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Abstract. We associate a ∗-bimodule over the group algebra to every self-
similar group action on the space of one-sided sequences. Completions of
the group algebra, which agree with the bimodule are investigated. This
gives new examples of Hilbert bimodules and the associated Cuntz-Pimsner
algebras. A direct proof of simplicity of these algebras is given. We show
also a relation between the Cuntz algebras and the Higman-Thompson groups
and define an analog of the Higman-Thompson group for the Cuntz-Pimsner
algebra of a self-similar group action.
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1. INTRODUCTION

The notion of a self-similar group action (fractal group or state-closed group)
naturally appears in the theory of groups acting on rooted trees and groups defined
by finite transducers. Study of such actions is motivated by examples of exotic
groups which are easily defined through their self-similar action.

An example of such a group is the Grigorchuk 2-group. In [12] this group is
introduced as a group of measure-preserving transformations of the unit interval.
Probably it is the most simple example of a finitely generated infinite torsion group.
The action of the Grigorchuk group on the interval has the self-similarity property:
the restrictions of the action of any its element on the halfs of the interval is again
an element of the group. This is used in a very short proof of the fact that it is an
infinite torsion group. Later the same self-similarity was used to prove that the
group has intermediate growth (see [13], [14]). It has other interesting properties
such as just-infiniteness and finite width (see [15]).

Examples of self-similar groups of this sort include the Gupta-Sidki
group ([18]), the just-nonsolvable torsion free group from [5] and other (see [15],
[2] and [16] for more examples).



224 Volodymyr V. Nekrashevych

Other, independent topics, where self-similar actions appear (so far implic-
itly), are the rep-tilings of the Euclidean space and the numeration systems on Zn

(see the surveys [31], [32]). Some numeration systems originate from self-similar
actions of the respective group Zn. This includes probably the most well known
example of a self-similar group action: the adding machine, or the odometer. The
paper [25] shows the relation between the self-similar actions of abelian groups
and the numeration systems.

R. Grigorchuk, A. Żuk and L. Bartholdi in [17] and [2] used the self-similarity
of some group actions to compute the spectra of the discrete Laplace operators
of the Schreier graphs. The self-similarity of the action provides an operator
recursion, which helps to compute the spectrum.

We show in our paper how these operator recursions can be interpreted in
terms of the C∗-bimodules (or C∗-correspondences). So with every self-similar
group action we associate a ∗-bimodule Φ over the group algebra CG, which en-
codes the self-similarity.

We investigate the completions of the group algebra which agree with the
self-similarity of the action. Among all such completions there exists a uniquely de-
fined minimal algebra AΦ, which is a homomorphic image of any other self-similar
completion. Then the bimodule Φ becomes a C∗-bimodule over the algebra AΦ.

The C∗-bimodules (correspondences) are important tools in the study of
C∗-algebras and von Neumann algebras (see [8], [7], [21]).

The Cuntz-Pimsner algebra OΦ, defined in [26], plays the role of a cross
product by a bimodule. The Cuntz-Pimsner algebra generalizes the Cuntz algebras
On, which is the algebra generated by n isometries S1, . . . , Sn such that S1S

∗
1 +

S2S
∗
2 + · · ·+ SnS

∗
n = 1. It also generalizes the Cuntz-Krieger algebras OA, which

correspond to the bimodules over finite-dimensional commutative algebras. From
the dynamical point of view the Cuntz-Krieger algebras are the algebras associated
in a natural way with Markov shifts (see [10]).

So, self-similar group actions provide new examples of the Cuntz-Pimsner
algebras. We prove that these algebras are simple (Theorem 8.3) and study its
gauge invariant subalgebra (Section 7).

In the last section we investigate a subgroup Vn(G) of the unitary group of
the Cuntz-Pimsner algebra OΦ. This group is defined as the group of unitaries
which can be expressed as finite sums of products of the standard generators of
the Cuntz algebra and the group elements.

We show that if we take only the products of the generators of the Cuntz
algebra, then we get the well known Higman-Thompson group (Gn,1 in notation
of [20]). It was one of the first examples of infinite simple finitely presented groups
(it is simple for even n and has a simple subgroup of index 2 for odd n). This group
(for the case n = 2) and its analogs were constructed by R. Thompson in 1965
during his studies in logics. They were used in [23] to construct an example of a
finitely presented group with unsolvable word problem and in [30] for embeddings
of groups into finitely presented simple groups. See the survey [6] for the properties
of the Thompson groups. G. Higman in [20] generalized the Thompson groups and
constructed a family of groups which he denoted Gn,r.

In the case of the Cuntz-Pimsner algebra related to a self-similar group ac-
tion, the group Vn(G) also has properties similar to the properties of the Higman-
Thompson groups. We show in Theorem 9.11 that all the proper quotients of the
group Vn(G) are abelian and in Theorem 9.14 show a simple method to find its
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maximal abelian quotient. In many cases this maximal quotient is trivial, so the
group Vn(G) is simple.

The group Vn(G) was introduced for the first time (using a different ap-
proach) by C. Röver for G equal to the Grigorchuk group (see [27]). He showed
that in this case the group Vn(G) is simple and finitely presented. In [28] he shows
that this group is isomorphic to the abstract commensurator of the Grigorchuk
group. The last property is based on the fact that the Grigorchuk group belongs
to the class of the branch groups (see [15]).

2. SELF-SIMILAR GROUP ACTION

Let X be a finite set, which will be called an alphabet. By X∗ we will denote
the free monoid, generated by the set X. We write the elements of X∗ as words
x1x2 . . . xn including the empty word ∅. Thus X∗ =

⋃
n>0

Xn, where X0 = {∅} and

Xn for n > 1 are Cartesian products. By |v| we denote the length of the word v
so that v ∈ X |v|. By the symbol Xω we denote the set of all infinite unilateral
sequences (words) of the form x1x2 . . . , where xi ∈ X for every i.

If v ∈ X∗ and w ∈ X∗ (or w ∈ Xω), then the product vw ∈ X∗ (respectively
∈ Xω) is defined in the natural way. If A is a subset of Xω and v ∈ X∗ is a finite
word then vA = {vw : w ∈ A}.

The set Xω is naturally identified with the Cartesian product XN. Hence it
can be equipped with the topology of the direct (Tikhonov) product of discrete
sets X. The basis of open sets in this topology is the collection of all cylindrical
sets a1a2 . . . anX

ω, where a1a2 . . . an runs through X∗. The cylindrical sets are
open and closed, thus the space Xω is totally disconnected. It is also compact and
without isolated points, thus is homeomorphic to the Cantor set.

The space Xω has also a natural measure µ, which is the direct product of
the uniform probabilistic measures on the set X. This measure is uniquely defined
by the condition µ(a1a2 . . . anX

ω) = |X|−n. The (unilateral) shift on the space
Xω is the map

σ : x1x2x3 . . . 7→ x2x3x4 . . . ,

which deletes the first letter of the infinite word.

Definition 2.1. A faithful action of a group G on the space Xω is said to
be self-similar (state-closed) if for every g ∈ G, and x ∈ X there exist h ∈ G and
y ∈ X such that for all w ∈ Xω we have

(2.1) g(xw) = yh(w).

We will write equation (2.1) formally as

(2.2) g · x = y · h.
Since the action is faithful, the element h is defined uniquely.
Applying equation (2.1) several times we see that for every finite word v ∈ X∗

and every g ∈ G there exist h ∈ G and a word u ∈ X∗ such that |u| = |v| and

(2.3) g(vw) = uh(w)
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for all w ∈ Xω. Hence, the self-similar action of the group G induces a natural
action on the set X∗, where the word u is the image of v under the action of g,
under the conditions of equation (2.3).

Since the beginning of length k of the word g(w) depends only on the be-
ginning of length k of the word w, any self-similar action is an action by home-
omorphisms on the space Xω. Moreover, the induced action on X∗ is an action
by automorphisms of the naturally constructed rooted tree with the set of vertices
X∗ and the space of ends Xω (see [16] for more details). It follows also that every
self-similar action preserves the measure µ on the space Xω.

Definition 2.2. A self-similar action is said to be level-transitive if the
induced action onX∗ is transitive on the setsXn (note that these sets are invariant
by definition).

The action is level-transitive if and only if it is minimal on Xω, i.e., if all its
orbits are dense (see [16]). In this paper all the self-similar actions are considered
to be level-transitive. Formula (2.3) will be also written formally as

(2.4) g · v = u · h.
We use the notation g(v) to denote the image of the word v under the action

of the element g, while the notation g ·u is used in the formal expressions like (2.4).

Example 2.3. Let G ' Z be an infinite cyclic group generated by a with
the neutral element e and let X = {0 , 1}. Define a self-similar action of G on Xω

putting

a · 0 = 1 · e,(2.5)
a · 1 = 0 · a.(2.6)

Note that these equations define uniquely the action of a on the space Xω.
The element a as a homeomorphism of the space Xω is called the adding

machine. This name originates from the fact that equalities (2.5), (2.6) imply
that the action of the adding machine can be interpreted as addition of 1 to a
dyadic number. More formally, we have a(x1x2 . . .) = y1y2 . . . for x1x2 . . . ∈ Xω if
and only if

1 + (x1 + x22 + x322 + x423 + · · ·) = y1 + y22 + y322 + y423 + · · ·
in the ring of dyadics.

