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Abstract. Let A be a Banach algebra for which the group of invertible
elements is connected. A subspace L ⊆ A is a Lie ideal in A if and only if it
is invariant under inner automorphisms. This applies, in particular, to any
canonical subalgebra of an AF C∗-algebra. The same theorem is also proven
for strongly closed subspaces of a totally atomic nest algebra whose atoms
are ordered as a subset of the integers and for CSL subalgebras of such nest
algebras.

We also give a detailed description of the structure of a Lie ideal in any
canonical triangular subalgebra of an AF C∗-algebra.
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1. INTRODUCTION

In view of the close relationship between derivations and automorphisms, it is not
surprising that in many settings a subspace of an algebra is a Lie ideal if and only
if it is invariant under similarity transformations. We prove this equivalence for
closed subspaces of any Banach algebra for which the group of invertible elements
is connected. This includes all canonical subalgebras of an AF C∗-algebra. The
proof of this result is short and direct. Initially, we proved the equivalence in the
context of triangular subalgebras of AF C∗-algebras via a detailed analysis of the
structure of Lie ideals in triangular subalgebras. While the structure theorem is
no longer needed to prove that Lie ideals are similarity invariant, it remains of
independent interest and is described in Section 4 of this paper.

In the process of investigating triangular subalgebras of AF C∗-algebras, it
is appropriate to look at triangular subalgebras of finite dimensional C∗-algebras.
In fact, with only a moderate additional effort, we can obtain a description of Lie
ideals in an arbitrary digraph algebra. In all likelihood these finite dimensional
results are not new, but the authors know of no suitable reference (except in more
specialized contexts). These results appear in Section 3.
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The impetus for this note comes from a similar result by Marcoux and
Sourour ([8]) in a much more limited context: direct limits of full upper triangular
matrix algebras (Tn’s); i.e., subalgebras of UHF C∗-algebras which are strongly
maximal triangular in factors. The direct limit algebra context constitutes only
a small portion of [8]; most of that paper is devoted to weakly closed Lie ideals
in nest algebras and to Lie ideals in algebras of infinite multiplicity. In Section 2,
where we present the main theorem, we also prove that strongly closed Lie ideals
are similarity invariant in the context of totally atomic nest algebras whose atoms
are ordered as a subset of the integers. Since weak and strong closure are identical
for subspaces, this result is contained in [8]. Our proof is much shorter than the
one in [8], at the price of omitting a considerable amount of information about
the structure of Lie ideals in nest algebras. On the other hand, our method also
works for CSL-subalgebras of these “integer-ordered” nest algebras, so the domain
of validity of the equivalence is extended.

If A is an algebra, a subspace L is a Lie ideal if [x, a] = xa−ax ∈ L whenever
x ∈ L and a ∈ A. The subspace L is said to be similarity invariant if t−1xt ∈ L
whenever x ∈ L and t is an invertible element of A. David Pitts has pointed
out to the authors an attractive reformulation of the equivalence of these two
concepts (when valid): the family of inner derivations of A and the family of inner
automorphisms of A have the same invariant subspaces.

In order to avoid any ambiguity in the sequel, we shall use the term “asso-
ciative ideal”, rather than the usual term “ideal”, for an ordinary (2-sided) ideal.
Thus, all associative ideals are also Lie ideals, but not conversely.

For closed subspaces of a Banach algebra, similarity invariance for a subspace
implies that the subspace is a Lie ideal. This is an unpublished result of Topping; a
brief proof is contained in Theorem 2.1 of this paper. The description of Lie ideals
goes back a long way; in a purely algebraic context Herstein ([3]) studied Lie ideals
(and their relationship with associative ideals) in 1955. An extensive treatment of
the algebraic theory appears in his book ([4]). Lie ideals in the algebra of all linear
transformations on an infinite dimensional vector space were studied by Stewart in
[14]. Murphy ([10]) investigated Lie ideals and their relationship with associative
ideals in algebras with a set of 2 × 2 matrix units. Fong, Meiers and Sourour
([1]) and Fong and Murphy ([2]) have written about these ideas in the B(H)
context. Marcoux ([6]) identified all Lie ideals in a UHF C∗-algebra and proved
that they are similarity invariant (as well as invariant under unitary conjugation).
He also described the Lie ideals in algebras of the form A ⊗ C(X), where A is
either a full matrix algebra or a UHF C∗-algebra. Further relevant information
in the C∗-algebra setting can be found in [12] and in [7]. In C∗-algebra contexts,
invariance under unitary conjugation is generally equivalent to invariance under
inner derivations. Moving to the non-self-adjoint operator algebra literature, see
Hudson, Marcoux and Sourour ([5]) for a description of the form of Lie ideals in
nest algebras and in direct limit algebras which are strongly maximal triangular
in factors. And, as mentioned above, [8] shows that a weakly closed subspace in a
nest algebra is a Lie ideal if, and only if, it is similarity invariant. The assumption
of weak closure can be dropped if the nest has no finite dimensional atoms.
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2. LIE SPACES AND SIMILARITY

