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1. INTRODUCTION

Let H be a (complex) Hilbert space, and let L(H) denote the set of all (bounded,
linear) operators acting on H. It is known that L(H) can be identified with the
dual of the Banach space τ(H) of trace class operators on H. More precisely, the
mapping Ψ ∈ L(L(H), τ(H)#), defined by [A,Ψ(C)] := tr(AC) with A ∈ τ(H),
C ∈ L(H), is an invertible isometry (see e.g. [30]). We write C simply for Ψ(C).
This duality induces a weak* topology on L(H). As usual, for any u, v ∈ H, let
u ⊗ v ∈ L(H) be defined by (u ⊗ v)(x) := 〈x, v〉u with x ∈ H, and let F1(H) :=
{u⊗ v : u, v ∈ H} be the set of operators of rank less than or equal to one.

Let T be an arbitrary weak* closed linear manifold in L(H). We recall that
T is elementary, if every weak* continuous linear functional ϕ : T → C is induced
by an operator u⊗ v ∈ F1(H), that is ϕ(C) = tr(C(u⊗ v)) = 〈Cu, v〉 holds for all
C ∈ T . Since T can be identified with the dual of the quotient space τ(H)/T⊥,
elementary means that each non-zero coset A+T⊥, A ∈ τ(H), contains a rank-one
operator. This property played crucial role in the proof of S. Brown’s theorem
on the existence of proper invariant subspaces of subnormal operators, and was
studied by many authors; see [7], [4] or [5].

The subspace T is called reflexive, if any operator C ∈ L(H), satisfying the
condition Ch ∈ (T h)− for all h ∈ H, belongs to T . By the Hahn–Banach Theorem
this happens exactly when the set F1(H) ∩ T⊥ is total in the preannihilator T⊥.
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Reflexivity means that the linear manifold T ⊂ L(H) is determined by the action
of the operators of T on H; if T is a reflexive algebra then T is determined by
its invariant subspace lattice. This property has attracted great attention too, see
e.g. the articles [9] or [12] and the references given there. The subspace T is called
hereditarily reflexive, if each weak* closed submanifold of T is reflexive. It is a
remarkable fact that T is hereditarily reflexive if and only if T is both elementary
and reflexive (see e.g. Proposition 1.7, [1]).

The subspace T is transitive, if (T h)− = H is true, for every non-zero vector
h ∈ H. Equivalently: T⊥ ∩ F1(H) = {0} holds, in contrast with the case of
reflexivity. The manifold T is intransitive, precisely when there exist non-zero
vectors u, v ∈ H such that 〈Cu, v〉 = 0 for all C ∈ T , that is when T is contained
in the hyperplane Lu,v(H) := (C(u ⊗ v))⊥ = {C ∈ L(H) : 〈Cu, v〉 = 0} induced
by the rank-one operator u⊗ v.

Let us consider now the Hardy space H2 (see [15]), and the simple unilateral
shift S ∈ L(H2), Sf := χf , f ∈ H2, where χ(z) = z. We recall that C ∈ L(H2)
is a Toeplitz operator, if S∗CS = C; see Chapter 25, [13], and [25] for the basic
facts concerning this important class of operators. It is easy to verify that the set
T (S) of all Toeplitz operators is transitive (see Theorem 3.1, [1], or Theorem 2.5
of this paper). On the other hand, by a pioneering result of D. Sarason in [28], the
commutant {S}′, which consists of the Toeplitz operators with analytic symbols,
is a reflexive subspace of T (S). In their paper ([1]) E.A. Azoff and M. Ptak
considered all weak* closed submanifolds of the set of Toeplitz operators. Taking
any intransitive, weak* closed submanifold T of T (S), we can find non-zero vectors
u, v ∈ H such that T ⊂ Tu,v(S) := T (S) ∩ Lu,v(H). Azoff and Ptak have shown
that the hyperplane Tu,v(S) is always elementary and reflexive. Thus Tu,v(S) is
hereditarily reflexive, and so the subspace T ⊂ Tu,v(S) is also reflexive. Therefore,
T (S) has the dichotomy property that any of its weak* closed subspaces is either
transitive or reflexive. (Conversely, dichotomy in T (S) readily implies that every
intransitive hyperplane is elementary and reflexive.)

Given an arbitrary T ∈ L(H), the operator C ∈ L(H) is called T -Toeplitz, if
T ∗CT = r(T )2C, where r(T ) stands for the spectral radius of T . Let us consider
the selfadjoint, weak* closed linear manifold T (T ) of all T -Toeplitz operators. Our
goal in this article is to examine how the aforementioned results can be extended
from the classical setting T (S) to the generalized case T (T ). In particular, we want
to find conditions under which T (T ) is transitive, and the hyperplane Tu,v(T ) :=
T (T ) ∩ Lu,v(H) is elementary or reflexive. We shall assume that the operator
T has regular norm-sequence, ensuring in this way the existence of a satisfactory
symbolic calculus for T (T ) (see [23]). We explore further properties of this calculus
in Section 2, and show that the set T (T ) of all T -Toeplitz operators is transitive,
whenever the operator T is quasianalytic. We shall prove in Section 3, among
others, that the hyperplane Tu,v(T ) is elementary, provided the vectors u and v
are analytically related to T in a certain sense, and if the cyclic operator T is full
with analytic spectral densities. In Section 4 conditions are given for such analytic
behaviour. It turns out that all non-zero vectors are analytic with respect to T ,
exactly when T is a quasiaffine transform of r(T )S. Finally, we show in Section 5
that the hyperplane Tu,v(T ) is reflexive, whenever the vectors u and v are regular
for T , which means the possibility of their inner-outer-type factorization in relation
with T . This regularity property will be studied in more details in a separate paper.
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Throughout the text several examples and remarks are given in order to illuminate
the different facets of the statements to be proved.

In the remaining part of this section we summarize some of the fundamental
results of [23], which will be needed in the sequel. We remind the reader that
a sequence ξ ∈ `∞ = `∞(N,C) almost converges to the complex number c, in

notation: a- lim
n→∞

ξ(n) = c, if the means (n+1)−1
m+n∑
k=m

ξ(k) converge to c uniformly

in m, as n tends to infinity. The sequence ξ almost converges to c in the strong
sense, and we use the notation as- lim

n→∞
ξ(n) = c, if a- lim

n→∞
|ξ(n) − c| = 0. The

mapping p : N → (0,∞) is a gauge function, if the sequence {p(n + 1)/p(n)}n∈N
almost converges to a positive number cp in the strong sense, and cnp 6 p(n)
holds, for every n ∈ N. If, in addition, the sequence {cnp/p(n)}n∈N does not
almost converge to zero, then p is called a strict gauge function. The sets of gauge
functions and strict gauge functions are denoted by P and P̃, respectively. For
any p ∈ P̃, we consider the positive number αp := q({c2n

p /p(n)2}n∈N), where the
functional q is defined by

q(ξ) := inf
{

lim sup
k→∞

1
m

m∑

j=1

ξ(nj + k) : m ∈ N, n1, . . . , nm ∈ N
}
,

for bounded, real sequences ξ.
We say that the norm-sequence of the operator T ∈ L(H) is compatible with

the gauge function p ∈ P, and we write T ∈ L(p,H), if ‖Tn‖ 6 p(n) is valid
for every n ∈ N, and if the sequence {‖Tn‖/p(n)}n∈N does not almost converge
to zero. We know that cp = r(T ) is true in that case. The operator T is called
of regular norm-behaviour, if T ∈ L(p,H) holds for some p ∈ P. The class of
operators with regular norm-sequences forms a large extension of the set of power-
bounded operators T with r(T ) = 1. Namely, the latter class is obtained by the
special choice p = M1l of the gauge function, where M ∈ [1,∞). For a detailed
study of these operators we refer to [16], [18], [19], [20], and [24].

Let B denote the set of all Banach limits on `∞. Sometimes it is more
convenient to write L- lim

n→∞
ξ(n) instead of L(ξ), where L ∈ B, ξ ∈ `∞. For any

p ∈ P̃, we shall consider the non-empty set B(p) :=
{
L ∈ B : L- lim

n→∞
c2n
p /p(n)2 =

αp

}
.