The constructed self-similar action of Z will be also called adding machine.
In the paper [25] self-similar actions of the group Zn are investigated, which

generalize the example of the adding machine. Such actions can be also charac-
terized by the corresponding “numeration system” on Zn.

Example 2.4. The group generated by transformations a, b of the space
Xω, for the alphabet X = {0 , 1}, defined inductively by the formulas

a · 0 = 1 · b, b · 0 = 0 · b
a · 1 = 0 · a, b · 1 = 1 · a.

This group is isomorphic to the “lamplighter group” (Z/2Z)ZoZ, where
Z acts on (Z/2Z)Z by the shift. See the papers [17] and [16] for the proofs of
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this isomorphism. In the paper [17] this representation was used to compute the
spectrum of the lamplighter group.

Example 2.5. Many groups are defined directly by their action on the
spaces Xω (in most cases the language of rooted trees was used in the original
definitions). These groups have exotic properties rare among the groups defined
in other ways. The main tool in the study of such groups is their self-similarity
and the actions on the rooted tree X∗ and on the space Xω. See the works [15],
[18], [3], [2] for illustrations of such studies.

The most famous example of a group of this sort is the Grigorchuk
group ([12]). This is the group defined over the alphabetX = {0 , 1} and generated
by four generators a, b, c, d such that

a · 0 = 1 · 1, a · 1 = 0 · 1,
b · 0 = 0 · a, b · 1 = 1 · c,
c · 0 = 0 · a, c · 1 = 1 · d,
d · 0 = 0 · 1, d · 1 = 1 · b,

where 1 is the identity element of the group.
The Grigorchuk group is the simplest example of an infinite finitely generated

torsion group (thus it is an answer to one of the Burnside problems). It is also the
first example of a group of intermediate growth ([13]) which answers the Milnor
problem. It has many other interesting properties such as just-infiniteness, finite
width, etc. For more on the Grigorchuk group see [15] and the last chapter of [19].
In fact, the study of the self-similar actions in general were stimulated by the
discoveries of the amazing properties of this group and its analogs.

3. SELF-SIMILARITY BIMODULE

Definition 3.1. Let A be a ∗-algebra. An A-bimodule Φ is a right A-
module with an A-valued sesquilinear inner product and a ∗-homomorphism ϕ :
A→ End(Φ), where End(Φ) is the ∗-algebra of adjointable endomorphisms of the
right module Φ.

For a ∈ A and v ∈ Φ we will write av instead of ϕ(a)(v), so that the map ϕ
is defining the left multiplication on the bimodule.

Let us fix some self-similar action of a group G on the space Xω for the
alphabet X = {1 , 2 , . . . , d}. Denote by ΦR the free right module over the group
algebra CG with the free basis identified with the alphabet X. So every element
of the module ΦR is a linear combination over C of the formal products of the
form x · g, where x ∈ X and g ∈ X.

We consider the algebra CG as a ∗-algebra with the standard involution
(α · g)∗ = αg−1, where α ∈ C, g ∈ G. Then the module ΦR has a CG-valued
sesquilinear form defined by the equality

〈 ∑

x∈X

x · ax |
∑

y∈X

y · by
〉

=
∑

x∈X

a∗xbx,
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where ax, by ∈ CG.
Equation (2.2) from the definition of self-similarity gives also a well defined

structure of a left CG-module on ΦR. Namely, for any element g ∈ G and any
vector x ∈ X from the basis of ΦR we define the left product g · x = y · h,
where h ∈ G and y ∈ X are such that g(xw) = yh(w) for all w ∈ Xω. This
multiplication is extended by linearity onto the whole module ΦR and thus we get
a map from G to End(ΦR). It is easy to see that this map extends to a morphism
of algebras ϕ : CG→ End(ΦR). Since the module ΦR is free, the algebra End(ΦR)
is isomorphic to the algebra Md(CG) = Md(C) ⊗ CG of d × d-matrices over the
algebra CG.

The morphism ϕ : CG → Md(CG) is called the linear recursion of the
self-similar action. The obtained CG-bimodule Φ is called the self-similarity bi-
module of the action. For instance, in the case of the adding machine action the
self-similarity bimodule Φ is 2-dimensional as a right C〈a〉-module and the left
multiplication on the generator a is the endomorphism of the right module defined
by the matrix

ϕ(a) =
(

0 a
1 0

)
.

The linear recursions of self-similar actions were used by R. Grigorchuk,
A. Żuk and L. Bartholdi to compute the spectra of random walks on the Cayley
graphs and on the Schreier graphs of the respective self-similar groups (see [17], [2]).

Suppose that ρ is a unitary representation of the group G on a Hilbert space
H. Then the bimodule Φ defines a representation ρ1 = Φ ⊗ ρ of the group G on
the space

Φ⊗H =
∑

x∈X

x⊗H,

where each x⊗H may be considered just as a copy of H with the natural isometry
Tx : H → x ⊗H defined by v 7→ x ⊗ v. The representation ρ1 acts on the space
Φ ⊗ H by the formula ρ1(g)(x ⊗ v) = y ⊗ (ρ(h)(v)), where g ∈ G, v ∈ H, and
h ∈ G, y ∈ X are such that g · x = y · h.

A unitary representation ρ of the group G is said to be self-similar (or Φ-
invariant) if Φ⊗ρ is equivalent to ρ, i.e., if there exists an isometry ψ : H → Φ⊗H
such that ψ−1(Φ⊗ ρ)ψ = ρ. More explicitly, the representation ρ is self-similar if
there exists a decomposition of H into a direct sum H = H1 ⊕H2 ⊕ · · · ⊕Hd and
isometries Sx : H → H with the range equal to Hx, such that

(3.1) ρ(g)Sx = Syρ(h)

whenever g · x = y · h.
Example 3.2. Since the group G acts on the space Xω be measure preserv-

ing transformations, we get a natural unitary representation ρ of the group G on
the space H = L2(Xω). Since the set Xω is a disjoint union

⋃
x∈X

xXω, the space

H is a direct sum of the spaces Hx of the functions with the support in xXω. We
have a natural isometry Sx : H → Hx ⊂ H defined by the rule

Sx(f)(w) =
{

0 if w /∈ xXω,√
|X| · f(w′) if w = xw′.
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One checks directly that condition (3.1) holds, so the natural representation
of G on the space L2(Xω) is self-similar.

Example 3.3. We say that a set M⊆ Xω is self-similar if M =
⋃

x∈X

xM.

Let M ⊂ Xω be a countable self-similar G-invariant set. Let H = `2(M).
Then the space H is also a direct sum H1⊕H2⊕· · ·⊕Hd, where Hx is the subspace
spanned by the set xM. The isometry Sx : H → Hx is the linear extension of
the map w 7→ xw. Since the set M is G-invariant, we have a natural permutation
representation of the group G on the space H. It is also easy to check that this
representation satisfies condition (3.1), thus is self-similar.

Suppose the representation ρ of the group G is self-similar and let Sx be
the isometries for which (3.1) holds. Let C∗ρ(G) be the completion of the group
algebra CG with respect to the operator norm induced by the representation ρ.
Let now Φρ be the right C∗ρ(G)-module with the free basis X. Then formula (2.2)
will define a left multiplication for the module Φρ, which will give us a well defined
C∗ρ(G)-bimodule structure on Φρ due to condition (3.1). In fact, the bimodule Φρ

can be identified with the closed linear span of the operators Sx · ρ(g), x ∈ X,
g ∈ G in the space B(H) of bounded operators. The left and right multiplication
by the elements of C∗ρ will be defined by the natural rule

a · ξ = ρ(a)ξ, ξ · a = ξρ(a),
which extends the original multiplication in the bimodule Φ due to formula (3.1).

Consequently, if the representation ρ is self-similar, then the CG-bimodule
Φ can be extended to a Cρ(G)-bimodule. We will often denote Φρ also by Φ, when
this does not lead to a confusion.

In general we adopt the following definition.

Definition 3.4. A completion A of the algebra CG with respect to some
C∗-norm is said to be self-similar if the self-similarity bimodule Φ extends to a
Hilbert A-bimodule.

4. GENERIC POINTS OF Xω

Definition 4.1. Let G be a countable group acting by homeomorphisms on
the space Xω. A point w ∈ Xω is generic with respect to g ∈ G if either wg 6= w
or there exists a neighborhood U 3 w consisting of points fixed under the action
of g. A point w ∈ Xω is G-generic if it is generic with respect to every element of
G.

So if the point w is G-generic, then it is moved or is fixed by an element
g ∈ G together with all the points of its neighborhood.

Proposition 4.2. For any countable group G acting by homeomorphism on
the space Xω the set of all G-generic points is comeager (in particular it is not
empty).

Proof. The set of generic points with respect to any homeomorphism g is
an open dense set. Hence, the set of all G-generic points is an intersection of a
countable number of open dense sets, and thus it is comeager.
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Denote by G(w) the G-orbit of a point w ∈ Xω. Let `2(G(w)) be the Hilbert
space of all square-summable functions G(w) → C. We have the permutation
representation πw of G on `2(G(w)). Let ‖ · ‖w be the operator norm on CG
defined by the representation πw.