We begin with a result that refines the relationship between Lie ideals and simi-
larity invariant subspaces given by Topping.

If A is a unital Banach algebra and X is a Banach space, then we shall call
X a bounded, Banach A-bimodule provided that X is an A-bimodule such that the
identity element ofA acts as the identity on X and provided that the module action
is bounded; that is, there exists a constant K such that ‖axb‖ 6 K‖a‖ ‖x‖ ‖b‖ for
all a, b in A and x in X . A linear subspace (not necessarily a submodule!) L of
X is called a Lie subspace over A provided that ax− xa ∈ L for every x ∈ L and
every a ∈ A. Thus, a Lie ideal is just a Lie subspace of A. We call a subspace
L of X similarity invariant provided that a−1xa ∈ L for every x ∈ L and every
invertible element a ∈ A.

Theorem 2.1. Let A be a unital Banach algebra, let X be a bounded, Ba-
nach A-bimodule, let G denote the connected component of the identity in the group
of invertible elements of A and let L be a closed subspace of X . Then L is a Lie
subspace if and only if b−1Lb ⊆ L for every b ∈ G.

Proof. Assume that L is a closed Lie subspace and that b is in G. Since b is
in the connected component of the identity, b is a finite product of exponentials.
Therefore, to prove that b−1Lb ⊆ L, it suffices to prove that e−aLea ⊆ L, for any
a ∈ A.

Fix x ∈ L and set x(t) = e−taxeta. This is an analytic function. An easy
induction argument shows that, for all n > 0, the derivatives satisfy the relation
x(n+1)(t) = x(n)(t)a− ax(n)(t). Since x(0) = x ∈ L, it follows that x(n)(0) ∈ L for
all n > 0. Therefore, all the terms in the power series for x(t) lie in L. Since L is
closed, it follows that x(t) ∈ L for all t. In particular, e−axea ∈ L.

Conversely, assume that b−1Lb ⊆ L for every b ∈ G. Given any a ∈ A, form
x(t) as above. By assumption, x(t) ∈ L for all t and hence the derivative x′(t) ∈ L
for all t. Evaluating at t = 0, we find that xa−ax ∈ L and our proof is complete.

As mentioned in the introduction, Topping has proven that any closed sub-
space of A which is similarity invariant is a Lie ideal. His proof is essentially
reproduced in the proof of the converse in Theorem 2.1.

Theorem 2.1 shows that in order to determine whether or not a closed Lie
subspace L of a bounded, Banach A-bimodule is similarity invariant, it is sufficient
to check whether or not b−1Lb ⊆ L for any collection of elements b that contains
at least one representative from each coset in A−1/G.

Corollary 2.2. Let B be an AF C∗-algebra with canonical masa D and
let A be a canonical subalgebra of B, i.e., a subalgebra such that D ⊆ A ⊆ B. A
closed subspace of B is a Lie subspace over A if and only if it is invariant under
similarities.

Proof. Clearly, B is a bounded, Banach A-bimodule. The invertibles in a
canonical subalgebra are connected. (Any invertible t can be closely approxi-
mated by — and hence path connected to — an invertible in a finite dimensional
approximant of A. Each invertible in a (finite dimensional) digraph algebra is
path connected to the identity element.)
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We now turn attention to some atomic nest algebras. It is not known whether
the invertibles in a nest algebra are connected, not even when the nest is atomic.
Therefore Theorem 2.1 does not apply. However, in the “integer ordered” cases we
can still obtain the similarity invariance of Lie ideals without using the structure
of Lie ideals. Thus we provide, albeit only in a special case, a shortcut to the
argument in [8]. This method also works for certain CSL subalgebras of such a
nest algebra.

