
J. OPERATOR THEORY
51(2004), 335–360

c© Copyright by Theta, 2004

GAUSSIAN UPPER BOUNDS FOR

HEAT KERNELS OF SECOND-ORDER ELLIPTIC OPERATORS

WITH COMPLEX COEFFICIENTS

ON ARBITRARY DOMAINS

EL MAATI OUHABAZ

Communicated by William B. Arveson

Abstract. We consider second-order elliptic operators of the type A =
−P

k,j

Dj(akjDk)+
P
k

bkDk −Dk(ck ·)+ a0 acting on L2(Ω) (Ω is a domain of

Rd, d > 1) and subject to various boundary conditions. We allow the coeffi-
cients akj , bk, ck and a0 to be complex-valued bounded measurable functions.
Under a suitable condition on the imaginary parts of the principal coefficients
akj , we prove that for a wide class of boundary conditions, the semigroup
(e−tA)t>0 is quasi-Lp-contractive (1 < p < ∞). We show a pointwise domi-

nation of (e−tA)t>0 by a semigroup generated by an operator with real-valued
coefficients and prove a Gaussian upper bound for the associated heat kernel.
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1. INTRODUCTION

Behaviour of heat kernels has long been an active topic in functional analysis and
partial differential equations. It is known that heat kernel bounds such as Gaussian
bounds imply various interesting properties for the semigroup and its generator.
Some of these properties are Lp-analyticity of the semigroup ([35], [4], [17], [23]),
p-independence of the spectrum ([2], [17]), boundedness of spectral multipliers and
functional calculi ([21], [19], [20]), maximal Lp-regularity ([24], [14]), boundedness
on Lp, 1 < p 6 2, of Riesz transforms ([13]).

It is known that Gaussian upper bounds hold for self-adjoint uniformly ellip-
tic operators with real coefficients, acting on domains and are subject to Dirichlet



336 El Maati Ouhabaz

or Neumann boundary conditions (see Davies, [16]). Note that in the latter case,
one needs a regularity assumption on the boundary of the domain. Arendt and
ter Elst ([4]) extended these bounds to the case of non-symmetric operators of the
type A = −∑

k,j

Dj(akjDk) +
∑
k

bkDk −Dk(ck · ) + a0, assuming some smoothness

condition on the coefficients. The coefficients bk, ck are allowed to be complex (but
smooth). This smoothness assumption was removed by Daners ([15]) but assum-
ing that all the coefficients are real-valued. Related results on Rd for operators
with real-valued coefficients can also be found in Norris and Stroock ([33]). The
proof in [15] was extended recently by Karrmann ([25]) who proved a sub-Gaussian
bound for some elliptic operators with unbounded coefficients. In [15], the coeffi-
cients are allowed to be time dependent, however, the proof seems to use that all
the coefficients akj , bk, ck must be real. The situation for complex coefficients is
very different. If the above operator A is acting in L2(Rd), then the smoothness of
the coefficients akj guaranties the validity of the Gaussian bound (see Auscher and
Tchamitchian ([8]) and the references there). Note that such bound always holds if
d 6 2 and counterexamples are known for non-smooth coefficients when d > 5, see
Auscher, Coulhon and Tchamitchian ([7]) and Davies ([18]). Similar results hold
if A is acting in L2(Ω), where Ω is a Lipschitz domain of Rd with small enough
Lipschitz constant (see [9], Theorem 7). If the Lipschitz constant is large, the
Gaussian property does not necessarily hold even when A has constant coefficients
(see [9], Proposition 6; the example used there is taken from Maz’ya, Nazarov
and Plamenevskii [31]). Considering elliptic operators with complex coefficients
on arbitrary domains, one may ask for conditions on the coefficients that imply the
Gaussian bound. The present paper deals with this question. We prove a Gaus-
sian bound for operators subject to several boundary conditions. Our assumption
on the coefficients concerns the imaginary parts Im akj of the principal coefficients
(see Theorem 5.4 for the precise statement). We allow the coefficients bk, ck, a0 to
be bounded measurable and complex. Our result gives also more precise constants
in the Gaussian bound. In order to prove this, we first prove that the semigroup
generated by such an operator is pointwise dominated by the semigroup generated
by an elliptic operator with real-valued coefficients (Theorems 3.1 and 3.3). This is
achieved by using criteria for the domination of semigroups proved in [36] and [37].
We then study the quasi-Lp-contractivity of the semigroup (e−tA)t>0, generated
by −A on L2(Ω). It was already shown in [6] (Theorème 2.1 (ii)) (see also [34],
Example 4.3) that if the coefficients ck are not smooth, the semigroup (e−tA)t>0

can not be quasi-L∞-contractive. Here, we prove that it is quasi-Lp-contractive
for all p ∈ (1,∞). We give an estimate for the constant wp such that e−twpe−tA is
a contraction operator on Lp(Ω) for all t > 0. We prove that

wp 6 ‖(Re a0)−‖∞ +
1
η

(1
p

+
1
2

) d∑

k=1

‖bk − ck‖2∞ +
p

η

d∑

k=1

‖Re ck‖2∞

for all p ∈ [2,∞) (p ∈ (1, 2) is obtained by duality), where η > 0 is the ellipticity
constant of the matrix (akj). This extends related results in [15] and [25] in the
sense that we consider more general boundary conditions and complex coefficients
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as well. Our strategy to prove quasi-Lp-contractivity is based on criteria for L∞-
contractivity of semigroups (cf. [34], [36], [6]) and interpolation arguments. It
differs from the proof in [15] and is easier.

Our Lp-estimate together with a Sobolev inequality (assumption (5.1)) pro-
vide an estimate for the L1 − L∞ norm of e−tA, t > 0. It is important to know
how this estimate depends on the coefficients of the operator in order to apply
the well known Davies perturbation technique. This is the reason why we need to
control the constant wp above.

The Davies perturbation technique consists in showing L1 − L∞ estimates
for the perturbed semigroup eλφe−tAe−λφ, where λ ∈ R and φ is any bounded
smooth function on Rd such that |∇φ| 6 1. In order to prove such estimate, one
needs that the operator defined by multiplication by eλφ maps the domain of the
sesquilinear form of A into itself. This property holds if A is subject to Dirichlet,
Neumann or mixed boundary conditions, but it does not hold in general. For
general boundary conditions, we prove a Gaussian bound which involves another
metric. This metric coincides with the Euclidean one in the cases of Dirichlet,
Neumann, mixed boundary conditions, e.g. (see Theorem 5.5).

Notation 1.1. We fix here some notation. The norm in Lp(Ω) of a function
u will be denoted by ‖u‖p. The Lebesgue measure is written dx. All the integrals
will be taken with respect to dx (we may omit to write dx in some integrals). The
inner product of L2 is written ( · , · ). By W 1,p(Ω), we denote the classical Sobolev
spaces, W 1,2(Ω) = H1(Ω) and H1

0 (Ω) is the closure in H1(Ω) of C∞c (Ω) (C∞-
functions with compact support in Ω). We will also use the notation Dk = ∂

∂xk
,

∇u = (D1u, . . . ,Ddu) and u+ = sup(u, 0), u− = sup(−u, 0) (for every real-valued
function u). For a measurable function u, the symbol |u| denotes the function
x → |u(x)|, where the latter is the modulus of u(x).

2. L2-THEORY, POSITIVITY AND IRREDUCIBILITY

In this section, we give the precise definition of our elliptic operators. They are
defined by the sesquilinear form technique and thus generate strongly continuous
semigroups on L2. It is well understood when these semigroups map the cone
of non-negative functions into itself. Here we prove that for several boundary
conditions such semigroups are irreducible.

Let H be a Hilbert space and consider a sesquilinear form a : D(a)×D(a) →
C. The subspace D(a) is called the domain of a. We assume that a is densely
defined, nonnegative, continuous and closed. This means, respectively, that:

(i) D(a) is dense in H;
(ii) Re a(u, u) > 0 ∀u ∈ D(a);
(iii) |a(u, v)| 6 M‖u‖a‖v‖a ∀u, v ∈ D(a),

(where M is a constant and ‖u‖a :=
√

Re a(u, u) + ‖u‖2)
(iv) (D(a), ‖ · ‖a) is a complete space.
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Under these assumptions, one can associate with a an operator A defined as
follows

D(A) = {u ∈ D(a),∃v ∈ H : a(u, φ) = (v, φ), ∀φ ∈ D(a)}, Au := v.

