CUNTZ-PIMSNER ALGEBRAS OF GROUP ACTIONS

VOLODYMYR V. NEKRASHEVYCH

Communicated by William B. Arveson

Abstract

We associate a $*$-bimodule over the group algebra to every selfsimilar group action on the space of one-sided sequences. Completions of the group algebra, which agree with the bimodule are investigated. This gives new examples of Hilbert bimodules and the associated Cuntz-Pimsner algebras. A direct proof of simplicity of these algebras is given. We show also a relation between the Cuntz algebras and the Higman-Thompson groups and define an analog of the Higman-Thompson group for the Cuntz-Pimsner algebra of a self-similar group action.

KEYWORDS: Self-similar group actions, one-sided shift, bimodules, Cuntz algebras, Cuntz-Pimsner algebras, Higman-Thompson groups, Grigorchuk group.

MSC (2000): 46L89, 16D20, 20E08.

1. INTRODUCTION

The notion of a self-similar group action (fractal group or state-closed group) naturally appears in the theory of groups acting on rooted trees and groups defined by finite transducers. Study of such actions is motivated by examples of exotic groups which are easily defined through their self-similar action.

An example of such a group is the Grigorchuk 2-group. In [12] this group is introduced as a group of measure-preserving transformations of the unit interval. Probably it is the most simple example of a finitely generated infinite torsion group. The action of the Grigorchuk group on the interval has the self-similarity property: the restrictions of the action of any its element on the halfs of the interval is again an element of the group. This is used in a very short proof of the fact that it is an infinite torsion group. Later the same self-similarity was used to prove that the group has intermediate growth (see [13], [14]). It has other interesting properties such as just-infiniteness and finite width (see [15]).

Examples of self-similar groups of this sort include the Gupta-Sidki group ([18]), the just-nonsolvable torsion free group from [5] and other (see [15], [2] and [16] for more examples).

Other, independent topics, where self-similar actions appear (so far implicitly), are the rep-tilings of the Euclidean space and the numeration systems on \mathbb{Z}^{n} (see the surveys [31], [32]). Some numeration systems originate from self-similar actions of the respective group \mathbb{Z}^{n}. This includes probably the most well known example of a self-similar group action: the adding machine, or the odometer. The paper [25] shows the relation between the self-similar actions of abelian groups and the numeration systems.
R. Grigorchuk, A. Żuk and L. Bartholdi in [17] and [2] used the self-similarity of some group actions to compute the spectra of the discrete Laplace operators of the Schreier graphs. The self-similarity of the action provides an operator recursion, which helps to compute the spectrum.

We show in our paper how these operator recursions can be interpreted in terms of the C^{*}-bimodules (or C^{*}-correspondences). So with every self-similar group action we associate a $*$-bimodule Φ over the group algebra $\mathbb{C} G$, which encodes the self-similarity.

We investigate the completions of the group algebra which agree with the self-similarity of the action. Among all such completions there exists a uniquely defined minimal algebra \mathcal{A}_{Φ}, which is a homomorphic image of any other self-similar completion. Then the bimodule Φ becomes a C^{*}-bimodule over the algebra \mathcal{A}_{Φ}.

The C^{*}-bimodules (correspondences) are important tools in the study of C^{*}-algebras and von Neumann algebras (see [8], [7], [21]).

The Cuntz-Pimsner algebra \mathcal{O}_{Φ}, defined in [26], plays the role of a cross product by a bimodule. The Cuntz-Pimsner algebra generalizes the Cuntz algebras \mathcal{O}_{n}, which is the algebra generated by n isometries S_{1}, \ldots, S_{n} such that $S_{1} S_{1}^{*}+$ $S_{2} S_{2}^{*}+\cdots+S_{n} S_{n}^{*}=1$. It also generalizes the Cuntz-Krieger algebras \mathcal{O}_{A}, which correspond to the bimodules over finite-dimensional commutative algebras. From the dynamical point of view the Cuntz-Krieger algebras are the algebras associated in a natural way with Markov shifts (see [10]).

So, self-similar group actions provide new examples of the Cuntz-Pimsner algebras. We prove that these algebras are simple (Theorem 8.3) and study its gauge invariant subalgebra (Section 7).

In the last section we investigate a subgroup $V_{n}(G)$ of the unitary group of the Cuntz-Pimsner algebra \mathcal{O}_{Φ}. This group is defined as the group of unitaries which can be expressed as finite sums of products of the standard generators of the Cuntz algebra and the group elements.

We show that if we take only the products of the generators of the Cuntz algebra, then we get the well known Higman-Thompson group ($G_{n, 1}$ in notation of [20]). It was one of the first examples of infinite simple finitely presented groups (it is simple for even n and has a simple subgroup of index 2 for odd n). This group (for the case $n=2$) and its analogs were constructed by R. Thompson in 1965 during his studies in logics. They were used in [23] to construct an example of a finitely presented group with unsolvable word problem and in [30] for embeddings of groups into finitely presented simple groups. See the survey [6] for the properties of the Thompson groups. G. Higman in [20] generalized the Thompson groups and constructed a family of groups which he denoted $G_{n, r}$.

In the case of the Cuntz-Pimsner algebra related to a self-similar group action, the group $V_{n}(G)$ also has properties similar to the properties of the HigmanThompson groups. We show in Theorem 9.11 that all the proper quotients of the group $V_{n}(G)$ are abelian and in Theorem 9.14 show a simple method to find its
maximal abelian quotient. In many cases this maximal quotient is trivial, so the group $V_{n}(G)$ is simple.

The group $V_{n}(G)$ was introduced for the first time (using a different approach) by C. Röver for G equal to the Grigorchuk group (see [27]). He showed that in this case the group $V_{n}(G)$ is simple and finitely presented. In [28] he shows that this group is isomorphic to the abstract commensurator of the Grigorchuk group. The last property is based on the fact that the Grigorchuk group belongs to the class of the branch groups (see [15]).

2. SELF-SIMILAR GROUP ACTION

Let X be a finite set, which will be called an alphabet. By X^{*} we will denote the free monoid, generated by the set X. We write the elements of X^{*} as words $x_{1} x_{2} \ldots x_{n}$ including the empty word \emptyset. Thus $X^{*}=\bigcup_{n \geqslant 0} X^{n}$, where $X^{0}=\{\emptyset\}$ and X^{n} for $n \geqslant 1$ are Cartesian products. By $|v|$ we denote the length of the word v so that $v \in X^{|v|}$. By the symbol X^{ω} we denote the set of all infinite unilateral sequences (words) of the form $x_{1} x_{2} \ldots$, where $x_{i} \in X$ for every i.

If $v \in X^{*}$ and $w \in X^{*}$ (or $w \in X^{\omega}$), then the product $v w \in X^{*}$ (respectively $\left.\in X^{\omega}\right)$ is defined in the natural way. If A is a subset of X^{ω} and $v \in X^{*}$ is a finite word then $v A=\{v w: w \in A\}$.

The set X^{ω} is naturally identified with the Cartesian product $X^{\mathbb{N}}$. Hence it can be equipped with the topology of the direct (Tikhonov) product of discrete sets X. The basis of open sets in this topology is the collection of all cylindrical sets $a_{1} a_{2} \ldots a_{n} X^{\omega}$, where $a_{1} a_{2} \ldots a_{n}$ runs through X^{*}. The cylindrical sets are open and closed, thus the space X^{ω} is totally disconnected. It is also compact and without isolated points, thus is homeomorphic to the Cantor set.

The space X^{ω} has also a natural measure μ, which is the direct product of the uniform probabilistic measures on the set X. This measure is uniquely defined by the condition $\mu\left(a_{1} a_{2} \ldots a_{n} X^{\omega}\right)=|X|^{-n}$. The (unilateral) shift on the space X^{ω} is the map

$$
\sigma: x_{1} x_{2} x_{3} \ldots \mapsto x_{2} x_{3} x_{4} \ldots
$$

which deletes the first letter of the infinite word.
Definition 2.1. A faithful action of a group G on the space X^{ω} is said to be self-similar (state-closed) if for every $g \in G$, and $x \in X$ there exist $h \in G$ and $y \in X$ such that for all $w \in X^{\omega}$ we have

$$
\begin{equation*}
g(x w)=y h(w) \tag{2.1}
\end{equation*}
$$

We will write equation (2.1) formally as

$$
\begin{equation*}
g \cdot x=y \cdot h \tag{2.2}
\end{equation*}
$$

Since the action is faithful, the element h is defined uniquely.
Applying equation (2.1) several times we see that for every finite word $v \in X^{*}$ and every $g \in G$ there exist $h \in G$ and a word $u \in X^{*}$ such that $|u|=|v|$ and

$$
\begin{equation*}
g(v w)=u h(w) \tag{2.3}
\end{equation*}
$$

for all $w \in X^{\omega}$. Hence, the self-similar action of the group G induces a natural action on the set X^{*}, where the word u is the image of v under the action of g, under the conditions of equation (2.3).

Since the beginning of length k of the word $g(w)$ depends only on the beginning of length k of the word w, any self-similar action is an action by homeomorphisms on the space X^{ω}. Moreover, the induced action on X^{*} is an action by automorphisms of the naturally constructed rooted tree with the set of vertices X^{*} and the space of ends X^{ω} (see [16] for more details). It follows also that every self-similar action preserves the measure μ on the space X^{ω}.

Definition 2.2. A self-similar action is said to be level-transitive if the induced action on X^{*} is transitive on the sets X^{n} (note that these sets are invariant by definition).

The action is level-transitive if and only if it is minimal on X^{ω}, i.e., if all its orbits are dense (see [16]). In this paper all the self-similar actions are considered to be level-transitive. Formula (2.3) will be also written formally as

$$
\begin{equation*}
g \cdot v=u \cdot h \tag{2.4}
\end{equation*}
$$

We use the notation $g(v)$ to denote the image of the word v under the action of the element g, while the notation $g \cdot u$ is used in the formal expressions like (2.4).

Example 2.3. Let $G \simeq \mathbb{Z}$ be an infinite cyclic group generated by a with the neutral element e and let $X=\{0,1\}$. Define a self-similar action of G on X^{ω} putting

$$
\begin{align*}
& a \cdot 0=1 \cdot e \tag{2.5}\\
& a \cdot 1=0 \cdot a \tag{2.6}
\end{align*}
$$

Note that these equations define uniquely the action of a on the space X^{ω}.
The element a as a homeomorphism of the space X^{ω} is called the adding machine. This name originates from the fact that equalities (2.5), (2.6) imply that the action of the adding machine can be interpreted as addition of 1 to a dyadic number. More formally, we have $a\left(x_{1} x_{2} \ldots\right)=y_{1} y_{2} \ldots$ for $x_{1} x_{2} \ldots \in X^{\omega}$ if and only if

$$
1+\left(x_{1}+x_{2} 2+x_{3} 2^{2}+x_{4} 2^{3}+\cdots\right)=y_{1}+y_{2} 2+y_{3} 2^{2}+y_{4} 2^{3}+\cdots
$$

in the ring of dyadics.
The constructed self-similar action of \mathbb{Z} will be also called adding machine.
In the paper [25] self-similar actions of the group \mathbb{Z}^{n} are investigated, which generalize the example of the adding machine. Such actions can be also characterized by the corresponding "numeration system" on \mathbb{Z}^{n}.

Example 2.4. The group generated by transformations a, b of the space X^{ω}, for the alphabet $X=\{0,1\}$, defined inductively by the formulas

$$
\begin{array}{ll}
a \cdot 0=1 \cdot b, & b \cdot 0=0 \cdot b \\
a \cdot 1=0 \cdot a, & b \cdot 1=1 \cdot a .
\end{array}
$$

This group is isomorphic to the "lamplighter group" $(\mathbb{Z} / 2 \mathbb{Z})^{\mathbb{Z}} \rtimes \mathbb{Z}$, where \mathbb{Z} acts on $(\mathbb{Z} / 2 \mathbb{Z})^{\mathbb{Z}}$ by the shift. See the papers [17] and [16] for the proofs of
this isomorphism. In the paper [17] this representation was used to compute the spectrum of the lamplighter group.

Example 2.5. Many groups are defined directly by their action on the spaces X^{ω} (in most cases the language of rooted trees was used in the original definitions). These groups have exotic properties rare among the groups defined in other ways. The main tool in the study of such groups is their self-similarity and the actions on the rooted tree X^{*} and on the space X^{ω}. See the works [15], [18], [3], [2] for illustrations of such studies.

The most famous example of a group of this sort is the Grigorchuk group ([12]). This is the group defined over the alphabet $X=\{0,1\}$ and generated by four generators a, b, c, d such that

$$
\begin{aligned}
a \cdot 0=1 \cdot 1, & a \cdot 1=0 \cdot 1, \\
b \cdot 0=0 \cdot a, & b \cdot 1=1 \cdot c \\
c \cdot 0=0 \cdot a, & c \cdot 1=1 \cdot d, \\
d \cdot 0=0 \cdot 1, & d \cdot 1=1 \cdot b,
\end{aligned}
$$

where 1 is the identity element of the group.
The Grigorchuk group is the simplest example of an infinite finitely generated torsion group (thus it is an answer to one of the Burnside problems). It is also the first example of a group of intermediate growth ([13]) which answers the Milnor problem. It has many other interesting properties such as just-infiniteness, finite width, etc. For more on the Grigorchuk group see [15] and the last chapter of [19]. In fact, the study of the self-similar actions in general were stimulated by the discoveries of the amazing properties of this group and its analogs.

3. SELF-SIMILARITY BIMODULE

Definition 3.1. Let A be a $*$-algebra. An A-bimodule Φ is a right A module with an A-valued sesquilinear inner product and a $*$-homomorphism φ : $A \rightarrow \operatorname{End}(\Phi)$, where $\operatorname{End}(\Phi)$ is the $*$-algebra of adjointable endomorphisms of the right module Φ.

For $a \in A$ and $v \in \Phi$ we will write $a v$ instead of $\varphi(a)(v)$, so that the map φ is defining the left multiplication on the bimodule.

Let us fix some self-similar action of a group G on the space X^{ω} for the alphabet $X=\{1,2, \ldots, d\}$. Denote by Φ_{R} the free right module over the group algebra $\mathbb{C} G$ with the free basis identified with the alphabet X. So every element of the module Φ_{R} is a linear combination over \mathbb{C} of the formal products of the form $x \cdot g$, where $x \in X$ and $g \in X$.