Proposition 4.3. Let w1, w2 ∈ Xω and suppose that w1 is G-generic. Then
for every a ∈ CG ‖a‖w1 6 ‖a‖w2 .

Proof. Let a =
m∑

k=1

γkgk 6= 0, where γk ∈ C, gk ∈ G. For every ε > 0 there

exists a nonzero element f of `2(G(w1)) with finite support such that ‖a(f)‖ >
(1− ε)‖a‖w1 · ‖f‖.

Let f =
∑

u∈S

αuu, where αu ∈ C, and S ⊂ G(w1) is a finite set. Here

u ∈ G(w1) is identified with its characteristic function (i.e., with the respective
element of `2(G(w1))). Then

(4.1) a(f) =
m∑

k=1

∑

u∈S

αuγk · gk(u) =
∑

v∈S′

( ∑

gk(u)=v

αuγk

)
v,

where S′ =
m⋃

i=1

gk(S). Every point u ∈ S belongs to the orbit G(w1), thus there

exists hu ∈ G such that hu(w1) = u.
Let W be the set of all the points w ∈ Xω for which the equality gkhu(w) =

glhv(w) is equivalent to the equality gk(u) = gl(v) for all u, v ∈ S and 1 6 k, l 6
m. The set W contains the point w1, and since w1 is G-generic, it contains a
neighborhood of w1. The action of G on Xω is minimal, thus the orbit G(w2) also
intersects the set W.

Let w̃ ∈ W ∩ G(w2). For every u ∈ S denote ũ = hu(w̃) ∈ G(w2) and
f̃ =

∑
u∈S

αuũ ∈ `2(G(w2)). Note that ‖f̃‖ = ‖f‖. Then, for u, v ∈ S we have

gk(ũ) = gl(ṽ) if and only if gk(u) = gl(v), thus in the sum

a(f̃) =
∑

v∈S′

( ∑

gk(ũ)=ṽ

γk · αu

)
ṽ

the coefficient of ṽ is equal to the respective coefficient of v in the sum (4.1).
Consequently,

‖a‖w2‖f̃‖ > ‖a(f̃)‖ = ‖a(f)‖ > (1− ε)‖a‖w1‖f‖ = (1− ε)‖a‖w1‖f̃‖,

hence

‖a‖w2 > (1− ε)‖a‖w1

for every ε > 0, thus ‖a‖w2 > ‖a‖w1 .
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5. SELF-SIMILAR COMPLETIONS

Let us fix a self-similar action of a countable group G on the space Xω. By Aw

we denote the completion of the algebra CG with respect to the operator norm
defined by the permutation representation of G on the orbit of the point w ∈ X∗.
As an immediate corollary of Proposition 4.3, we get

Theorem 5.1. Let w ∈ Xω be a G-generic point. Then, for every u ∈ Xω,
the algebra Aw is a quotient of the algebra Au. If u is also generic, then the
algebras Aw and Au are isomorphic.

Let us denote the algebra Aw, where w is a generic point, by AΦ.

Theorem 5.2. The algebra AΦ is self-similar. If A is another self-similar
completion of CG then the identical map G → G extends to a surjective homo-
morphism of the C∗-algebras A→ AΦ.

Proof. For m,n > 0 and g ∈ G denote by Gg,m,n the set of all the points
w ∈ Xω such that vg(σn(w)) is G-generic for every v ∈ Xm. (Recall that σ is the
shift.)

From the definition and Proposition 4.2 it follows that the set Gg,m,n is comea-
ger. Thus the intersection

⋂
g∈G

m,n∈N

Gg,m,n is also comeager and thus nonempty. Let

w0 belong to this intersection. Then all the points of the set M = {vg(σn(w0)) :
g ∈ G, v ∈ X∗, n > 0} are G-generic.

Note that the set M is self-similar, countable and G-invariant due to the
self-similarity of the action. Thus M is a union of the G-orbits. The permutation
representation π of CG on `2(M) is a countable direct sum of the permutation
representations πw of G on orbits of generic points, thus the completion of CG
with respect to the norm defined by π is isomorphic to AΦ, by Theorem 5.1. Thus
we get a faithful Φ-invariant representation of the algebra AΦ. Consequently, the
algebra AΦ is self-similar (see Example 3.3).

Let A be another self-similar completion of the algebra CG with respect to
a norm ‖ · ‖. Let ‖ · ‖0 be the norm defined by a permutational representation
of the group G on the orbit G(w0) of a generic point w0. We have to prove that
‖a‖ > ‖a‖0 for every a ∈ CG.

Let a =
m∑

k=1

γkgk 6= 0, where γk ∈ C, gk ∈ G. We choose a nonzero vector

f ∈ `2(G(w0)) with finite support S such that ‖a(f)‖ > (1 − ε)‖a‖0 · ‖f‖. Let
f =

∑
u∈S

αuu. We again have (as in the proof of Proposition 4.3)

a(f) =
∑

v∈S′

( ∑

gk(u)=v

αuγk

)
v,

where S′ =
m⋃

k=1

gk(S). Let the elements hu ∈ G be such that for every u ∈ S we

have hu(w0) = u.
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In the same way as during the proof of Proposition 4.3 let W be the set of
all the points w ∈ Xω for which the equality gkhu(w) = glhv(w) is equivalent to
the equality gk(u) = gl(v) for all u, v ∈ S and 1 6 k, l 6 m. The set W contains
a neighborhood of w0, thus there exists a finite beginning r ∈ X∗ of the word
w0 ∈ Xω such that every word w ∈ Xω which begins with r belongs to W. We
take r sufficiently long, so that

gkhu(r) = glhv(r) ⇔ gkhu(w0) = glhv(w0) ⇔ gk(u) = gl(v).

Take any faithful representation ρ of the algebra A on a Hilbert space H.
Then for any n ∈ N the representation ρn = Φ⊗n ⊗ ρ is faithful and acts on the
direct sum Hdn

= Φ⊗n⊗H. Every summand xi1⊗xi2⊗· · ·⊗xin ⊗H of the direct
sum corresponds to the word xi1xi2 . . . xin ∈ Xn. The representation ρn acts on
the vectors from the summands according to the rule

(5.1) ρn(g)(xi1 ⊗ xi2 ⊗ · · · ⊗ xin ⊗ ξ) = yi1 ⊗ yi2 ⊗ · · · ⊗ yin ⊗ ρ(h)(ξ),

where g ∈ G, ξ ∈ H and g · xi1xi2 . . . xin = yi1yi2 . . . yin · h. In particular, the
summands of the direct sum Hdn

= Φ⊗n ⊗H are permuted by the elements of G
in the same way as the points of Xn are permuted under the action of the group
G on X∗.

Take n = |r| and let ẽ be a vector of norm 1, belonging to the summand of
the direct sum Hdn

, which corresponds to the word r. We define now a vector

f̃ =
∑

u∈S

αuρn(hu)(ẽ) ∈ Hdn

.

Every ρn(hu)(ẽ) belongs to the summand of Hdn

, corresponding to the word
hu(r). Since for different u ∈ S the words hu(r) are different, ρn(hu)(ẽ) are
orthogonal and ‖f̃‖ =

∑
u∈S

|αu|2 = ‖f‖. The vectors ρn(gkhu)(ẽ) and ρn(glhv)(ẽ)

belong to the same summand of the direct sum Hdn

if and only if gkhu(r) =
glhv(r). But from the choice of the word r it follows that in this case gkhu(w) =
glhv(w) for all the infinite words w starting with r. But this means that gkhu ·r =
glhv · r = r′ · h for some h ∈ G and r′ ∈ Xn.

Then from equation (5.1) it follows that ρ(gkhu)(ẽ) = ρ(glhv)(ẽ). Con-
sequently, the vectors ρ(gkhu)(ẽ) and ρ(glhv)(ẽ) for u, v ∈ S are orthogonal if
gk(u) 6= gl(v), and coincide if gk(u) = gl(v). Then ‖ρ(a)(f̃)‖ = ‖a(f)‖ and, in the
same way as in the proof of Proposition 4.3, we get the estimate

‖a‖ = ‖ρ(a)‖ > ‖a‖0,

which finishes the proof.
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6. THE CUNTZ-PIMSNER ALGEBRA OΦ

In [26] M. Pimsner associates to every bimodule Φ an algebraOΦ, which generalizes
the Cuntz algebra Od (see [9]), and the Cuntz-Krieger algebra OA from [10]. In the
case of the self-similarity bimodule the Cuntz-Pimsner algebra OΦ can be defined
in the following way.

Definition 6.1. Let Φ be the self-similarity bimodule of an action of a
group G over the alphabet X. The Cuntz-Pimsner algebra OΦ is the universal
C∗-algebra generated by the algebra AΦ and operators {Sx : x ∈ X} satisfying
the relations

S∗xSx = 1, S∗xSy = 0 if x 6= y,(6.1) ∑

x∈X

SxS
∗
x = 1,(6.2)

aSx =
∑

y∈X

Syax,y,(6.3)

where ax,y ∈ AΦ are such that a · x =
∑

y∈X

y · ax,y, so ax,y = 〈y | a · x〉.