Let T ∈ L(p,H), p ∈ P̃ and L ∈ B(p) be given. We know by Theorem 3,
[23], that the operator AT,L ∈ L(H), defined by

〈AT,Lx, y〉 = L- lim
n→∞

p(n)−2〈T ∗nTnx, y〉, x, y ∈ H,

is a positive, contractive T -Toeplitz operator, which is universal in the sense that
for any selfadjoint T -Toeplitz operator B there exists a positive number β such that
−AT,L 6 βB 6 AT,L. The equations (A1/2

T,LT )∗(A1/2
T,LT ) = T ∗AT,LT = r(T )2AT,L

imply that there exists a unique isometry VT,L on the subspace (ranAT,L)− such
that r(T )VT,LA

1/2
T,L = A

1/2
T,LT . Let UT,L ∈ L(KT,L) be the minimal unitary exten-

sion of VT,L (determined uniquely up to an isomorphism), and let us consider the
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mapping XT,L ∈ L(H,KT,L) defined by XT,Lh := A
1/2
T,Lh, h ∈ H. The transfor-

mation XT,L is a universal T -unitary intertwiner, that is,

XT,L ∈ I(T, r(T )UT,L) := {Y ∈ L(H,KT,L) : Y T = r(T )UT,LY } ,
and for every unitary operator U ∈ L(K) and for every T -unitary intertwiner
Y ∈ I(T, r(T )U), there exists a (unique) transformation Z ∈ I(UT,L, U) such that
Y = ZXT,L. Finally, it was shown in [23] that the mapping

ΦT,L : {UT,L}′ → T (T ), F 7→ X∗
T,LFXT,L,

called a symbolic calculus for T (T ), is a positive, linear bijection, such that

αp‖F‖ 6 ‖ΦT,L(F )‖ 6 ‖F‖
holds for every operator F in the commutant {UT,L}′ := I(UT,L, UT,L) of UT,L.
We note that

kerAT,L = H0(T, p) :=
{
x ∈ H : a- lim

n→∞
‖Tnx‖/p(n) = 0

}
,

and so T (T ) 6= {0} is true if and only if H0(T, p) 6= H, in which case the operator
T ∈ L(p,H) is called asymptotically non-vanishing with respect to p, and the
notation T ∈ C∗·(p,H) is used. (The dot in the index means that nothing is
assumed on the asymptotic behaviour of the (Hilbert space) adjoint T ∗.) In the
contraction case T ∈ L(1l,H), the transformations AT,L, XT,L, VT,L, UT,L and ΦT,L

are actually independent of the choice of L ∈ B(1l) = B, and so we can write
AT , XT , VT , UT and ΦT .

The classical Toeplitz operators and symbolic calculus are obtained by choos-
ing T to be the simple unilateral shift S on the Hardy space H2. It is clear that
S ∈ L(1l,H2), and US can be chosen to be the simple bilateral shift S̃ on the space
L2(T), that is S̃f := χf , f ∈ L2(T), where the normalized Lebesgue measure µ
is considered on the unit circle T. Since XS is the embedding of H2 into L2(T),
and since the commutant {S̃}′ can be identified with L∞(T) via the mapping
Φ : L∞(T) → {S̃}′, ϕ 7→Mϕ, where Mϕf := ϕf , the classical symbolic calculus is
given by the composition

ΦS ◦ Φ : L∞(T) → T (S), ϕ 7→ Tϕ := PH2Mϕ|H2.

2. SYMBOLIC CALCULUS AND TRANSITIVITY

Let us assume that T ∈ C∗·(p,H), p ∈ P̃ and L ∈ B(p). Given any C ∈ {T}′,
the operator XT,LC belongs to the set I(T, r(T )UT,L). Applying the universality
of the T -unitary intertwiner XT,L, we obtain that there exists a unique operator
D ∈ {UT,L}′ such that DXT,L = XT,LC. Let us consider the mapping γT,L :
{T}′ → {UT,L}′, C 7→ D.
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Proposition 2.1. If T ∈ C∗·(p,H), p ∈ P̃, L ∈ B(p), then the following
statements are true:

(i) the transformation γT,L is a contractive, unital algebra-homomorphism;
(ii) the composition ΦT,L ◦ γT,L : {T}′ → T (T ) maps any C ∈ {T}′ into

AT,LC;
(iii) for any F ∈ {UT,L}′ and C ∈ {T}′, we have

ΦT,L(FγT,L(C)) = ΦT,L(F )C and ΦT,L(γT,L(C)∗F ) = C∗ΦT,L(F ).

Proof. Let us show that γT,L is contractive. If C ∈ {T}′ and D = γT,L(C),
then, for any h ∈ H and n ∈ N, we have

‖DU−n
T,LXT,Lh‖2 = ‖XT,LCh‖2 = 〈AT,LCh,Ch〉 = L- lim

n→∞
p(n)−2‖TnCh‖2

= L- lim
n→∞

p(n)−2‖CTnh‖2 6 ‖C‖2‖XT,Lh‖2 = ‖C‖2‖U−n
T,LXT,Lh‖2.

Taking into account that
∨

n∈N
U−n

T,LXT,LH = KT,L, we infer that ‖D‖ 6 ‖C‖. It

follows readily from the definition that γT,L is a unital algebra-homomorphism.
The verification of (ii) and (iii) is a simple exercise and is left to the reader.

Let us recall that the commutant of the unilateral shift S ∈ L(H2) is the
set of Toeplitz operators with analytic symbols: {S}′ = {Tu : u ∈ H∞}, and
clearly ΦS ◦ γS = I. Thus, statement (iii) of the proposition is an extension of the
well-known theorem claiming that Tuv = TuTv holds, whenever v is analytic or u
is coanalytic (see Problem 243, [13]).

It can be easily checked that the selfadjoint linear manifold T (T ) of T -
Toeplitz operators is weak* closed, it is closed even in the weak operator topology.
Let us also note that T (U) = {U}′ if U is unitary.

Proposition 2.2. Let T ∈ C∗·(p,H), p ∈ P̃ and L ∈ B(p) be given;
(i) for any F ∈ {UT,L}′ and u, v ∈ H, we have

[u⊗ v,ΦT,L(F )] = [XT,Lu⊗XT,Lv, F ] ;

(ii) the symbolic calculus ΦT,L : {UT,L}′ → T (T ) is a weak* homeomor-
phism.

Proof. (i) It is immediate that

[u⊗ v,ΦT,L(F )] = tr((u⊗ v)ΦT,L(F )) = 〈ΦT,L(F )u, v〉
= 〈X∗

T,LFXT,Lu, v〉 = [XT,Lu⊗XT,Lv, F ].

(ii) Let Φ̃T,L : L(KT,L) → L(H), F 7→ X∗
T,LFXT,L be the natural extension

of ΦT,L to the whole space L(KT,L), and let us consider the linear mapping

ϕ̃T,L : τ(H) → τ(KT,L),
∑

n

un ⊗ vn 7→
∑

n

XT,Lun ⊗XT,Lvn,

where
∑
n
‖un‖ ‖vn‖ < ∞ holds for the sequences {un}, {vn}. We can see, as in

(i), that
[
ϕ̃T,L

( ∑
n
un ⊗ vn

)
, F

]
=

[∑
n
un ⊗ vn, Φ̃T,L(F )

]
, hence ϕ̃T,L is well-

defined. It is also clear that ‖ϕ̃T,L‖ 6 ‖XT,L‖2 = ‖AT,L‖ 6 1, and that Φ̃T,L is
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the (Banach space) adjoint of ϕ̃T,L: (ϕ̃T,L)# = Φ̃T,L. Since Φ̃T,L maps the sub-
space {UT,L}′ into T (T ), it follows that ϕ̃T,L transforms the preannihilator T (T )⊥
into the preannihilator {UT,L}′⊥. Let us consider the quotient spaces Q(T ) :=
τ(H)/T (T )⊥,Q(UT,L) := τ(KT,L)/{UT,L}′⊥, and the canonical quotient transfor-
mations πT : τ(H) → Q(T ), A 7→ A + T (T )⊥, π̂T,L : τ(KT,L) → Q(UT,L), A 7→
A + {UT,L}′⊥. We can form the quotient mapping ϕT,L ∈ L(Q(T ),Q(UT,L)) de-
fined by ϕT,L(πT (A)) := π̂T,L(ϕ̃T,L(A)), A ∈ τ(H). Then (ϕT,L)# = ΦT,L, and
since ΦT,L is a bijection we infer that ϕT,L is a bijection, as well. Taking into
account that adjoint mappings are weak* continuous, we obtain that ΦT,L is a
weak* homeomorphism.

In order to give a condition for transitivity, we consider cyclic vectors of
the commutant of the associated unitary operators. The next lemma expresses
independence of the choice of the Banach limit.

Lemma 2.3. Let T ∈ C∗·(p,H), p ∈ P̃ be given, and let us assume that
L1, L2 ∈ B(p). Then, for every h ∈ H, the vector XT,L1h is cyclic for {UT,L1}′ if
and only if XT,L2h is cyclic for {UT,L2}′.

Proof. The universality of the transformation XT,L1 implies that there exists
a unique transformation ZT,L1,L2 ∈ I(UT,L1 , UT,L2) such that ZT,L1,L2XT,L1 =
XT,L2 . Since ZT,L1,L2U

−n
T,L1

XT,L1 = U−n
T,L2

XT,L2 holds for every n ∈ N, it fol-
lows that ZT,L1,L2 has dense range. Given any F ∈ {UT,L1}′, the transformation
ZT,L1,L2FXT,L1 belongs to I(T, r(T )UT,L2). Hence, the universality of XT,L2

yields that there exists a unique operator G ∈ {UT,L2}′ such that ZT,L1,L2FXT,L1

= GXT,L2 . Let us consider the linear mapping γT,L1,L2 : {UT,L1}′ → {UT,L2}′,
F 7→ G.

If the vectorXT,L1h is cyclic for the operator algebra {UT,L1}′, then the linear
manifold {UT,L1}′XT,L1h is dense in KT,L1 . Taking into account that ZT,L1,L2 has
dense range, we infer that

γT,L1,L2({UT,L1}′)XT,L2h = ZT,L1,L2{UT,L1}′XT,L1h

is dense in KT,L2 , and then so is the larger linear manifold {UT,L2}′XT,L2h too.
Thus, XT,L2h is cyclic for {UT,L2}′. In virtue of symmetry, the proof is complete.

Definition 2.4. The vector h ∈ H is quasianalytic for the operator T ∈
C∗·(p,H), p ∈ P̃, if XT,Lh is cyclic for the commutant {UT,L}′ for some (and so,
by Lemma 2.3, for all) choice(s) of the Banach limit L ∈ B(p).