We consider the algebra $\mathbb{C} G$ as a $*$-algebra with the standard involution $(\alpha \cdot g)^{*}=\bar{\alpha} g^{-1}$, where $\alpha \in \mathbb{C}, g \in G$. Then the module Φ_{R} has a $\mathbb{C} G$-valued sesquilinear form defined by the equality

$$
\left\langle\sum_{x \in X} x \cdot a_{x} \mid \sum_{y \in X} y \cdot b_{y}\right\rangle=\sum_{x \in X} a_{x}^{*} b_{x},
$$

where $a_{x}, b_{y} \in \mathbb{C} G$.
Equation (2.2) from the definition of self-similarity gives also a well defined structure of a left $\mathbb{C} G$-module on Φ_{R}. Namely, for any element $g \in G$ and any vector $x \in X$ from the basis of Φ_{R} we define the left product $g \cdot x=y \cdot h$, where $h \in G$ and $y \in X$ are such that $g(x w)=y h(w)$ for all $w \in X^{\omega}$. This multiplication is extended by linearity onto the whole module Φ_{R} and thus we get a map from G to $\operatorname{End}\left(\Phi_{\mathrm{R}}\right)$. It is easy to see that this map extends to a morphism of algebras $\varphi: \mathbb{C} G \rightarrow \operatorname{End}\left(\Phi_{\mathrm{R}}\right)$. Since the module Φ_{R} is free, the algebra $\operatorname{End}\left(\Phi_{\mathrm{R}}\right)$ is isomorphic to the algebra $M_{d}(\mathbb{C} G)=M_{d}(\mathbb{C}) \otimes \mathbb{C} G$ of $d \times d$-matrices over the algebra $\mathbb{C} G$.

The morphism $\varphi: \mathbb{C} G \rightarrow M_{d}(\mathbb{C} G)$ is called the linear recursion of the self-similar action. The obtained $\mathbb{C} G$-bimodule Φ is called the self-similarity bimodule of the action. For instance, in the case of the adding machine action the self-similarity bimodule Φ is 2 -dimensional as a right $\mathbb{C}\langle a\rangle$-module and the left multiplication on the generator a is the endomorphism of the right module defined by the matrix

$$
\varphi(a)=\left(\begin{array}{ll}
0 & a \\
1 & 0
\end{array}\right)
$$

The linear recursions of self-similar actions were used by R. Grigorchuk, A. $\dot{Z} u k$ and L. Bartholdi to compute the spectra of random walks on the Cayley graphs and on the Schreier graphs of the respective self-similar groups (see [17], [2]).

Suppose that ρ is a unitary representation of the group G on a Hilbert space H. Then the bimodule Φ defines a representation $\rho_{1}=\Phi \otimes \rho$ of the group G on the space

$$
\Phi \otimes H=\sum_{x \in X} x \otimes H
$$

where each $x \otimes H$ may be considered just as a copy of H with the natural isometry $T_{x}: H \rightarrow x \otimes H$ defined by $v \mapsto x \otimes v$. The representation ρ_{1} acts on the space $\Phi \otimes H$ by the formula $\rho_{1}(g)(x \otimes v)=y \otimes(\rho(h)(v))$, where $g \in G, v \in H$, and $h \in G, y \in X$ are such that $g \cdot x=y \cdot h$.

A unitary representation ρ of the group G is said to be self-similar (or Φ invariant) if $\Phi \otimes \rho$ is equivalent to ρ, i.e., if there exists an isometry $\psi: H \rightarrow \Phi \otimes H$ such that $\psi^{-1}(\Phi \otimes \rho) \psi=\rho$. More explicitly, the representation ρ is self-similar if there exists a decomposition of H into a direct sum $H=H_{1} \oplus H_{2} \oplus \cdots \oplus H_{d}$ and isometries $S_{x}: H \rightarrow H$ with the range equal to H_{x}, such that

$$
\begin{equation*}
\rho(g) S_{x}=S_{y} \rho(h) \tag{3.1}
\end{equation*}
$$

whenever $g \cdot x=y \cdot h$.
Example 3.2. Since the group G acts on the space X^{ω} be measure preserving transformations, we get a natural unitary representation ρ of the group G on the space $H=L^{2}\left(X^{\omega}\right)$. Since the set X^{ω} is a disjoint union $\bigcup_{x \in X} x X^{\omega}$, the space H is a direct sum of the spaces H_{x} of the functions with the support in $x X^{\omega}$. We have a natural isometry $S_{x}: H \rightarrow H_{x} \subset H$ defined by the rule

$$
S_{x}(f)(w)= \begin{cases}0 & \text { if } w \notin x X^{\omega} \\ \sqrt{|X|} \cdot f\left(w^{\prime}\right) & \text { if } w=x w^{\prime}\end{cases}
$$

One checks directly that condition (3.1) holds, so the natural representation of G on the space $L^{2}\left(X^{\omega}\right)$ is self-similar.

Example 3.3. We say that a set $\mathcal{M} \subseteq X^{\omega}$ is self-similar if $\mathcal{M}=\bigcup_{x \in X} x \mathcal{M}$.
Let $\mathcal{M} \subset X^{\omega}$ be a countable self-similar G-invariant set. Let $H=\ell^{2}(\mathcal{M})$. Then the space H is also a direct sum $H_{1} \oplus H_{2} \oplus \cdots \oplus H_{d}$, where H_{x} is the subspace spanned by the set $x \mathcal{M}$. The isometry $S_{x}: H \rightarrow H_{x}$ is the linear extension of the map $w \mapsto x w$. Since the set \mathcal{M} is G-invariant, we have a natural permutation representation of the group G on the space H. It is also easy to check that this representation satisfies condition (3.1), thus is self-similar.

Suppose the representation ρ of the group G is self-similar and let S_{x} be the isometries for which (3.1) holds. Let $\mathbb{C}_{\rho}^{*}(G)$ be the completion of the group algebra $\mathbb{C} G$ with respect to the operator norm induced by the representation ρ. Let now Φ_{ρ} be the right $\mathbb{C}_{\rho}^{*}(G)$-module with the free basis X. Then formula (2.2) will define a left multiplication for the module Φ_{ρ}, which will give us a well defined $\mathbb{C}_{\rho}^{*}(G)$-bimodule structure on Φ_{ρ} due to condition (3.1). In fact, the bimodule Φ_{ρ} can be identified with the closed linear span of the operators $S_{x} \cdot \rho(g), x \in X$, $g \in G$ in the space $\mathcal{B}(H)$ of bounded operators. The left and right multiplication by the elements of \mathbb{C}_{ρ}^{*} will be defined by the natural rule

$$
a \cdot \xi=\rho(a) \xi, \quad \xi \cdot a=\xi \rho(a)
$$

which extends the original multiplication in the bimodule Φ due to formula (3.1).
Consequently, if the representation ρ is self-similar, then the $\mathbb{C} G$-bimodule Φ can be extended to a $\mathbb{C}_{\rho}(G)$-bimodule. We will often denote Φ_{ρ} also by Φ, when this does not lead to a confusion.

In general we adopt the following definition.
Definition 3.4. A completion A of the algebra $\mathbb{C} G$ with respect to some C^{*}-norm is said to be self-similar if the self-similarity bimodule Φ extends to a Hilbert A-bimodule.

4. GENERIC POINTS OF X^{ω}

Definition 4.1. Let G be a countable group acting by homeomorphisms on the space X^{ω}. A point $w \in X^{\omega}$ is generic with respect to $g \in G$ if either $w^{g} \neq w$ or there exists a neighborhood $U \ni w$ consisting of points fixed under the action of g. A point $w \in X^{\omega}$ is G-generic if it is generic with respect to every element of G.

So if the point w is G-generic, then it is moved or is fixed by an element $g \in G$ together with all the points of its neighborhood.

Proposition 4.2. For any countable group G acting by homeomorphism on the space X^{ω} the set of all G-generic points is comeager (in particular it is not empty).

Proof. The set of generic points with respect to any homeomorphism g is an open dense set. Hence, the set of all G-generic points is an intersection of a countable number of open dense sets, and thus it is comeager.

Denote by $G(w)$ the G-orbit of a point $w \in X^{\omega}$. Let $\ell^{2}(G(w))$ be the Hilbert space of all square-summable functions $G(w) \rightarrow \mathbb{C}$. We have the permutation representation π_{w} of G on $\ell^{2}(G(w))$. Let $\|\cdot\|_{w}$ be the operator norm on $\mathbb{C} G$ defined by the representation π_{w}.

Proposition 4.3. Let $w_{1}, w_{2} \in X^{\omega}$ and suppose that w_{1} is G-generic. Then for every $a \in \mathbb{C} G\|a\|_{w_{1}} \leqslant\|a\|_{w_{2}}$.

Proof. Let $a=\sum_{k=1}^{m} \gamma_{k} g_{k} \neq 0$, where $\gamma_{k} \in \mathbb{C}, g_{k} \in G$. For every $\varepsilon>0$ there exists a nonzero element f of $\ell^{2}\left(G\left(w_{1}\right)\right)$ with finite support such that $\|a(f)\| \geqslant$ $(1-\varepsilon)\|a\|_{w_{1}} \cdot\|f\|$.

Let $f=\sum_{u \in S} \alpha_{u} u$, where $\alpha_{u} \in \mathbb{C}$, and $S \subset G\left(w_{1}\right)$ is a finite set. Here $u \in G\left(w_{1}\right)$ is identified with its characteristic function (i.e., with the respective element of $\left.\ell^{2}\left(G\left(w_{1}\right)\right)\right)$. Then

$$
\begin{equation*}
a(f)=\sum_{k=1}^{m} \sum_{u \in S} \alpha_{u} \gamma_{k} \cdot g_{k}(u)=\sum_{v \in S^{\prime}}\left(\sum_{g_{k}(u)=v} \alpha_{u} \gamma_{k}\right) v \tag{4.1}
\end{equation*}
$$

where $S^{\prime}=\bigcup_{i=1}^{m} g_{k}(S)$. Every point $u \in S$ belongs to the orbit $G\left(w_{1}\right)$, thus there exists $h_{u} \in G$ such that $h_{u}\left(w_{1}\right)=u$.

Let \mathcal{W} be the set of all the points $w \in X^{\omega}$ for which the equality $g_{k} h_{u}(w)=$ $g_{l} h_{v}(w)$ is equivalent to the equality $g_{k}(u)=g_{l}(v)$ for all $u, v \in S$ and $1 \leqslant k, l \leqslant$ m. The set \mathcal{W} contains the point w_{1}, and since w_{1} is G-generic, it contains a neighborhood of w_{1}. The action of G on X^{ω} is minimal, thus the orbit $G\left(w_{2}\right)$ also intersects the set \mathcal{W}.

Let $\widetilde{w} \in \mathcal{W} \cap G\left(w_{2}\right)$. For every $u_{\tilde{f}} \in S$ denote $\widetilde{u}=h_{u}(\widetilde{w}) \in G\left(w_{2}\right)$ and $\tilde{f}=\sum_{u \in S} \alpha_{u} \widetilde{u} \in \ell^{2}\left(G\left(w_{2}\right)\right)$. Note that $\|\widetilde{f}\|=\|f\|$. Then, for $u, v \in S$ we have $g_{k}(\widetilde{u})=g_{l}(\widetilde{v})$ if and only if $g_{k}(u)=g_{l}(v)$, thus in the sum

$$
a(\widetilde{f})=\sum_{v \in S^{\prime}}\left(\sum_{g_{k}(\widetilde{u})=\widetilde{v}} \gamma_{k} \cdot \alpha_{u}\right) \widetilde{v}
$$

the coefficient of \widetilde{v} is equal to the respective coefficient of v in the sum (4.1). Consequently,

$$
\|a\|_{w_{2}}\|\widetilde{f}\| \geqslant\|a(\widetilde{f})\|=\|a(f)\| \geqslant(1-\varepsilon)\|a\|_{w_{1}}\|f\|=(1-\varepsilon)\|a\|_{w_{1}}\|\widetilde{f}\|
$$

hence

$$
\|a\|_{w_{2}} \geqslant(1-\varepsilon)\|a\|_{w_{1}}
$$

for every $\varepsilon>0$, thus $\|a\|_{w_{2}} \geqslant\|a\|_{w_{1}}$.

5. SELF-SIMILAR COMPLETIONS

Let us fix a self-similar action of a countable group G on the space X^{ω}. By A_{w} we denote the completion of the algebra $\mathbb{C} G$ with respect to the operator norm defined by the permutation representation of G on the orbit of the point $w \in X^{*}$. As an immediate corollary of Proposition 4.3, we get

Theorem 5.1. Let $w \in X^{\omega}$ be a G-generic point. Then, for every $u \in X^{\omega}$, the algebra A_{w} is a quotient of the algebra A_{u}. If u is also generic, then the algebras A_{w} and A_{u} are isomorphic.

Let us denote the algebra A_{w}, where w is a generic point, by \mathcal{A}_{Φ}.
Theorem 5.2. The algebra \mathcal{A}_{Φ} is self-similar. If A is another self-similar completion of $\mathbb{C} G$ then the identical map $G \rightarrow G$ extends to a surjective homomorphism of the C^{*}-algebras $A \rightarrow \mathcal{A}_{\Phi}$.

Proof. For $m, n \geqslant 0$ and $g \in G$ denote by $\mathcal{G}_{g, m, n}$ the set of all the points $w \in X^{\omega}$ such that $v g\left(\sigma^{n}(w)\right)$ is G-generic for every $v \in X^{m}$. (Recall that σ is the shift.)

From the definition and Proposition 4.2 it follows that the set $\mathcal{G}_{g, m, n}$ is comeager. Thus the intersection $\bigcap_{\substack{g \in G \\ m, n \in \mathbb{N}}} \mathcal{G}_{g, m, n}$ is also comeager and thus nonempty. Let w_{0} belong to this intersection. Then all the points of the set $\mathcal{M}=\left\{v g\left(\sigma^{n}\left(w_{0}\right)\right)\right.$: $\left.g \in G, v \in X^{*}, n \geqslant 0\right\}$ are G-generic.