We will use the multi-index notation, so that for v = x1x2 . . . xn ∈ X∗ the
operator Sv is equal to Sx1Sx2 · · ·Sxn and for the empty word ∅ the operator S∅
is equal to 1. Then g · v = u · h implies gSv = Suh in the algebra OΦ.

The Cuntz algebra Od is the universal algebra generated by d isometries

S1, S2, . . . , Sd such that
d∑

i=1

SiS
∗
i = 1. This algebra is simple (see [9], [11]) and

thus any isometries satisfying such a relation generate an algebra isomorphic toOd.
In particular, since the operators {Sx : x ∈ X} satisfy relations (6.1), (6.2), they
generate a subalgebra of OΦ, isomorphic to Od for d = |X|. If ρ : OΦ → B(H)
is a representation of the algebra OΦ, then its restriction onto the subalgebra
generated by AΦ is a Φ-invariant representation of the algebra AΦ, due to (6.3).
Conversely, if ρ is a Φ-invariant representation, then due to condition (3.1) we get
a representation of the algebra OΦ.

We say that two words v, u ∈ X∗ are comparable if one is a beginning of the
other. It is easy to see that the words v, u ∈ X∗ are incomparable if and only if
the cylindrical sets vXω and uXω are disjoint.

The following lemma is proved by direct application of equation (6.1).

Lemma 6.2. For any v, u ∈ X∗ the product S∗vSu is not equal to 0 if and
only if the words u and v are comparable.

If v = uu0 for some u0 ∈ X∗ then S∗vSu is equal to S∗u0
; if u = vv0 then

S∗vSu = Sv0 .

It follows from Lemma 6.2 that every element of the monoid, generated by
the set {Sx, S

∗
x : x ∈ X} is either zero or is equal to a product of the form Su ·S∗v ,

where u, v ∈ X∗. It also follows from relation (6.3) that every element of the
semigroup generated by {Sx, S

∗
x : x ∈ X} ∪G is either zero or equal to a product
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SugS
∗
v for some u, v ∈ X∗ and g ∈ G. If g · x = yx · hx, then g · SxS

∗
x = Syx

hxS
∗
x

and using relation (6.2) we get

(6.4) g =
∑

x∈X

Syx
hxS

∗
x.

For a fixed n ∈ N, if g · v = uv · hv where v, uv ∈ Xn and hv ∈ G, then by
the same arguments

(6.5) g =
∑

v∈Xn

Suv
hvS

∗
v .

Definition 6.3. Let M be a self-similar subset of Xω. Let Tx be, for
every x ∈ X, the transformation of the set M which maps a word w ∈ Xω to
the word xw. Then the transformation Tx induces an isometry Sx of the Hilbert
space `2(M) and the isometries Sx satisfy the relations (6.1) and (6.2). Thus we
get a representation of the Cuntz algebra Od. Such a representation is called a
permutation representation of Od.

If the self-similar set M is G-invariant and contains only G-generic points,
then the permutation representation of Od together with the permutation repre-
sentation of the group G on M define a representation of the algebra OΦ, which
will also be called a permutation representation of OΦ on `2(M).

We have constructed a G-invariant self-similar set of G-generic points in the
beginning of the proof of Theorem 5.2.

The permutation representations of the Cuntz algebra and their relation with
the wavelets, numeration systems and rep-tilings are studied in [4].

The transformations Tx generate an inverse semigroup, where the inverse
transformation T ∗x is the partially defined transformation which deletes the first
letter x; in other words, it is the shift, restricted to the set xXω. The inverse
semigroup generated by G and {Tx : x ∈ X} can be viewed as a semigroup analog
of the Cuntz-Pimsner algebra OΦ. As we have seen, every nonzero element of this
semigroup is of the form TvgT

∗
u for some u, v ∈ X∗ and g ∈ G. Here we also use

the multi-index notation.

7. THE ALGEBRA F(Φ)

For k ∈ N denote by Fk the linear span over C of the products SvaS
∗
u, with

u, v ∈ Xk and a ∈ AΦ.
If v1, u1, v2, u2 ∈ Xk, then, by Lemma 6.2, Sv1a1S

∗
u1
· Sv2a2S

∗
u2

is equal to
Sv1a1a2S

∗
u2

if u1 = v2 and to zero otherwise. Consequently, Fk is an algebra
isomorphic to the algebra Mdk(AΦ) of dk×dk-matrices over the algebra AΦ. This
algebra coincides with End(Φ⊗k

R ).
By equation (6.4) we have inclusions Fk ⊂ Fk+1. Denote by F(Φ) the

closure of the union
⋃

k>1

Fk. The algebra F(Φ) is isomorphic to the direct limit

of the matrix algebras Mdn(AΦ) with respect to the embeddings defined by the
linear recursion ϕ. The set of all transformations of the form TugT

∗
v , where g ∈ G,

u, v ∈ X∗ and |u| = |v|, is an inverse semigroup, and the orbit of a point w0 ∈ Xω
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under the action of this semigroup is the set Orb(w0) = {ug(σn(w0)) : g ∈ G, u ∈
X∗, |u| = n, n ∈ N}. We will call this set the F(Φ)-orbit of the point w0.

A permutation representation of the algebra F(Φ) on the space `2(Orb(w0))
is the representation πw0 which acts on the basis vectors w ∈ Orb(w0) by the
rule πw0(SugS

∗
v )(w) = TugT

∗
v (w). In particular, the restriction of a permutation

representation of the Cuntz-Pimsner algebra OΦ to subalgebra F(Φ) is a direct
sum of permutation representations.

Proposition 7.1. Suppose the point w0 ∈ Xω is such that all the points
in the F(Φ)-orbits of all its shifts σn(w0) are G-generic. Then the permutation
representation of F(Φ) on the F(Φ)-orbit of w0 is faithful.

Proof. Let π0 be the permutation representation on the space `2(Orb(w0)).
By definition of the algebra AΦ, the representation π0 is faithful on AΦ. The
set Orb(w0) is equal to

⋃
x∈X

xOrb(σ(w0)). Thus the permutation representation

π0 of the algebra AΦ is equivalent to the representation Φ ⊗ π1, where π1 is the
permutation representation of AΦ on the orbit G(σ(w0)). The representation π1

is faithful on AΦ, so the representation π0 ≈ Φ⊗ π1 is faithful on F1 = Md(AΦ).
The process can be continued and we get that for every n ∈ N the representa-

tion π0 is equivalent to the representation Φ⊗n⊗ πn, where πn is the permutation
representation on the orbit G(σn(w0)), thus the representation π0 is faithful on
Fn. Since the algebra F(Φ) is the union of the algebras Fn, it follows that the
permutation representation π0 is faithful on F(Φ).

Every algebra Fk contains as a subalgebra the linear span Fk of the products
of the form SvS

∗
u, where v, u ∈ Xk. The algebra Fn is isomorphic to the algebra

Mdk of dk × dk-matrices over C, where the products SvS
∗
u are identified with the

matrix units. We also have the inclusions Fn ⊂ Fn+1, which are the diagonal
embeddings. Thus the closure of the union

⋃
k>1

Fk is the UHF algebra Md∞ .

By analogy with the Cuntz algebra (see [9], [11]), we can define a strongly
continuous (gauge) action Γ of the circle T = {z ∈ C : |z| = 1} on OΦ by the rules

Γz(g) = g, Γz(Sx) = zSx

for all g ∈ G, x ∈ X and z ∈ T.
Then Γz(SvgS

∗
u) = z|v|−|u|SvgS

∗
u for u, v ∈ X∗, g ∈ G, and therefore the

integral
∫

Γz(SvgS
∗
u) dz is equal to zero for |v| 6= |u| and to SvgS

∗
u for |v| = |u|,

where dz is the normalized Lebesgue measure on the circle. So the map

(7.1) M0(a) =
∫

Γz(a) dz

is a conditional expectation onto the subalgebra F(Φ). If a ∈ OΦ is positive and
nonzero, then every Γz(a) is also positive and Γ1(a) = a, thus M0(a) > 0, so M0

is faithful.
A self-similar action of a group G is recurrent if for every element h of the

group G there exists g ∈ G such that g · x = x · h. The definition does not depend
on the choice of the letter x and if the action is recurrent then for any two words
v, u of equal length and any h ∈ G there exists g ∈ G such that g · v = u · h (this
is easily proved by induction on the length of the words). Thus, if the action is
recurrent, the orbit of a point w ∈ Xω under the action of G coincides with its
F(Φ)-orbit.
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Theorem 7.2. Suppose the self-similar action of G is recurrent and that the
point w0 ∈ Xω and all its shifts σn(w0) are G-generic. Let π1 be the permutation
representation of G on the orbit of w0 and let π2 be the natural representation
on `2(G(w0)) of the algebra C(Xω) of continuous functions on Xω. Then the
algebra F(Φ) is isomorphic to the C∗-algebra generated by π1(G) ∪ π2(C(Xω)) ⊂
B(`2(G(w0))).

