to the interested
reader.

Proposition 5.2. Suppose ϕ ∈ H∞(Ω) and V is a (nonempty) domain
contained in ϕ(Ω). If there exists a positive integer n such that Ω∩ϕ−1(z) consists
of n points (counting multiplicity) for every z ∈ V , then the adjoint of the operator
Mϕ : H → H belongs to the Cowen-Douglas class Bn(U), where U = {z : z ∈ V }.

The function ϕ(z) = z(z + 1) is typical in a certain sense. In fact, if ϕ is
analytic on the closed disk D, then the image of the unit circle under ϕ is a smooth
closed curve γ which divides the complex plane into a finite number of regions
V1, . . . , Vn, with the property that the winding number of γ about the points of
any Vk stays constant (depending on k). Unless γ traverses itself more than once
(such as the case of a non-Möbius finite Blaschke product, or the composition of
a smooth function with such a Blaschke product), we suspect that one of these
regions Vk will be wrapped around by γ only once, so that the condition in the
main theorem should hold.

It was conjectured in [6] that Mϕ, as an operator on the classical Hardy
space of D, has a nontrivial reducing subspace if and only if ϕ = f(ψ), where
f ∈ H∞(D) and ψ is a non-Möbius inner function. This conjecture was shown to
be true in [2] in the special case when ϕ is entire, but was then shown in [1] to be
false in general.

In view of these remarks, we repeat (a special case of) a question in [2] here
as the following.
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Conjecture 5.3. Suppose ϕ, not a constant, is analytic on the closed disk
D and γ is the image of the unit circle under ϕ. Then the following conditions are
equivalent:

(i) There exists a point z ∈ ϕ(D) − γ such that the winding number of γ
about z is 1 or −1, that is, the condition in the theorem holds.

(ii) The function ϕ is not of the form ϕ = f(B), where f is analytic on D
and B is a finite Blaschke product with more than one zero in D.

It is obvious that condition (i) implies condition (ii). The main result of
[2] implies that the conjecture above is true when ϕ is an entire function. In
particular, a polynomial p satisfies the condition in the theorem (for Ω = D) if and
only if p 6= q(zN ), where q is a polynomial and N > 1.
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