Note that the set \mathcal{M} is self-similar, countable and G-invariant due to the self-similarity of the action. Thus \mathcal{M} is a union of the G-orbits. The permutation representation π of $\mathbb{C} G$ on $\ell^{2}(\mathcal{M})$ is a countable direct sum of the permutation representations π_{w} of G on orbits of generic points, thus the completion of $\mathbb{C} G$ with respect to the norm defined by π is isomorphic to \mathcal{A}_{Φ}, by Theorem 5.1. Thus we get a faithful Φ-invariant representation of the algebra \mathcal{A}_{Φ}. Consequently, the algebra \mathcal{A}_{Φ} is self-similar (see Example 3.3).

Let A be another self-similar completion of the algebra $\mathbb{C} G$ with respect to a norm $\|\cdot\|$. Let $\|\cdot\|_{0}$ be the norm defined by a permutational representation of the group G on the orbit $G\left(w_{0}\right)$ of a generic point w_{0}. We have to prove that $\|a\| \geqslant\|a\|_{0}$ for every $a \in \mathbb{C} G$.

Let $a=\sum_{k=1}^{m} \gamma_{k} g_{k} \neq 0$, where $\gamma_{k} \in \mathbb{C}, g_{k} \in G$. We choose a nonzero vector $f \in \ell^{2}\left(G\left(w_{0}\right)\right)$ with finite support S such that $\|a(f)\| \geqslant(1-\varepsilon)\|a\|_{0} \cdot\|f\|$. Let $f=\sum_{u \in S} \alpha_{u} u$. We again have (as in the proof of Proposition 4.3)

$$
a(f)=\sum_{v \in S^{\prime}}\left(\sum_{g_{k}(u)=v} \alpha_{u} \gamma_{k}\right) v
$$

where $S^{\prime}=\bigcup_{k=1}^{m} g_{k}(S)$. Let the elements $h_{u} \in G$ be such that for every $u \in S$ we have $h_{u}\left(w_{0}\right)=u$.

In the same way as during the proof of Proposition 4.3 let \mathcal{W} be the set of all the points $w \in X^{\omega}$ for which the equality $g_{k} h_{u}(w)=g_{l} h_{v}(w)$ is equivalent to the equality $g_{k}(u)=g_{l}(v)$ for all $u, v \in S$ and $1 \leqslant k, l \leqslant m$. The set \mathcal{W} contains a neighborhood of w_{0}, thus there exists a finite beginning $r \in X^{*}$ of the word $w_{0} \in X^{\omega}$ such that every word $w \in X^{\omega}$ which begins with r belongs to \mathcal{W}. We take r sufficiently long, so that

$$
g_{k} h_{u}(r)=g_{l} h_{v}(r) \Leftrightarrow g_{k} h_{u}\left(w_{0}\right)=g_{l} h_{v}\left(w_{0}\right) \Leftrightarrow g_{k}(u)=g_{l}(v)
$$

Take any faithful representation ρ of the algebra A on a Hilbert space H. Then for any $n \in \mathbb{N}$ the representation $\rho_{n}=\Phi^{\otimes n} \otimes \rho$ is faithful and acts on the direct sum $H^{d^{n}}=\Phi^{\otimes n} \otimes H$. Every summand $x_{i_{1}} \otimes x_{i_{2}} \otimes \cdots \otimes x_{i_{n}} \otimes H$ of the direct sum corresponds to the word $x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}} \in X^{n}$. The representation ρ_{n} acts on the vectors from the summands according to the rule

$$
\begin{equation*}
\rho_{n}(g)\left(x_{i_{1}} \otimes x_{i_{2}} \otimes \cdots \otimes x_{i_{n}} \otimes \xi\right)=y_{i_{1}} \otimes y_{i_{2}} \otimes \cdots \otimes y_{i_{n}} \otimes \rho(h)(\xi) \tag{5.1}
\end{equation*}
$$

where $g \in G, \xi \in H$ and $g \cdot x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}=y_{i_{1}} y_{i_{2}} \ldots y_{i_{n}} \cdot h$. In particular, the summands of the direct sum $H^{d^{n}}=\Phi^{\otimes n} \otimes H$ are permuted by the elements of G in the same way as the points of X^{n} are permuted under the action of the group G on X^{*}.

Take $n=|r|$ and let \widetilde{e} be a vector of norm 1, belonging to the summand of the direct sum $H^{d^{n}}$, which corresponds to the word r. We define now a vector

$$
\widetilde{f}=\sum_{u \in S} \alpha_{u} \rho_{n}\left(h_{u}\right)(\widetilde{e}) \in H^{d^{n}}
$$

Every $\rho_{n}\left(h_{u}\right)(\widetilde{e})$ belongs to the summand of $H^{d^{n}}$, corresponding to the word $h_{u}(r)$. Since for different $u \in S$ the words $h_{u}(r)$ are different, $\rho_{n}\left(h_{u}\right)(\widetilde{e})$ are orthogonal and $\|\widetilde{f}\|=\sum_{u \in S}\left|\alpha_{u}\right|^{2}=\|f\|$. The vectors $\rho_{n}\left(g_{k} h_{u}\right)(\widetilde{e})$ and $\rho_{n}\left(g_{l} h_{v}\right)(\widetilde{e})$ belong to the same summand of the direct sum $H^{d^{n}}$ if and only if $g_{k} h_{u}(r)=$ $g_{l} h_{v}(r)$. But from the choice of the word r it follows that in this case $g_{k} h_{u}(w)=$ $g_{l} h_{v}(w)$ for all the infinite words w starting with r. But this means that $g_{k} h_{u} \cdot r=$ $g_{l} h_{v} \cdot r=r^{\prime} \cdot h$ for some $h \in G$ and $r^{\prime} \in X^{n}$.

Then from equation (5.1) it follows that $\rho\left(g_{k} h_{u}\right)(\widetilde{e})=\rho\left(g_{l} h_{v}\right)(\widetilde{e})$. Consequently, the vectors $\rho\left(g_{k} h_{u}\right)(\widetilde{e})$ and $\rho\left(g_{l} h_{v}\right)(\widetilde{e})$ for $u, v \in S$ are orthogonal if $g_{k}(u) \neq g_{l}(v)$, and coincide if $g_{k}(u)=g_{l}(v)$. Then $\|\rho(a)(\widetilde{f})\|=\|a(f)\|$ and, in the same way as in the proof of Proposition 4.3, we get the estimate

$$
\|a\|=\|\rho(a)\| \geqslant\|a\|_{0}
$$

which finishes the proof.

6. THE CUNTZ-PIMSNER ALGEBRA \mathcal{O}_{Φ}

In [26] M. Pimsner associates to every bimodule Φ an algebra \mathcal{O}_{Φ}, which generalizes the Cuntz algebra \mathcal{O}_{d} (see [9]), and the Cuntz-Krieger algebra \mathcal{O}_{A} from [10]. In the case of the self-similarity bimodule the Cuntz-Pimsner algebra \mathcal{O}_{Φ} can be defined in the following way.

Definition 6.1. Let Φ be the self-similarity bimodule of an action of a group G over the alphabet X. The Cuntz-Pimsner algebra \mathcal{O}_{Φ} is the universal C^{*}-algebra generated by the algebra \mathcal{A}_{Φ} and operators $\left\{S_{x}: x \in X\right\}$ satisfying the relations

$$
\begin{gather*}
S_{x}^{*} S_{x}=1, \quad S_{x}^{*} S_{y}=0 \text { if } x \neq y \tag{6.1}\\
\sum_{x \in X} S_{x} S_{x}^{*}=1 \tag{6.2}\\
a S_{x}=\sum_{y \in X} S_{y} a_{x, y} \tag{6.3}
\end{gather*}
$$

where $a_{x, y} \in \mathcal{A}_{\Phi}$ are such that $a \cdot x=\sum_{y \in X} y \cdot a_{x, y}$, so $a_{x, y}=\langle y \mid a \cdot x\rangle$.
We will use the multi-index notation, so that for $v=x_{1} x_{2} \ldots x_{n} \in X^{*}$ the operator S_{v} is equal to $S_{x_{1}} S_{x_{2}} \cdots S_{x_{n}}$ and for the empty word \emptyset the operator S_{\emptyset} is equal to 1 . Then $g \cdot v=u \cdot h$ implies $g S_{v}=S_{u} h$ in the algebra \mathcal{O}_{Φ}.

The Cuntz algebra \mathcal{O}_{d} is the universal algebra generated by d isometries $S_{1}, S_{2}, \ldots, S_{d}$ such that $\sum_{i=1}^{d} S_{i} S_{i}^{*}=1$. This algebra is simple (see [9], [11]) and thus any isometries satisfying such a relation generate an algebra isomorphic to \mathcal{O}_{d}. In particular, since the operators $\left\{S_{x}: x \in X\right\}$ satisfy relations (6.1), (6.2), they generate a subalgebra of \mathcal{O}_{Φ}, isomorphic to \mathcal{O}_{d} for $d=|X|$. If $\rho: \mathcal{O}_{\Phi} \rightarrow \mathcal{B}(H)$ is a representation of the algebra \mathcal{O}_{Φ}, then its restriction onto the subalgebra generated by \mathcal{A}_{Φ} is a Φ-invariant representation of the algebra \mathcal{A}_{Φ}, due to (6.3). Conversely, if ρ is a Φ-invariant representation, then due to condition (3.1) we get a representation of the algebra \mathcal{O}_{Φ}.

We say that two words $v, u \in X^{*}$ are comparable if one is a beginning of the other. It is easy to see that the words $v, u \in X^{*}$ are incomparable if and only if the cylindrical sets $v X^{\omega}$ and $u X^{\omega}$ are disjoint.

The following lemma is proved by direct application of equation (6.1).
Lemma 6.2. For any $v, u \in X^{*}$ the product $S_{v}^{*} S_{u}$ is not equal to 0 if and only if the words u and v are comparable.

If $v=u u_{0}$ for some $u_{0} \in X^{*}$ then $S_{v}^{*} S_{u}$ is equal to $S_{u_{0}}^{*}$; if $u=v v_{0}$ then $S_{v}^{*} S_{u}=S_{v_{0}}$.

It follows from Lemma 6.2 that every element of the monoid, generated by the set $\left\{S_{x}, S_{x}^{*}: x \in X\right\}$ is either zero or is equal to a product of the form $S_{u} \cdot S_{v}^{*}$, where $u, v \in X^{*}$. It also follows from relation (6.3) that every element of the semigroup generated by $\left\{S_{x}, S_{x}^{*}: x \in X\right\} \cup G$ is either zero or equal to a product
$S_{u} g S_{v}^{*}$ for some $u, v \in X^{*}$ and $g \in G$. If $g \cdot x=y_{x} \cdot h_{x}$, then $g \cdot S_{x} S_{x}^{*}=S_{y_{x}} h_{x} S_{x}^{*}$ and using relation (6.2) we get

$$
\begin{equation*}
g=\sum_{x \in X} S_{y_{x}} h_{x} S_{x}^{*} \tag{6.4}
\end{equation*}
$$

For a fixed $n \in \mathbb{N}$, if $g \cdot v=u_{v} \cdot h_{v}$ where $v, u_{v} \in X^{n}$ and $h_{v} \in G$, then by the same arguments

$$
\begin{equation*}
g=\sum_{v \in X^{n}} S_{u_{v}} h_{v} S_{v}^{*} \tag{6.5}
\end{equation*}
$$

Definition 6.3. Let \mathcal{M} be a self-similar subset of X^{ω}. Let T_{x} be, for every $x \in X$, the transformation of the set \mathcal{M} which maps a word $w \in X^{\omega}$ to the word $x w$. Then the transformation T_{x} induces an isometry S_{x} of the Hilbert space $\ell^{2}(\mathcal{M})$ and the isometries S_{x} satisfy the relations (6.1) and (6.2). Thus we get a representation of the Cuntz algebra \mathcal{O}_{d}. Such a representation is called a permutation representation of \mathcal{O}_{d}.

If the self-similar set \mathcal{M} is G-invariant and contains only G-generic points, then the permutation representation of \mathcal{O}_{d} together with the permutation representation of the group G on \mathcal{M} define a representation of the algebra \mathcal{O}_{Φ}, which will also be called a permutation representation of \mathcal{O}_{Φ} on $\ell^{2}(\mathcal{M})$.

We have constructed a G-invariant self-similar set of G-generic points in the beginning of the proof of Theorem 5.2.

The permutation representations of the Cuntz algebra and their relation with the wavelets, numeration systems and rep-tilings are studied in [4].

The transformations T_{x} generate an inverse semigroup, where the inverse transformation T_{x}^{*} is the partially defined transformation which deletes the first letter x; in other words, it is the shift, restricted to the set $x X^{\omega}$. The inverse semigroup generated by G and $\left\{T_{x}: x \in X\right\}$ can be viewed as a semigroup analog of the Cuntz-Pimsner algebra \mathcal{O}_{Φ}. As we have seen, every nonzero element of this semigroup is of the form $T_{v} g T_{u}^{*}$ for some $u, v \in X^{*}$ and $g \in G$. Here we also use the multi-index notation.

7. THE ALGEBRA $\mathcal{F}(\Phi)$

For $k \in \mathbb{N}$ denote by \mathcal{F}_{k} the linear span over \mathbb{C} of the products $S_{v} a S_{u}^{*}$, with $u, v \in X^{k}$ and $a \in \mathcal{A}_{\Phi}$.

If $v_{1}, u_{1}, v_{2}, u_{2} \in X^{k}$, then, by Lemma $6.2, S_{v_{1}} a_{1} S_{u_{1}}^{*} \cdot S_{v_{2}} a_{2} S_{u_{2}}^{*}$ is equal to $S_{v_{1}} a_{1} a_{2} S_{u_{2}}^{*}$ if $u_{1}=v_{2}$ and to zero otherwise. Consequently, \mathcal{F}_{k} is an algebra isomorphic to the algebra $M_{d^{k}}\left(\mathcal{A}_{\Phi}\right)$ of $d^{k} \times d^{k}$-matrices over the algebra \mathcal{A}_{Φ}. This algebra coincides with $\operatorname{End}\left(\Phi_{\mathrm{R}}^{\otimes k}\right)$.