Proof. Denote by F the algebra generated by π1(G) ∪ π2(C(Xω)). Let π be
the permutation representation of F(Φ) on the orbit G(w0) (which coincides with
the F(Φ)-orbit of w0 in the recurrent case). Then π(g) = π1(g) for every g ∈ G
and π(SuS

∗
u) = π2(1u) for every u ∈ X∗, where 1u is the characteristic function

of the cylindrical set uXω. The function 1u is continuous, since the cylindrical
sets are closed and open. Therefore π defines an injective C∗-homomorphism from
the subalgebra of F(Φ), generated by G and {SuS

∗
u : u ∈ X∗}, to the algebra

F . So it remains to prove that this homomorphism is surjective and that the set
G ∪ {SuS

∗
u : u ∈ X∗} generates the C∗-algebra F(Φ).

The first assertion follows from the well known fact that the closed linear
span of the characteristic functions 1u for u ∈ X∗ is equal to C(Xω).

Since the action of the group G is level-transitive and recurrent, for any two
words u, v of equal lengths and for any h ∈ G there exists an element g ∈ G such
that g · u = v · h. Then gSuS

∗
u = SvhS

∗
u. Hence the closed linear span of all the

products gSuS
∗
u is equal to F(Φ), so G ∪ {SuS

∗
u : u ∈ X∗} generates F(Φ).

Example 7.3. For the case of the adding machine action the algebra AΦ

is isomorphic to the algebra C(T) with the linear recursion C(T) → M2(C(T))
coming from the double self-covering of the circle. Thus the algebra F(Φ) in this
case is the Bunce-Deddens algebra. Then Theorem 7.2 in this case is the well
known fact that the Bunce-Deddens algebra is the cross-product algebra of the
odometer action on the Cantor space Xω (see [11]).

8. SIMPLICITY OF OΦ

There are several general results on simplicity of the Cuntz-Pimsner algebras,
which can be used to prove that the algebra OΦ is simple (see, for example [24],
[22], [29]). But we prefer to give a direct proof of this fact, since the proof in this
case is rather simple and it shows how the notion of a generic point works. We
will use the following refinement of this notion.

Definition 8.1. A point w ∈ Xω is strictly G-generic if for any v, u ∈ X∗
and g ∈ G the transformation TvgT

∗
u either moves the point w, or fixes w together

with every point in a neighborhood of w, or is not defined on w.

Recall (see Definition 6.3), that Tv is the transformation w 7→ vw and T ∗v is
the partially defined inverse transformation. In particular, every strictly generic
point is aperiodic, i.e., cannot be represented in the form uvvvvv . . ., where u, v ∈
X∗. The aperiodic words were used in the original proof in [9] of the simplicity of
the Cuntz algebra Od.

In the same way as for G-generic points, one can prove that the set of all
strictly G-generic points is also comeager.
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Lemma 8.2. For any finite linear combination a =
m∑

i=1

αiSui
giS

∗
vi

, αi ∈ C,

ui, vi ∈ X∗, gi ∈ G, with M0(a) 6= 0 and for every ε > 0 there exists a partial
isometry Q ∈ F(Φ) such that

Q∗aQ = Q∗M0(a)Q,
Q∗aQ ∈ Fm = M|X|m(C) for some m ∈ N,

and
‖Q∗aQ‖ > ‖M0(a)‖ − ε.

Proof. Let π be a permutation representation of the algebra OΦ on a count-
able self-similar set M of strictly generic points of Xω. Let us take δ > 0 such
that δ · ‖M0(a)‖ < ε. There exists a nonzero vector ξ ∈ `2(M) with finite sup-
port such that ‖π(M0(a))(ξ)‖ > (1− δ)‖π(M0(a))‖ · ‖ξ‖. By Proposition 7.1, the
representation π is faithful on F(Φ), so ‖π(M0(a))‖ = ‖M0(a)‖.

Let ξ =
N∑

j=1

γjwj , where wj ∈ M are identified with their characteristic

functions. We will denote by w(m)
j the beginning of the length m of the word wj .

We may assume that all wj belong to the same F(Φ)-orbit, so every wj is equal to
T

w
(k)
j

hjT
∗
w

(k)
1

(w1) for some hj ∈ G and a fixed k big enough. We take some extra

wj with zero coefficients so that conditions |ui| = |vi| and π(SuigiS
∗
vi

)(wk) /∈ {wj :
j = 1, . . . , N} imply γk = 0.

Let the index i be such that |ui| 6= |vi|. Suppose that TuigiT
∗
vi

(wj1) = wj2 .
Then

(8.1) TuigiT
∗
vi

(T
w

(k)
j1

hj1T
∗
w

(k)
1

(w1)) = T
w

(k)
j2

hj2T
∗
w

(k)
1

(w1).

The transformation (TuigiT
∗
vi

)(T
w

(k)
j1

hj1T
∗
w

(k)
1

) is equal to a transformation of the

form TugT
∗
v with |u| − |v| = |ui| − |vi|. Since the point w1 is strictly generic,

equality (8.1) holds for all the points of a neighborhood of w1. So for sufficiently
big m for every w ∈ w

(m)
1 Xω we will have TugT

∗
v (w) = T

w
(k)
j2

hj2T
∗
w

(k)
1

(w). But

the transformation T
w

(k)
j2

hj2T
∗
w

(k)
1

preserves the measure of the subsets of w(k)
1 Xω,

while the transformation TugT
∗
v multiplies the measure of every subset of vXω by

|X||v|−|u|. This is a contradiction, so TuigiT
∗
vi

(wj1) 6= wj2 when |ui| 6= |vi|.
Let now TuigiT

∗
vi

(wj1) 6= wj2 (without regard on the lengths of the words
ui and vi). Then, for m big enough, the sets TuigiT

∗
vi

(w(m)
j1

Xω) and w
(m)
j2

Xω are
disjoint. Hence we get an equality

(8.2) S∗
w

(m)
j2

(SuigiS
∗
vi

)S
w

(m)
j1

= 0.

Note that equality (8.2) remains to be true if we take a bigger m. So we can find
an m such that it holds for all j1, j2 and for all i such that TuigiT

∗
vi

(wj1) 6= wj2 ;
in particular, for all i such that |ui| 6= |vi|.

Let now i be such that |ui| = |vi| and suppose TuigiT
∗
vi

(wj1) = wj2 . Then
again equality (8.1) holds. Since the point w1 is strictly generic, this equality holds
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for all points of a neighborhood of w1. We may assume that this neighborhood is
w

(m)
1 Xω. This means that

(TuigiT
∗
vi

)(T
w

(k)
j1

hj1T
∗
w

(k)
1

)(T
w

(m)
1
T ∗

w
(m)
1

) = T
w

(m)
j2

hj2T
∗
w

(m)
1

(T
w

(m)
1
T ∗

w
(m)
1

).

Thus we get the same relation in the Cuntz-Pimsner algebra OΦ (with all Tv

changed by Sv). Note that (S
w

(k)
ji

hjiS
∗
w

(k)
1

)(S
w

(m)
1
S∗

w
(m)
1

) = S
w

(m)
ji

h̃ji
S∗

w
(m)
1

, where

i = 1, 2 and h̃ji
= S∗shji

Sr ∈ G for the words s, r ∈ X∗ such that w(m)
1 = w

(k)
1 r

and w(m)
ji

= w
(k)
ji
s. Thus

(S
w

(m)
1
h̃−1

j2
S∗

w
(m)
j2

)(Sui
giS

∗
vi

)(S
w

(m)
j1

h̃j1S
∗
w

(m)
1

) = (S
w

(m)
1
h̃−1

j2
S∗

w
(m)
j2

)(S
w

(m)
j2

h̃j2S
∗
w

(m)
1

)

= S
w

(m)
1
S∗

w
(m)
1
.

Multiplying the equality on the left by S
w

(m)
j2

S∗
w

(m)
1

and on the right by

S∗
w

(m)
1

S
w

(m)
j1

we get

(8.3) (S
w

(m)
j2

h̃−1
j2
S∗

w
(m)
j2

)(SuigiS
∗
vi

)(S
w

(m)
j1

h̃j1S
∗
w

(m)
j1

) = S
w

(m)
j2

S∗
w

(m)
j1

.

Let now Q =
N∑

j=1

S
w

(m)
j

h̃jS
∗
w

(m)
j

. Then from equality (8.2) it follows that

Q∗aQ = Q∗M0(a)Q.
We may assume that the neighborhoods w(m)

j Xω are disjoint for different
j. Then from (8.2) and (8.3) it follows that Q∗aQ ∈ Fm = M|X|m(C) and that
π(SuigS

∗
vi

)(wj1) = wj2 for |ui| = |vi| is equivalent to π(Q∗SuigS
∗
vi
Q)(w̃j1) = w̃j2 ,

where w̃j = S
w

(m)
j

S
w

(m)
1

(w1). Hence ‖π(M0(a))(ξ)‖ = ‖π(Q∗aQ)(ξ̃)‖, where ξ̃ =
N∑

j=1

γjw̃j . Note that ‖ξ̃‖ = ‖ξ‖. Then we have

‖Q∗aQ‖ · ‖ξ‖ = ‖π(Q∗aQ)‖ · ‖ξ̃‖ > ‖π(Q∗aQ)(ξ̃)‖
= ‖π(M0(a))(ξ)‖ > (1− δ)‖M0(a)‖ · ‖ξ‖,

hence ‖Q∗aQ‖ > (1− δ)‖M0(a)‖ > ‖M0(a)‖ − ε.