The operator T ∈ C∗·(p,H), p ∈ P̃, is called quasianalytic, if every non-zero
vector h ∈ H is quasianalytic for T .

We note that the Toeplitz operator Tu is an asymptotically non-vanishing,
quasianalytic contraction, if the analytic function u ∈ H∞ satisfies the conditions
‖u‖∞ = 1 and µ({z ∈ T : |u(z)| = 1}) > 0. In particular, S = Tχ is quasianalytic.
Further examples and a detailed study of the quasianalytic property can be found
in [22].

Now, we are able to give a sufficient condition of transitivity of the set of
all T -Toeplitz operators. Let us recall that the operator T ∈ L(p,H), p ∈ P,
is called of class C1·ot(p,H), and we say that T is asymptotically strongly non-
vanishing with respect to p, if H0(T, p) = {0}. In that case the transformation
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XT,L is injective, for any choice of L ∈ B(p). Let us note that every quasianalytic
operator T ∈ C∗·(p,H), p ∈ P̃, is necessarily of class C1·ot(p,H).

Theorem 2.5. Let T ∈ C1·ot(p,H), p ∈ P̃ be given;
(i) if the vector h ∈ H is quasianalytic for T , then (T (T )h)− = H;
(ii) if the operator T is quasianalytic, then the operator space T (T ) is tran-

sitive.

Proof. Let us assume that h ∈ H is quasianalytic for T , and that 〈Ch, k〉 = 0
holds for all C ∈ T (T ), with some k ∈ H. Let L ∈ B(p) be arbitrary. Then
〈FXT,Lh,XT,Lk〉 = 〈ΦT,L(F )h, k〉 = 0 is true, for every F ∈ {UT,L}′. Thus
XT,Lk = 0, whence k = 0 follows.

If T is quasianalytic, then (T (T )h)− = H is valid for every non-zero vector
h ∈ H, that is the operator space T (T ) is transitive.

3. ELEMENTARY HYPERPLANES

We are going to prove that, under some conditions, the intransitive hyperplanes
Tg,h(T ) = {C ∈ T (T ) : 〈Cg, h〉 = 0} of T -Toeplitz operators are elementary.

Let T ∈ C∗·(p,H), p ∈ P̃ and L1, L2 ∈ B(p) be given. Let us consider the
mappings ZT,L1,L2 ∈ I(UT,L1 , UT,L2) and ZT,L2,L1 ∈ I(UT,L2 , UT,L1) introduced
in the proof of Lemma 2.3. The equations

ZT,L1,L2U
−n
T,L1

XT,L1h=U−n
T,L2

XT,L2h and ZT,L2,L1U
−n
T,L2

XT,L2h=U−n
T,L1

XT,L1h,

n ∈ N, h ∈ H, show that the transformations ZT,L1,L2 and ZT,L2,L1 are invertible,
and (ZT,L1,L2)

−1 = ZT,L2,L1 . Thus, the unitary operators UT,L1 and UT,L2 are
similar: UT,L1 ≈ UT,L2 , and so we infer by Proposition II.3.4, [26], that they are
unitarily equivalent: UT,L1 ' UT,L2 .

Definition 3.1. The operator T ∈ C∗·(p,H), p ∈ P̃, will be called absolutely
continuous, if the unitary operator UT,L is absolutely continuous (with respect to
µ) for some (and so, for all) Banach limit(s) L ∈ B(p).

If T ∈ C∗·(p,H), p ∈ P̃, is absolutely continuous, then there exists a Borel
subset ρ(T ) of T, called the residual set of T , such that χρ(T )dµ is a scalar spec-
tral measure of the unitary operator UT,L, that is χρ(T )dµ is equivalent to the
spectral measure of UT,L, L ∈ B(p). (Here, and in the sequel, χα stands for the
characteristic function of the set α.)

We note that ρ(T ) is uniquely determined up to sets of zero Lebesgue mea-
sure, and that ρ(T ) is independent of the choice of L ∈ B(p). A detailed study of
residual sets of contractions was accomplished in [22].

Let us be given now an arbitrary absolutely continuous unitary operator
U ∈ L(K), and let EU : BT → P(K) be the spectral measure of U . (Here BT
denotes the σ-algebra of Borel subsets of the unit circle T, and P(K) stands for
the set of (orthogonal) projections of K.) Clearly, U ∈ C1·(1l,K) and χρ(U)dµ
is a scalar spectral measure of U . For any vectors x, y ∈ K, let us consider the
localization EU,x,y(ω) := 〈EU (ω)x, y〉, ω ∈ BT, what is a complex Borel measure
on T. Since EU,x,y is absolutely continuous with respect to χρ(U)dµ, there exists a
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unique function δU,x,y ∈ L1(ρ(U)) := χρ(U)L
1(µ) such that EU,x,y = δU,x,ydµ. The

function δU,x,y can be called the local spectral density function of the absolutely
continuous unitary operator U at the vectors x, y. It is clear that δU,x := δU,x,x is
non-negative, for any x ∈ K.

If T ∈ C∗·(p,H), p ∈ P̃, is absolutely continuous, then we can introduce the
asymptotic local spectral density function of T at g, h ∈ H with respect to L ∈ B(p)
by

δ̃T,L,g,h := δUT,L,XT,Lg,XT,Lh ∈ L1(ρ(T )).

We shall write δ̃T,L,g := δ̃T,L,g,g for short. Functions of this type were studied
among others by Beauzamy and Cassier–Fack; see e.g. Chapter XII, [2], and [8].
We shall consider vector pairs which are related analytically, in a certain sense,
to a unitary operator first, and then to an arbitrary operator of regular norm-
behaviour.

Definition 3.2. We say that (x, y) ∈ K × K is an analytic pair for the
absolutely continuous unitary operator U ∈ L(K), if

∫
ρ(U)

log |δU,x,y| dµ > −∞. The

vector x ∈ K is called analytic for U , if the pair (x, x) is analytic with respect to
U .

Given an absolutely continuous unitary operator U ∈ L(K), for any x, y ∈ K,
we define the measurable function γU,x,y on ρ(U) by

γU,x,y(z) :=
{
δU,x,y(z)(δU,x(z))−1/2(δU,y(z))−1/2 if δU,x(z)δU,y(z) 6= 0,
1 otherwise.

Considering the functional model of U (see e.g. [21]), it is immediate that δU,x,y =
(δU,x)1/2(δU,y)1/2γU,x,y and that |γU,x,y| 6 1. Thus, the pair (x, y) is analytic for
U if and only if the vectors x, y are analytic for U and if

∫
ρ(U)

log |γU,x,y| dµ > −∞.

We note that |γU,x,y| = χρ(U) is true for every x, y ∈ K, provided the operator U

is cyclic, that is when
∞∨

n=0
Unk = K holds with some vector k ∈ K.

This analytic property can be also described in terms of invariant subspaces
of U . In order to formulate our statement we need some notations. As usual,
LatU stands for the invariant subspace lattice of U . For any vector set ∅ 6=
M ⊂ K, let K+(U,M) :=

∞∨
n=0

UnM ∈ LatU be the invariant subspace, and let

K(U,M) :=
∞∨

n=−∞
UnM ∈ LatU ∩ LatU∗ be the reducing subspace induced by

M. Furthermore, let K−(U,M) := K(U,M) ª K+(U,M). For any Borel set
α ∈ BT, let us consider the operator Mα ∈ L(L2(α)) defined by Mαf := χf ,
and let αc := T \ α. We introduce the absolutely continuous unitary operator
Û := U ⊕Mρ(U)c acting on the space K̂ := K ⊕ L2(ρ(U)c). Finally, let G denote
the set of all measurable, unimodular functions q : T→ T.



Elementary and reflexive hyperplanes of generalized Toeplitz operators 395

Proposition 3.3. Let U ∈ L(K) be an absolutely continuous unitary oper-
ator, and let x, y ∈ K;

(i) the vector x is analytic for U if and only if the restriction of Û to the
subspace K̂+(Û , x⊕ χρ(U)c) is unitarily equivalent to the unilateral shift S;

(ii) the pair (x, y) is analytic for U if and only if the vectors x, y are analytic
for U , and if there exists a function q ∈ G such that

q(Û)K̂+(Û , x⊕ χρ(U)c) ⊂ K̂(Û , {x⊕ χρ(U)c , y ⊕ χρ(U)c})ª K̂−(Û , y ⊕ χρ(U)c).

Proof. In view of the functional model of U , the statement (i) is an immediate
consequence of the Szegő Theorem and the well-known description of the non-
reducing subspaces of cyclic unitary operators, see e.g. [15] and [14]. Statement
(ii) follows from the refined characterization of the invariant subspace lattice of
absolutely continuous unitary operators given in [21]; we refer in particular to the
proof of Lemma 16, [21].

The previous proposition enables us to verify the following statement.

Lemma 3.4. Let T ∈ C∗·(p,H), p ∈ P̃, be absolutely continuous, and let
L1, L2 ∈ B(p). Then, for any h ∈ H, the vector XT,L1h is analytic for UT,L1 if
and only if the vector XT,L2h is analytic for UT,L2 .