Here ( · , · ) denotes the scalar product of H. It is well known (see [27], Chapter VI
and IX) that −A generates a holomorphic semigroup (e−tA)t>0 on H.

Let now Ω be an open subset of Rd, d > 1, and define on L2(Ω) = L2(Ω,C)
the sesquilinear form
(2.1)

aV (u, v) =
∫

Ω

( d∑

k,j=1

akj(x)DkuDjv +
d∑

k=1

bk(x)Dkuv + ck(x)uDkv + a0(x)uv

)

with domain D(aV ) = V , where V is a closed subspace of H1(Ω) and H1
0 (Ω) ⊆

V ⊆ H1(Ω). We assume that

(2.2) akj , bk, ck, a0 ∈ L∞(Ω,C) for all 1 6 j, k 6 d,

with elliptic principal part, i.e., there exists a constant η > 0 such that

(2.3) Re
d∑

j,k=1

akj(x)ξjξk > η|ξ|2 a.e. x ∈ Ω, ∀ξ ∈ Cd.

Under these assumptions, there exists a constant w such that

(2.4) Re aV (u, u) + w‖u‖22 > η

2
‖u‖H1(Ω), for all u ∈ V.

Moreover, the form (aV + w) (defined by (aV + w)(u, v) = aV (u, v) + w(u, v)
for all u, v ∈ V ) is continuous and closed. Indeed, let u ∈ V and let Mk :=
‖|Re(bk + ck)|+ | Im(bk − ck)|‖∞. We have

Re aV (u, u) = Re
∑

k,j

∫

Ω

akjDkuDju +
∑

k

∫

Ω

Re(bk + ck)Re(Dkuu)

+
∑

k

∫

Ω

Im(ck − bk) Im(Dkuu) +
∫

Ω

Re a0|u|2

> η
∑

k

∫

Ω

|Dku|2 −
∑

k

Mk

∫

Ω

|Dkuu| −
∫

Ω

(Re a0)−|u|2.

By the Cauchy-Schwarz inequality, we have for every ε > 0

Re aV (u, u) > η
∑

k

∫

Ω

|Dku|2 − ε
∑

k

∫

Ω

|Dku|2 −
(∑

k

M2
k

ε
+ ‖(Re a0)−‖∞

)∫

Ω

|u|2

which implies (2.4). The proof of the continuity follows from (2.3) and the in-
equality

|aV (u, v)| 6 C
[∑

k

‖Dku‖22 + ‖u‖22
] 1

2
[∑

k

‖Dkv‖22 + ‖v‖22
] 1

2
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which holds for some constant C and all u, v ∈ V (use the Cauchy-Schwarz in-
equality and the boundedness assumption of akj , bk, ck and a0).

Finally, the fact that the form (aV + w) is closed follows from the assump-
tion that V is a closed subspace of H1(Ω). Note that the norm of H1(Ω) and√

aV ( · , · ) + w( · , · ) are equivalent on V.
We can now associate with aV an operator AV defined by

D(AV ) = {u ∈ V : ∃v ∈ L2(Ω), aV (u, φ) = (v, φ)∀φ ∈ V }, AV u := v.

Formally, AV is given by the expression

(2.5) AV u = −
d∑

k,j=1

Dj(akjDku) +
d∑

k=1

(bkDku−Dk(cku)) + a0u.

It is subject to the boundary conditions that are determined by the space V. Here
are some examples of such conditions:

(i) V = H1
0 (Ω) : Dirichlet boundary conditions;

(ii) V = H1(Ω) : Neumann boundary conditions;
(iii) Mixed boundary conditions can be defined by taking

(2.6) V = {u|Ω : u ∈ C∞c (Rd \ Γ)}H1(Ω)

where Γ is a closed subset of the boundary ∂Ω of Ω, u|Ω denotes the restriction of

u to Ω and {. . .}H1(Ω)
denotes the closure in H1(Ω).

Roughly speaking, (i) corresponds to the condition u = 0 on the boundary
∂Ω. (ii) corresponds to the condition

d∑

j=1

( d∑

k=1

akjDku + cju
)
nj = 0 on ∂Ω,

where −→n = (n1, . . . , nd) denotes the outer unit normal on ∂Ω. (iii) corresponds
to the Dirichlet boundary condition on Γ and the Neumann on ∂Ω \ Γ. All this
can be done precisely by applying Green’s formula if both ∂Ω and the coefficients
akj , ck are smooth enough.

We denote by (e−tAV )t>0 the semigroup generated by −AV on L2(Ω). Note
that

(2.7) ‖e−tAV ‖L(L2(Ω)) 6 ewt, ∀t > 0

for some constant w and we may choose

(2.8) w =
1
4η

d∑

k=1

‖ |Re(bk + ck)|+ | Im(bk − ck)| ‖2∞ + ‖(Re a0)−‖∞.

This follows from the inequality Re aV (u, u) + w(u, u) > 0 (for all u ∈ V ), which
can be shown analogously to (2.4).

It is shown in [36] that the semigroup (e−tAV )t>0 is real (i.e. each operator
e−tAV maps the subset of real-valued functions of L2(Ω) into itself) if and only if
Re u ∈ V for all u ∈ V and aV (u, v) ∈ R for all real u, v ∈ V. One checks easily
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that this is again equivalent to the fact that Re u ∈ V for all u ∈ V and the form
aV is given by

(2.9)

aV (u, v) =
∫

Ω

( d∑

j,k=1

Re(akj)DkuDjv

+
d∑

k=1

(Re(bk)Dkuv + Re(ck)uDkv) + Re(a0)uv
)

for every u, v ∈ V.
This means that the form aV (and hence the operator AV ) is given by real-

valued coefficients. In [34] and [36], it is shown that the semigroup (e−tAV )t>0

is positive (i.e. for each t > 0, e−tAV maps the subset of non-negative functions
into itself) if and only if the form aV has real-valued coefficients and the space V
satisfies the condition

(2.10) u ∈ V ⇒ (Re u)+ ∈ V.

It is not difficult to check that in each case (i)–(iii) above, the space V satisfies
the condition (2.10) (see also [34], [36], [4]). This implies that for these boundary
conditions, if aV satisfies (2.9), then the semigroup generated by −AV is positive.

Now we prove a stronger result. We prove that if Ω is connected, then the
semigroup is irreducible, that is, for every nontrivial 0 6 u ∈ L2(Ω) and every
t > 0

e−tAV u(x) > 0 for a.e. x ∈ Ω.

More precisely, we have

Theorem 2.1. Assume that (Re u)+ ∈ V for all u ∈ V and that the form
aV satisfies (2.9). Consider the following assertions:

(i) the semigroup (e−tAV )t>0 is irreducible;
(ii) the open set Ω is connected.

Then (ii) implies (i). The converse holds if AV is subject to Dirichlet, Neumann
or mixed boundary conditions.

The proof relies on the following criterion for irreducibility.
Let a be a densely defined nonnegative continuous and closed sesquilinear

form acting in H = L2(X, µ) ((X, µ) is any σ-finite measure space). Denote by A
the associated operator with a, and by (e−tA)t>0 the semigroup generated by −A
on L2(X, µ). We have

Theorem 2.2. Assume that the semigroup (e−tA)t>0 is positive. The fol-
lowing assertions are equivalent:

(i) (e−tA)t>0 is irreducible;
(ii) if G is a measurable subset of X such that χG ·u ∈ D(a) and Re a(χG ·u,

χX\G · u) > 0 for all u ∈ D(a), then either µ(G) = 0 or µ(X \G) = 0.

The symbol χG stands for the characteristic function of the subset G.
Note that a more general definition of irreducibility can be found in [32], but

it coincides with the present one since the semigroup (e−tA)t>0 is holomorphic on
L2(X,µ).