By equation (6.4) we have inclusions $\mathcal{F}_{k} \subset \mathcal{F}_{k+1}$. Denote by $\mathcal{F}(\Phi)$ the closure of the union $\bigcup_{k \geqslant 1} \mathcal{F}_{k}$. The algebra $\mathcal{F}(\Phi)$ is isomorphic to the direct limit of the matrix algebras $M_{d^{n}}\left(\mathcal{A}_{\Phi}\right)$ with respect to the embeddings defined by the linear recursion φ. The set of all transformations of the form $T_{u} g T_{v}^{*}$, where $g \in G$, $u, v \in X^{*}$ and $|u|=|v|$, is an inverse semigroup, and the orbit of a point $w_{0} \in X^{\omega}$
under the action of this semigroup is the set $\operatorname{Orb}\left(w_{0}\right)=\left\{u g\left(\sigma^{n}\left(w_{0}\right)\right): g \in G, u \in\right.$ $\left.X^{*},|u|=n, n \in \mathbb{N}\right\}$. We will call this set the $\mathcal{F}(\Phi)$-orbit of the point w_{0}.

A permutation representation of the algebra $\mathcal{F}(\Phi)$ on the space $\ell^{2}\left(\operatorname{Orb}\left(w_{0}\right)\right)$ is the representation $\pi_{w_{0}}$ which acts on the basis vectors $w \in \operatorname{Orb}\left(w_{0}\right)$ by the rule $\pi_{w_{0}}\left(S_{u} g S_{v}^{*}\right)(w)=T_{u} g T_{v}^{*}(w)$. In particular, the restriction of a permutation representation of the Cuntz-Pimsner algebra \mathcal{O}_{Φ} to subalgebra $\mathcal{F}(\Phi)$ is a direct sum of permutation representations.

Proposition 7.1. Suppose the point $w_{0} \in X^{\omega}$ is such that all the points in the $\mathcal{F}(\Phi)$-orbits of all its shifts $\sigma^{n}\left(w_{0}\right)$ are G-generic. Then the permutation representation of $\mathcal{F}(\Phi)$ on the $\mathcal{F}(\Phi)$-orbit of w_{0} is faithful.

Proof. Let π_{0} be the permutation representation on the space $\ell^{2}\left(\operatorname{Orb}\left(w_{0}\right)\right)$. By definition of the algebra \mathcal{A}_{Φ}, the representation π_{0} is faithful on \mathcal{A}_{Φ}. The set $\operatorname{Orb}\left(w_{0}\right)$ is equal to $\bigcup_{x \in X} x \operatorname{Orb}\left(\sigma\left(w_{0}\right)\right)$. Thus the permutation representation π_{0} of the algebra \mathcal{A}_{Φ} is equivalent to the representation $\Phi \otimes \pi_{1}$, where π_{1} is the permutation representation of \mathcal{A}_{Φ} on the orbit $G\left(\sigma\left(w_{0}\right)\right)$. The representation π_{1} is faithful on \mathcal{A}_{Φ}, so the representation $\pi_{0} \approx \Phi \otimes \pi_{1}$ is faithful on $\mathcal{F}_{1}=M_{d}\left(\mathcal{A}_{\Phi}\right)$.

The process can be continued and we get that for every $n \in \mathbb{N}$ the representation π_{0} is equivalent to the representation $\Phi^{\otimes n} \otimes \pi_{n}$, where π_{n} is the permutation representation on the orbit $G\left(\sigma^{n}\left(w_{0}\right)\right)$, thus the representation π_{0} is faithful on \mathcal{F}_{n}. Since the algebra $\mathcal{F}(\Phi)$ is the union of the algebras \mathcal{F}_{n}, it follows that the permutation representation π_{0} is faithful on $\mathcal{F}(\Phi)$.

Every algebra \mathcal{F}_{k} contains as a subalgebra the linear span F_{k} of the products of the form $S_{v} S_{u}^{*}$, where $v, u \in X^{k}$. The algebra F_{n} is isomorphic to the algebra $M_{d^{k}}$ of $d^{k} \times d^{k}$-matrices over \mathbb{C}, where the products $S_{v} S_{u}^{*}$ are identified with the matrix units. We also have the inclusions $F_{n} \subset F_{n+1}$, which are the diagonal embeddings. Thus the closure of the union $\bigcup_{k \geqslant 1}^{n} F_{k}$ is the UHF algebra $M_{d^{\infty}}$.

By analogy with the Cuntz algebra (see [9], [11]), we can define a strongly continuous (gauge) action Γ of the circle $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$ on \mathcal{O}_{Φ} by the rules

$$
\Gamma_{z}(g)=g, \quad \Gamma_{z}\left(S_{x}\right)=z S_{x}
$$

for all $g \in G, x \in X$ and $z \in \mathbb{T}$.
Then $\Gamma_{z}\left(S_{v} g S_{u}^{*}\right)=z^{|v|-|u|} S_{v} g S_{u}^{*}$ for $u, v \in X^{*}, g \in G$, and therefore the integral $\int \Gamma_{z}\left(S_{v} g S_{u}^{*}\right) \mathrm{d} z$ is equal to zero for $|v| \neq|u|$ and to $S_{v} g S_{u}^{*}$ for $|v|=|u|$, where $\mathrm{d} z$ is the normalized Lebesgue measure on the circle. So the map

$$
\begin{equation*}
\mathbb{M}_{0}(a)=\int \Gamma_{z}(a) \mathrm{d} z \tag{7.1}
\end{equation*}
$$

is a conditional expectation onto the subalgebra $\mathcal{F}(\Phi)$. If $a \in \mathcal{O}_{\Phi}$ is positive and nonzero, then every $\Gamma_{z}(a)$ is also positive and $\Gamma_{1}(a)=a$, thus $\mathbb{M}_{0}(a)>0$, so \mathbb{M}_{0} is faithful.

A self-similar action of a group G is recurrent if for every element h of the group G there exists $g \in G$ such that $g \cdot x=x \cdot h$. The definition does not depend on the choice of the letter x and if the action is recurrent then for any two words v, u of equal length and any $h \in G$ there exists $g \in G$ such that $g \cdot v=u \cdot h$ (this is easily proved by induction on the length of the words). Thus, if the action is recurrent, the orbit of a point $w \in X^{\omega}$ under the action of G coincides with its $\mathcal{F}(\Phi)$-orbit.

Theorem 7.2. Suppose the self-similar action of G is recurrent and that the point $w_{0} \in X^{\omega}$ and all its shifts $\sigma^{n}\left(w_{0}\right)$ are G-generic. Let π_{1} be the permutation representation of G on the orbit of w_{0} and let π_{2} be the natural representation on $\ell^{2}\left(G\left(w_{0}\right)\right)$ of the algebra $C\left(X^{\omega}\right)$ of continuous functions on X^{ω}. Then the algebra $\mathcal{F}(\Phi)$ is isomorphic to the C^{*}-algebra generated by $\pi_{1}(G) \cup \pi_{2}\left(C\left(X^{\omega}\right)\right) \subset$ $\mathcal{B}\left(\ell^{2}\left(G\left(w_{0}\right)\right)\right)$.

Proof. Denote by \mathcal{F} the algebra generated by $\pi_{1}(G) \cup \pi_{2}\left(C\left(X^{\omega}\right)\right)$. Let π be the permutation representation of $\mathcal{F}(\Phi)$ on the orbit $G\left(w_{0}\right)$ (which coincides with the $\mathcal{F}(\Phi)$-orbit of w_{0} in the recurrent case). Then $\pi(g)=\pi_{1}(g)$ for every $g \in G$ and $\pi\left(S_{u} S_{u}^{*}\right)=\pi_{2}\left(\mathbf{1}_{u}\right)$ for every $u \in X^{*}$, where $\mathbf{1}_{u}$ is the characteristic function of the cylindrical set $u X^{\omega}$. The function $\mathbf{1}_{u}$ is continuous, since the cylindrical sets are closed and open. Therefore π defines an injective C^{*}-homomorphism from the subalgebra of $\mathcal{F}(\Phi)$, generated by G and $\left\{S_{u} S_{u}^{*}: u \in X^{*}\right\}$, to the algebra \mathcal{F}. So it remains to prove that this homomorphism is surjective and that the set $G \cup\left\{S_{u} S_{u}^{*}: u \in X^{*}\right\}$ generates the C^{*}-algebra $\mathcal{F}(\Phi)$.

The first assertion follows from the well known fact that the closed linear span of the characteristic functions $\mathbf{1}_{u}$ for $u \in X^{*}$ is equal to $C\left(X^{\omega}\right)$.

Since the action of the group G is level-transitive and recurrent, for any two words u, v of equal lengths and for any $h \in G$ there exists an element $g \in G$ such that $g \cdot u=v \cdot h$. Then $g S_{u} S_{u}^{*}=S_{v} h S_{u}^{*}$. Hence the closed linear span of all the products $g S_{u} S_{u}^{*}$ is equal to $\mathcal{F}(\Phi)$, so $G \cup\left\{S_{u} S_{u}^{*}: u \in X^{*}\right\}$ generates $\mathcal{F}(\Phi)$.

Example 7.3. For the case of the adding machine action the algebra \mathcal{A}_{Φ} is isomorphic to the algebra $C(\mathbb{T})$ with the linear recursion $C(\mathbb{T}) \rightarrow M_{2}(C(\mathbb{T}))$ coming from the double self-covering of the circle. Thus the algebra $\mathcal{F}(\Phi)$ in this case is the Bunce-Deddens algebra. Then Theorem 7.2 in this case is the well known fact that the Bunce-Deddens algebra is the cross-product algebra of the odometer action on the Cantor space X^{ω} (see [11]).

8. SIMPLICITY OF \mathcal{O}_{Φ}

There are several general results on simplicity of the Cuntz-Pimsner algebras, which can be used to prove that the algebra \mathcal{O}_{Φ} is simple (see, for example [24], [22], [29]). But we prefer to give a direct proof of this fact, since the proof in this case is rather simple and it shows how the notion of a generic point works. We will use the following refinement of this notion.

Definition 8.1. A point $w \in X^{\omega}$ is strictly G-generic if for any $v, u \in X^{*}$ and $g \in G$ the transformation $T_{v} g T_{u}^{*}$ either moves the point w, or fixes w together with every point in a neighborhood of w, or is not defined on w.

Recall (see Definition 6.3), that T_{v} is the transformation $w \mapsto v w$ and T_{v}^{*} is the partially defined inverse transformation. In particular, every strictly generic point is aperiodic, i.e., cannot be represented in the form uvvvvv..., where $u, v \in$ X^{*}. The aperiodic words were used in the original proof in [9] of the simplicity of the Cuntz algebra \mathcal{O}_{d}.

In the same way as for G-generic points, one can prove that the set of all strictly G-generic points is also comeager.

Lemma 8.2. For any finite linear combination $a=\sum_{i=1}^{m} \alpha_{i} S_{u_{i}} g_{i} S_{v_{i}}^{*}, \alpha_{i} \in \mathbb{C}$, $u_{i}, v_{i} \in X^{*}, g_{i} \in G$, with $\mathbb{M}_{0}(a) \neq 0$ and for every $\varepsilon>0$ there exists a partial isometry $Q \in \mathcal{F}(\Phi)$ such that

$$
\begin{aligned}
& Q^{*} a Q=Q^{*} \mathbb{M}_{0}(a) Q \\
& Q^{*} a Q \in F_{m}=M_{|X|^{m}}(\mathbb{C}) \quad \text { for some } m \in \mathbb{N}
\end{aligned}
$$

and

$$
\left\|Q^{*} a Q\right\| \geqslant\left\|\mathbb{M}_{0}(a)\right\|-\varepsilon
$$

Proof. Let π be a permutation representation of the algebra \mathcal{O}_{Φ} on a countable self-similar set \mathcal{M} of strictly generic points of X^{ω}. Let us take $\delta>0$ such that $\delta \cdot\left\|\mathbb{M}_{0}(a)\right\|<\varepsilon$. There exists a nonzero vector $\xi \in \ell^{2}(\mathcal{M})$ with finite support such that $\left\|\pi\left(\mathbb{M}_{0}(a)\right)(\xi)\right\|>(1-\delta)\left\|\pi\left(\mathbb{M}_{0}(a)\right)\right\| \cdot\|\xi\|$. By Proposition 7.1, the representation π is faithful on $\mathcal{F}(\Phi)$, so $\left\|\pi\left(\mathbb{M}_{0}(a)\right)\right\|=\left\|\mathbb{M}_{0}(a)\right\|$.

Let $\xi=\sum_{j=1}^{N} \gamma_{j} w_{j}$, where $w_{j} \in \mathcal{M}$ are identified with their characteristic functions. We will denote by $w_{j}^{(m)}$ the beginning of the length m of the word w_{j}. We may assume that all w_{j} belong to the same $\mathcal{F}(\Phi)$-orbit, so every w_{j} is equal to $T_{w_{j}^{(k)}} h_{j} T_{w_{1}^{(k)}}^{*}\left(w_{1}\right)$ for some $h_{j} \in G$ and a fixed k big enough. We take some extra w_{j} with zero coefficients so that conditions $\left|u_{i}\right|=\left|v_{i}\right|$ and $\pi\left(S_{u_{i}} g_{i} S_{v_{i}}^{*}\right)\left(w_{k}\right) \notin\left\{w_{j}\right.$: $j=1, \ldots, N\}$ imply $\gamma_{k}=0$.

Let the index i be such that $\left|u_{i}\right| \neq\left|v_{i}\right|$. Suppose that $T_{u_{i}} g_{i} T_{v_{i}}^{*}\left(w_{j_{1}}\right)=w_{j_{2}}$. Then

$$
\begin{equation*}
T_{u_{i}} g_{i} T_{v_{i}}^{*}\left(T_{w_{j_{1}}^{(k)}} h_{j_{1}} T_{w_{1}^{(k)}}^{*}\left(w_{1}\right)\right)=T_{w_{j_{2}}^{(k)}} h_{j_{2}} T_{w_{1}^{(k)}}^{*}\left(w_{1}\right) \tag{8.1}
\end{equation*}
$$

The transformation $\left(T_{u_{i}} g_{i} T_{v_{i}}^{*}\right)\left(T_{w_{j_{1}}^{(k)}} h_{j_{1}} T_{w_{1}^{(k)}}^{*}\right)$ is equal to a transformation of the form $T_{u} g T_{v}^{*}$ with $|u|-|v|=\left|u_{i}\right|^{j_{1}}-\left|v_{i}\right|$. Since the point w_{1} is strictly generic, equality (8.1) holds for all the points of a neighborhood of w_{1}. So for sufficiently big m for every $w \in w_{1}^{(m)} X^{\omega}$ we will have $T_{u} g T_{v}^{*}(w)=T_{w_{j_{2}}^{(k)}} h_{j_{2}} T_{w_{1}^{(k)}}^{*}(w)$. But the transformation $T_{w_{j 2}^{(k)}} h_{j_{2}} T_{w_{1}^{(k)}}^{*}$ preserves the measure of the subsets of $w_{1}^{(k)} X^{\omega}$, while the transformation $T_{u} g T_{v}^{*}$ multiplies the measure of every subset of $v X^{\omega}$ by $|X|^{|v|-|u|}$. This is a contradiction, so $T_{u_{i}} g_{i} T_{v_{i}}^{*}\left(w_{j_{1}}\right) \neq w_{j_{2}}$ when $\left|u_{i}\right| \neq\left|v_{i}\right|$.