Proof. Let us write Ui = UT,Li , Ki = KT,Li , xi = XT,Lih with i = 1, 2,
Z = ZT,L1,L2 and α = ρ(T ) for short. We know that Z ∈ I(U1, U2) is invertible,
and Zx1 = x2. Let us introduce also the notation x̂i = xi ⊕ χαc , i = 1, 2. It is
clear that Ẑx̂1 = x̂2 holds for the intertwining mapping Ẑ := Z ⊕ I ∈ I(Û1, Û2).
It follows that

ẐK̂+
1 (Û1, x̂1) = K̂+

2 (Û2, x̂2) and Ẑ

∞⋂
n=1

Ûn
1 K̂+

1 (Û1, x̂1) =
∞⋂

n=1

Ûn
2 K̂+

2 (Û2, x̂2).

Taking into account that Ûi|K̂+
i (Ûi, x̂i) is a cyclic unilateral shift (that is unitarily

equivalent to S) if and only if
∞⋂

n=1
Ûn

i K̂+
i (Ûi, x̂i) = {0}, i = 1, 2, we infer by

Proposition 3.3 (i) that x1 is analytic for U1 precisely when x2 is analytic for
U2.

Definition 3.5. The vector h ∈ H is called (asymptotically) analytic for
the absolutely continuous operator T ∈ C∗·(p,H), p ∈ P̃, if XT,Lh is analytic for
the unitary operator UT,L for some (and so, by Lemma 3.4, for all) Banach limit(s)
L ∈ B(p). If every non-zero vector h ∈ H is analytic for T , then the operator T is
called analytic.

The pair (g, h) ∈ H × H is (asymptotically) analytic for T with respect to
the Banach limit L ∈ B(p), if the pair (XT,Lg,XT,Lh) is analytic for UT,L.

Let T ∈ C∗·(p,H), p ∈ P̃ and L ∈ B(p) be given, and let us consider
the bicommutant {UT,L}′′ of the unitary operator UT,L. Since {UT,L}′′ is a
weak* closed, selfadjoint subalgebra of {UT,L}′, it follows by Proposition 2.2 that
T̆L(T ) := ΦT,L({UT,L}′′) is a weak* closed, selfadjoint subspace of T (T ). We are
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going to show that the hyperplane of the form T̆L,g,h(T ) := T̆L(T ) ∩ Lg,h(H) is
elementary, if the pair (g, h) is analytic for T with respect to L ∈ B(p).

Let us note that if T is cyclic, then so is UT,L too, but the reverse implication
fails (see Proposition 2, [27]). Furthermore, UT,L is cyclic if and only if {UT,L}′ =
{UT,L}′′, and the latter happens precisely when T (T ) = T̆L(T ).

The following example shows that the class T̆L(T ) and the analyticity of a
vector pair (g, h) do depend on the choice of the Banach limit L ∈ B(p).

Example 3.6. Let {δj}∞j=1 be a sequence of positive numbers and let {nj}∞j=1

be a sequence of positive integers such that δj > δj+1, nj+1 > nj + 1 > 2j + 1,
δj
j < 1+j−1, δnj−j

j > 2−j−1, δnj

j < 2 hold, for every j ∈ N, and lim
j→∞

δj = 1. Such

sequences can be given recursively. Let us introduce the notation νk :=
k∑

j=1

nj with

k ∈ N, ν0 := 0, and let us define the sequence {wk}∞k=1 by

wk :=
{
δj if νj−1 < k < νj ,
δ
−nj+1
j if k = νj ;

for j ∈ N.

Given an orthonormal basis {ek}k∈N in the Hilbert space H, let us consider the
unilateral weighted shift W ∈ L(H), defined by Wek := wkek+1, k ∈ N. It is easy
to verify that ‖W k‖ = δk

j , whenever nj−1 6 k < nj , j ∈ N; n0 := 0. It follows
that sup

k∈N
‖W k‖ = sup

j∈N
δ

nj−1
j = 2. Thus, W belongs to the class C1·(2 · 1l,H), where

2 · 1l ∈ P̃,B(2 · 1l) = B, and r(W ) = 1. A simple computation shows that

βk := ‖W ke1‖ =
{
δ

k−νj−1
j if νj−1 < k < νj ,

1 if k = νj ;
for j ∈ N.

We obtain that q({4−1‖W ke1‖2}k∈N) = 1 and q′({4−1‖W ke1‖2}k∈N) = 4−1, where
the functional q′ is defined by

q′(ξ) := sup
{

lim inf
k→∞

1
m

m∑

j=1

ξ(nj + k) : m ∈ N, n1, . . . , nm ∈ N
}
,

for any bounded, real sequence ξ. It is known that {L(ξ) : L ∈ B} = [q′(ξ), q(ξ)].
Hence, there exist Banach limits L1, L2 ∈ B such that

L1- lim
k→∞

4−1‖W ke1‖2 = 1 and L2- lim
k→∞

4−1‖W ke1‖2 = 4−1.

It is easy to see that the operators AW,Li ∈ L(H), i = 1, 2, are diagonal with
respect to the basis {ek}k∈N, and that AW,L1e1 = e1, AW,L2e1 = 4−1e1. Short
computation yields that, for i = 1, 2, VW,Li is the unweighted unilateral shift
V0 ∈ L(H), defined by V0ek := ek+1, k ∈ N. We may assume that UW,Li = U0,
i = 1, 2, where U0 is a bilateral shift on a larger space K ⊃ H, that is the basis
{ek}k∈N of H can be extended to an orthonormal basis {ek}k∈Z of K such that
U0ek = ek+1 is true, for every k ∈ Z. It turns out that XW,Li , i = 1, 2 is
bounded from below, and so W is similar to V0. Furthermore, the intertwiner
ZW,L1,L2 ∈ I(UW,L1 , UW,L2) = {U0}′ is of the form ZW,L1,L2 = 2−1I.
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Let us introduce the operator T := W ⊕ V0 ∈ L(H ⊕ H). It is clear that
T ∈ C1·(2 · 1l,H⊕H) is absolutely continuous, ρ(T ) = T, and that T is similar to
the isometry V0 ⊕ V0. Taking the previous Banach limits L1, L2, we obtain that
UT,Li = U0 ⊕ U0 and XT,Li = XW,Li ⊕ 2−1J0, i = 1, 2, where J0 ∈ L(H,K) is the
natural embedding of H into K. We conclude that ZT,L1,L2 = 2−1I ⊕ I.

Let us consider the vectors g := 2e1 ⊕ 2e1 and h := 2e1 ⊕ −2e1, and let us
set x1 := XT,L1g = 2e1 ⊕ e1, y1 := XT,L1h = 2e1 ⊕ −e1, x2 := XT,L2g = e1 ⊕ e1
and y2 := XT,L2h = e1 ⊕−e1. Since

∫

T

χn δ̃T,L1,g,h dµ = 〈(U0 ⊕ U0)nx1, y1〉 =
{

0 if n ∈ Z \ {0},
3 if n = 0,

we infer that δ̃T,L1,g,h is the constant function 3 on T. On the other hand, we
obtain that ∫

T

χn δ̃T,L2,g,h dµ = 〈(U0 ⊕ U0)nx2, y2〉 = 0

is true for all n ∈ Z, and so δ̃T,L2,g,h is the zero function. Therefore, the pair (g, h)
is analytic for T with respect to L1, but (g, h) is not analytic for T with respect to
L2.

Let us consider now an arbitrary operator F in the bicommutant {UT,L1}′′ =
{UT,L2}′′ = {U0 ⊕ U0}′′. Let us write Xi = XT,Li , i = 1, 2, and Z = ZT,L1,L2 for
short. We know that

ΦT,L2(F ) = X∗
2FX2 = X∗

1Z
∗FZX1 = ΦT,L1(Z

∗ZF ),

and that Z∗Z ∈ {U0 ⊕ U0}′ is invertible. Taking into account that ΦT,L1 is a
bijection, we obtain that T̆L2(T ) = T̆L1(T ) is valid if and only if Z∗Z{U0⊕U0}′′ =
{U0 ⊕ U0}′′, and the latter condition holds exactly when Z∗Z ∈ {U0 ⊕ U0}′′.
However, the operator Z∗Z = 4−1I ⊕ I does not belong to the bicommutant of
U0 ⊕ U0, and so

T̆L1(T ) 6= T̆L2(T ).

For any Borel set α ∈ BT, let L1
a(α) :=

{
f ∈ L1(α) :

∫
α

log |f | dµ > −∞}
. We

recall that χαH
1 \ {0} ⊂ L1

a(α), and that by a well-known theorem of Bourgain
we have L1

a(α) = (χαH
2H2) \ {0}; see [15] and [6].

Definition 3.7. The absolutely continuous operator T ∈ C∗·(p,H), p ∈ P̃,
is full with analytic spectral densities with respect to the Banach limit L ∈ B(p), if

{δ̃T,L,g,h : g, h ∈ H} ⊃ L1
a(ρ(T )).

Now, we are ready to prove the main theorem of this section.