Gaussian upper bounds 341

A different version of Theorem 2.2 for symmetric Dirichlet forms can be
found in [22] (Theorem 1.6.1). Here we do not assume the symmetry of the form
and we do not also assume that it is a Dirichlet form. We show that Theorem 2.2
is a direct consequence of the criterion for invariance of closed convex sets given
in [36].

Proof. It is well known that irreducibility of a positive holomorphic semi-
group is equivalent to the fact that it has only trivial invariant closed ideals (see
[32], p. 306). On the other hand, every closed ideal of L2(X, µ) is of the form
L2(G,µ) for some measurable subset G, see [39], p. 157 (here we look at L2(G,µ)
as the subspace of L2(X, µ), of functions that vanish (µ-a.e.) on the complement
of G). Thus, the irreducibility of the semigroup (e−tA)t>0 is equivalent to non-
invariance of L2(G,µ) for any G ⊆ X such that µ(G) 6= 0 and µ(X \G) 6= 0. Note
that L2(G,µ) is a closed convex set of L2(X,µ) and the projection onto L2(G,µ)
is given by Pu = χGu for all u ∈ L2(X,µ). Theorem 2.2 follows now by applying
criteria given in [36] (see also [37]) for invariance of closed convex sets in terms of
the sesquilinear form.

Note that if the form a is local, i.e., a(u, v) = 0 for every u, v ∈ D(a) that
have disjoint supports, then the condition Re a(χGu, χX\Gu) > 0 is automatically
satisfied whenever χGu ∈ D(a). Hence for local forms, the irreducibility criterion
is reduced to the question to know whether or not characteristic functions operate
on D(a). More precisely,

Corollary 2.3. Let a and (e−tA)t>0 be as in the previous theorem and
assume that the form a is local. The following assertions are equivalent:

(i) (e−tA)t>0 is irreducible;
(ii) if G is a measurable subset of X such that χGD(a) ⊆ D(a), then either

µ(G) = 0 or µ(X \G) = 0.

We use this corollary to prove Theorem 2.1.

Proof of Theorem 2.1. As mentioned above, the assumption on V and (2.9)
imply that the semigroup (e−tAV )t>0 is positive.

Assume that (ii) holds. Let us denote by λ(G) the Lebesgue measure of G.
Suppose for contradiction that G is a subset of Ω such that λ(G) > 0, λ(Ω\G) > 0
and such that

(2.11) u ∈ V ⇒ χGu ∈ V.

We have in particular,

(2.12) u ∈ C∞c (Ω) ⇒ χGu ∈ H1(Ω).

Fix u ∈ C∞c (Ω). Since the operator Dk satisfies Dkvχ{v=0} = 0 for all v ∈ H1(Ω),
it follows that Dk(χGu) = χGDku (the equality is in the a.e. sense). Hence,
χGu ∈ W 1,p

0 (O) for all p ∈ [1,∞], where O is an open subset of Ω with smooth
boundary and contains the support of u. (Note that there always exists an increas-
ing sequence of open subsets Ωn with smooth boundaries and such that

⋃
n

Ωn = Ω.

Using the fact that the support of u is compact, one obtains the existence of such
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an open set O). Choosing p large enough, we deduce from Sobolev imbedding the-
orems that χGu = v a.e. on O, with v being a continuous function on the closure
O of O.

There exists x0 ∈ Ω such that for every η > 0
(2.13) λ(B(x0, η) ∩G) > 0 and λ(B(x0, η) ∩ Ω1) > 0
where Ω1 = Ω \ G and B(x0, η) denotes the open Euclidean ball with center x0

and radius η (such an x0 satisfying (2.13) exists, see below). We take η > 0 small
enough such that B(x0, 2η) ⊆ Ω and consider u ∈ C∞c (Ω) such that u(x) = 1 for
all x ∈ B(x0, η). We have for a.e. x ∈ B(x0, η) ∩G and a.e. y ∈ B(x0, η) ∩ Ω1

1 = |χGu(x)− χGu(y)| = |v(x)− v(y)|.
Using the continuity of v, we see that such an equality can not hold.

Now we prove the existence of x0 satisfying (2.13). Assume that for every
x ∈ Ω, there exists η > 0 such that either λ(B(x, η)∩G) = 0 or λ(B(x, η)∩Ω1) = 0.
Define O1 (respectively O2) as the union of all balls B(x, η), where x and η are
such that λ(B(x, η) ∩G) = 0 (respectively λ(B(x, η) ∩ (X \G)) = 0). One checks
easily that O1 and O2 are disjoint open sets such that Ω ⊆ O1∪O2. In addition, if
Ω ⊆ O1, then we obtain λ(G) = 0. Similarly, if Ω ⊆ O2 then λ(X \G) = 0. Since
we assumed that λ(G) > 0 and λ(X \G) > 0, we obtain a contradiction with the
fact that Ω is connected. This proves existence of x0.

Assume now that we have one of the boundary conditions listed in the the-
orem. That is, V = H1

0 (Ω), V = H1(Ω) or V is as in (2.6). If Ω is not connected,
then Ω = G∪Ω1 where G and Ω1 are two disjoint open sets. It is not hard to see
that G satisfies (2.11) in each of the three cases above. Corollary 2.3 shows that
the semigroup can not be irreducible.

In Theorem 2.1, we can assert that (i) implies (ii) for several other boundary
conditions. However, this implication is not true for all boundary conditions as
the following example shows.

Example 2.4. Let Ω = (0, 1) ∪ (2, 3). Define the form

aV (u, v) =

1∫

0

u′v′ dx, D(aV ) = V = {u ∈ H1(Ω) : u(0) = u(3)}.

This corresponds to periodic boundary conditions at 0 and 3 and Neumann at 1
and 2. This form is well defined, since H1(Ω) can be embedded into C(Ω) (Sobolev
embedding). The semigroup (e−tAV )t>0 associated with this form is irreducible.
Indeed, since V satisfies (2.10), the semigroup is positive. In addition, if G ⊆ Ω
has non zero measure and such that χGV ⊆ V, then we obtain as in the proof of
Theorem 2.1 that either G = (0, 1), G = (2, 3) or G = Ω. Assume that G = (0, 1).
Hence (χ(0,1)u)(0) = (χ(0,1)u)(3) for all u ∈ V. We deduce that u(0) = 0 for all
u ∈ V, which is not the case. The same conclusion holds if Ω = (2, 3). Thus, G = Ω
and we conclude by Theorem 2.2 that the semigroup is irreducible.

We mention that when akj = ajk and bk = ck = 0 for all 1 6 k, j 6 d,
Theorem 2.1 is shown in [16], Theorem 3.3.5 and in [3]. In [16] it is obtained as a
consequence of a lower bound of the heat kernel. In [3], the result is shown for the
Laplacian on the space of continuous functions by using the classical maximum
principle. Both proofs are different from ours, which can also be used in other
circumstances.
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3. DOMINATION OF SEMIGROUPS ASSOCIATED WITH OPERATORS
WITH COMPLEX-VALUED COEFFICIENTS

As explained in the introduction, there are several problems and difficulties when
dealing with complex-valued coefficients. In this section, we want to dominate
(in the pointwise sense) semigroups generated by elliptic operators with complex-
valued coefficients by those generated by their relatives with real-valued coeffi-
cients. Of course, this domination can not hold in general, otherwise one obtains
that the semigroup generated by any second-order elliptic operator with complex
coefficients act on all Lp-spaces which is not the case (cf. [9], [18]). We show, how-
ever, that this domination holds under an additional assumption on the coefficients
akj .

Let aV be as in the previous section. We first concentrate on the case of
Dirichlet boundary conditions and show then how the domination result extends
to other boundary conditions.

Let us write
a = aH1

0 (Ω) and A = AH1
0 (Ω).

We suppose in addition to (2.2) and (2.3) that

(3.1) Im(akj + ajk) = 0 and fk :=
d∑

j=1

Dj(Im akj) ∈ L1
loc(Ω)

for all k, j ∈ {1, . . . , d}, where Dj Im akj is taken in the distributional sense.
Let η be the constant in (2.3) and set

(3.2) m(x) :=

d∑
k=1

[fk + Im(ck − bk)]2

4η
.