Let N be a subset of Z and, for each n ∈ N , let Hn be a Hilbert space. When
N is a finite set, the following discussion is valid with some minor modification. It
is, however, easy to provide an even simpler proof of Theorem 2.3 for finite nests.
Accordingly, we assume that N is an infinite set. Without any loss of generality,
we may assume that N is one of Z, N or −N. Let H =

∑
n∈N

⊕Hn. For each n,

let En denote the orthogonal projection of H onto Hn. If Pn =
∨

k6n

En, then

N = {Pn : n ∈ N} ∪ {0, I} is a totally atomic nest in H whose atoms, {En}n∈N ,
are order isomorphic to N . (En ¿ Em if and only if EnHEm ⊆ AlgN .)

Let A be a reflexive subalgebra of AlgN such that LatA is a totally atomic
lattice whose atoms are exactly the atoms of N . The elements of AlgN consist
of all upper triangular matrices with respect to the decomposition H =

∑
n∈N

⊕Hn.

The elements of A consist of those matrices in AlgN whose entries are 0 in certain
specified locations.

Let A = (Ai,j) be an operator in A. Each entry Ai,j is an operator in
B(Hj ,Hi) and Aij = 0 when i > j and when (i, j) is one of the specified locations
mentioned above. For each n ∈ N ∪ {0}, define Dn =

∑
k∈N

EkAEk+n. The matrix

for Dn is (Ci,j), where Ci,i+n = Ai,i+n for all i and Ci,j = 0 for all other values of
i and j. Now define

A(z) =
∞∑

n=0

Dnzn =
(
Ai,jz

j−i
)
.

Note that ‖Dn‖ 6 sup
k∈N

‖EkAEk+n‖ 6 ‖A‖, for each n > 0. Consequently, the

series
∞∑

n=0
Dnzn converges uniformly on any disk |z| < r < 1 and A(z) is analytic

on the open disk |z| < 1.
If |z| = 1, then A(z) is unitarily equivalent to A. Indeed, write z = eiθ

and let U(θ) be the diagonal unitary matrix whose nth-diagonal entry is einθEn.
Then U(θ) ∈ A and U(θ)∗AU(θ) = A(eiθ). Thus ‖A(eiθ)‖ = ‖A‖ for all θ; by the
maximum modulus principle, ‖A(z)‖ 6 ‖A‖ for all |z| 6 1. Although the series
∞∑

n=0
Dnzn need not converge uniformly on the whole unit disk, it does converge

strongly. This follows from the fact that for any fixed vector h ∈ H, ‖Dnh‖ → 0.
The function A(z) is continuous with respect to the strong operator topology on the
closed unit disk. For any vectors h1 and h2 in H, the function z → 〈A(z)h1, h2〉 is
a complex valued analytic function in the open unit disk with continuous boundary
values.
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Finally, observe that if A ∈ A is invertible with inverse B in A, then
A(z)B(z) = I for all |z| 6 1. Indeed, if z = eiθ then

A(z)B(z) = U(θ)∗AU(θ)U(θ)∗BU(θ)

= U(θ)∗ABU(θ) = I.

Since this identity holds on the boundary of the unit disk and A(z)B(z) is analytic,
it holds throughout the unit disk.

Theorem 2.3. Let A ⊆ B(H) be a CSL subalgebra of a nest algebra AlgN
whose atoms have order type isomorphic to a subset of the integers. Assume that
LatA is totally atomic and that the atoms for LatA are precisely the atoms for
N . Let L ⊆ B(H) be a strongly closed Lie subspace over A. Then L is invariant
under similarities from A.

Proof. Let X ∈ L and let A be an invertible element of A with inverse
B. For |z| < 1, it is easy to see that A(z) is in the connected component of
the identity in the group of invertibles for A. Since B(z) is the inverse of A(z),
Theorem 2.1 implies that A(z)XB(z) ∈ L for all |z| < 1. But A(z) → A and
B(z) → B strongly as z → 1 and both A(z) and B(z) are uniformly bounded
on the unit disk, so A(z)XB(z) → AXB strongly. Since L is strongly closed,
AXB = AXA−1 ∈ L.