Let now $T_{u_{i}} g_{i} T_{v_{i}}^{*}\left(w_{j_{1}}\right) \neq w_{j_{2}}$ (without regard on the lengths of the words u_{i} and $\left.v_{i}\right)$. Then, for m big enough, the sets $T_{u_{i}} g_{i} T_{v_{i}}^{*}\left(w_{j_{1}}^{(m)} X^{\omega}\right)$ and $w_{j_{2}}^{(m)} X^{\omega}$ are disjoint. Hence we get an equality

$$
\begin{equation*}
S_{w_{j_{2}}^{(m)}}^{*}\left(S_{u_{i}} g_{i} S_{v_{i}}^{*}\right) S_{w_{j_{1}}^{(m)}}=0 \tag{8.2}
\end{equation*}
$$

Note that equality (8.2) remains to be true if we take a bigger m. So we can find an m such that it holds for all j_{1}, j_{2} and for all i such that $T_{u_{i}} g_{i} T_{v_{i}}^{*}\left(w_{j_{1}}\right) \neq w_{j_{2}}$; in particular, for all i such that $\left|u_{i}\right| \neq\left|v_{i}\right|$.

Let now i be such that $\left|u_{i}\right|=\left|v_{i}\right|$ and suppose $T_{u_{i}} g_{i} T_{v_{i}}^{*}\left(w_{j_{1}}\right)=w_{j_{2}}$. Then again equality (8.1) holds. Since the point w_{1} is strictly generic, this equality holds
for all points of a neighborhood of w_{1}. We may assume that this neighborhood is $w_{1}^{(m)} X^{\omega}$. This means that

$$
\left(T_{u_{i}} g_{i} T_{v_{i}}^{*}\right)\left(T_{w_{j_{1}}^{(k)}} h_{j_{1}} T_{w_{1}^{(k)}}^{*}\right)\left(T_{w_{1}^{(m)}} T_{w_{1}^{(m)}}^{*}\right)=T_{w_{j_{2}}^{(m)}} h_{j_{2}} T_{w_{1}^{(m)}}^{*}\left(T_{w_{1}^{(m)}} T_{w_{1}^{(m)}}^{*}\right)
$$

Thus we get the same relation in the Cuntz-Pimsner algebra \mathcal{O}_{Φ} (with all T_{v} changed by S_{v}). Note that $\left(S_{w_{j_{i}}^{(k)}} h_{j_{i}} S_{w_{1}^{(k)}}^{*}\right)\left(S_{w_{1}^{(m)}} S_{w_{1}^{(m)}}^{*}\right)=S_{w_{j_{i}}^{(m)}} \widetilde{h}_{j_{i}} S_{w_{1}^{(m)}}^{*}$, where $i=1,2$ and $\widetilde{h}_{j_{i}}=S_{s}^{*} h_{j_{i}} S_{r} \in G$ for the words $s, r \in X^{*}$ such that $w_{1}^{(m)}=w_{1}^{(k)} r$ and $w_{j_{i}}^{(m)}=w_{j_{i}}^{(k)} s$. Thus

$$
\begin{aligned}
\left(S_{w_{1}^{(m)}} \widetilde{h}_{j_{2}}^{-1} S_{w_{j_{2}}^{(m)}}^{*}\right)\left(S_{u_{i}} g_{i} S_{v_{i}}^{*}\right)\left(S_{w_{j_{1}}^{(m)}} \widetilde{h}_{j_{1}} S_{w_{1}^{(m)}}^{*}\right) & =\left(S_{w_{1}^{(m)}} \widetilde{h}_{j_{2}}^{-1} S_{w_{j_{2}}^{(m)}}^{*}\right)\left(S_{w_{j_{2}}^{(m)}} \widetilde{h}_{j_{2}} S_{w_{1}^{(m)}}^{*}\right) \\
& =S_{w_{1}^{(m)}} S_{w_{1}^{(m)}}^{*}
\end{aligned}
$$

Multiplying the equality on the left by $S_{w_{j_{2}}^{(m)}} S_{w_{1}^{(m)}}^{*}$ and on the right by $S_{w_{1}^{(m)}}^{*} S_{w_{j_{1}}^{(m)}}$ we get

$$
\begin{equation*}
\left(S_{w_{j_{2}}^{(m)}} \widetilde{h}_{j_{2}}^{-1} S_{w_{j_{2}}^{(m)}}^{*}\right)\left(S_{u_{i}} g_{i} S_{v_{i}}^{*}\right)\left(S_{w_{j_{1}}^{(m)}} \widetilde{h}_{j_{1}} S_{w_{j_{1}}^{(m)}}^{*}\right)=S_{w_{j_{2}}^{(m)}} S_{w_{j_{1}}^{(m)}}^{*} \tag{8.3}
\end{equation*}
$$

Let now $Q=\sum_{j=1}^{N} S_{w_{j}^{(m)}} \widetilde{h}_{j} S_{w_{j}^{(m)}}^{*}$. Then from equality (8.2) it follows that $Q^{*} a Q=Q^{*} \mathbb{M}_{0}(a) Q$.

We may assume that the neighborhoods $w_{j}^{(m)} X^{\omega}$ are disjoint for different j. Then from (8.2) and (8.3) it follows that $Q^{*} a Q \in F_{m}=M_{|X|^{m}}(\mathbb{C})$ and that $\pi\left(S_{u_{i}} g S_{v_{i}}^{*}\right)\left(w_{j_{1}}\right)=w_{j_{2}}$ for $\left|u_{i}\right|=\left|v_{i}\right|$ is equivalent to $\pi\left(Q^{*} S_{u_{i}} g S_{v_{i}}^{*} Q\right)\left(\widetilde{w}_{j_{1}}\right)=\widetilde{w}_{j_{2}}$, where $\widetilde{w}_{j}=S_{w_{j}^{(m)}} S_{w_{1}^{(m)}}\left(w_{1}\right)$. Hence $\left\|\pi\left(\mathbb{M}_{0}(a)\right)(\xi)\right\|=\left\|\pi\left(Q^{*} a Q\right)(\widetilde{\xi})\right\|$, where $\widetilde{\xi}=$ $\sum_{j=1}^{N} \gamma_{j} \widetilde{w}_{j}$. Note that $\|\widetilde{\xi}\|=\|\xi\|$. Then we have

$$
\begin{aligned}
\left\|Q^{*} a Q\right\| \cdot\|\xi\| & =\left\|\pi\left(Q^{*} a Q\right)\right\| \cdot\|\widetilde{\xi}\| \geqslant\left\|\pi\left(Q^{*} a Q\right)(\widetilde{\xi})\right\| \\
& =\left\|\pi\left(\mathbb{M}_{0}(a)\right)(\xi)\right\| \geqslant(1-\delta)\left\|\mathbb{M}_{0}(a)\right\| \cdot\|\xi\|
\end{aligned}
$$

hence $\left\|Q^{*} a Q\right\| \geqslant(1-\delta)\left\|\mathbb{M}_{0}(a)\right\|>\left\|\mathbb{M}_{0}(a)\right\|-\varepsilon$.
Theorem 8.3. The algebra \mathcal{O}_{Φ} is simple. Moreover, for any nonzero $x \in$ \mathcal{O}_{Φ} there exist $p, q \in \mathcal{O}_{\Phi}$ such that $p x q=1$.

Proof. We follow the proof of the similar result for the Cuntz algebra \mathcal{O}_{d} from [11]. The element $x^{*} x$ is positive and nonzero, thus $\mathbb{M}_{0}\left(x^{*} x\right)$ is also positive and nonzero. Multiplying x by a scalar, we get $\left\|\mathbb{M}_{0}\left(x^{*} x\right)\right\|=1$. Let y be a selfadjoint positive finite sum $\sum_{i=1}^{m} \alpha_{i} S_{u_{i}} g_{i} S_{v_{i}}^{*}, \alpha_{i} \in \mathbb{C}, u_{i}, v_{i} \in X^{*}, g_{i} \in G$, such that $\left\|x^{*} x-y\right\|<1 / 4$. Then

$$
\left\|\mathbb{M}_{0}(y)\right\| \geqslant\left\|\mathbb{M}_{0}\left(x^{*} x\right)\right\|-\left\|\mathbb{M}_{0}\left(x^{*} x-y\right)\right\| \geqslant 1-\left\|x^{*} x-y\right\|>\frac{3}{4}
$$

By Lemma 8.2 there exists a partial isometry $Q \in \mathcal{F}(\Phi)$ such that $Q^{*} y Q=$ $Q^{*} \mathbb{M}_{0}(y) Q \in M_{|X|^{m}}(\mathbb{C})$ for some $m \in \mathbb{N}$ and $\left\|Q^{*} y Q\right\| \geqslant\left\|\mathbb{M}_{0}(y)\right\|-1 / 4>1 / 2$. Then $Q^{*} y Q$ is a positive matrix, so it is diagonalizable and thus there exists a projection $P \in M_{|X|^{m}}(\mathbb{C})$ such that

$$
P Q^{*} y Q=Q^{*} y Q P=\left\|Q^{*} y Q\right\| P
$$

We can find a unitary $U \in M_{|X|^{m}}(\mathbb{C})$ such that $U P U^{*}=S_{v} S_{v}^{*}$ for any $v \in X^{m}$. Then for $Z=\left\|Q^{*} y Q\right\|^{-1 / 2} S_{v}^{*} U P Q^{*}$ we have $\|Z\| \leqslant \sqrt{2}$ and

$$
\begin{aligned}
Z y Z^{*} & =\left\|Q^{*} y Q\right\|^{-1} S_{v}^{*} U P\left(Q^{*} y Q\right) P U^{*} S_{v} \\
& =\left\|Q^{*} y Q\right\|^{-1} S_{v}^{*} U\left(\left\|Q^{*} y Q\right\|\right) P U^{*} S_{v}=S_{v}^{*} S_{v} S_{v}^{*} S_{v}=1
\end{aligned}
$$

Thus we have $\left\|1-Z x^{*} x Z^{*}\right\|=\left\|Z y Z^{*}-Z x^{*} x Z^{*}\right\| \leqslant\|Z\|^{2}\left\|y-x^{*} x\right\| \leqslant 2 \cdot 1 / 4=$ $1 / 2$. Thus $Z x^{*} x Z^{*}$ is invertible. If b is its inverse, then $\left(b Z x^{*}\right) x Z^{*}=1$.

9. THE HIGMAN-THOMPSON GROUPS

In this section we show a connection between the Cuntz algebra \mathcal{O}_{d} and the Higman-Thompson group V_{d} and construct the analogs of the Higman-Thompson groups for the self-similar actions using the Cuntz-Pimsner algebras.

Definition 9.1. A table over the alphabet X is a matrix of the form

$$
\left(\begin{array}{cccc}
v_{1} & v_{2} & \cdots & v_{m} \tag{9.1}\\
u_{1} & u_{2} & \cdots & u_{m}
\end{array}\right),
$$

where $v_{i}, u_{i} \in X^{*}$ are such that the set X^{ω} is decomposed into disjoint unions

$$
X^{\omega}=\bigsqcup_{i=1}^{m} v_{i} X^{\omega}=\bigsqcup_{i=1}^{m} u_{i} X^{\omega}
$$

i.e., for every infinite word $w \in X^{\omega}$ exactly one v_{i} and exactly one u_{j} is a prefix of w. Note that from this it follows that the words in one row of a table are incomparable.

Every table $t=\left(\begin{array}{cccc}v_{1} & v_{2} & \cdots & v_{m} \\ u_{1} & u_{2} & \cdots & u_{m}\end{array}\right)$ defines a homeomorphism \bar{t} of the space X^{ω} by the rule

$$
\bar{t}\left(v_{i} w\right)=u_{i} w
$$

It is easy to prove that the set of all homeomorphisms defined by the tables is a group.

Definition 9.2. The group of the homeomorphisms of the space X^{ω} defined by tables is called the Higman-Thompson group and is denoted V_{d}, where $d=|X|$.

Two tables are said to be equivalent if they are obtained one from another by a permutation of the columns. A split of a table is a table obtained from the original one by several consecutive replacements of a column $\binom{v_{i}}{u_{i}}$ by a matrix

$$
\left(\begin{array}{cccc}
v_{i} x_{1} & v_{i} x_{2} & \cdots & v_{i} x_{d} \\
u_{i} x_{1} & u_{i} x_{2} & \cdots & u_{i} x_{d}
\end{array}\right),
$$

where $X=\left\{x_{1}, x_{2}, \ldots, x_{d}\right\}$. Obviously, a split of a table is again a table.

Proposition 9.3. Two tables t_{1} and t_{2} define equal elements of the HigmanThompson group if and only if they have some equivalent splits.

For odd d there exists an analog of the alternative group in V_{d}, which is defined in the following way. We fix some linear order on the alphabet X. Then it induces the lexicographic order on the set of all finite words X^{*}. Namely, if the words $v_{1}=x_{1} x_{2} \ldots x_{n}$ and $v_{2}=y_{1} y_{2} \ldots y_{m}$ are incomparable then $v_{1}<v_{2}$ if and only if $x_{k}<y_{k}$ where k is such that $x_{i}=y_{i}$ for all $i<k$ but $x_{k} \neq y_{k}$. If the word v_{1} is a beginning of v_{2} and $v_{1} \neq v_{2}$, then $v_{1}<v_{2}$.