Now we define the form

b(u, v) =
∫

Ω

( d∑

k,j=1

Re(akj)DkuDjv +
d∑

k=1

(Re(bk)Dkuv + Re(ck)uDkv)

+ Re(a0)uv −muv

)

:= E(u, v)−
∫

Ω

muv.

We assume that the potential function m is form-bounded with respect to the form
E , with relative bound < 1, that is, there exists α ∈ R and β < 1 such that

(3.3)
∫

Ω

m(x)|u|2 6 α

∫

Ω

|u|2 + β Re E(u, u), ∀u ∈ H1
0 (Ω).

It follows from [27] (Theorem 1.33, Chapter VI) that the form b, with domain

D(b) = H1
0 (Ω) = D(a)

is well defined and there exists a constant w ∈ R such b + w is nonnegative,
continuous and closed. Let us denote by B the associated operator with the form
b. Now we can state our domination result.
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Theorem 3.1. Assume that (2.2), (2.3), (3.1) and (3.3) are fulfilled. For
every t > 0 and every f ∈ L2(Ω)

|e−tAf(x)| 6 e−tB |f |(x) for a.e. x ∈ Ω.

The proof is based on criteria for the domination of semigroups proved in
[36] and [37]. These criteria involve the ideal property and inequalities between
associated sesquilinear forms. Since D(a) = D(b), it follows from [36] (Proposi-
tion 3.2 and Corollary 3.4) that the inequality in Theorem 3.1 holds if and only
if

(3.4) Re a(u, v) > b(|u|, |v|) for all u, v ∈ H1
0 (Ω) such that uv > 0.

Here v := Re v − i Im v is the conjugate function of v. Note that (e−tB)t>0 is a
positive semigroup. This follows from [34] or [36], since H1

0 (Ω) satisfies (2.10) and
b(u+, u−) 6 0 for all real-valued u ∈ D(b).

We will need the following lemma.

Lemma 3.2. Let u, v ∈ H1(Ω) be such that u(x)v(x) > 0 (for a.e. x ∈ Ω).
We have for each k ∈ {1, . . . , d}:

(i) Im(Dkuv) = |v| Im(Dku sign u);
(ii) |v| Im(Dku signu) = |u| Im(Dkv sign v);

where sign f(x) = f(x)
|f(x)| if f(x) 6= 0 and 0 otherwise.

Proof. Let u and v be as in the lemma. Since Dkuχ{u=0} = 0, we have

Dkuv = Dkuv
vu

|u| |v|χ{u 6=0}χ{v 6=0} = |v|Dku
u

|u|χ{u 6=0}.

Assertion (i) follows by taking the imaginary parts.
In order to prove the second assertion we write

|v|u = |v|u vu

|u| |v|χ{u 6=0}χ{v 6=0} = |u|v.

Hence Dk|v|u + |v|Dku = Dk|u|v + |u|Dkv. We multiply each term with sign u =
u
|u|χ{u 6=0} and take the imaginary parts to obtain

|v| Im(Dku sign u) = Im(Dkvuχ{u 6=0}) = Im(Dkvu).

This, together with assertion (i) (with u in place of v and vice-versa), give (ii).

Proof of Theorem 3.1. Let u, v ∈ H1
0 (Ω) be such that uv > 0. We have

DkuDjv = Dku
u

|u|χ{u 6=0}Djv
v

|v|χ{v 6=0}.
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Hence

I1 := Re
d∑

k,j=1

∫

Ω

Re(akj)DkuDjv

=
d∑

k,j=1

∫

Ω

Re(akj)Re(Dku sign u)Re(Djv sign v)

+
d∑

k,j=1

∫

Ω

Re(akj) Im(Dku sign u) Im(Djv sign v)

=
d∑

k,j=1

∫

Ω

Re(akj)Re(Dku sign u)Re(Djv sign v)

+
d∑

k,j=1

∫

Ω

Re(akj) Im(Dku sign u) Im(Dju sign u)
|v|
|u|χ{u 6=0}

where we used the previous lemma in order to write the last equality. Recall now
that Dk|u| = Re(Dku sign u) ∀u ∈ H1(Ω). Thus,

(3.5)

I1 =
d∑

k,j=1

∫

Ω

Re(akj)Dk|u|Dj |v|

+
d∑

k,j=1

∫

Ω

Re(akj) Im(Dku sign u) Im(Dju sign u)
|v|
|u|χ{u 6=0}.

We have now to handle the imaginary part. For arbitrary u, v ∈ C∞c (Ω),

I2 := Re
d∑

k,j=1

∫

Ω

i Im(akj)DkuDjv = − Im
d∑

k,j=1

∫

Ω

Im(akj)DkuDjv

= Im
d∑

k,j=1

∫

Ω

Dj Im(akj)Dkuv + Im
d∑

k,j=1

∫

Ω

Im(akj)DkDjuv.

Since by assumptions Im(akj + ajk) = 0, we obtain

(3.6) I2 =
d∑

k=1

∫

Ω

fk Im(Dkuv).

Using the Cauchy-Schwarz inequality and assumption (3.3), we see that (3.6) ex-
tends to all u, v ∈ H1

0 (Ω).
Assume again that uv > 0. By Lemma 3.2, (3.6) becomes

(3.7) I2 =
d∑

k=1

∫

Ω

fk Im(Dku sign u)|v|.
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We come now to the terms of order 1. We have for u, v ∈ H1
0 (Ω) with uv > 0,

I3 = Re
d∑

k=1

∫

Ω

bkDkuv + ckuDkv

=
d∑

k=1

∫

Ω

Re(bk)Re(Dkuv)− Im(bk) Im(Dkuv) + Re(ck)Re(uDkv)

+ Im(ck) Im(uDkv).

As above, we write

Dkuv = Dku
vu

|u| |v|vχ{u 6=0}χ{v 6=0} = Dkuu
|v|
|u|χ{u 6=0}χ{v 6=0}

and thus,

Re(Dkuv) = Re(Dku sign u)|v| = Dk|u| |v|.
Using this and Lemma 3.2, we can rewrite I3 as

(3.8)

I3 =
d∑

k=1

∫

Ω

Re(bk)Dk|u| |v|+ Re(ck)|u|Dk|v|

+
d∑

k=1

∫

Ω

(Im ck − Im bk) Im(Dku sign u)|v|.

Concerning the term a0, we have

(3.9) I4 := Re
∫

Ω

a0uv =
∫

Ω

Re a0|u| |v|

for all u, v ∈ H1
0 (Ω) such that uv > 0.

Since Re a(u, v) = I1 + I2 + I3 + I4, we obtain from (3.5), (3.7), (3.8) and
(3.9),

Re a(u, v) =
∫

Ω

[ d∑

k,j=1

Re(akj)Dk|u|Dj |v|+
d∑

k=1

(Re(bk)Dk|u| |v|

+ Re(ck)|u|Dk|v|+ Re(a0)|u| |v|
]

+
d∑

k,j=1

∫

Ω

Re(akj) Im(Dku sign u) Im(Dju signu)
|v|
|u|χ{u 6=0}

+
d∑

k=1

∫

Ω

[fk + Im(ck − bk)] Im(Dku sign u)|v|.
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Using the ellipticity assumption (2.3) we obtain
d∑

k,j=1

∫

Ω

Re(akj) Im(Dku sign u) Im(Dju signu)
|v|
|u|χ{u 6=0}

+
d∑

k=1

∫

Ω

[fk + Im(ck − bk)] Im(Dku sign u)|v| > −
∫

Ω

m(x)|u| |v|,

which gives (3.4). This finishes the proof.
It is clear from this proof that we may replace Re a0 in the last theorem by

(Re a0)−.
We want now to consider other boundary conditions in the previous theorem.

Let V, aV and AV be as in the last section. We assume that V satisfies (2.10) and
that (2.2), (2.3) hold. Let EV be the form given by the same expression as E but
with domain D(EV ) = V. Assume that (3.3) holds with E replaced by EV and
H1

0 (Ω) replaced by V , i.e.