3. DIGRAPH ALGEBRAS

In this section, we shall describe all the Lie ideals in a family of operator algebras
known variously as “digraph algebras,” “incidence algebras” and “finite dimen-
sional CSL-algebras.” In addition, we shall give an alternate proof that every
Lie ideal is similarity invariant. (Since the invertibles are connected in a digraph
algebra, this result is a special case of Theorem 2.1.)

Fix a finite dimensional Hilbert space H. A digraph algebra is a subalgebra
A of B(H) which contains a maximal abelian self-adjoint subalgebra D of B(H).
Since D is maximal abelian, the invariant projections for A, LatA, are elements
of D and so are mutually commuting. Thus A is a CSL-algebra. Obviously, A is
finite dimensional; on the other hand, every finite dimensional CSL-algebra acts
on a finite dimensional Hilbert space and contains a masa. For another description
of A, let n be the dimension of H. Then A is isomorphic to a subalgebra of Mn

which contains all the diagonal matrices, Dn. An n × n pattern matrix, whose
entries consist of 0’s and ∗’s, is associated with A. After identifying A with
the matrix algebra to which it is isomorphic, A consists of all those matrices with
arbitrary entries where there are ∗’s in the pattern matrix and 0’s in the remaining
locations. Not every pattern gives rise to an algebra, but those that do yield all
the digraph algebras. This description is the one which gives rise to the term
“incidence algebra.” The term digraph algebra refers to the fact that associated
with A there is a directed graph on the set of vertices {1, 2, . . . , n}. This graph
contains all the self loops. Then A contains the matrix unit eij if and only if there
is a (directed) edge from j to i in the digraph. The matrix units in A generate A
as an algebra.
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Of these three descriptions, we shall primarily use the incidence algebra
pattern. Furthermore, for a suitable choice of matrix units, we may assume that
A has a block upper triangular format. One way to see this is to look at the set
{f1, . . . , fp} of minimal central projections in A∩A∗. It is then easy to show that
for each i, fiAfi is isomorphic to a full matrix algebra and that if i 6= j, then
at least one of fiAfj and fjAfi is {0}. Furthermore, if fiAfj contains non-zero
elements, then it contains all elements of fiB(H)fj . After a possible reindexing,
we may assume that i > j implies fiAfj = {0}. A selection of matrix units for
B(H) compatible with the minimal central projections puts A into block upper
triangular form. An alternate way to achieve the same form is to select a maximal
nest from within LatA and then choose matrix units compatible with the nest. It
is then routine to show that A has a block upper triangular form in which each
non-zero block is full.

We shall refer to E =
p∑

i=1

fiAfi as the diagonal part of A and S =
∑

i<j

fiAfj

as the off-diagonal part of A. The diagonal part of A contains, but is in general
larger than, the masa D. Since E = A ∩ A∗, the diagonal part is intrinsically
determined. In contrast, D is determined only up to an inner automorphism from
E .

Any associative ideal in A is, of course, a Lie ideal; we shall be concerned
with associative ideals which are subsets of S. One reason for this is that, as we
shall see later, if L is a Lie ideal, then L ∩ S is an associative ideal.

Definition 3.1. An off-diagonal associative ideal is an associative ideal K
which is a subset of S. This is equivalent to requiring that K ∩D = {0}.

Fix, for the moment, an off-diagonal associative ideal K. Then K is the
smallest Lie ideal L with the property that L ∩ S = K. It is a simple matter to
check that if fiKfj 6= {0}, then fiKfj = fiAfj (= fiB(H)fj). In addition, for
t 6 i and s > j, ftKfs = ftAfs. Thus, K consists only of full blocks and, when
the pattern for K contains a ∗, there is also a ∗ in all locations above and to the
right (based on the pattern for A). Note: we use the non-strict interpretations
for “above” and “to the right”. “Above” permits entries in the same row and “to
the right” permits entries in the same column. What we have just described for
off-diagonal ideals is, of course, true for all associative ideals.