Theorem 3.8. Let us assume that the absolutely continuous operator T ∈
C∗·(p,H), p ∈ P̃, is full with analytic spectral densities with respect to the Banach
limit L ∈ B(p), and let g, h ∈ H be given. If the pair (g, h) is analytic for T with
respect to L, then the weak* closed subspace T̆L,g,h(T ) of T -Toeplitz operators is
elementary.
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Proof. Let us write α = ρ(T ) for short. We know that the functional
calculus ΨT,L : L∞(α) → {UT,L}′, f 7→ f(UT,L) is a weak* continuous, iso-
metric algebra-homomorphism with ran ΨT,L = {UT,L}′′ (see e.g. Chapter IX,
[10]). Let us consider the quotient spaces Q(T ),Q(UT,L) and the quotient map-
ping πT introduced in the proof of Proposition 2.2. There exists a transforma-
tion ψT,L ∈ L(Q(UT,L), L1(α)) such that (ψT,L)# = ΨT,L. Then, the adjoint of
λT,L := ψT,L ◦ ϕT,L is the composition ΛT,L = ΦT,L ◦ΨT,L. Given any u, v ∈ H,
we infer by Proposition 2.2 (i) that

[
λT,L ◦ πT (u⊗ v), f

]
=

[
πT (u⊗ v),ΛT,L(f)

]
=

[
u⊗ v,ΦT,L(f(UT,L))

]

=
[
XT,Lu⊗XT,Lv, f(UT,L)

]
=

〈
f(UT,L)XT,Lu,XT,Lv

〉

=
∫

α

f δ̃T,L,u,v dµ =
[
δ̃T,L,u,v, f

]

is true for every f ∈ L∞(α), whence

λT,L ◦ πT (u⊗ v) = δ̃T,L,u,v

follows.
Let us assume that the pair (g, h) ∈ H×H is analytic for T with respect to L,

and let us consider an arbitrary element η ∈ Q(T ). Since δ̃T,L,g,h ∈ L1
a(α), there

exists a number w ∈ T such that f0 + wδ̃T,L,g,h ∈ L1
a(α) holds for the function

f0 := λT,L(η); actually, w can be any point of T with an exception of points in
a set of measure zero (see the proof of Corollary 3.3 in [1]). Taking into account
that T is full with analytic spectral densities with respect to L, we obtain that
there exist vectors g′, h′ ∈ H such that δ̃T,L,g′,h′ = f0 + wδ̃T,L,g,h. Now, given an
arbitrary B ∈ T̆L,g,h(T ), there exists a (unique) function f ∈ L∞(α) such that
B = ΛT,L(f); furthermore [g ⊗ h,B] = 0. Thus, we can write

[η,B] =
[
η,ΛT,L(f)

]
=

[
λT,L(η), f

]
= [f0, f ]

=
[
δ̃T,L,g′,h′ − wδ̃T,L,g,h, f

]
=

[
λT,L ◦ πT (g′ ⊗ h′ − wg ⊗ h), f

]

= [g′ ⊗ h′ − wg ⊗ h,B] = [g′ ⊗ h′, B].

We have obtained that the functional η coincides with the functional g′⊗h′ on the
subspace T̆L,g,h(T ). Taking into account that every weak* continuous linear func-
tional defined on T̆L,g,h(T ) can be extended to a weak* continuous linear functional
on T (T ), we conclude that the weak* closed subspace T̆L,g,h(T ) is elementary.

If the operator T is cyclic then the Banach limits in B(p) play equal role
in connection with fullness of analytic spectral densities. Namely, the following
statement holds.

Lemma 3.9. If the cyclic, absolutely continuous operator T ∈ C∗·(p,H), p ∈
P̃, is full with analytic spectral densities with respect to a Banach limit L ∈ B(p),
then so is with respect to any other Banach limit L′ ∈ B(p) too.

Proof. Let us consider the absolutely continuous unitary operators U = UT,L

and U ′ = UT,L′ , the intertwining transformations X = XT,L ∈ I(T, r(T )U) and
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X ′ = XT,L′ ∈ I(T, r(T )U ′), and the invertible transformation Z = ZT,L,L′ ∈
I(U,U ′) satisfying the equation ZX = X ′. Writing α = ρ(T ) for short, we know
that χα dµ is a scalar spectral measure for U and U ′. Given any vectors g, h ∈ H
and an arbitrary function f ∈ L∞(α), we have∫

α

f δ̃T,L′,g,h dµ = 〈f(U ′)X ′g,X ′h〉 = 〈f(U ′)ZXg,ZXh〉 = 〈f(U)Xg,Z∗ZXh〉.

Since U is cyclic and Z∗Z ∈ {U}′, there exists a function ζ ∈ L∞(α) such that
Z∗Z = ζ(U). Taking into account that Z∗Z is positive and invertible, we infer
that ζ is positive and bounded away from zero. The previous equations yield that∫

α

f δ̃T,L′,g,h dµ = 〈f(U)Xg, ζ(U)Xh〉 = 〈(fζ)(U)Xg,Xh〉 =
∫

α

fζδ̃T,L,g,h dµ

holds for every f ∈ L∞(α), whence δ̃T,L′,g,h = ζδ̃T,L,g,h follows. Since ζL1
a(α) =

L1
a(α) is evidently true, we conclude that the set {δ̃T,L′,g,h : g, h ∈ H} also contains

L1
a(α).

In view of this lemma we can introduce the following concept.

Definition 3.10. The cyclic, absolutely continuous operator T ∈ C∗·(p,H),
p ∈ P̃, is said to be full with analytic spectral densities, if it is so with respect to
some (and then to all) Banach limit(s) L ∈ B(p).

In the cyclic case Theorem 3.8 takes the following simpler form.

Corollary 3.11. If the absolutely continuous operator T ∈ C∗·(p,H), p ∈
P̃, is cyclic and full with analytic spectral densities, then the hyperplane Tg,h(T )
of T -Toeplitz operators is elementary, whenever the vectors g, h ∈ H are analytic
for T .

4. CONDITIONS OF ANALYTICITY

We are going to give conditions for the analytic properties, considered in Section 3,
in terms of the existence of suitable invariant subspaces. To this end, we examine
the asymptotic behaviour of restrictions of operators.

LetM be a non-zero invariant subspace of the operator T ∈ C∗·(p,H), p ∈ P̃.
Taking into account that r(T ) = cp, we obtain that the norm-sequence of T |M is
compatible with p if and only if r(T |M) = r(T ). We note that T ∈ C1·(p,H) read-
ily implies T |M ∈ C1·(p,M); however, T |M ∈ C∗·(p,M) can fail in the general
case. Let us assume that r(T |M) = r(T ) and T |M ∈ C∗·(p,M) hold. Setting any
L ∈ B(p), let us consider the reducing subspace KT,L,M :=

∨
n∈N

U−n
T,LXT,LM of

UT,L, and the restriction UT,L,M := UT,L|KT,L,M. The transformation XT,L,M ∈
L(M,KT,L,M), defined by XT,L,Mh := XT,Lh, h ∈ M, intertwines T |M with
r(T )UT,L,M. Applying the universality of XT |M,L ∈ I(T |M, r(T )UT |M,L), we
infer that there exists a unique transformation ZT,L,M ∈ I(UT |M,L, UT,L,M) such
that XT,L,M = ZT,L,MXT |M,L. It is easy to verify that ZT,L,M is unitary. Thus,
if T is absolutely continuous, then so is the restriction T |M, and the inclusion
ρ(T |M) ⊂ ρ(T ) is fulfilled for the corresponding residual sets.
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Theorem 4.1. Let T ∈ C∗·(p,H), p ∈ P̃, be absolutely continuous, and let
us assume that there exists a non-zero invariant subspace M ∈ LatT such that
T |M ∈ C∗·(p,M), ρ(T |M) = ρ(T ), and the operator r(T )−1(T |M) is similar to
a contraction;

(i) if ρ(T ) = T, then there exists a subspace N ∈ LatT such that XT,L,N is
bounded from below, and the restriction UT,L,N |ranXT,L,N is unitarily equivalent
to the unilateral shift S, where L ∈ B(p) is arbitrary;

(ii) the operator T is full with analytic spectral densities;
(iii) if M is reducing for T , then the set of T -analytic vectors is total in H.

Proof. (i) Let us write r = r(T ) for short, let us fix L ∈ B(p), and let us
assume that r−1(T |M) is similar to a contraction Q ∈ L(E) : Br−1(T |M) = QB
with an invertible B ∈ L(M, E). Since T |M ∈ C∗·(p,M) is similar to rQ, it follows
that rQ ∈ C∗·(bp, E) holds with b = ‖B‖ ‖B−1‖, and that UT |M,L is unitarily
equivalent to UrQ,L. Thus, rQ is absolutely continuous and ρ(rQ) = ρ(T |M) =
ρ(T ) = T. We infer that Q ∈ C∗·(p0, E), where p0(n) = br−np(n), n ∈ N, and
UQ,L = UrQ,L, whence the absolute continuity of Q and the equation ρ(Q) = T
follow. It is immediate that p0 ∈ P̃ with cp0 = 1, αp0 = b−2αp, and B(p0) = B(p).
Since Q is a contraction, the sequence {Q∗nQn}n∈N converges to the positive
operator AQ ∈ L(E) in the strong operator topology. Hence

〈AQ,Lx, y〉 = L- lim
n→∞

p0(n)−2〈Q∗nQnx, y〉 = αp0〈AQx, y〉

is true, for every x, y ∈ E . We obtain that Q ∈ C∗·(1l, E) and that UQ = UQ,L. Thus
Q is an absolutely continuous contraction with ρ1l(Q) = T, and so Theorem 3, [17],
yields the existence of a subspace F ∈ LatQ such that Q|F is similar to S. Then
N := B−1F will be invariant for T , and T |N ≈ rS. The universality of XT |N ,L

implies that XT |N ,L is bounded from below, and that UT |N ,L|ranXT |N ,L ' S.
The equation XT,L,N = ZT,L,NXT |N ,L yields that the same holds for the trans-
formation XT,L,N too.