Theorem 8.3. The algebra OΦ is simple. Moreover, for any nonzero x ∈
OΦ there exist p, q ∈ OΦ such that pxq = 1.

Proof. We follow the proof of the similar result for the Cuntz algebra Od

from [11]. The element x∗x is positive and nonzero, thus M0(x∗x) is also positive
and nonzero. Multiplying x by a scalar, we get ‖M0(x∗x)‖ = 1. Let y be a self-

adjoint positive finite sum
m∑

i=1

αiSuigiS
∗
vi

, αi ∈ C, ui, vi ∈ X∗, gi ∈ G, such that

‖x∗x− y‖ < 1/4. Then

‖M0(y)‖ > ‖M0(x∗x)‖ − ‖M0(x∗x− y)‖ > 1− ‖x∗x− y‖ > 3
4
.
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By Lemma 8.2 there exists a partial isometry Q ∈ F(Φ) such that Q∗yQ =
Q∗M0(y)Q ∈ M|X|m(C) for some m ∈ N and ‖Q∗yQ‖ > ‖M0(y)‖ − 1/4 > 1/2.
Then Q∗yQ is a positive matrix, so it is diagonalizable and thus there exists a
projection P ∈M|X|m(C) such that

PQ∗yQ = Q∗yQP = ‖Q∗yQ‖P.
We can find a unitary U ∈ M|X|m(C) such that UPU∗ = SvS

∗
v for any v ∈ Xm.

Then for Z = ‖Q∗yQ‖−1/2S∗vUPQ
∗ we have ‖Z‖ 6

√
2 and

ZyZ∗ = ‖Q∗yQ‖−1S∗vUP (Q∗yQ)PU∗Sv

= ‖Q∗yQ‖−1S∗vU(‖Q∗yQ‖)PU∗Sv = S∗vSvS
∗
vSv = 1.

Thus we have ‖1−Zx∗xZ∗‖ = ‖ZyZ∗−Zx∗xZ∗‖ 6 ‖Z‖2‖y−x∗x‖ 6 2·1/4 =
1/2. Thus Zx∗xZ∗ is invertible. If b is its inverse, then (bZx∗)xZ∗ = 1.

9. THE HIGMAN-THOMPSON GROUPS

In this section we show a connection between the Cuntz algebra Od and the
Higman-Thompson group Vd and construct the analogs of the Higman-Thompson
groups for the self-similar actions using the Cuntz-Pimsner algebras.

Definition 9.1. A table over the alphabet X is a matrix of the form

(9.1)
(
v1 v2 · · · vm

u1 u2 · · · um

)
,

where vi, ui ∈ X∗ are such that the set Xω is decomposed into disjoint unions

Xω =
m⊔

i=1

viX
ω =

m⊔

i=1

uiX
ω,

i.e., for every infinite word w ∈ Xω exactly one vi and exactly one uj is a prefix
of w. Note that from this it follows that the words in one row of a table are
incomparable.

Every table t =
(

v1 v2 · · · vm

u1 u2 · · · um

)
defines a homeomorphism t of the space

Xω by the rule
t(viw) = uiw.

It is easy to prove that the set of all homeomorphisms defined by the tables
is a group.

Definition 9.2. The group of the homeomorphisms of the spaceXω defined
by tables is called the Higman-Thompson group and is denoted Vd, where d = |X|.

Two tables are said to be equivalent if they are obtained one from another
by a permutation of the columns. A split of a table is a table obtained from the
original one by several consecutive replacements of a column

(
vi

ui

)
by a matrix

(
vix1 vix2 · · · vixd

uix1 uix2 · · · uixd

)
,

where X = {x1, x2, . . . , xd}. Obviously, a split of a table is again a table.
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Proposition 9.3. Two tables t1 and t2 define equal elements of the Higman-
Thompson group if and only if they have some equivalent splits.

For odd d there exists an analog of the alternative group in Vd, which is
defined in the following way. We fix some linear order on the alphabet X. Then
it induces the lexicographic order on the set of all finite words X∗. Namely, if the
words v1 = x1x2 . . . xn and v2 = y1y2 . . . ym are incomparable then v1 < v2 if and
only if xk < yk where k is such that xi = yi for all i < k but xk 6= yk. If the word
v1 is a beginning of v2 and v1 6= v2, then v1 < v2.

Any table defining an element of the Higman-Thompson group Vn is equiva-
lent to a table

(
v1 v2 · · · vm

u1 u2 · · · um

)
, in which the first row is an ascending sequence

in the lexicographic order. Let ui1 < ui2 < · · · < uim
be the ascending permuta-

tion of u1, u2, . . . , um with respect to the lexicographic ordering. We say that the
table is even (odd) if the permutation i1, i2, . . . , im is respectively even (odd). The
parity of a table does not depend on the choice of the order on the alphabet X.

If the number d is odd, then any split of a table will have the same parity
as the original table. From this it follows that the set of all the elements of the
group Vd defined by even tables is a subgroup of index 2 in Vd. Let us denote this
subgroup by V ′d . In the case of even d, we set V ′d = Vd.

The Higman-Thompson groups Vd have the following properties (see [20], [6],
[30]).

Theorem 9.4. For every d > 1 the Higman-Thompson groups Vd and V ′d
are finitely presented. The group V ′d is the only nontrivial normal subgroup of Vd

and is simple.

LetM⊆ Xω be a countable self-similar set. We define a faithful permutation
representation ρ of Vd on the space H = `2(M) by the natural rule

ρ(t)(f)(w) = f(t−1(w)),

where t ∈ Vd, f ∈ `2(M) and w ∈M. Then for every table

t =
(
v1 v2 · · · vm

u1 u2 · · · um

)
,

defining an element t of the Higman-Thompson group Vd, the operator ρ(t) is
equal to the image of Su1S

∗
v1

+ Su2S
∗
v2

+ · · ·+ SumS
∗
vm
∈ Od under the respective

permutation representation of Od on the space `2(M).
Since the permutation representations of the group Vd and of the algebra Od

on `2(M) are both faithful, the element Su1S
∗
v1

+ Su2S
∗
v2

+ · · · + SumS
∗
vm

∈ Od

of the Cuntz algebra depends only on the respective element t of the Higman-
Thompson group (and not on the choice of the table t). Note that the splitting
rule for the tables follows from relation (6.2).

We get thus
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Proposition 9.5. The correspondence(
v1 v2 · · · vm

u1 u2 · · · um

)
7→ Su1S

∗
v1

+ Su2S
∗
v2

+ · · ·+ Sum
S∗vm

defines a faithful unitary representation of the Higman-Thompson group Vd in the
Cuntz algebra Od.

So, we will identify the Higman-Thompson group Vd with its image in the
Cuntz algebra.

The Higman-Thompson group can be defined in terms of Cuntz algebra gen-
erators in the following way.

Proposition 9.6. The Higman-Thompson group Vd coincides with the set
of those elements of the Cuntz algebra Od which are unitary and can be represented
in the form Su1S

∗
v1

+ Su2S
∗
v2

+ · · ·+ Sum
S∗vm

, where ui, vi ∈ X∗.

Proof. We must prove that the sum a = u1v
∗
1 +u2v

∗
2 + · · ·+umv

∗
m is unitary

only if
(

v1 v2 · · · vm

u1 u2 · · · um

)
is a table.

Let M be a countable self-similar subset of Xω and let π be the respective
permutation representation of Od. Suppose that there exists an infinite word
w ∈ Xω such that none of vi is a beginning of w. Then there exists a beginning
w0 of the word w which is incomparable with every word vi. Since the set M is
self-similar, there exists a word w̃ ∈M, beginning with w0. But then π(a)(w̃) = 0,
so a is not unitary.

Suppose now that there exists an infinite word w ∈ Xω such that more than
one word vi is its beginning. Then by the same arguments, there exists a word
w̃ ∈ M such that more than one vi is a beginning of w̃. But then π(a)(w̃) is a
sum of several unit vectors wi ∈ M, and so a is also nonunitary. Thus the words
vi satisfy the conditions of Definition 9.1.

To prove that the words ui satisfy the conditions of the definition one argues
in the same way for a∗.

Let now G be a self-similar group over the alphabet X. We can define
a subgroup of the unitary group of the algebra OΦ, analogous to the Higman-
Thompson group.

Definition 9.7. Vd(G) is the group of all the sums of the form
m∑

i=1

SuigiS
∗
vi
,

which are unitary in OΦ, where gi ∈ G and ui, vi ∈ X∗.

Proposition 9.8. A sum
m∑

i=1

SuigiS
∗
vi

is unitary if and only if the sum
m∑

i=1

SuiS
∗
vi

is unitary, i.e., if and only if
(

v1 v2 · · · vm

u1 u2 · · · um

)
is a table.