(3.10)
∫

Ω

m(x)|u|2 6 α

∫

Ω

|u|2 + β Re EV (u, u), ∀u ∈ V

with some constants α ∈ R and β < 1. Define now

bV (u, v) = EV (u, v)−
∫

Ω

m(x)uv, ∀u, v ∈ D(bV ) = V.

We denote by BV the associated operator with the form bV .
We can extend the above theorem to the boundary conditions given by V if

we have in addition

(3.11)
d∑

k,j=1

∫

Ω

Im(akj)φDjv = −
d∑

k,j=1

∫

Ω

Dj Im(akj)φv −
d∑

k,j=1

∫

Ω

Im(akj)Djφv

for all v ∈ V , φ ∈ C∞(Ω) ∩ H1(Ω) (this means that we assume that Dj Im akj

exist as functions). Roughly, this assumption means that Im(akj) are smooth and
are = 0 on parts of the boundary of Ω where functions in V do not necessarily
vanish.

We have:
Theorem 3.3. Assume that (2.2), (2.3), (2.10), (3.1), (3.10) and (3.11) are

satisfied. For every t > 0 and every f ∈ L2(Ω)
|e−tAV f(x)| 6 e−tBV |f |(x) for a.e. x ∈ Ω.

Proof. As for Dirichlet boundary conditions, this theorem holds if and only
if
(3.12) Re aV (u, v) > bV (|u|, |v|) for every u, v ∈ V such that uv > 0.

The proof is the same as the one of Theorem 3.1. The only place where we used
the fact that V = H1

0 (Ω) is in the proof of (3.6). Now, in order to prove (3.6)
for u, v ∈ V we proceed as above by taking first u ∈ C∞(Ω) ∩H1(Ω) and v ∈ V ,
then use (3.11) to integrate by parts. This gives then (3.6) for u and v as above.
The Meyers-Serrin theorem ([1], p. 52) and the assumption that m is EV -bounded
show that (3.6) holds for all u, v ∈ V.
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4. QUASI-CONTRACTIVITY ON Lp(Ω)

Let aV be as in (2.1) and V be any closed subspace of H1(Ω) that contains H1
0 (Ω).

Recall that if (2.2) and (2.3) hold, then the semigroup (e−tAV )t>0 is defined on
L2(Ω) and satisfies the estimate (2.7). It is the aim of this section to examine such
estimate in other Lp-spaces.

We say that (e−tAV )t>0 is quasi-L∞-contractive if (e−t(AV +w∞))t>0 is L∞-
contractive for some constant w∞, i.e., ‖e−t(AV +w∞)f‖∞ 6 ‖f‖∞ for every f ∈
L2(Ω) ∩ L∞(Ω) and t > 0. If (e−tAV )t>0 is quasi-L∞-contractive, then an appli-
cation of the Riesz-Thorin interpolation theorem, yields that (e−tAV )t>0 is quasi-
Lp-contractive (that is, (e−t(AV +wp))t>0 is a contraction semigroup on Lp(Ω), for
some constant wp and 2 6 p 6 ∞). Let us recall the following criterion for L∞-
contractivity (cf. [34], [36], [10] and [6] Lemme 1.2).

Theorem 4.1. Let a be a densely defined form acting in L2(X, µ) ((X,µ)
is any σ-finite measure space). Assume that there exists a constant w ∈ R such
that the form

(a + w)(u, v) = a(u, v) + w(u, v), u, v ∈ D(a)

is non-negative, continuous and closed. Then the semigroup (e−tA)t>0 is L∞-
contractive if and only if the following two conditions hold:

(i) u ∈ D(a) implies (1 ∧ |u|) sign u ∈ D(a);
(ii) Re a((1 ∧ |u|) sign u, (|u| − 1)+ signu) > 0 ∀u ∈ D(a).

Here, 1∧ |u| = inf(1, |u|) and sign u = u
|u|χ{u 6=0}. Thus, independently of the

coefficients of the form aV , the condition
(4.1) u ∈ V ⇒ (1 ∧ |u|) sign u ∈ V

is necessary for quasi-L∞-contractivity of (e−tAV )t>0. This restricts the range of
boundary conditions for which we can hope for quasi-L∞-contractivity. The above
result applied to a = aV gives the following (see [6]).

Theorem 4.2. The semigroup (e−tAV )t>0 is L∞-contractive if and only if
the following two conditions are satisfied:

(i) u ∈ V implies (1 ∧ |u|) sign u ∈ V ;
(ii) for all u ∈ V such that rϕkϕj ∈ L1(Ω,C) and ϕkDjr ∈ L1(Ω,C) for

every j, k = 1, . . . , d where r = |u| and ϕj = ϕj(u) := Im(Dku·sign u)
r χ{u 6=0}, we

have ∫

Ω

( d∑

j,k=1

(Re akj)ϕkϕjr −
d∑

j,k=1

(Im akj)ϕkDjr

+
d∑

j=1

Im(cj − bj)ϕjr +
d∑

j=1

(Re cj)Djr + (Re a0)r
)

> 0.

It is not true in general that (e−tAV )t>0 is quasi-L∞-contractive, even when
V = H1

0 (Ω) and the coefficients are real. One needs in particular some smoothness
of the coefficients ck (cf. [34], see also [6], Theorème 2.1 (ii)). Our next result shows,
however, that quasi-Lp-contractivity holds. More precisely,
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Theorem 4.3. Assume that (2.2), (2.3) hold and the coefficients akj , 1 6
k, j 6 d, are real-valued functions. Suppose also that V satisfies (4.1). Then
the semigroup (e−tAV )t>0 extends boundedly to Lp(Ω), for every p ∈ (1, +∞). In
addition,

(4.2) ‖e−tAV ‖L(Lp(Ω)) 6 ewpt ∀t > 0

where

wp =





‖(Re a0)−‖∞ + 1
η

(
1
p + 1

2

) d∑
k=1

‖bk − ck‖2∞ + p
η

d∑
k=1

‖Re ck‖2∞, p∈ [2,∞),

‖(Re a0)−‖∞+ 1
η

(
1
2 + p−1

p

) d∑
k=1

‖bk − ck‖2∞+ p
η(p−1)

d∑
k=1

‖Re bk‖2∞, p∈(1, 2].

We point out that our aim here is not to give the best possible wp. The value
of wp given here may be sharpened but we do not investigate this in the present
paper. Note that if V = H1

0 (Ω) and Re ck ∈ W 1,∞(Ω) for 1 6 k 6 d, then after
an integration by parts,

∫

Ω

bkDkuv + (Re ck)uDkv =
∫

Ω

(bk − Re ck)Dkuv −
∫

Ω

[Dk Re ck]uv.

Thus, the term 4p
η

d∑
k=1

‖Re ck‖2∞ does not appear anymore in the expression of wp,

when p > 2. However, the case of non smooth first order coefficients is of interest.
In particular, we have to deal with such coefficients in order to obtain Gaussian
upper bounds when akj are not smooth (see the next section).

Proof of Theorem 4.3. We define for each z ∈ C the form aV (z) by

aV (z)(u, v)

:=
1
2

d∑

k,j=1

∫

Ω

akjDkuDjv+z

d∑

k=1

∫

Ω

(
(Re ck)Dkuv + (Re ck)uDkv

)
, D(aV (z))=V.

We denote by (Tz(t))t>0 the semigroup generated by (minus) the associated op-
erator with aV (z). Applying Theorem 4.2, we see that the semigroup (Tis)t>0 and
its adjoint are both L∞-contractive for every s ∈ R.

For z = 1 + is, s ∈ R, the estimate (2.7) (applied to the semigroup of the
form aV (1 + is)) gives

‖T1+is(t)‖L(L2(Ω)) 6 ew′2t

where w′2 = 2
η

d∑
k=1

‖Re ck‖2∞.