(ii) Let us write α = ρ(T ) for short, and let us consider the absolutely
continuous operator T̂ = T ⊕ rMαc ∈ C∗·(p,H ⊕ L2(αc)), where X

T̂ ,L
= XT,L ⊕

αpI, UT̂ ,L
= UT,L ⊕Mαc and ρ(T̂ ) = ρ(T ) ∪ αc = T. Since the restriction of

r−1T̂ to its invariant subspace M̂ = M⊕ L2(αc) is similar to a contraction and
ρ(T̂ |M̂) = ρ(T |M)∪αc = T, we infer by (a) that there exists N̂ ∈ Lat T̂ such that
X

T̂ ,L,N̂ is bounded from below and U
T̂ ,L

|ranX
T̂ ,L,N̂ ' S. In view of Bourgain’s

theorem, we obtain that T̂ is full with analytic spectral densities. Thus, given
any f ∈ L1

a(α), we can find vectors ĝ = g ⊕ g0, ĥ = h ⊕ h0 ∈ H ⊕ L2(αc) such
that f + χαc = δ̃

T̂ ,L,̂g,̂h
. Taking into account that KT,L = χα(U

T̂ ,L
)K

T̂ ,L
and

L2(αc) = χαc(U
T̂ ,L

)K
T̂ ,L

, we conclude that f = χαδ̃T̂ ,L,̂g,̂h
= δ̃T,L,g,h, and so T is

full with analytic spectral densities.
(iii) Exploiting the full power of Theorem 3, [17], we obtain that there exists

a system {N̂γ}γ∈Γ of T̂ -invariant subspaces satisfying the conditions
∨{N̂γ}γ∈Γ =

M̂ and T̂ |N̂γ ≈ rS, γ ∈ Γ. Let P ∈ L(H⊕ L2(αc)) be the orthogonal projection
onto the component H. For any non-zero vector ĥ ∈ ⋃{N̂γ}γ∈Γ, we have δ̃

T̂ ,L,̂h
∈
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L1
a(T), whence δ̃

T,L,P ĥ
= χαδ̃T̂ ,L,̂h

∈ L1
a(α) follows. Hence, the vectors in the set

N0 :=
(⋃{P N̂γ}γ∈Γ

) \ {0}, which is total in M = PM̂, are all analytic for T .
The inequality δ̃T,L,h⊕k = δ̃T,L,h + δ̃T,L,k > δ̃T,L,h shows that every vector h ⊕ k
in the total subset N0 ⊕ (HªM) of H is T -analytic.

It can be seen from the proof that the general assumption of the previous
theorem concerning M is equivalent to the existence of a vector h ∈ H such
that h is quasianalytic for T , and the restriction of r(T )−1T to the subspace
H+(T, h) =

∨{Tnh}∞n=0 is similar to a contraction.
The following statement characterizes the analytic cyclic operators in the

case, when the residual set is the whole circle. We recall that the operator A ∈ L(E)
is a quasiaffine transform of the operator B ∈ L(F), in notation: A ≺ B, if the
set I(A,B) contains a quasiaffinity, that is an injective transformation with dense
range. If an injection is included into I(A,B), then we say that A can be injected

into B, and we use the notation: A
i≺B.

Theorem 4.2. Let T ∈ C1·(p,H), p ∈ P̃, be an absolutely continuous, cyclic
operator with ρ(T ) = T. Then the following statements are equivalent:

(i) T is analytic;
(ii) a cyclic vector of T is analytic;
(iii) T ≺ r(T )S.

Proof. It is immediate that (i) implies (ii). If the cyclic vector u ∈ H is
analytic for T , then the restriction U+ := UT,L|K+

T,L(UT,L, XT,Lu), L ∈ B(p),
is unitarily equivalent to S by Proposition 3.3. Since the intertwining mapping
X+ ∈ I(T, r(T )U+), defined by X+h := XT,Lh, h ∈ H, is a quasiaffinity, we
obtain that T ≺ r(T )S.

Let us assume now that T ≺ r(T )S, and let Y ∈ I(T, r(T )S) be a quasiaffin-
ity. There exists a unique mapping Z ∈ I(UT,L, S̃) such that Ỹ = ZXT,L, where
Ỹ ∈ I(T, r(T )S̃) is the transformation defined by Ỹ h := Y h, h ∈ H. Let 0 6= h ∈
H be arbitrary, and let us consider the cyclic subspaces K1 := K+

T,L(UT,L, XT,Lh)
and K2 := (L2(T))+(S̃, Ỹ h) = (H2)+(S, Y h). It is clear that the transformation
Z0 := Z|K1 ∈ I(UT,L|K1, S̃|K2) has dense range, and that S̃|K2 = S|K2 ' S.

Since S∗
i≺(UT,L|K1)∗, it follows that UT,L|K1 is not unitary. Taking into account

that UT,L|K1 is an absolutely continuous, cyclic isometry, we infer by the Wold
decomposition that UT,L|K1 ' S, and so h is analytic for T .

Remark 4.3. It can be shown in a similar way that the operator T ∈
C1·(p,H), p ∈ P̃, is analytic, if r(T )−1T can be injected into the unilateral shift Sn

of an arbitrary multiplicity n. (Here Sn denotes the orthogonal sum of n copies of
S, acting on the orthogonal sum H2

n of n copies of H2.) It is immediate that in
that case the operator T ∈ L(p,H), p ∈ P̃, belongs to the class C10(p,H), which
means that H0(T, p) = {0} and H0(T ∗, p) = H hold. There are known conditions

which guarantee fulfillment of the relation T
i≺ r(T )Sn.

Let us assume that T ∈ C10(1l,H), and let us consider the Sz.-Nagy–Foiaş
characteristic function ΘT of T . We remind the reader that ΘT is a contractive,
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analytic function defined on the open unit disc D and taking values in the set
L(DT ,DT∗), where DT = (ranDT )−,DT∗ = (ranDT∗)− are the defect spaces,
and DT = (I − T ∗T )1/2, DT∗ = (I − TT ∗)1/2 are the defect operators of T . More
precisely, ΘT is given by the formula

ΘT (z) := (−T + zDT∗(I − zT ∗)−1DT )|DT , z ∈ D,
see [26] for details. In view of Proposition 1, [31], and its proof, we know that the
contraction T can be injected into a unilateral shift Sn, if there exist a non-zero
function δ ∈ H∞ and a bounded, analytic mapping Ψ : D→ L(DT∗ ,DT ) such that

ΨΘT = δI. Furthermore, the latter condition is even necessary for T
i≺Sn, if n is

finite.

In the following example we consider asymptotically non-vanishing, classical
Toeplitz operators with analytic symbols, where the residual set is not the whole
circle T. It will be shown by the aid of these operators that analyticity of T is not
a necessary condition for the intransitive hyperplanes of T (T ) to be elementary.

Example 4.4. Let Ω be a simply connected domain included in the open
unit disc D, and bounded by a rectifiable Jordan curve Γ. Let us assume that
the intersection γ = Γ ∩ T is a Borel set of measure 0 < µ(γ) < 1, and let us
consider a conformal mapping η of D onto Ω. The assumption on the boundary Γ
implies that η can be extended to a homeomorphism η : D− → Ω−, and that the
restriction of η to the unit circle T is an absolutely continuous function of bounded
variation (see e.g. Theorems 14.5.6 and 14.5.8, [11]). Furthermore, the derivative
η′ belongs to the Hardy class H1, and η′(eit) := dη(eit)/dt = ieit lim

r→1−0
η′(reit) is

true a.e. for its boundary values (see Corollary 20.4.9, [11]).
Let us consider the Toeplitz operator Tη ∈ L(H2), associated with the func-

tion η. It is clear that ‖Tη‖ = 1, the Borel set α := η−1(γ) ⊂ T is of measure
0 < µ(α) < 1, and the operators (T ∗η )nTn

η = T|η|2n converge to the operator
ATη = Tχα in the weak* topology, as n tends to infinity. We can identify the
unitary operator UTη as follows. Let Mα,η ∈ L(L2(α)) be the multiplication op-
erator given by Mα,ηf := ηf , f ∈ L2(α), and let us consider the intertwining
mapping Xα ∈ I(Tη,Mα,η) defined by Xαh := χαh, h ∈ H2. There exists a
unique transformation Z ∈ I(UTη ,Mα,η) such that Xα = ZXTη . Since

‖ZU−n
Tη
XTηh‖2 = ‖M−n

α,ηXαh‖2 = ‖χαh‖2 = 〈ATηh, h〉 = ‖U−n
Tη
XTηh‖2

holds for every h ∈ H2 and n ∈ N, and since Xα has dense range, it follows that
Z is a unitary transformation. We obtain that Tη is an absolutely continuous
operator of class C1·(1l,H2).

In view of the Jordan Curve Theorem, we infer by Proposition 2, [29], that η
is a (sequential) weak* generator of H∞, and so Tη and S have the same invariant
subspaces. Hence, the operator Tη is cyclic.