Any table defining an element of the Higman-Thompson group V_{n} is equivalent to a table $\left(\begin{array}{cccc}v_{1} & v_{2} & \cdots & v_{m} \\ u_{1} & u_{2} & \cdots & u_{m}\end{array}\right)$, in which the first row is an ascending sequence in the lexicographic order. Let $u_{i_{1}}<u_{i_{2}}<\cdots<u_{i_{m}}$ be the ascending permutation of $u_{1}, u_{2}, \ldots, u_{m}$ with respect to the lexicographic ordering. We say that the table is even (odd) if the permutation $i_{1}, i_{2}, \ldots, i_{m}$ is respectively even (odd). The parity of a table does not depend on the choice of the order on the alphabet X.

If the number d is odd, then any split of a table will have the same parity as the original table. From this it follows that the set of all the elements of the group V_{d} defined by even tables is a subgroup of index 2 in V_{d}. Let us denote this subgroup by V_{d}^{\prime}. In the case of even d, we set $V_{d}^{\prime}=V_{d}$.

The Higman-Thompson groups V_{d} have the following properties (see [20], [6], [30]).

THEOREM 9.4. For every $d>1$ the Higman-Thompson groups V_{d} and V_{d}^{\prime} are finitely presented. The group V_{d}^{\prime} is the only nontrivial normal subgroup of V_{d} and is simple.

Let $\mathcal{M} \subseteq X^{\omega}$ be a countable self-similar set. We define a faithful permutation representation ρ of V_{d} on the space $H=\ell^{2}(\mathcal{M})$ by the natural rule

$$
\rho(\bar{t})(f)(w)=f\left(\bar{t}^{-1}(w)\right)
$$

where $\bar{t} \in V_{d}, f \in \ell^{2}(\mathcal{M})$ and $w \in \mathcal{M}$. Then for every table

$$
t=\left(\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{m} \\
u_{1} & u_{2} & \cdots & u_{m}
\end{array}\right)
$$

defining an element \bar{t} of the Higman-Thompson group V_{d}, the operator $\rho(\bar{t})$ is equal to the image of $S_{u_{1}} S_{v_{1}}^{*}+S_{u_{2}} S_{v_{2}}^{*}+\cdots+S_{u_{m}} S_{v_{m}}^{*} \in \mathcal{O}_{d}$ under the respective permutation representation of \mathcal{O}_{d} on the space $\ell^{2}(\mathcal{M})$.

Since the permutation representations of the group V_{d} and of the algebra \mathcal{O}_{d} on $\ell^{2}(\mathcal{M})$ are both faithful, the element $S_{u_{1}} S_{v_{1}}^{*}+S_{u_{2}} S_{v_{2}}^{*}+\cdots+S_{u_{m}} S_{v_{m}}^{*} \in \mathcal{O}_{d}$ of the Cuntz algebra depends only on the respective element \bar{t} of the HigmanThompson group (and not on the choice of the table t). Note that the splitting rule for the tables follows from relation (6.2).

We get thus

Proposition 9.5. The correspondence

$$
\left(\begin{array}{cccc}
v_{1} & v_{2} & \cdots & v_{m} \\
u_{1} & u_{2} & \cdots & u_{m}
\end{array}\right) \mapsto S_{u_{1}} S_{v_{1}}^{*}+S_{u_{2}} S_{v_{2}}^{*}+\cdots+S_{u_{m}} S_{v_{m}}^{*}
$$

defines a faithful unitary representation of the Higman-Thompson group V_{d} in the Cuntz algebra \mathcal{O}_{d}.

So, we will identify the Higman-Thompson group V_{d} with its image in the Cuntz algebra.

The Higman-Thompson group can be defined in terms of Cuntz algebra generators in the following way.

Proposition 9.6. The Higman-Thompson group V_{d} coincides with the set of those elements of the Cuntz algebra \mathcal{O}_{d} which are unitary and can be represented in the form $S_{u_{1}} S_{v_{1}}^{*}+S_{u_{2}} S_{v_{2}}^{*}+\cdots+S_{u_{m}} S_{v_{m}}^{*}$, where $u_{i}, v_{i} \in X^{*}$.

Proof. We must prove that the sum $a=u_{1} v_{1}^{*}+u_{2} v_{2}^{*}+\cdots+u_{m} v_{m}^{*}$ is unitary only if $\left(\begin{array}{cccc}v_{1} & v_{2} & \cdots & v_{m} \\ u_{1} & u_{2} & \cdots & u_{m}\end{array}\right)$ is a table.

Let \mathcal{M} be a countable self-similar subset of X^{ω} and let π be the respective permutation representation of \mathcal{O}_{d}. Suppose that there exists an infinite word $w \in X^{\omega}$ such that none of v_{i} is a beginning of w. Then there exists a beginning w_{0} of the word w which is incomparable with every word v_{i}. Since the set \mathcal{M} is self-similar, there exists a word $\widetilde{w} \in \mathcal{M}$, beginning with w_{0}. But then $\pi(a)(\widetilde{w})=0$, so a is not unitary.

Suppose now that there exists an infinite word $w \in X^{\omega}$ such that more than one word v_{i} is its beginning. Then by the same arguments, there exists a word $\widetilde{w} \in \mathcal{M}$ such that more than one v_{i} is a beginning of \widetilde{w}. But then $\pi(a)(\widetilde{w})$ is a sum of several unit vectors $w_{i} \in \mathcal{M}$, and so a is also nonunitary. Thus the words v_{i} satisfy the conditions of Definition 9.1.

To prove that the words u_{i} satisfy the conditions of the definition one argues in the same way for a^{*}.

Let now G be a self-similar group over the alphabet X. We can define a subgroup of the unitary group of the algebra \mathcal{O}_{Φ}, analogous to the HigmanThompson group.

Definition 9.7. $V_{d}(G)$ is the group of all the sums of the form $\sum_{i=1}^{m} S_{u_{i}} g_{i} S_{v_{i}}^{*}$, which are unitary in \mathcal{O}_{Φ}, where $g_{i} \in G$ and $u_{i}, v_{i} \in X^{*}$.

Proposition 9.8. A sum $\sum_{i=1}^{m} S_{u_{i}} g_{i} S_{v_{i}}^{*}$ is unitary if and only if the sum $\sum_{i=1}^{m} S_{u_{i}} S_{v_{i}}^{*}$ is unitary, i.e., if and only if $\left(\begin{array}{llll}v_{1} & v_{2} & \cdots & v_{m} \\ u_{1} & u_{2} & \cdots & u_{m}\end{array}\right)$ is a table.

The proof of this proposition repeats the proof of Proposition 9.6.
Thus we get the following combinatorial definition of the group $V_{d}(G)$. A G-table is an array of the form

$$
t=\left(\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{m} \\
g_{1} & g_{2} & \cdots & g_{m} \\
u_{1} & u_{2} & \cdots & u_{m}
\end{array}\right)
$$

where the words v_{i}, u_{i} satisfy the conditions of Definition 9.1. The table t then corresponds to a transformation of the space X^{ω} mapping every word $v_{i} w \in X^{\omega}$ to the word $u_{i} g_{i}(w)$. The inverse of the element defined by the table t is defined by the table

$$
t^{-1}=\left(\begin{array}{cccc}
u_{1} & u_{2} & \cdots & u_{m} \\
g_{1}^{-1} & g_{2}^{-1} & \cdots & g_{m}^{-1} \\
v_{1} & v_{2} & \cdots & v_{m}
\end{array}\right)
$$

Equation (6.4) shows us the splitting rule for the tables. Namely, in every table we can replace a column $\left(\begin{array}{c}v \\ g \\ u\end{array}\right)$ by the table, $\left(\begin{array}{cccc}v x_{1} & v x_{2} & \cdots & v x_{d} \\ h_{1} & h_{2} & \cdots & h_{d} \\ u y_{1} & u y_{2} & \cdots & u y_{d},\end{array}\right)$ where $g=\sum_{i=1}^{n} y_{i} h_{i} x_{i}^{*}$, i.e., $g \cdot x_{i}=y_{i} \cdot h_{i}$ and $X=\left\{x_{1}, x_{2}, \ldots, x_{d}\right\}$. In the same way as for the Higman-Thompson group, two tables define the same elements of the group V_{d} if and only if they have equivalent splittings.

We also get an analog of the subgroup V_{d}^{\prime} inside the group $V_{d}(G)$. We say that a table $t=\left(\begin{array}{cccc}v_{1} & v_{2} & \cdots & v_{m} \\ g_{1} & g_{2} & \cdots & g_{m} \\ u_{1} & u_{2} & \cdots & u_{m}\end{array}\right)$ is even if the table $\left(\begin{array}{cccc}v_{1} & v_{2} & \cdots & v_{m} \\ u_{1} & u_{2} & \cdots & u_{m}\end{array}\right)$ is even. In particular, the tables of the form $\left(\begin{array}{l}\emptyset \\ g \\ \emptyset\end{array}\right)$, defining the elements of the group G are considered to be even.

Then for odd d let $V_{d}^{\prime}(G)$ be the group generated by the elements which can be defined by even tables. Note that the set of even tables is not always a group. In the case of even d we define $V_{d}^{\prime}(G)$ to be equal to $V_{d}(G)$.

Proposition 9.9. Let d be odd. If the group G acts on the set X^{1} by even permutations, then $V_{d}^{\prime}(G)$ is a subgroup of index 2 in the group $V_{d}(G)$. Otherwise it coincides with $V_{d}(G)$.

Proof. If the group G acts by even permutations on the set X^{1}, then a split of an even table is again an even table. Then the group $V_{d}^{\prime}(G)$ coincides with the set of all elements defined by even tables and is a subgroup of index 2.

Suppose now that some element $h \in G \subset V_{d}^{\prime}(G)$ acts on the set X^{1} by an odd permutation. The element h is defined by an odd table $\left(\begin{array}{cccc}x_{1} & x_{2} & \cdots & x_{d} \\ h_{1} & h_{2} & \cdots & h_{d} \\ y_{1} & y_{2} & \cdots & y_{d}\end{array}\right)$, where $\left\{x_{1}, x_{2}, \ldots, x_{d}\right\}=X$ and $h \cdot x_{i}=y_{i} \cdot h_{i}$. Then $h \in V_{d}^{\prime}(G)$ and

$$
V_{d}^{\prime}(G) \ni\left(\begin{array}{cccc}
x_{1} & x_{2} & \cdots & x_{d} \\
y_{1} & y_{2} & \cdots & y_{d}
\end{array}\right)=\left(\begin{array}{cccc}
x_{1} & x_{2} & \cdots & x_{d} \\
h_{1} & h_{2} & \cdots & h_{d} \\
y_{1} & y_{2} & \cdots & y_{d}
\end{array}\right) \cdot\left(\begin{array}{cccc}
x_{1} & x_{2} & \cdots & x_{d} \\
h_{1}^{-1} & h_{2}^{-1} & \cdots & h_{d}^{-1} \\
x_{1} & x_{2} & \cdots & x_{d}
\end{array}\right) .
$$

So, the group $V_{d}^{\prime}(G)$ contains an element from $V_{d} \backslash V_{d}^{\prime}$. This implies that $V_{d} \leqslant V_{d}^{\prime}(G)$, since the group V_{d}^{\prime} has index 2 in V_{d}.

Let g be an arbitrary element of $V_{d}(G)$ defined by $t=\left(\begin{array}{cccc}v_{1} & v_{2} & \cdots & v_{m} \\ g_{1} & g_{2} & \cdots & g_{m} \\ u_{1} & u_{2} & \cdots & u_{m}\end{array}\right)$. If the table t is even, then $g \in V_{d}^{\prime}(G)$. If not, then g is a product of an element
defined by the even table $\left(\begin{array}{ccccc}v_{1} & v_{2} & v_{3} & \cdots & v_{m} \\ g_{1} & g_{2} & g_{3} & \cdots & g_{m} \\ u_{2} & u_{1} & u_{3} & \cdots & u_{m}\end{array}\right)$ and the element of V_{d} defined by the table $\left(\begin{array}{ccccc}u_{1} & u_{2} & u_{3} & \cdots & u_{m} \\ u_{2} & u_{1} & u_{3} & \cdots & u_{m}\end{array}\right)$ and thus also belongs to $V_{d}^{\prime}(G)$. Hence, $V_{d}^{\prime}(G)=$ $V_{d}(G)$.

For every nonempty word $r \in X^{k}$ and an element $f \in V_{d}(G)$ we denote

$$
\Lambda_{r}(f)=S_{r} f S_{r}^{*}+\left(1-S_{r} S_{r}^{*}\right)=S_{r} f S_{r}^{*}+\sum_{\substack{v \in X^{k} \\ v \neq r}} S_{v} S_{v}^{*}
$$

From the definition it follows directly that $\Lambda_{r}(f)$ is also an element of the group $V_{d}(G)$. Moreover, if f is defined by an even table, then $\Lambda_{r}(f)$ is also defined by an even table.

Lemma 9.10. For every nonempty $r \in X^{*}$ the map $\Lambda_{r}: V_{d}(G) \rightarrow V_{d}(G)$ is an injective homomorphism. If r_{1} and $r_{2} \in X^{*}$ are incomparable, then for all $f_{1}, f_{2} \in V_{d}(G)$ the elements $\Lambda_{r_{1}}\left(f_{1}\right)$ and $\Lambda_{r_{2}}\left(f_{2}\right)$ commute.

Proof. Let $f_{1}, f_{2} \in V_{d}(G)$, then

$$
\begin{aligned}
\Lambda_{r}\left(f_{1}\right) \Lambda_{r}\left(f_{2}\right)= & \left(S_{r} f_{1} S_{r}^{*}+\left(1-S_{r} S_{r}^{*}\right)\right)\left(S_{r} f_{2} S_{r}^{*}+\left(1-S_{r} S_{r}^{*}\right)\right) \\
= & S_{r} f_{1} S_{r}^{*} S_{r} f_{2} S_{r}^{*}+\left(1-S_{r} S_{r}^{*}\right) S_{r} f_{2} S_{r}^{*}+S_{r} f_{1} S_{r}^{*}\left(1-S_{r} S_{r}^{*}\right) \\
& \quad+\left(1-S_{r} S_{r}^{*}\right)\left(1-S_{r} S_{r}^{*}\right) \\
= & S_{r} f_{1} f_{2} S_{r}^{*}+\left(1-S_{r} S_{r}^{*}\right)=\Lambda_{r}\left(f_{1} f_{2}\right)
\end{aligned}
$$

since $S_{r}^{*} S_{r}=1$, so $S_{r} f_{1} S_{r}^{*}\left(1-S_{r} S_{r}^{*}\right)=S_{r} f_{1} S_{r}^{*}-S_{r} f_{1} S_{r}^{*} S_{r} S_{r}^{*}=S_{r} f_{1} S_{r}^{*}-S_{r} f_{1} S_{r}^{*}=$ 0; similarly $\left(1-S_{r} S_{r}^{*}\right) S_{r}^{r} f_{2} S_{r}^{*}=0,\left(1-S_{r} S_{r}^{*}\right)\left(1-S_{r} S_{r}^{*}\right)=1-2 S_{r} S_{r}^{*}+S_{r} S_{r}^{*}=$ $1-S_{r} S_{r}^{*}$ and $S_{r} f_{1} S_{r}^{*} S_{r} f_{2} S_{r}^{*}=S_{r} f_{1} f_{2} S_{r}^{*}$.