On the other hand, it follows from [27], Theorems VII-4.2 and IX-2.6 that
Tz(t) depends analytically in z (for each t > 0). The Stein interpolation theorem
allows to interpolate between the previous L2 and L∞-estimates. Thus, for every
p ∈ [2,∞]

‖T2/p(t)‖L(Lp(Ω)) 6 e
2
p w′2t.
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Applying this estimate to the semigroup associated with the form, where ck is
changed into p

2ck, yields

(4.3) ‖T1(t)‖L(Lp(Ω)) 6 e
p
2 w′2t = e

p
η

d∑
k=1

‖Re ck‖2∞t

.

Define now the form

bV (u, v) :=
1
2

d∑

k,j=1

∫

Ω

akjDkuDjv+
d∑

k=1

∫

Ω

(bk−Re ck)Dkuv+i Im ckuDkv+
∫

Ω

a0uv

(with domain D(bV ) = V ) and denote by (S(t))t>0 the semigroup generated
by (minus) its associated operator. Applying Theorem 4.2, we obtain that the
semigroup (e−wtS(t))t>0 is L∞-contractive for every w such that

w + Re a0 − 1
2η

d∑

k=1

| Im(ck − bk)|2 > 0 on Ω.

In particular, this holds for

w = ‖(Re a0)− +
1
2η

d∑

k=1

| Im(ck − bk)|2‖∞.

This L∞-estimate and (2.7) (applied with the coefficients of bV ) imply that for
every p ∈ [2, +∞]

(4.4) ‖S(t)‖L(Lp(Ω)) 6 e[ 2p w′′2 +w(1− 2
p )]t

where w′′2 = 1
2η

d∑
k=1

‖ |Re(bk − ck)|+ | Im(bk − ck)| ‖2∞ + ‖(Re a0)−‖∞.

Since the form aV is the sum

aV = aV (1) + bV ,

it follows from the Trotter-Kato product formula (cf. [26]) that

(4.5) e−tAV f = lim
n→+∞

(
T1

( t

n

)
S

( t

n

))n

f

for every f ∈ L2(Ω). This, together with (4.3) and (4.4), give

(4.6) ‖e−tAV ‖L(Lp(Ω)) 6 e
[

2
p w′′2 +w

(
1− 2

p

)
+ p

2 w′2
]
t.

This shows the desired estimate on Lp(Ω) for p ∈ [2,∞). The estimate on Lp(Ω)
for p ∈ (1, 2] is obtained by applying the previous one to the adjoint semigroup
(e−tA∗V )t>0 and arguing by duality.

For complex-valued coefficients akj , we have the following
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Theorem 4.4. Assume that fk =
d∑

j=1

Dj Im akj ∈ L∞(Ω) for 1 6 k 6 d

and let m(x) be as in (3.2). Assume that Im(akj + ajk) = 0 for all 1 6 k, j 6 d
(respectively, that the hypotheses of Theorem 3.3 are satisfied if V 6= H1

0 (Ω)).
Then the conclusion of the above theorem holds for the semigroup (e

−tA
H1

0 )t>0

(respectively, for (e−tAV )t>0) with ‖(Re a0)−‖∞ replaced by ‖(Re a0 −m)−‖∞ in
the expression of wp.

Proof. Apply Theorem 3.1 (respectively Theorem 3.3) and the previous re-
sult.

Remark 4.5. Theorem 4.3 is known in some situations. In [15] (Theo-
rem 5.1) a similar result is shown for Dirichlet, Neumann or Robin boundary
conditions. The coefficients are allowed to be time dependent. However, it is used
there that all the coefficients akj , bk, ck are real-valued. We point out that our
proof is different from that of [15] and our results are valid for operators with
more general coefficients and boundary conditions.

Following similar technique as in [15], Karrmann ([25]) extended the previ-
ously mentioned result of [15] to operators with unbounded coefficients (but still
real) in the case of Dirichlet boundary conditions. Our results are given for opera-
tors with bounded coefficients bk, ck, but the method is enough flexible and can be
adapted to some operators with unbounded coefficients. We shall not develop this
in details. Our aim now is to use the previous results in order to prove Gaussian
upper bounds for the corresponding heat kernels.

5. GAUSSIAN UPPER BOUNDS

In this section we prove Gaussian upper bounds for heat kernels of operators AV .
To this end, we first need to show the boundedness L1 − L∞ of e−tAV for each
t > 0. We need in addition to control the norm ‖e−tAV ‖L(L1,L∞) in terms of the
coefficients of the operator.

It is well known that the L1 −L∞ boundedness of the semigroup holds once
we have a Sobolev inequality. We assume that

(5.1) V is continuously embedded into L2∗(Ω),

where 2∗ = 2d
d−2 if d > 3, 2∗ = ∞ if d = 1 and 2∗ is any number in (2,∞) if d = 2.

If V = H1
0 (Ω), where Ω is an arbitrary domain of Rd, this embedding holds and

one has for d > 3

(5.2)
∫

Ω

|∇u|2 > c‖u‖22∗ ∀u ∈ H1
0 (Ω).

If V = H1(Ω), then (5.1) holds if Ω has smooth boundary. For example, if Ω has
the extension property (i.e., there exists a bounded linear operator P : H1(Ω) →
H1(Rd) such that Pu is an extension of u from Ω to Rd), then (5.1) follows from
the embedding of H1(Rd) into L2∗(Rd). In that case, every closed subspace V
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of H1(Ω) satisfies (5.1), too. There are several geometrical conditions on Ω that
imply (5.1) (see [30], Section 4.9).

Note that (5.1) means that

(5.3)
∫

Ω

|∇u|2 +
∫

Ω

|u|2 > c‖u‖22∗ ∀u ∈ V,

where c > 0 is a constant.
If d 6 2, it is more convenient to work with Nash or Gagliardo-Nirenberg

inequalities. The latter can be written on the form

(5.4) c‖u‖q 6 ‖u‖1−d q−2
2q

2 (‖∇u‖2 + ‖u‖2)d q−2
2q ∀u ∈ V

for all q ∈ (2,∞] such that d q−2
2q < 1. Note that (5.4) holds if and only if (5.3)

holds (see [12], Section II). As in (5.2), if V = H1
0 (Ω), then (5.4) can be written

(5.5) c‖u‖q 6 ‖u‖1−d q−2
2q

2 ‖∇u‖d q−2
2q

2 ∀u ∈ H1
0 (Ω).

In the sequel, wp will denote the same constant as in Theorem 4.3.

Lemma 5.1. Suppose that V satisfies (5.3) and that the assumptions of The-
orem 4.3 hold.

(i) If d > 3 then for every t > 0, e−tAV is bounded from L2(Ω) into L2∗(Ω).
Moreover, for every ε > 0

‖e−tAV ‖L(L2,L2∗ ) 6 Cεew2∗ teεtt−
1
2 ∀t > 0

where Cε is a positive constant depending only on η, d, ε, and the constant c in
(5.3).

(ii) If d 6 2 then for every q ∈ (2,∞) and every ε > 0

‖e−tAV ‖L(L2,Lq) 6 Cεewqteεtt−d q−2
4q ∀t > 0

where Cε is a positive constant depending only on η, d, ε, and the constant c in
(5.4).

If V = H1
0 (Ω), the estimates in both assertions hold with ε = 0.

Proof. We assume that d > 3. Note that (5.3) implies that for every ε > 0,
there exists a constant cε such that

(5.6)
∫

Ω

|∇u|2 + ε

∫

Ω

|u|2 > cε‖u‖22∗ ∀u ∈ V.