Let us determine now the asymptotic local spectral density functions δ̃Tη,h,
h ∈ H2. To this end, let us consider the unitary transformation W ∈ I(Mγ ,Mα,η)
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defined by Wf := (f ◦ (η|α))|(η′|α)|1/2. Since W ∗Z ∈ I(UTη
,Mγ) is unitary and

W ∗ZXTη = W ∗Xα, it follows that ρ(Tη) = γ and that, for every h ∈ H2, we have

δ̃Tη,h = δUTη ,XTη h = δMγ ,W∗Xαh = |W ∗Xαh|2.
Let 0 6= h ∈ H2 be arbitrary, and let us write f := W ∗Xαh for short. The
equations χαh = Xαh = Wf = (f ◦ (η|α))|(η′|α)|1/2 yield that

∫

γ

log |f | dµ =
∫

α

(log |f ◦ η|)|η′|dµ =
∫

α

(log |h| − (1/2) log |η′|)|η′| dµ.

We obtain that if η′ is bounded — what happens, in particular, when Γ is a
C∞-smooth curve (see [3]) —, then

∫
γ

log |f |dµ > −∞, and so Tη is an analytic

operator.
However, the function η′ is not bounded in general. For example, let η0 be

the conformal mapping of D onto the domain D+ := {z ∈ D : Im z > 0}, given as
the inverse of the Riemann map ψ : D+ → D defined by

ψ(z) := (z + z−1 + i)(z + z−1 − i)−1.

Then γ = {eit : 0 6 t 6 π}, α = {eit : t1 6 t 6 t2} where t1 = 2 arctan(1/2), t2 =
2π− t1, and a short computation shows that η0(eit) = exp(i arccos((1/2) cot(t/2)))
for t1 6 t 6 t2. It is easy to check that |(η′0|α)| > 1/4, η′0|α 6∈ L∞(α) and
|(η′0|α)| log |(η′0|α)| ∈ L1(α). It follows that

∫
α

(log |h| − (1/2) log |η′0|)|η′0|dµ = −∞
must hold for some 0 6= h ∈ H2, and so the operator Tη0 is not analytic.

We can observe that in all cases T (Tη) = {Tϕ : ϕ ∈ L∞(α)}. Indeed,
the maximal abelian algebra {Mα,ϕ : ϕ ∈ L∞(α)} is contained in the abelian
commutant of the cyclic unitary operator Mα,η, and so {Mα,ϕ : ϕ ∈ L∞(α)} =
{Mα,η}′. Since, for any function ϕ ∈ L∞(α), we have

ΦTη (Z∗Mα,ϕZ) = X∗
Tη
Z∗Mα,ϕZXTη = X∗

αMα,ϕXα = Tϕ,

it follows that T (Tη) = ran ΦTη = {Tϕ : ϕ ∈ L∞(α)}. Given any non-zero vectors
g, h ∈ H, the hyperplane Tg,h(Tη) is an intransitive, weak* closed subspace of
T (S). Thus, by the Azoff–Ptak Theorem Tg,h(Tη) is hereditarily reflexive, and so
it is elementary. Therefore Tη0 is an example for a non-analytic operator, where
all intransitive hyperplanes of the set of Tη0-Toeplitz operators are elementary.

5. REFLEXIVE HYPERPLANES

We recall that for a linear manifold S of operators acting on the Hilbert space H,
Ref S stands for the set of operators C ∈ L(H) satisfying the condition Cx ∈ (Sx)−
for every x ∈ H. Thus S is reflexive, precisely when S = Ref S. We are going
to show that the hyperplane Tg,h(T ) is reflexive under certain conditions on the
vectors g, h ∈ H. The method applied is a distillation of the technique used in the
fourth chapter of [1]. The symbolic calculus comes onto stage only at the end of
the section, the majority of the results is valid in a very general setting. Crucial
role is played by regular pairs of operators.
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Definition 5.1. Let T ∈ L(H) be arbitrary. The pair (P,Q) ∈ L(H)×L(H)
is called regular for the set T (T ) of T -Toeplitz operators, and we write (P,Q) ∈
R(T ), if Q∗CP = C holds, for every C ∈ T (T ).

We note that if T (T ) 6= {0} and (P,Q) ∈ R(T ), then r(P ) and r(Q) are
necessarily positive. Indeed, let C be a non-zero T -Toeplitz operator. Since
Q∗nCPn = C, we infer that 0 < ‖C‖1/n 6 ‖Qn‖1/n‖C‖1/n‖Pn‖1/n, n ∈ N,
and so 1 6 r(Q)r(P ).

The importance of such pairs is shown by the following lemma.

Lemma 5.2. Let T ∈ L(H) be given, and let g, h ∈ H be arbitrary;
(i) if (P,Q) ∈ R(T ) then [g⊗h,B] = [Pg⊗Qh,B] holds, for all B ∈ T (T );
(ii) if (Q,Q) ∈ R(T ) and z ∈ r(Q)D, then

[Qg ⊗ h,B] = [(Q− zI)g ⊗ (I − zQ)−1h,B]

is true, for all B ∈ T (T ).

Proof. The verification of (i) is easy, and is left to the reader. To prove (ii),
let us assume that (Q,Q) ∈ R(T ) and z ∈ r(Q)D. Given any B ∈ T (T ), we can
write

(I − zQ∗)−1B(Q− zI) =
∞∑

n=0

znQ∗nBQ−
∞∑

n=0

zn+1Q∗nB = BQ,

whence the equation of (ii) readily follows.

The following lemma exhibits several examples for regular pairs. The easy
proof is left to the reader.

Lemma 5.3. Let T ∈ L(H), and let us assume that r(T ) = 1;
(i) the pair (T k, T k) is regular for T (T ), for every non-negative integer k;
(ii) the pairs (T − zI, T (I − zT )−1) and (T (I − zT )−1, T − zI) are regular

for T (T ), for all z ∈ D;
(iii) if (Pi, Qi) ∈ R(T ) for i = 1, 2, then (P1P2, Q1Q2) ∈ R(T ).

Now, we are ready to verify the first reflexivity statement.

Proposition 5.4. Let T ∈ L(H) be given with r(T ) > 0. If the vectors
g, h ∈ H are cyclic for T , then the hyperplane Tg,h(T ) is reflexive.

Proof. Taking into account that T (cT ) = T (T ) and that cT and T have
the same cyclic vectors, for any c ∈ C \ {0}, we may assume that r(T ) = 1.
Let g, h ∈ H be arbitrary. We know by Lemma 5.2 (i) and Lemma 5.3 that
the operator Hk(z) := (T − zI)T kg ⊗ T (I − zT )−1T kh belongs to Tg,h(T )⊥, for
every non-negative integer k, and for every z ∈ D. Considering the power series
expansion

Hk(z) =
(
T k+1g − zT kg

)⊗
∞∑

n=0

znT k+1+nh

= T k+1g ⊗ T k+1h +
∞∑

n=1

zn
(
T k+1g ⊗ T k+1+nh− T kg ⊗ T k+nh

)
,
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and applying Cauchy’s formula, we obtain that TT ig ⊗ TT jh − T ig ⊗ T jh is in
Tg,h(T )⊥, whenever 0 6 i 6 j. Repeating the previous argument with the analytic
function Gk(z) := T (I − zT )−1T kg⊗ (T − zI)T kh, we can see that the restriction
i 6 j can be dropped. Taking linear combinations, we infer that

Tp(T )g ⊗ Tq(T )h− p(T )g ⊗ q(T )h ∈ Tg,h(T )⊥

holds, for any polynomials p and q.
Assuming that C ∈ Ref Tg,h(T ), it follows that

0 = [Tp(T )g ⊗ Tq(T )h− p(T )g ⊗ q(T )h,C] = 〈(T ∗CT − C)p(T )g, q(T )h〉
is true, for every polynomials p and q. If the vectors g and h are cyclic for T ,
then T ∗CT − C must be zero, that is C ∈ T (T ). Since C ∈ Ref Tg,h(T ) and
g⊗ h ∈ Tg,h(T )⊥, we conclude that C ∈ Tg,h(T ), and so the hyperplane Tg,h(T ) is
reflexive.

Our next aim is to extend the validity of Proposition 5.4 by relaxing the
condition posed on the vectors g, h. To this end, we need the following lemma.

Lemma 5.5. Let T,Q ∈ L(H) and g, h ∈ H be arbitrary;
(i) if T (T )Q ⊂ T (T ), then (Ref TQg,h(T ))Q ⊂ Ref Tg,h(T );
(ii) if T (T )Q ⊂ T (T ) and (Q,Q) ∈ R(T ), then

{B ∈ Ref TQg,h(T ) : BQ = 0} ⊂ Ref Tg,h(T ).

Proof. We may assume that T (T ) 6= {0}.
(i) Since, for any Y ∈ TQg,h(T ), the operator Y Q belongs to T (T ) and

〈(Y Q)g, h〉 = 〈Y (Qg), h〉 = 0, it follows that Y Q ∈ Tg,h(T ), and so TQg,h(T )Q ⊂
Tg,h(T ). We infer that (Ref TQg,h(T ))Q ⊂ Ref (TQg,h(T )Q) ⊂ Ref Tg,h(T ) apply-
ing Lemma 4.5, [1].