The proof of this proposition repeats the proof of Proposition 9.6.

Thus we get the following combinatorial definition of the group Vd(G).
A G-table is an array of the form

t =

(
v1 v2 · · · vm

g1 g2 · · · gm

u1 u2 · · · um

)
,
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where the words vi, ui satisfy the conditions of Definition 9.1. The table t then
corresponds to a transformation of the space Xω mapping every word viw ∈ Xω

to the word uigi(w). The inverse of the element defined by the table t is defined
by the table

t−1 =

(
u1 u2 · · · um

g−1
1 g−1

2 · · · g−1
m

v1 v2 · · · vm

)
.

Equation (6.4) shows us the splitting rule for the tables. Namely, in every

table we can replace a column

(
v
g
u

)
by the table,

(
vx1 vx2 · · · vxd

h1 h2 · · · hd

uy1 uy2 · · · uyd,

)
where

g =
n∑

i=1

yihix
∗
i , i.e., g ·xi = yi ·hi and X = {x1, x2, . . . , xd}. In the same way as for

the Higman-Thompson group, two tables define the same elements of the group
Vd if and only if they have equivalent splittings.

We also get an analog of the subgroup V ′d inside the group Vd(G). We say

that a table t =

(
v1 v2 · · · vm

g1 g2 · · · gm

u1 u2 · · · um

)
is even if the table

(
v1 v2 · · · vm

u1 u2 · · · um

)
is even.

In particular, the tables of the form

( ∅
g
∅

)
, defining the elements of the group G

are considered to be even.
Then for odd d let V ′d(G) be the group generated by the elements which can

be defined by even tables. Note that the set of even tables is not always a group.
In the case of even d we define V ′d(G) to be equal to Vd(G).

Proposition 9.9. Let d be odd. If the group G acts on the set X1 by even
permutations, then V ′d(G) is a subgroup of index 2 in the group Vd(G). Otherwise
it coincides with Vd(G).

Proof. If the group G acts by even permutations on the set X1, then a split
of an even table is again an even table. Then the group V ′d(G) coincides with the
set of all elements defined by even tables and is a subgroup of index 2.

Suppose now that some element h ∈ G ⊂ V ′d(G) acts on the set X1 by an

odd permutation. The element h is defined by an odd table

(
x1 x2 · · · xd

h1 h2 · · · hd

y1 y2 · · · yd

)
,

where {x1, x2, . . . , xd} = X and h · xi = yi · hi. Then h ∈ V ′d(G) and

V ′d(G) 3
(
x1 x2 · · · xd

y1 y2 · · · yd

)
=

(
x1 x2 · · · xd

h1 h2 · · · hd

y1 y2 · · · yd

)
·
(
x1 x2 · · · xd

h−1
1 h−1

2 · · · h−1
d

x1 x2 · · · xd

)
.

So, the group V ′d(G) contains an element from Vd \ V ′d . This implies that
Vd 6 V ′d(G), since the group V ′d has index 2 in Vd.

Let g be an arbitrary element of Vd(G) defined by t =

(
v1 v2 · · · vm

g1 g2 · · · gm

u1 u2 · · · um

)
.

If the table t is even, then g ∈ V ′d(G). If not, then g is a product of an element
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defined by the even table

(
v1 v2 v3 · · · vm

g1 g2 g3 · · · gm

u2 u1 u3 · · · um

)
and the element of Vd defined by

the table
(

u1 u2 u3 · · · um

u2 u1 u3 · · · um

)
and thus also belongs to V ′d(G). Hence, V ′d(G) =

Vd(G).

For every nonempty word r ∈ Xk and an element f ∈ Vd(G) we denote

Λr(f) = SrfS
∗
r + (1− SrS

∗
r ) = SrfS

∗
r +

∑

v∈Xk

v 6=r

SvS
∗
v .

From the definition it follows directly that Λr(f) is also an element of the
group Vd(G). Moreover, if f is defined by an even table, then Λr(f) is also defined
by an even table.

Lemma 9.10. For every nonempty r ∈ X∗ the map Λr : Vd(G) → Vd(G)
is an injective homomorphism. If r1 and r2 ∈ X∗ are incomparable, then for all
f1, f2 ∈ Vd(G) the elements Λr1(f1) and Λr2(f2) commute.

Proof. Let f1, f2 ∈ Vd(G), then

Λr(f1)Λr(f2) = (Srf1S
∗
r + (1− SrS

∗
r ))(Srf2S

∗
r + (1− SrS

∗
r ))

= Srf1S
∗
rSrf2S

∗
r + (1− SrS

∗
r )Srf2S

∗
r + Srf1S

∗
r (1− SrS

∗
r )

+ (1− SrS
∗
r )(1− SrS

∗
r )

= Srf1f2S
∗
r + (1− SrS

∗
r ) = Λr(f1f2),

since S∗rSr = 1, so Srf1S
∗
r (1−SrS

∗
r ) = Srf1S

∗
r−Srf1S

∗
rSrS

∗
r = Srf1S

∗
r−Srf1S

∗
r =

0; similarly (1 − SrS
∗
r )Srf2S

∗
r = 0, (1 − SrS

∗
r )(1 − SrS

∗
r ) = 1 − 2SrS

∗
r + SrS

∗
r =

1− SrS
∗
r and Srf1S

∗
rSrf2S

∗
r = Srf1f2S

∗
r .

If r1 and r2 are incomparable, then S∗r1
Sr2 = S∗r2

Sr1 = 0 by Lemma 6.2, so

Λr1(f1)Λr2(f2) = (Sr1f1S
∗
r1

+ (1− Sr1S
∗
r1

))(Sr2f2S
∗
r2

+ (1− Sr2S
∗
r2

))

= Sr1f1S
∗
r1
Sr2f2S

∗
r2

+ Sr1f1S
∗
r1

(1− Sr2S
∗
r2

)

+ (1− Sr1S
∗
r1

)Sr2f2S
∗
r2

+ (1− Sr1S
∗
r1

)(1− Sr2S
∗
r2

)

= Sr1f1S
∗
r1

+ Sr2f2S
∗
r2

+ (1− Sr1S
∗
r1
− Sr2S

∗
r2

)

= Λr2(f2)Λr1(f1).

The group Vd(G) was defined for the first time by C. Röver for the Grigorchuk
group. In [27] he proved that in this case this group is finitely presented simple.
Later, in [28] he proved that the group V2(G) for the Grigorchuk group is its
abstract commensurizer.

Some of the results of C. Röver can be generalized for the group Vd(G) in
the case of an arbitrary self-similar group G.

Theorem 9.11. All the proper quotients of the groups Vd(G) and V ′d(G) are
abelian.

Proof. We will use the following easy technical lemma (its analog is proved
in [30]).
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Lemma 9.12. A sequence of finite words v1, v2, . . . , vm is a part of a row of
a table if and only if the words vi are pairwise incomparable.

If v1, v2, . . . , vm and u1, u2, . . . , um are two sets of pairwise incomparable
words such that v1Xω∪v2Xω∪· · ·∪vmX

ω 6= Xω and u1X
ω∪u2X

ω∪· · ·∪umX
ω 6=

Xω, then there exists an even table of the form
(

v1 v2 · · · vm · · ·
u1 u2 · · · um · · ·

)
.

We will prove Theorem 9.11 simultaneously for both groups Vd(G) and V ′d(G).
So, when it is not important which group we consider (Vd(G) or V ′d(G)), we denote
the group under the consideration by V .

Let g =
m∑

i=1

SuigiS
∗
vi

be a nontrivial element of a normal subgroup N of the

group V . The element g acts nontrivially on some point w ∈ Xω. Then there exists
a neighborhood U of the point w such that the intersection g(U)∩U is empty. We
may assume that the set U is of the form vXω for some v ∈ X∗. After possibly
making several splittings using formula (6.5) and passing to a smaller cylindrical
set U , we may assume that v = vi for some i. Then g(U) = g(viX

ω) = uigi(Xω) =
uiX

ω. Now the condition that U and g(U) do not intersect means that the words
vi and ui are incomparable and thus S∗vi

Sui
= S∗ui

Svi
= 0, by Lemma 6.2. We

may assume that viX
ω ∪ uiX

ω 6= Xω. Let us denote u = ui, v = vi and gi = h.
We have g = SuhS

∗
v + g̃, where S∗ug̃ = g̃Sv = 0, due to Lemma 6.2.

Let us call a pair of words {r, s} ⊂ X∗ an incomplete antichain if the words
r and s are incomparable and rXω ∪ sXω 6= Xω.

Lemma 9.13. For every f ∈ V and for every incomplete antichain {r, s} ⊂
X∗, the element SsfS

∗
s + Srf

−1S∗r + (1− SsS
∗
s − SrS

∗
r ) = Λs(f)Λr(f−1) belongs

to N .

Proof. Note that for every r ∈ X∗ the endomorphism Λr leaves the group
V ′d(G) invariant, i.e., Λr(V ′d(G)) ⊂ V ′d(G), since it maps even tables to even tables
and is an endomorphism of the group Vd(G).