The assumptions (2.2) and (2.3) imply (see the proof of (2.4))

η‖∇u‖22 6 Re
∑

k,j

∫

Ω

akjDkuDju

= Re
[
aV (u, u)−

∑

k

∫

Ω

bkDkuu + ckuDku−
∫

Ω

a0|u|2
]

6 Re aV (u, u)+
∑

k

∫

Ω

(|Re(bk + ck)|+| Im(ck−bk)| |Dku| |u|+
∫

Ω

(Re a0)−|u|2

6 Re aV (u, u) +
η

2

∑

k

‖Dku‖22 + w‖u‖22
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where w = 1
2η

d∑
k=1

‖|Re(bk + ck)|+ | Im(ck− bk)|‖2∞+ ‖(Re a0)−‖∞. Using this and

(5.6), we obtain for every ε > 0

(5.7) Re aV (u, u) + (w2∗ + ε)
∫

Ω

|u|2 > c′ε‖u‖22∗ ∀u ∈ V,

where c′ε is a constant depending only on η, d, ε, and the constant c in (5.3). Note
that (5.7) holds with ε = 0 if V = H1

0 (Ω) (apply (5.2) instead of (5.3), in the

proof).
We define the semigroup T (t) := e−tAV e−w2∗ te−εt. By Theorem 4.3, the

operator e−tAV e−w2∗ t is a contraction on L2∗(Ω) (and so is T (t)). This and (5.7)
imply that for every f ∈ L2(Ω) ∩ L2∗(Ω) and t > 0

c′εt‖T (t)f‖22∗ 6 c′ε

t∫

0

‖T (s)f‖22∗ ds

6
t∫

0

Re
[
aV (T (s)f, T (s)f) + (w2∗ + ε)(T (s)f, T (s)f)

]
ds

=

t∫

0

− d
ds
‖T (s)f‖22 ds = ‖f‖22 − ‖T (t)f‖22 6 ‖f‖22.

Hence, we have proved

‖e−tAV f‖2∗ 6 1
c′ε

t−
1
2 ew2∗ teεt‖f‖2

and if V = H1
0 (Ω), this estimate holds without the extra term eεt.

The proof of assertion (ii) is similar, one uses (5.4) instead of (5.3) (or (5.5)
instead of (5.2), if V = H1

0 (Ω)). The analog of (5.7) is

(5.8) [Re aV (u, u) + (wq + ε)‖u‖22]d
q−2
4q ‖u‖1−d q−2

2q

2 > c′ε‖u‖q ∀u ∈ V.

Thus, as previously, if T (t) := e−tAV e−wqte−εt then

c′εt‖T (t)f‖
4q

d(q−2)
q 6 c′ε

t∫

0

‖T (s)f‖
4q

d(q−2)
q ds

6
t∫

0

‖T (s)f‖
4q

d(q−2)−2

2 Re[aV (T (s)f, T (s)f) + (wq + ε)(T (s)f ; T (s)f)] ds
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6
t∫

0

‖f‖
4q

d(q−2)−2

2 Re[aV (T (s)f, T (s)f) + (wq + ε)(T (s)f ; T (s)f)] ds

= ‖f‖
4q

d(q−2)−2

2

t∫

0

− d
ds
‖T (s)f‖22 ds

= ‖f‖
4q

d(q−2)−2

2 [‖f‖22 − ‖T (t)f‖22] 6 ‖f‖
4q

d(q−2)
2 .

This proves the lemma.

Theorem 5.2. Suppose that V satisfies (5.3) and that the assumptions of
Theorem 4.3 hold. For every t > 0, e−tAV is bounded from L2(Ω) into L∞(Ω),
and

‖e−tAV ‖L(L2,L∞) 6 Cεt
− d

4 eα1teα2c′teεt ∀t > 0, ∀ε > 0

where Cε is a positive constant depending only on η, ε, d, and the constant c in
(5.3), c′ is a constant depending only on d. The constants α1 and α2 are given by

α1 := ‖(Re a0)−‖∞ +
1
η

d∑

k=1

‖bk − ck‖2∞, α2 :=
1
η

d∑

k=1

‖Re ck‖2∞.

If V = H1
0 (Ω), the above estimate holds with ε = 0.

Proof. We first assume that d > 3.
For every r > 2, we have (cf. Theorem 4.3)

‖e−tAV ‖L(Lr) 6 ewrt ∀t > 0.

Using this and Lemma 5.1, we obtain by interpolation

(5.9) ‖e−tAV ‖L(Lpθ ,Lqθ ) 6 Cθ
ε ewr(1−θ)tew2∗θteεθtt−

θ
2 ∀t > 0

where 1
pθ

= θ
2 + 1−θ

r , 1
qθ

= θ
2∗ + 1−θ

r for θ ∈ [0, 1].
Fix p ∈ (2,∞) and choose θ = 1

p and r = 2(p − 1). We obtain pθ = p and
qθ = p · d

d−1 . In addition,

(1− θ)wr + θw2∗ 6 α1 + α2

2(p− 1)2 + 2d
d−2

p
:= α1 + α2γp.

Inserting this in (5.9), we obtain

(5.10) ‖e−tAV ‖
L
(
Lp,L

pd
d−1

) 6 C
1
p
ε eα1teα2γpte

tε
p t−

1
2p ∀t > 0.

This estimate holds with ε = 0 if V = H1
0 (Ω).

In the rest of the proof, we follow similar arguments as in [12]. Set R := d
d−1 ,

tk := d+1
2d (2R)−k and pk = 2Rk for all integer k > 0. We have

∑

k>0

tk = 1,
∑

k>0

1
pk

=
d

2
,

∑

k>0

tkγpk
= c′,
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where c′ is a positive constant depending only on d. Applying now (5.10) (with pk

in place of p), yields for all t > 0

‖e−tAV ‖L(L2,L∞) 6
∏

k>0

‖e−ttkAV ‖L(Lpk ,Lpk+1 )

6
∏

k>0

C
1

pk
ε eα1ttkeα2γpk

ttke
tε
pk t

− 1
2pk t

− 1
2pk

k = C ′εt
− d

4 e
εtd
2 eα1tec′α2t

which is the desired estimate.
Assume now that d 6 2. We use assertion (ii) of the previous lemma with

q = 2n
n−2 where n is any constant in (2,∞). We are in a position to apply the same

proof as in the previous case with n in place of d. We obtain

‖e−tAV ‖L(L2,L∞) 6 Cεt
−n

4 t

(
1
2−d q−2

4q

)
n
2 e

εtn
2 eα1tec′α2t = Cεt

− d
4 e

εtn
2 eα1tec′α2t.

This proves the theorem.

As a consequence of the above theorem and Theorem 4.4, we obtain for
complex coefficients akj :

Corollary 5.3. Assume that
d∑

j=1

Dj Im akj ∈ L∞(Ω), Im(akj +ajk) = 0 for

all 1 6 k, j 6 d and (3.11) holds (if V 6= H1
0 (Ω)). Assume that V satisfies (2.10),

(4.1) and (5.1). Then the conclusions of the above theorem hold with ‖(Re a0)−‖∞
replaced by ‖(Re a0 −m)−‖∞ (m is given by (3.2)).

If we apply the last results to the adjoint semigroup (e−tA∗V )t>0, we obtain
an estimate for the L1 − L2 norm of (e−tAV )t>0. Thus, under the assumptions of
the last corollary or of Theorem 5.2 (if akj are real), we have

(5.11) ‖e−tAV ‖L(L1,L∞) 6 Cεt
− d

2 eεtec0αt, ∀t > 0, ∀ε > 0

where Cε is a positive constant depending only on η, ε, d, and the constant c in
(5.3), c0 is a constant depending only on d and η (the precise value of c0 in terms
of d and η can be easily obtained from the proof of the previous theorem). The
constant α is given by

(5.12) α = ‖(Re a0 −m)−‖∞ +
d∑

k=1

‖bk − ck‖2∞ +
d∑

k=1

(‖Re bk‖2∞ + ‖Re ck‖2∞).

In particular, α = ‖m‖∞ if Re bk = Re ck = Im(bk − ck) = (Re a0)− = 0, 1 6 k 6
d. Finally, (5.1) holds with ε = 0 if V = H1

0 (Ω).
The estimate (5.1) implies that e−tAV is given by a kernel pV (t, x, y), i.e., a

measurable function on (0, +∞)× Ω× Ω such that

e−tAV f(x) =
∫

Ω

pV (t, x, y)f(y) dy for a.e. x ∈ Ω, ∀t > 0, f ∈ L2(Ω).