If r_{1} and r_{2} are incomparable, then $S_{r_{1}}^{*} S_{r_{2}}=S_{r_{2}}^{*} S_{r_{1}}=0$ by Lemma 6.2, so

$$
\begin{aligned}
\Lambda_{r_{1}}\left(f_{1}\right) \Lambda_{r_{2}}\left(f_{2}\right)= & \left(S_{r_{1}} f_{1} S_{r_{1}}^{*}+\left(1-S_{r_{1}} S_{r_{1}}^{*}\right)\right)\left(S_{r_{2}} f_{2} S_{r_{2}}^{*}+\left(1-S_{r_{2}} S_{r_{2}}^{*}\right)\right) \\
= & S_{r_{1}} f_{1} S_{r_{1}}^{*} S_{r_{2}} f_{2} S_{r_{2}}^{*}+S_{r_{1}} f_{1} S_{r_{1}}^{*}\left(1-S_{r_{2}} S_{r_{2}}^{*}\right) \\
& \quad+\left(1-S_{r_{1}} S_{r_{1}}^{*}\right) S_{r_{2}} f_{2} S_{r_{2}}^{*}+\left(1-S_{r_{1}} S_{r_{1}}^{*}\right)\left(1-S_{r_{2}} S_{r_{2}}^{*}\right) \\
= & S_{r_{1}} f_{1} S_{r_{1}}^{*}+S_{r_{2}} f_{2} S_{r_{2}}^{*}+\left(1-S_{r_{1}} S_{r_{1}}^{*}-S_{r_{2}} S_{r_{2}}^{*}\right) \\
= & \Lambda_{r_{2}}\left(f_{2}\right) \Lambda_{r_{1}}\left(f_{1}\right) .
\end{aligned}
$$

The group $V_{d}(G)$ was defined for the first time by C. Röver for the Grigorchuk group. In [27] he proved that in this case this group is finitely presented simple. Later, in [28] he proved that the group $V_{2}(G)$ for the Grigorchuk group is its abstract commensurizer.

Some of the results of C. Röver can be generalized for the group $V_{d}(G)$ in the case of an arbitrary self-similar group G.

Theorem 9.11. All the proper quotients of the groups $V_{d}(G)$ and $V_{d}^{\prime}(G)$ are abelian.

Proof. We will use the following easy technical lemma (its analog is proved in [30]).

Lemma 9.12. A sequence of finite words $v_{1}, v_{2}, \ldots, v_{m}$ is a part of a row of a table if and only if the words v_{i} are pairwise incomparable.

If $v_{1}, v_{2}, \ldots, v_{m}$ and $u_{1}, u_{2}, \ldots, u_{m}$ are two sets of pairwise incomparable words such that $v_{1} X^{\omega} \cup v_{2} X^{\omega} \cup \cdots \cup v_{m} X^{\omega} \neq X^{\omega}$ and $u_{1} X^{\omega} \cup u_{2} X^{\omega} \cup \cdots \cup u_{m} X^{\omega} \neq$ X^{ω}, then there exists an even table of the form $\left(\begin{array}{lllll}v_{1} & v_{2} & \cdots & v_{m} & \cdots \\ u_{1} & u_{2} & \cdots & u_{m} & \cdots\end{array}\right)$.

We will prove Theorem 9.11 simultaneously for both groups $V_{d}(G)$ and $V_{d}^{\prime}(G)$. So, when it is not important which group we consider $\left(V_{d}(G)\right.$ or $\left.V_{d}^{\prime}(G)\right)$, we denote the group under the consideration by V.

Let $g=\sum_{i=1}^{m} S_{u_{i}} g_{i} S_{v_{i}}^{*}$ be a nontrivial element of a normal subgroup N of the group V. The element g acts nontrivially on some point $w \in X^{\omega}$. Then there exists a neighborhood U of the point w such that the intersection $g(U) \cap U$ is empty. We may assume that the set U is of the form $v X^{\omega}$ for some $v \in X^{*}$. After possibly making several splittings using formula (6.5) and passing to a smaller cylindrical set U, we may assume that $v=v_{i}$ for some i. Then $g(U)=g\left(v_{i} X^{\omega}\right)=u_{i} g_{i}\left(X^{\omega}\right)=$ $u_{i} X^{\omega}$. Now the condition that U and $g(U)$ do not intersect means that the words v_{i} and u_{i} are incomparable and thus $S_{v_{i}}^{*} S_{u_{i}}=S_{u_{i}}^{*} S_{v_{i}}=0$, by Lemma 6.2. We may assume that $v_{i} X^{\omega} \cup u_{i} X^{\omega} \neq X^{\omega}$. Let us denote $u=u_{i}, v=v_{i}$ and $g_{i}=h$. We have $g=S_{u} h S_{v}^{*}+\widetilde{g}$, where $S_{u}^{*} \widetilde{g}=\widetilde{g} S_{v}=0$, due to Lemma 6.2.

Let us call a pair of words $\{r, s\} \subset X^{*}$ an incomplete antichain if the words r and s are incomparable and $r X^{\omega} \cup s X^{\omega} \neq X^{\omega}$.

Lemma 9.13. For every $f \in V$ and for every incomplete antichain $\{r, s\} \subset$ X^{*}, the element $S_{s} f S_{s}^{*}+S_{r} f^{-1} S_{r}^{*}+\left(1-S_{s} S_{s}^{*}-S_{r} S_{r}^{*}\right)=\Lambda_{s}(f) \Lambda_{r}\left(f^{-1}\right)$ belongs to N.

Proof. Note that for every $r \in X^{*}$ the endomorphism Λ_{r} leaves the group $V_{d}^{\prime}(G)$ invariant, i.e., $\Lambda_{r}\left(V_{d}^{\prime}(G)\right) \subset V_{d}^{\prime}(G)$, since it maps even tables to even tables and is an endomorphism of the group $V_{d}(G)$.

By Lemma 9.12, there exists an element p of the group V defined by a table, which contains the columns $\left(\begin{array}{ccc}u & v & \cdots \\ h^{-1} & 1 & \cdots \\ r & s & \cdots\end{array}\right)$. So $p=S_{r} h^{-1} S_{u}^{*}+S_{s} S_{v}^{*}+\widetilde{p}$, where
$\widetilde{p} S_{u} \quad \widetilde{p} \quad S^{*} \widetilde{p} \quad S^{*} \widetilde{p}=$ $\widetilde{p} S_{u}=\widetilde{p} S_{v}=S_{r}^{*} \widetilde{p}=S_{s}^{*} \widetilde{p}=0$. Then

$$
\begin{aligned}
p g p^{-1}=p g p^{*} & =\left(S_{r} h^{-1} S_{u}^{*}+S_{s} S_{v}^{*}+\widetilde{p}\right)\left(S_{u} h S_{v}^{*}+\widetilde{g}\right)\left(S_{u} h S_{r}^{*}+S_{v} S_{s}^{*}+\widetilde{p}^{*}\right) \\
& =\left(S_{r} S_{v}^{*}+S_{s} S_{v}^{*} \widetilde{g}+\widetilde{p g}\right)\left(S_{u} h S_{r}^{*}+S_{v} S_{s}^{*}+\widetilde{p}^{*}\right) \\
& =S_{r} S_{s}^{*}+S_{s} S_{v}^{*} \widetilde{g} S_{u} h S_{r}^{*}+S_{s} S_{v}^{*} \widetilde{g} \widetilde{p}^{*}+\widetilde{p} \widetilde{g} S_{u} h S_{r}^{*}+\widetilde{p} \widetilde{g} \widetilde{p}^{*}
\end{aligned}
$$

So, the group N contains an element $q=p g p^{-1}$ of the form $q=S_{r} S_{s}^{*}+\widetilde{q}$, where $S_{r}^{*} \widetilde{q}=\widetilde{q} S_{s}=0$. We also have $\widetilde{q}^{*} \widetilde{q}=1-S_{s} S_{s}^{*}$, since $1=q^{*} q=\left(S_{s}^{s} S_{r}^{*}+\right.$ $\left.\widetilde{q}^{*}\right)\left(S_{r} S_{s}^{*}+\widetilde{q}\right)=S_{s} S_{r}^{*} S_{r} S_{s}^{*}+S_{s} S_{r}^{*} \widetilde{q}+\widetilde{q}^{*} S_{r} S_{s}+\widetilde{q}^{*} \widetilde{q}=S_{s} S_{s}^{*}+\widetilde{q}^{*} \widetilde{q}$.

Let us compute $\Lambda_{r}(f)^{-1} q^{-1} \Lambda_{r}(f) q \in N$ for arbitrary $f \in V$. We have

$$
\begin{aligned}
q^{-1} \Lambda_{r}(f) q & =\left(S_{s} S_{r}^{*}+\widetilde{q}^{*}\right)\left(S_{r} f S_{r}^{*}+1-S_{r} S_{r}^{*}\right)\left(S_{r} S_{s}^{*}+\widetilde{q}\right) \\
& =\left(S_{s} f S_{r}^{*}+\widetilde{q}^{*}\right)\left(S_{r} S_{s}^{*}+\widetilde{q}\right) \\
& =S_{s} f S_{s}^{*}+\widetilde{q}^{*} \widetilde{q}=S_{s} f S_{s}^{*}+\left(1-S_{s} S_{s}^{*}\right)=\Lambda_{s}(f)
\end{aligned}
$$

So $\Lambda_{r}(f)^{-1} q^{-1} \Lambda_{r}(f) q=\Lambda_{r}\left(f^{-1}\right) \Lambda_{s}(f)$, and the lemma is proved.

In particular, the normal subgroup N contains a nontrivial element of the group V_{d}^{\prime}. Consequently, it contains its normal closure in V_{d}^{\prime}, which is equal to V_{d}^{\prime} by Theorem 9.4.

Let H be the quotient of V by the subgroup N and let π be the canonical homomorphism onto H. By Lemma 9.13, if $\{r, s\}$ is an incomplete antichain then $\pi\left(\Lambda_{r}(f)\right)=\pi\left(\Lambda_{s}(f)\right)$. But for any two nonempty words $r_{1}, r_{2} \in X^{*}$ there exists a pair of words $s_{1}, s_{2} \in X^{*}$ such that the pairs $\left\{r_{1}, s_{1}\right\},\left\{s_{1}, s_{2}\right\}$ and $\left\{s_{2}, r_{2}\right\}$ are incomplete antichains. Then we have

$$
\pi\left(\Lambda_{r_{1}}(f)\right)=\pi\left(\Lambda_{s_{1}}(f)\right)=\pi\left(\Lambda_{s_{2}}(f)\right)=\pi\left(\Lambda_{r_{2}}(f)\right)
$$

So $\pi\left(\Lambda_{r}(f)\right)$ does not depend on r, and all the elements of the form $\pi\left(\Lambda_{r}(f)\right) \in$ H commute by Lemma 9.10.

Suppose that the table $\left(\begin{array}{cccc}v_{1} & v_{2} & \cdots & v_{m} \\ g_{1} & g_{2} & \cdots & g_{m} \\ u_{1} & u_{2} & \cdots & u_{m}\end{array}\right)$, defining an element of V, is even. Let $h=\sum_{i=1}^{m} S_{u_{i}} S_{v_{i}}^{*}$ be the respective element of V_{d}^{\prime}. Then $g h^{-1}=\sum_{i=1}^{m} S_{u_{i}} g_{i} S_{u_{i}}^{*}=$ $\Lambda_{u_{1}}\left(g_{1}\right) \Lambda_{u_{2}}\left(g_{2}\right) \cdots \Lambda_{u_{m}}\left(g_{m}\right)$. Hence

$$
\pi(g)=\pi\left(g h^{-1}\right)=\pi\left(\Lambda_{u_{1}}\left(g_{1}\right)\right) \pi\left(\Lambda_{u_{2}}\left(g_{2}\right)\right) \cdots \pi\left(\Lambda_{u_{m}}\left(g_{m}\right)\right)
$$

So the elements $\pi\left(\Lambda_{r}(g)\right)$ generate the image $\pi\left(V_{d}^{\prime}(G)\right)$; thus it is abelian. So the theorem is proved for the case $V=V_{d}^{\prime}(G)$.