There are Lie ideals larger than K whose off-diagonal part (intersection with
S) is K. Each of these can be obtained by adding an appropriate subspace of E to
K. Accordingly, we make the following definition:

Definition 3.2. Let K be an off-diagonal associative ideal in A. A Lie
addend for K is a subspace G of E with the property that G +K is a Lie ideal.

Example 3.3. We describe an example of a Lie addend F for K. Later on,
we shall see that this is the largest Lie addend for K; equivalently, F + K is the
largest Lie ideal which satisfies the property that L ∩ S = K. Let S̃ = {(i, j) :
fiAfj 6= {0} and i < j} and K̃ = {(i, j) : fiKfj 6= {0}}. Each fiEfi is isomorphic
to a full matrix algebra. Suppose that (i, j) ∈ S̃ \ K̃. Then for each x ∈ F , both
fixfi and fjxfj must be scalar matrices with equal scalars. On the other hand, if
i is such that no ordered pair (i, j) or (j, i) lies in S̃ \ K̃, then fixfi is arbitrary.
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In this case, fiFfi = fiB(H)fi is a subset of F . Thus, we see that each fiFfi

is either the scalars or the full matrix algebra fiB(H)fi. There are constraints
relating some of the scalar blocks, as indicated above; there are no constraints
involving the full matrix algebra blocks.

To show that F + K is a Lie ideal, it is sufficient to show that for each
x ∈ F + K and each matrix unit ets ∈ A, [x, ets] ∈ F + K. Since K is a Lie
ideal in A, we may restrict attention to the case in which x ∈ F . The matrix
unit ets is either in S or in E . First consider the case in which ets is in S. Then
there is a pair (i, j) ∈ S̃ such that ets = fietsfj . (Note: i < j). Now there
are two subcases to consider. One is when (i, j) ∈ K̃. Write x =

∑
k

fkxfk.

If k 6= i, j then [fkxfk, ets] = 0, an element of F + K. If k = i or k = j,
then [fkxfk, ets] ∈ fiAfj = fiKfj and so is an element of K. It now follows
that [x, ets] ∈ K. The remaining subcase occurs when (i, j) ∈ S̃ \ K̃. Then,
[x, ets] = fixfiets − etsfjxfj . But now there is a scalar λ such that fixfi = λfi

and fjxfj = λfj ; consequently, [x, ets] = 0. The second case to consider is when
ets ∈ E . Then for some i, ets = fietsfi. It follows that [x, ets] is an element of
fiAfi and [x, ets] = [fixfi, ets]. Either fiAfi is a subset of F (when there is no
j such that either (i, j) or (j, i) lies in S̃ \ K̃) or fixfi is scalar and [x, ets] = 0;
either way, [x, ets] ∈ F +K.

Before describing the structure of Lie addends, we show that any Lie ideal
has the form L = G + K, where K is an off-diagonal associative ideal and G is a
Lie addend for K.

Proposition 3.4. Let L be a Lie ideal in A. Let K = L∩S and G = L∩E.
Then L = G +K and K is an associative ideal in A.

Proof. As before, f1, . . . , fp are the minimal central projections of E in an
order which renders A block upper triangular after the selection of a system of
matrix units compatible with the fi. Define π :A → E by π(x) =

∑
i

fixfi. Note

that π is a conditional expectation onto E .
Suppose that x ∈ L. We claim that x − π(x) is an element of L. Since

x− π(x) =
∑

i<j

fixfj , it will suffice to show that each fixfj ∈ L. But this follows

from the fact that fixfj = [fi, [x, fj ]] (since fjxfi = 0 when i < j). Since both x
and x− π(x) are in L, so is π(x). We now have

K = {x ∈ L : π(x) = 0} = {x− π(x) : x ∈ L}
and

G = π(L) ⊆ L.

For any x ∈ L, x = π(x) + (x− π(x)), so L = G +K. Since S and L are Lie ideals
in A, K is also a Lie ideal. It remains to show that K is an associative ideal.