In addition,

(5.13) |pV (t, x, y)| 6 Cεt
− d

2 eεtec0αt ∀t > 0, ∀ε > 0,
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where the constant are the same as in (5.11). Using a well known perturbation
technique due to E.B. Davies, we can convert (5.13) into a Gaussian upper bound.
This is possible because of our good control of the constants involved in (5.13).

Let λ ∈ R and φ be a real-valued bounded C∞-function on Rd such that
|∇φ| 6 1 on Rd. We need the following assumption on V :

(5.14) u ∈ V ⇒ eλφu ∈ V

for all λ ∈ R and all φ as above.
Under this assumption, we can define the form

bV (u, v) := aV (eλφu, e−λφv), u, v ∈ V.

The form bV has a similar expression as aV , but with terms bk − λ
d∑

j=1

akjDjφ

in place of bk, ck + λ
d∑

j=1

ajkDjφ in place of ck and a0 − λ2
d∑

k,j=1

akjDkφDjφ +

λ
d∑

j=1

(bk−ck)Djφ in place of a0. Hence, if the assumptions of Theorem 5.2 or those

of Corollary 5.3 are satisfied, we can apply (5.11) to the kernel of the semigroup
T (t) := e−λφe−tAV eλφ (generated by (minus) the associated operator with bV ).
This and the assumption |∇φ| 6 1, give

(5.15) ‖eλφe−tAV e−λφ‖L(L1,L∞) 6 Cεt
− d

2 eεteδ(α+λ2)t, ∀t > 0, ∀ε > 0

where Cε is as in (5.11), δ is a constant depending only on d, η and ‖akj‖∞, and
α is as in (5.12). This implies that

(5.16) |pV (t, x, y)| 6 Cεt
− d

2 eεteδαteλ(φ(x)−φ(y))+δλ2t, ∀t > 0, ∀ε > 0.

Taking λ = φ(y)−φ(x)
2δt and optimizing over φ, yields the Gaussian upper bound

(5.17) |pV (t, x, y)| 6 Cεt
− d

2 eεt+δαte−
|x−y|2

4δt , ∀t > 0, a.e. x, y ∈ Ω.

We have proved:

Theorem 5.4. Assume that (2.2), (2.3), (4.1), (5.14) and (5.1) hold. As-
sume in addition that one of the following conditions is satisfied:

(i) the coefficients akj are real-valued for 1 6 k, j 6 d;

(ii)
d∑

j=1

Dj Im akj ∈ L∞(Ω), Im(akj + ajk) = 0 for 1 6 j, k 6 d, (2.10) and

(3.11) hold.
Then, the semigroup e−tAV is given by a kernel pV (t, x, y) that satisfies the

Gaussian upper bound

|pV (t, x, y)| 6 Cεt
− d

2 eεt+δαte−
|x−y|2

4δt

for all t > 0, ε > 0 and a.e. (x, y) ∈ Ω×Ω. Here α is as in (5.12), Cε is a positive
constant depending only on η, ε, d and the constant c in (5.3), δ is a constant
depending only on η, d and ‖akj‖∞.

If V = H1
0 (Ω), this estimate holds with ε = 0.
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Remarks 5.5. (1) It is interesting to notice that when we apply (5.11) to
the semigroup (eλφe−tAV e−λφ)t>0, we can actually obtain a better estimate in
(5.15). Simple calculations show that we can replace the term eδαt by e(1+ε′)αt for
every ε′ > 0 (δ will depend then on ε′). Using this, the Gaussian upper bound in
the previous theorem can be replaced by

|pV (t, x, y)| 6 Cεt
− d

2 eεte(ε′+1)αte−
|x−y|2

4δt

for all ε > 0, ε′ > 0 and all t > 0. The constants Cε, α, δ are as in the theorem,
with the additional condition that δ depends on ε′.

(2) In case (ii) of the previous theorem, the assumption
d∑

j=1

Dj Im akj ∈
L∞(Ω) means that the potential m is bounded. By adapting the arguments devel-
oped for Schrödinger operators −∆ + m in [40], one can include some situations
where m is not bounded (of course, the value of α must be changed).

As mentioned in the Introduction, related results on Gaussian upper bounds
for operators with real-valued coefficients can be found in [5], [16], [4], [15]. For
complex-valued coefficients, Gaussian upper bounds are proved in [9] in the case
where Ω has Lipschitz boundary with a small Lipschitz constant and the coef-
ficients akj are smooth (under these conditions, the authors obtain also Hölder
continuity with respect to the space variables for the heat kernel).

We observe that the assumptions on V in Theorem 5.4 are satisfied for V =
H1

0 (Ω) with arbitrary open set Ω and for V = H1(Ω) or V as in (2.6), if Ω satisfies
the extension property for example.

As mentioned in the beginning of the Introduction, there are several conse-
quences of Gaussian upper bounds. We recall some of them here.

We assume that the assumptions of Theorem 5.4 hold. Then, the semigroup
(e−tAV )t>0 extends to a holomorphic semigroup on Lp(Ω), 1 6 p < ∞, and the
sector of holomorphy is the same as in L2(Ω) (see [35], [23], [4]). In particular, if

(5.18) akj = ajk, bk = ck and akj , a0 are real

for all k, j ∈ {1, . . . , d}, then (e−tAV )t>0 extends to a holomorphic semigroup
on the open right half-plane on Lp(Ω), 1 6 p < ∞. Note also that under this
condition, the spectrum of the corresponding generator in Lp(Ω) is independent
of p ∈ [1,∞] (cf. [2], [17]). Assuming again (5.18), we obtain from the results
on multipliers in [20] that for some constant w, the imaginary powers (A + w)is,
s ∈ R, are bounded operators on Lp(Ω), 1 < p < ∞, with norms estimated by
Cε(1 + |s|)d| 12− 1

p |+ε, for every ε > 0.
We turn now to another problem. We have assumed in Theorem 5.4 that the

space V satisfies (5.14). This plays an important rôle in the proof of the Gaussian
bound. Unfortunately, this assumption is not satisfied by some spaces V ; and this
reduces the range of boundary conditions to which the previous theorem applies. If
V does not satisfy (5.14), we can prove a Gaussian upper bound by using another
metric that takes into account the boundary conditions.

Let us say that a real-valued function φ ∈ W 1,∞(Rd) is V -admissible if

u ∈ V ⇒ eλφu ∈ V, ∀λ ∈ R.
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Set
W = {φ ∈ W 1,∞(Rd), φ is V -admissible and |∇u| 6 1}.

Now we define a metric %V on Ω by

%V (x, y) := sup{φ(x)− φ(y), φ ∈ W}.
We can repeat the same proof as above by taking φ in W. Thus, we obtain (5.16)
with φ ∈ W . We optimize over φ and obtain (5.17) with %V (x, y)2 instead of
|x− y|2. Thus, we have proved:

Theorem 5.6. Assume that (2.2), (2.3), (4.1) and (5.1) hold. Assume, in
addition, that one of the following conditions are satisfied:

(i) the coefficients akj are real-valued for 1 6 k, j 6 d;

(ii)
d∑

j=1

Dj Im akj ∈ L∞(Ω), Im(akj + ajk) = 0 for 1 6 j, k 6 d, (2.10) and

(3.11) hold.
Then, the semigroup e−tAV is given by a kernel pV (t, x, y) that satisfies the

Gaussian upper bound

|pV (t, x, y)| 6 Cεt
− d

2 eεt+δαte−
%V (x,y)2

4δt

for all t > 0, ε > 0 and a.e. (x, y) ∈ Ω×Ω. Here α is as in (5.12), Cε is a positive
constant depending only on η, ε, d and the constant c in (5.3), δ is a constant
depending only on η, d and ‖akj‖∞.

Remark 5.7. We observe that in the case where d = 1, the assumption (4.1)
can be relaxed in the previous theorem. Indeed, using (5.4) or (5.5) with q = ∞
we obtain an estimate for the L2 − L∞ norm of e−tAV which is the main step in
the proof. Note also that if Ω is an interval, then (5.4) is satisfied for every closed
subspace V of H1(Ω). Thus, if d = 1 and Ω is an interval, the above theorem
holds for every elliptic operator AV with complex-valued coefficients.
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