Suppose now that $V=V_{d}(G) \neq V_{d}^{\prime}(G)$. In this case, by Proposition 9.9, the group G acts by even permutations on X^{1} and every element of $V_{d}^{\prime}(G)$ is defined only by even tables. Define

$$
a=S_{x_{1}} S_{x_{2}}^{*}+S_{x_{2}} S_{x_{1}}^{*}+\sum_{\substack{x \in X \\ x \neq x_{1} \\ x \neq x_{2}}} S_{x} S_{x}^{*}=S_{x_{1}} S_{x_{2}}^{*}+S_{x_{2}} S_{x_{1}}^{*}+\left(1-S_{x_{1}} S_{x_{1}}^{*}-S_{x_{2}} S_{x_{2}}^{*}\right)
$$

Then a is defined by an odd table, so $a \notin V_{d}^{\prime}(G)$. The group $\pi\left(V_{d}(G)\right)$ is generated by the set $\pi\left(V_{d}^{\prime}(G)\right) \cup\{\pi(a)\}$, so it is sufficient to prove that $\pi(a)$ commutes with every element of $\pi\left(V_{d}^{\prime}(G)\right)$. Let g be any element of $V_{d}^{\prime}(G)$. It is defined by some even table $\left(\begin{array}{cccc}v_{1} & v_{2} & \cdots & v_{m} \\ g_{1} & g_{2} & \cdots & g_{m} \\ u_{1} & u_{2} & \cdots & u_{m}\end{array}\right)$, where the words v_{i}, u_{i} are all nonempty. Then $a^{-1} g a=a g a$ is defined by an even table of the form $\left(\begin{array}{cccc}\widetilde{v}_{1} & \widetilde{v}_{2} & \cdots & \widetilde{v}_{m} \\ g_{1} & g_{2} & \cdots & g_{m} \\ \widetilde{u}_{1} & \widetilde{u}_{2} & \cdots & \widetilde{u}_{m}\end{array}\right)$, where \widetilde{v}_{i} and \widetilde{u}_{i} are obtained from v_{i} and u_{i} by changing the initial letter x_{1} (or x_{2}) to the letter x_{2} (respectively x_{1}). If the word u_{i} does not begin neither with x_{1} nor with x_{2} then $u_{i}=\widetilde{u}_{i}$. So, as above,

$$
\begin{aligned}
\pi(g) & =\pi\left(\Lambda_{u_{1}}\left(g_{1}\right)\right) \pi\left(\Lambda_{u_{2}}\left(g_{2}\right)\right) \cdots \pi\left(\Lambda_{u_{m}}\left(g_{m}\right)\right) \\
\pi\left(a^{-1} g a\right) & =\pi\left(\Lambda_{\widetilde{u}_{1}}\left(g_{1}\right)\right) \pi\left(\Lambda_{\widetilde{u}_{2}}\left(g_{2}\right)\right) \cdots \pi\left(\Lambda_{\widetilde{u}_{m}}\left(g_{m}\right)\right)
\end{aligned}
$$

But $\pi\left(\Lambda_{u_{i}}\left(g_{i}\right)\right)=\pi\left(\Lambda_{\widetilde{u}_{i}}\left(g_{i}\right)\right)$, hence $\pi\left(a^{-1} g a\right)=\pi(g)$, so $\pi(a)$ commutes with the elements of the group $\pi\left(V_{d}^{\prime}(G)\right)$.

So all the normal subgroups of $V_{d}(G)$ contain the commutator subgroup. The possible quotients of $V_{d}(G)$ (and thus its abelianization) are described in the next theorem.

Theorem 9.14. If d is even, then an abelian group H is a quotient of the group $V_{d}(G)$ if and only if there exists a surjective homomorphism $\pi: G \rightarrow H$ such that $g=\sum_{i=1}^{n} S_{y_{i}} h_{i} S_{x_{i}}^{*}$ implies $\pi(g)=\sum_{i=1}^{n} \pi\left(h_{i}\right)$.

If d is odd, then an abelian group H is a quotient of the group $V_{d}(G)$ if and only if there exists an element $z \in H$ such that $z^{2}=1$ and a homomorphism $\pi: G \rightarrow H$ such that the group H is generated by $\pi(G) \cup\{z\}$, and $g=\sum_{i=1}^{n} S_{y_{i}} h_{i} S_{x_{i}}^{*}$ implies $\pi(g)=\sum_{i=1}^{n} \pi\left(h_{i}\right)+\operatorname{sign}(g)$, where $\operatorname{sign}(g)=z$ if g acts on X^{1} by an odd permutation and $\operatorname{sign}(g)=1$ otherwise.

Proof. Suppose d is even and let $\pi: V_{d}(G) \rightarrow H$ be a surjective homomorphism with a nontrivial kernel. Then the kernel contains V_{d}.

Let $g=\sum_{i=1}^{n} S_{y_{i}} h_{i} S_{x_{i}}^{*}$ be an arbitrary element of the group G and let $h=$ $\sum_{i=1}^{m} S_{y_{i}} S_{x_{i}}^{*}$. Then we have

$$
\begin{gather*}
\pi(g)=\pi\left(g h^{-1}\right)=\sum_{i=1}^{n} \pi\left(\Lambda_{y_{i}}\left(h_{i}\right)\right) \tag{9.2}\\
\pi\left(\Lambda_{x}(g)\right)=\sum_{i=1}^{n} \pi\left(\Lambda_{x y_{i}}\left(h_{i}\right)\right), \quad \text { for any } x \in X . \tag{9.3}
\end{gather*}
$$

We proved above that $\pi\left(\Lambda_{r}(f)\right)=\pi\left(\Lambda_{s}(f)\right)$ for any nonempty $r, s \in X^{*}$. Hence equations (9.2), (9.3) imply that $\pi(g)=\pi\left(\Lambda_{x}(g)\right)=\sum_{i=1}^{n} \pi\left(h_{i}\right)$. It follows also that the elements $\pi(g)$ for $g \in G$ generate the whole group H.

Conversely, suppose that a surjective homomorphism $\pi: G \rightarrow H$ is such that $g=\sum_{i=1}^{n} S_{y_{i}} h_{i} S_{x_{i}}^{*}$ implies $\pi(g)=\sum_{i=1}^{n} \pi\left(h_{i}\right)$ for all $g \in G$. Let us extend it to the whole group $V_{d}(G)$ by the rule

$$
\pi\left(\sum_{i=1}^{m} S_{u_{i}} g_{i} S_{v_{i}}^{*}\right)=\sum_{i=1}^{m} \pi\left(g_{i}\right)
$$

From the condition on the homomorphism π and the splitting rule defining the elements of the group $V_{d}(G)$ it follows that this extension is well defined.

Suppose now that d is odd and let $\pi: V_{d}(G) \rightarrow H$ be a surjective homomorphism with a nontrivial kernel. Then the image of V_{d} under π is a group of order
at most 2. Let z be equal to the nontrivial element of $\pi\left(V_{d}\right)$ if $\left|\pi\left(V_{d}\right)\right|=2$ and to the identity otherwise. Then equation (9.2) transforms into

$$
\pi(g)=\pi\left(g h^{-1}\right)=\sum_{i=1}^{n} \pi\left(\Lambda_{y_{i}}\left(h_{i}\right)\right)+\pi\left(h^{-1}\right)
$$

but then $\pi\left(h^{-1}\right)=\operatorname{sign}(g)$. And similar arguments show that the homomorphism π must satisfy the conditions of the theorem.

Conversely, if π satisfies the conditions of the theorem then we can extend it to the whole group $V_{d}(G)$ by the rule

$$
\pi\left(\sum_{i=1}^{m} S_{u_{i}} g_{i} S_{v_{i}}^{*}\right)=\operatorname{sign}(t)+\sum_{i=1}^{m} \pi\left(g_{i}\right)
$$

where $\operatorname{sign}(t)$ is equal to z if the table $t=\left(\begin{array}{cccc}v_{1} & v_{2} & \cdots & v_{m} \\ u_{1} & u_{2} & \cdots & u_{m}\end{array}\right)$ is odd and to 1 otherwise. One can check directly that this extension is well defined and is a homomorphism.

Example 9.15. For the Grigorchuk group, generated by a, b, c, d over the alphabet $\{0,1\}$, we have $a=S_{0} S_{1}^{*}+S_{1} S_{0}^{*}, b=S_{0} a S_{0}^{*}+S_{1} c S_{1}^{*}, c=S_{0} a S_{0}^{*}+$ $S_{1} d S_{1}^{*}$ and $d=S_{0} S_{0}^{*}+S_{1} b S_{1}^{*}$. So if H is a quotient of the group $V_{2}(G)$, then there exists an epimorphism $\pi: G \rightarrow H$ such that $\pi(a)=0, \pi(b)=\pi(a)+\pi(c)=\pi(c)$ and $\pi(c)=\pi(d)$. But then $\pi(b)=\pi(c d)=2 \pi(b)$, thus $\pi(a)=\pi(b)=\pi(c)=$ $\pi(d)=0$ and the group H is trivial, i.e., the group $V_{2}(G)$ is simple.

Example 9.16. For the adding machine a we have $a=S_{1} S_{0}^{*}+S_{0} a S_{1}^{*}$. So, in this case we have an epimorphism $\pi:\langle a\rangle \rightarrow \mathbb{Z}$, which agrees with the recursion. Therefore, the abelianization of the group $V_{2}(\langle a\rangle)$ is \mathbb{Z}.

Acknowledgements. I would like to take the opportunity to thank P. de la Harpe for the invitation to Geneva University and for useful discussions on the topics of the article.

The research was supported by the Swiss National Science Foundation and A. von Humboldt foundation.

REFERENCES

1. L. Bartholdi, R.I. Grigorchuk, Lie methods in growth of groups and groups of finite width, in Computational and Geometric Aspects of Modern Algebra, London Math. Soc. Lecture Note Ser., vol. 275, Cambridge Univ. Press, Cambridge 2000, pp.1-27.
2. L. Bartholdi, R.I. Grigorchuk, On the spectrum of Hecke type operators related to some fractal groups, [English], in Proc. Steklov Inst. Math. 231(2000), 141.
3. L. Bartholdi, R.I. Grigorchuk, On parabolic subgroups and Hecke algebras of some fractal groups, Serdica Math. J. 28(2002), 47-90.
4. O. Bratelli, P.E.T. Jorgensen, Iterated function systems and permutation representations of the Cuntz algebra, Mem. Amer. Math. Soc. 663(1999).
5. A.M. Brunner, S.N. Sidki, A.C. Vieira, A just-nonsolvable torsion-free group defined on the binary tree, J. Algebra 211(1999), 99-144.
6. J.W. Cannon, W.I. Floyd, W.R. Parry, Introductory notes on Richard Thompson groups, Enseign. Math. (2) 42(1996), 215-256.
7. A. Connes, Noncommutative Geometry, Academic Press, San Diego 1994.
8. A. Connes, V. Jones, Property T for von Neumann algebras, Bull. London Math. Soc. 17(1985), 57-62.
9. J. Cuntz, Simple C^{*}-algebras generated by isometries, Comm. Math. Phys. 57 (1977), 173-185.
10. J. Cuntz, W. Krieger, A class of C^{*}-algebras and topological Markov chains, Invent. Math. 56(1980), 251-268.
11. K.R. Davidson, C^{*}-Algebras by Example, Amer. Math. Soc., Providence, RI, 1996.
12. R.I. Grigorchuk, On Burnside's problem on periodic groups, Functional Anal. Appl. 14(1980), 41-43.
13. R.I. Grigorchuk, Milnor's problem on the growth of groups, Soviet Math. Dokl. 28(1983), 23-26.
14. R.I. Grigorchuk, Degrees of growth of finitely generated groups and the theory of invariant means, Math. USSR Izv. 25(1985), 259-300.
15. R.I. Grigorchuk, Just infinite branch groups, in New Horizons in pro-p Groups, Progr. Math., vol. 184, Birkhäuser Boston, Boston 2000, pp. 121-179.
16. R.I. Grigorchuk, V.V. Nekrashevich, V.I. Sushchanskit, Automata, dynamical systems and groups, Proc. Steklov Inst. Math. 231(2000), 128-203.
17. R.I. Grigorchuk, A. ŻUk, The lamplighter group as a group generated by a 2 -state automaton and its spectrum, Geom. Dedicata 87(2001), 209-244.
18. N.D. Gupta, S.N. Sidki, On the Burnside problem for periodic groups, Math. Z. 182(1983), 385-388.
19. P. de la Harpe, Topics in Geometric Group Theory, University of Chicago Press, Chicago 2000.
20. G. Higman, Finitely Presented Infinite Simple Groups, Notes Pure Math., vol. 8, Department of Pure Mathematics, Department of Mathematics, I.A.S. Australian National University, Canberra, 1974.
21. V. Jones, V.S. Sunder, Introduction to Subfactors, London Math. Soc. Lecture Note Ser., vol. 234, Cambridge Univ. Press, Cambridge 1997.
22. T. Kajiwara, C. Pinzari, Y. Watatani, Ideal structure and simplicity of the C^{*} algebras generated by Hilbert bimodules, J. Funct. Anal. 159(1998), 295-322.
23. R. McKenzie, R.J. Thompson, An elementary construction of unsolvable word problems in group theory, in Word Problems: Decision Problems and the Burnside Problem in Group Theory (Conference Univ. California, Irvine, Calif. 1969; dedicated to Hanna Neumann), Stud. Logic Found. Math., vol. 71, North-Holland Publ. Company, Amsterdam, 1973, pp. 457-478.
24. P.S. Muhly, B. Solel, On the simplicity of some Cuntz-Pimsner algebras, Math. Scand. 83(1998), 53-73.
25. V.V. Nekrashevych, S.N. Sidki, Automorphisms of the binary tree: state-closed subgroups and dynamics of 1/2-endomorphisms, in Groups: Topological, Combinatorial and Arithmetic Aspects, London Math. Soc. Lecture Note Ser., vol. 311, Cambridge Univ. Press, Cambridge 2004, pp. 375-404.
26. M.V. Pimsner, A class of C^{*}-algebras generalizing both Cuntz-Krieger algebras and crossed products by \mathbb{Z}, in Free Probability Theory (Waterloo, ON, 1995), Amer. Math. Soc., Providence, RI, 1997, pp. 189-212.
27. C.E. Röver, Constructing finitely presented simple groups that contain Grigorchuk groups, J. Algebra 220(1999), 284-313.
28. C.E. RÖver, Commensurators of groups acting on rooted trees, Geom. Dedicata $\mathbf{9 4}(2002)$, 45-61.
29. J. Schweizer, Dilations of C^{*}-correspondences and the simplicity of Cuntz-Pimsner algebras, J. Funct. Anal. 180(2001), 404-425.
30. R.J. Thompson, Embeddings into finitely generated simple groups which preserve the word problem, in Word Problems. II (Conference on Decision Problems in Algebra, Oxford, 1976), Stud. Logic Found. Math., vol. 95, North-Holand Publ. Company, Amsterdam 1980, pp. 401-441.
31. A. Vince, Rep-tiling Euclidean space, Aequationes Math. 50(1995), 191-213.
32. A. Vince, Digit tiling of Euclidean space, in Directions in Mathematical Quasicrystals, Amer. Math. Soc., Providence, RI, 2000, pp. 329-370.

VOLODYMYR NEKRASHEVYCH
International University Bremen
School of Engineering and Science
P.O. Box 750561
28725 Bremen
GERMANY
E-mail: v.nekrashevych@iu-bremen.de

Received 9 May 2002.