By Lemma 9.12, there exists an element p of the group V defined by a table,

which contains the columns

(
u v · · ·

h−1 1 · · ·
r s · · ·

)
. So p = Srh

−1S∗u + SsS
∗
v + p̃, where

p̃Su = p̃Sv = S∗r p̃ = S∗s p̃ = 0. Then

pgp−1 = pgp∗ = (Srh
−1S∗u + SsS

∗
v + p̃)(SuhS

∗
v + g̃)(SuhS

∗
r + SvS

∗
s + p̃∗)

= (SrS
∗
v + SsS

∗
v g̃ + p̃g̃)(SuhS

∗
r + SvS

∗
s + p̃∗)

= SrS
∗
s + SsS

∗
v g̃SuhS

∗
r + SsS

∗
v g̃p̃

∗ + p̃g̃SuhS
∗
r + p̃g̃p̃∗.

So, the group N contains an element q = pgp−1 of the form q = SrS
∗
s + q̃,

where S∗r q̃ = q̃Ss = 0. We also have q̃∗q̃ = 1 − SsS
∗
s , since 1 = q∗q = (SsS

∗
r +

q̃∗)(SrS
∗
s + q̃) = SsS

∗
rSrS

∗
s + SsS

∗
r q̃ + q̃∗SrSs + q̃∗q̃ = SsS

∗
s + q̃∗q̃.

Let us compute Λr(f)−1q−1Λr(f)q ∈ N for arbitrary f ∈ V . We have

q−1Λr(f)q = (SsS
∗
r + q̃∗)(SrfS

∗
r + 1− SrS

∗
r )(SrS

∗
s + q̃)

= (SsfS
∗
r + q̃∗)(SrS

∗
s + q̃)

= SsfS
∗
s + q̃∗q̃ = SsfS

∗
s + (1− SsS

∗
s ) = Λs(f).

So Λr(f)−1q−1Λr(f)q = Λr(f−1)Λs(f), and the lemma is proved.
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In particular, the normal subgroup N contains a nontrivial element of the
group V ′d . Consequently, it contains its normal closure in V ′d , which is equal to V ′d
by Theorem 9.4.

Let H be the quotient of V by the subgroup N and let π be the canonical
homomorphism onto H. By Lemma 9.13, if {r, s} is an incomplete antichain then
π(Λr(f)) = π(Λs(f)). But for any two nonempty words r1, r2 ∈ X∗ there exists
a pair of words s1, s2 ∈ X∗ such that the pairs {r1, s1}, {s1, s2} and {s2, r2} are
incomplete antichains. Then we have

π(Λr1(f)) = π(Λs1(f)) = π(Λs2(f)) = π(Λr2(f)).

So π(Λr(f)) does not depend on r, and all the elements of the form π(Λr(f)) ∈
H commute by Lemma 9.10.

Suppose that the table

(
v1 v2 · · · vm

g1 g2 · · · gm

u1 u2 · · · um

)
, defining an element of V , is even.

Let h =
m∑

i=1

Sui
S∗vi

be the respective element of V ′d . Then gh−1 =
m∑

i=1

Sui
giS

∗
ui

=

Λu1(g1)Λu2(g2) · · ·Λum
(gm). Hence

π(g) = π(gh−1) = π(Λu1(g1))π(Λu2(g2)) · · ·π(Λum(gm)).

So the elements π(Λr(g)) generate the image π(V ′d(G)); thus it is abelian. So
the theorem is proved for the case V = V ′d(G).

Suppose now that V = Vd(G) 6= V ′d(G). In this case, by Proposition 9.9, the
group G acts by even permutations on X1 and every element of V ′d(G) is defined
only by even tables. Define

a = Sx1S
∗
x2

+ Sx2S
∗
x1

+
∑

x∈X
x 6=x1
x 6=x2

SxS
∗
x = Sx1S

∗
x2

+ Sx2S
∗
x1

+ (1− Sx1S
∗
x1
− Sx2S

∗
x2

).

Then a is defined by an odd table, so a /∈ V ′d(G). The group π(Vd(G)) is
generated by the set π(V ′d(G))∪ {π(a)}, so it is sufficient to prove that π(a) com-
mutes with every element of π(V ′d(G)). Let g be any element of V ′d(G). It is defined

by some even table

(
v1 v2 · · · vm

g1 g2 · · · gm

u1 u2 · · · um

)
, where the words vi, ui are all nonempty.

Then a−1ga = aga is defined by an even table of the form

( ev1 ev2 · · · evm

g1 g2 · · · gm

eu1 eu2 · · · eum

)
,

where ṽi and ũi are obtained from vi and ui by changing the initial letter x1 (or
x2) to the letter x2 (respectively x1). If the word ui does not begin neither with
x1 nor with x2 then ui = ũi. So, as above,

π(g) = π(Λu1(g1))π(Λu2(g2)) · · ·π(Λum(gm)),

π(a−1ga) = π(Λ
ũ1

(g1))π(Λ
ũ2

(g2)) · · ·π(Λ
ũm

(gm)).

But π(Λui(gi)) = π(Λ
ũi

(gi)), hence π(a−1ga) = π(g), so π(a) commutes with
the elements of the group π(V ′d(G)).
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So all the normal subgroups of Vd(G) contain the commutator subgroup.
The possible quotients of Vd(G) (and thus its abelianization) are described in the
next theorem.

Theorem 9.14. If d is even, then an abelian group H is a quotient of the
group Vd(G) if and only if there exists a surjective homomorphism π : G → H

such that g =
n∑

i=1

SyihiS
∗
xi

implies π(g) =
n∑

i=1

π(hi).

If d is odd, then an abelian group H is a quotient of the group Vd(G) if and
only if there exists an element z ∈ H such that z2 = 1 and a homomorphism

π : G→ H such that the group H is generated by π(G)∪{z}, and g =
n∑

i=1

SyihiS
∗
xi

implies π(g) =
n∑

i=1

π(hi) + sign(g), where sign(g) = z if g acts on X1 by an odd

permutation and sign(g) = 1 otherwise.

Proof. Suppose d is even and let π : Vd(G) → H be a surjective homomor-
phism with a nontrivial kernel. Then the kernel contains Vd.

Let g =
n∑

i=1

SyihiS
∗
xi

be an arbitrary element of the group G and let h =
m∑

i=1

SyiS
∗
xi

. Then we have

(9.2) π(g) = π(gh−1) =
n∑

i=1

π(Λyi(hi)).

(9.3) π(Λx(g)) =
n∑

i=1

π(Λxyi(hi)), for any x ∈ X.

We proved above that π(Λr(f)) = π(Λs(f)) for any nonempty r, s ∈ X∗.

Hence equations (9.2), (9.3) imply that π(g) = π(Λx(g)) =
n∑

i=1

π(hi). It follows

also that the elements π(g) for g ∈ G generate the whole group H.
Conversely, suppose that a surjective homomorphism π : G→ H is such that

g =
n∑

i=1

SyihiS
∗
xi

implies π(g) =
n∑

i=1

π(hi) for all g ∈ G. Let us extend it to the

whole group Vd(G) by the rule

π
( m∑

i=1

SuigiS
∗
vi

)
=

m∑

i=1

π(gi).

From the condition on the homomorphism π and the splitting rule defining
the elements of the group Vd(G) it follows that this extension is well defined.

Suppose now that d is odd and let π : Vd(G) → H be a surjective homomor-
phism with a nontrivial kernel. Then the image of Vd under π is a group of order
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at most 2. Let z be equal to the nontrivial element of π(Vd) if |π(Vd)| = 2 and to
the identity otherwise. Then equation (9.2) transforms into

π(g) = π(gh−1) =
n∑

i=1

π(Λyi(hi)) + π(h−1),

but then π(h−1) = sign(g). And similar arguments show that the homomorphism
π must satisfy the conditions of the theorem.

Conversely, if π satisfies the conditions of the theorem then we can extend it
to the whole group Vd(G) by the rule

π
( m∑

i=1

Sui
giS

∗
vi

)
= sign(t) +

m∑

i=1

π(gi),

where sign(t) is equal to z if the table t =
(

v1 v2 · · · vm

u1 u2 · · · um

)
is odd and to 1

otherwise. One can check directly that this extension is well defined and is a
homomorphism.

Example 9.15. For the Grigorchuk group, generated by a, b, c, d over the
alphabet {0 , 1}, we have a = S0S

∗
1 + S1S

∗
0 , b = S0aS

∗
0 + S1 cS

∗
1 , c = S0aS

∗
0 +

S1dS
∗
1 and d = S0S

∗
0 +S1 bS

∗
1 . So if H is a quotient of the group V2(G), then there

exists an epimorphism π : G → H such that π(a) = 0, π(b) = π(a) + π(c) = π(c)
and π(c) = π(d). But then π(b) = π(cd) = 2π(b), thus π(a) = π(b) = π(c) =
π(d) = 0 and the group H is trivial, i.e., the group V2(G) is simple.

Example 9.16. For the adding machine a we have a = S1S
∗
0 + S0aS

∗
1 . So,

in this case we have an epimorphism π : 〈a〉 → Z, which agrees with the recursion.
Therefore, the abelianization of the group V2(〈a〉) is Z.
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