(ii) Let x ⊗ y ∈ Tg,h(T )⊥ ∩ F1(H) be arbitrary. For any Y ∈ TQg,h(T ),
the operator Y Q is in Tg,h(T ) (as we have seen before), and 0 = 〈(Y Q)x, y〉 =
〈Y (Qx), y〉, whence Qx⊗ y ∈ TQg,h(T )⊥ follows. We infer by Lemma 5.2 (ii) that

(Q− zI)x⊗ (I − zQ)−1y ∈ TQg,h(T )⊥

holds, for every z ∈ r(Q)D, where r(Q) > 0 because of T (T ) 6= {0}. If B ∈
Ref TQg,h(T ) and BQ = 0, then

−z〈Bx, (I − zQ)−1y〉 = 〈B(Q− zI)x, (I − zQ)−1y〉 = 0

is true, for every z ∈ r(Q)D. Thus, we have

〈Bx, y〉 = lim
z→0

〈Bx, (I − zQ)−1y〉 = 0,

and so B ∈ (Tg,h(T )⊥ ∩ F1(H))⊥ = Ref Tg,h(T ).

Definition 5.6. The operator Q ∈ L(H) is called T -inner, and we write
Q ∈ Ri(T ), if T (T )Q = T (T ) and (Q,Q) ∈ R(T ).

We note that the conditions T (T )Q ⊂ T (T ) and (Q,Q) ∈ R(T ) imply that
T (T ) = Q∗T (T )Q ⊂ Q∗T (T ). Taking adjoints we obtain that T (T ) = T (T )∗ ⊂
(Q∗T (T ))∗ = T (T )Q, whence T (T )Q = T (T ) follows.
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Proposition 5.7. Let T ∈ L(H) and g, h ∈ H be given. If Tg,h(T ) is
reflexive and P,Q ∈ Ri(T ), then the hyperplane TPg,Qh(T ) is also reflexive.

Proof. Let C ∈ Ref TPg,h(T ) be arbitrary. We know by Lemma 5.5 (i) that
CP ∈ Ref Tg,h(T ) = Tg,h(T ). The relation T (T )P = T (T ) implies that there
exists an operator A ∈ T (T ) such that AP = CP . Since 〈A(Pg), h〉 = 〈CPg, h〉 =
0, it follows that A ∈ TPg,h(T ). Applying Lemma 5.5 (ii) with B := C − A ∈
Ref TPg,h(T ), we infer that B ∈ Ref Tg,h(T ) = Tg,h(T ). Thus, the operator C =
A+B is T -Toeplitz, and since C ∈ Ref TPg,h(T ), we conclude that C ∈ TPg,h(T ).
We have shown that the hyperplane TPg,h(T ) is reflexive.

It is easy to check that, for any vectors u, v ∈ H, the equations Tv,u(T ) =
(Tu,v(T ))∗ and Ref Tv,u(T ) = (Ref Tu,v(T ))∗ hold. Hence, the hyperplane Tv,u(T )
is reflexive if and only if so is the hyperplane Tu,v(T ). Since TPg,h(T ) is reflexive,
we infer that Th,Pg(T ) is reflexive, too. Then, the first part of the proof yields that
TQh,Pg(T ) is reflexive, whence the reflexivity of TPg,Qh(T ) immediately follows.

In view of this proposition, and keeping in mind the classical case, it makes
sense to introduce the following terminology.

Definition 5.8. Given any operator T ∈ L(H), the vector v ∈ H is called
T -outer, in notation: v ∈ Ro(T,H), if v is cyclic for T .

We say that the vector u ∈ H is regular for the operator T ∈ L(H), and we
write u ∈ R(T,H), if there exist a T -outer vector v ∈ Ro(T,H) and a T -inner
operator Q ∈ Ri(T ) such that u = Qv.

The operator T is called regular, if every non-zero vector u ∈ H is regular for
T .

Propositions 5.4 and 5.7 readily imply the following theorem.

Theorem 5.9. If the vectors u, v ∈ H are regular for the cyclic operator
T ∈ L(H), then the hyperplane Tu,v(T ) of T -Toeplitz operators is reflexive.

Combining this statement with the results of the previous sections we obtain
the following

Corollary 5.10. Let T ∈ C10(p,H), p ∈ P̃, be a cyclic, absolutely con-
tinuous operator, which is a quasiaffine transform of the operator r(T )S. Let us
assume that there exists a non-zero subspace M∈ LatT , such that the restriction
r(T )−1T |M is similar to a contraction. Then the hyperplane Tg,h(T ) is hereditar-
ily reflexive, whenever the vectors g, h ∈ H are regular for T .

Proof. Taking into account that T |M ≺ r(T )S also holds, we infer that
ρ(T |M) = ρ(T ). Hence, Theorem 4.1 implies that T is full with analytic spectral
densities. Since T is analytic by Theorem 4.2, Corollary 3.11 tells us that the
hyperplane Tg,h(T ) is elementary for any non-zero vectors g, h ∈ H. If these
vectors are regular for T , then Tg,h(T ) is reflexive by Theorem 5.9, and so it is
necessarily hereditarily reflexive.

The following statement provides a characterization of T -inner operators,
when T is an asymptotically strongly non-vanishing operator of regular norm-
sequence.
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Proposition 5.11. Let T ∈ C1·(p,H), p ∈ P̃ and L ∈ B(p) be given. The
operator Q ∈ L(H) is T -inner if and only if Q belongs to the commutant {T}′ of
T and the operator γT,L(Q) ∈ {UT,L}′′ is unitary.

Proof. Let us assume first that Q ∈ {T}′ and that γT,L(Q) ∈ {UT,L}′′ is
unitary. Let F ∈ {UT,L}′ be arbitrary. In view of Proposition 2.1, we know that

ΦT,L(F )Q = ΦT,L(FγT,L(Q)) ∈ T (T ),
ΦT,L(F ) = ΦT,L(FγT,L(Q)∗γT,L(Q)) = ΦT,L(FγT,L(Q)∗)Q,

and
Q∗ΦT,L(F )Q = ΦT,L(γT,L(Q)∗FγT,L(Q)) = ΦT,L(γT,L(Q)∗γT,L(Q)F ) = ΦT,L(F ).

Taking into account that the symbolic calculus is a bijection, we conclude that
Q ∈ Ri(T ).

Let us suppose now that Q is T -inner. Since Q∗AT,LQ = AT,L, it follows
that ‖XT,LQh‖ = ‖XT,Lh‖ holds for every h ∈ H. Hence, there exists a unique
isometry WQ ∈ L((ranXT,L)−) such that XT,LQh = WQXT,Lh, h ∈ H. For any
operator F ∈ {UT,L}′, we have Q∗X∗

T,LFXT,LQ = Q∗ΦT,L(F )Q = ΦT,L(F ) =
X∗

T,LFXT,L, and so

〈FWQXT,Lh,WQXT,Lk〉 = 〈FXT,LQh,XT,LQk〉 = 〈FXT,Lh,XT,Lk〉, h, k ∈ H.
Substituting UT,L in place of F , we infer that W ∗

QVT,LWQ = VT,L, where VT,L

is the restriction of UT,L to the subspace (ranXT,L)−. Since VT,L and WQ are
isometries, the range of VT,LWQ must be contained in the range of WQ. Thus,
VT,LWQ = WQW

∗
QVT,LWQ = WQVT,L. Then, for every h ∈ H, we have

XT,LQTh = r(T )WQVT,LXT,Lh = r(T )VT,LWQXT,Lh = XT,LTQh.

Since XT,L is injective, we obtain that Q belongs to the commutant {T}′ of T .
For any operator F ∈ {UT,L}′, the equations

ΦT,L(γT,L(Q)∗FγT,L(Q)) = Q∗ΦT,L(F )Q = ΦT,L(F )

yield that γT,L(Q)∗FγT,L(Q) = F . Setting F = I, we can see that γT,L(Q) is an
isometry. Since γT,L(Q) commutes with UT,L, and so with U∗T,L too, the orthogonal
projection E ∈ L(KT,L) onto the range of γT,L(Q) belongs to the commutant
{UT,L}′. Hence, I = γT,L(Q)∗EγT,L(Q) = E, and so the operator γT,L(Q) is
unitary. Then, the equation γT,L(Q)∗FγT,L(Q) = F implies that FγT,L(Q) =
γT,L(Q)F , F ∈ {UT,L}′, that is γT,L(Q) ∈ {UT,L}′′.

We can see from the proof that, for an operator T ∈ C1·(p,H), p ∈ P̃, the
assumption (Q,Q) ∈ R(T ) solely implies that Q is T -inner, and so T (T )Q = T (T ).

We conclude this paper with the following comment.

Remark 5.12. We have seen in Section 2 that, in the general setting, the
set AT,L{T}′ corresponds to the set {S}′ = {Tu : u ∈ H2} of classical Toeplitz
operators with analytic symbols L ∈ B(p). Sarason’s theorem tells us that {S}′
is a reflexive subspace. In contrast, the operator space AT,L{T}′ is transitive,
whenever T ∈ C1·(p,H), p ∈ P̃, is an absolutely continuous, cyclic, quasianalytic
operator with µ(ρ(T )c) > 0. Indeed, let us assume that 〈AT,LCg, h〉 = 0 holds
for every C ∈ {T}′, with some vectors g, h ∈ H. Then 〈Un

T,LXT,Lg,XT,Lh〉 =
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r(T )−n〈XT,LT
ng,XT,Lh〉 = r(T )−n〈AT,LT

ng, h〉 = 0 is true, for every n ∈ N.
Taking into account that UT,L is a cyclic, absolutely continuous unitary operator
with scalar spectral measure χρ(T )dµ, and that XT,Lg,XT,Lh are cyclic for {UT,L}′
if g, h are non-zero vectors, we infer that g or h must be zero.
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