Let x ∈ K. We have just seen that fixfj ∈ L whenever i < j. Since fixfj

is clearly in S, it is an element of K. If fiKfj 6= {0}, then we can find x ∈ K
such that fixfj 6= 0. If y is any rank one element of A such that fiyfi = y,
then yfixfj = [y, fixfj ] is also in K. Similarly, if z is any rank one element of A
such that fjzfj = z, then yfixfjz = [yfixfj , z] is in K. But suitable choices of
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y and z produce any rank one element of fiB(H)fj . Thus, fiKfj 6= {0} implies
that fiB(H)fj ⊆ K; in other words, K consists of certain of the strictly upper
triangular blocks from A.

To show that K is an associative ideal in A, we need to show that when
a block appears in K, so does each block (from the pattern for A) which lies
to the right and above. So, assume that fiB(H)fj ⊆ K and (with j < k) that
fjAfk 6= {0}. Let y ∈ fjAfk be such that y 6= 0 and let x ∈ fiB(H)fj be such
that xy 6= 0. Now yx = yfkfix = 0 (since i < j < k), so xy = [x, y] is a non-zero
element of K. But this implies that fiB(H)fk ⊆ K. In a similar way, if k < i < j
and fkAfi 6= {0}, then fiB(H)fj ⊆ K. Thus K is an associative ideal in A.

To complete the description of Lie ideals in A, it remains to describe the
structure of an arbitrary Lie addend G for an off-diagonal associative ideal K. We
continue to identify fiB(H)fi with a full matrix algebra acting on fiH.

Proposition 3.5. Let K be a an off-diagonal associative ideal and let G be
a Lie addend for K. Let S̃ = {(i, j) : fiAfj 6= {0} and i < j} and K̃ = {(i, j) :
fiKfj 6= {0}}. If (i, j) ∈ S̃ \ K̃, then for each x ∈ G, fixfi and fjxfj are scalar
matrices with equal scalars. For each i, fiGfi is one of the following four subspaces
of fiB(H)fi: {0}, the scalar matrices, the set of all matrices with trace zero, or
the full matrix algebra. Each element of fiGfi with trace zero is an element of G.

In particular, F , the Lie addend in Example 3.3 is a maximal Lie addend.
Any subspace G of F which satisfies these properties is a Lie addend.

Remark 3.6. It is not true that fiGfi ⊆ G, when G is a Lie addend. (This
would violate the scalar constraints when (i, j) ∈ S̃ \ K̃.) The condition that
trace zero elements in fiGfi are in G essentially says that G satisfies no non-
scalar constraints. (Additional scalar constraints beyond the ones required for
membership in F may be satisfied.)

Proof. If G is a subspace of F satisfying the conditions in Proposition 3.5,
then a slight variation of the argument in Example 3.3 showing that F+K is a Lie
ideal shows that G +K is a Lie ideal. The assumption that trace zero elements of
fiGfi are in G is used when x ∈ G and fixfi is non-scalar. In this situation, there
are matrix units supported in the block associated with fi such that [x, e] 6= 0.
But when [x, e] 6= 0 and e = fiefi, [x, e] is a non-zero element of fiGfi with trace
zero. The assumption implies that [x, e] ∈ G ⊆ G +K, as required for G +K to be
a Lie ideal.

Now suppose that G is a Lie addend for K. Let L denote G + K. While
fiLfi = fiGfi need not be a Lie ideal in L (indeed, need not even be a subset of
L), it is easy to see that fiLfi is a Lie ideal in the full matrix algebra fiB(H)fi.
Since there are only four Lie ideals in a full matrix algebra, this shows that fiGfi

is one of the four subspaces cited in Proposition 3.5.
Suppose that figfi is an element of fiGfi with trace zero. If figfi = 0, then

it is certainly an element of G. If figfi 6= 0, then there is an element h in fiB(H)fi

which does not commute with figfi. But h ∈ A and [g, h] = [figfi, h] is then a
non-zero element of L. Let x denote this element. Observe that x is a non-zero
element of fiGfi which has trace zero. But x is also in L; therefore, the smallest
Lie ideal containing x in the algebra fiB(H)fi is also contained in L. This is the
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Lie algebra of trace zero matrices in fiB(H)fi. Since this is also a subset of E , it
is a subset of G. Thus, all elements of fiGfi with trace zero are elements of G.

All that remains is to prove the constraint conditions when (i, j) ∈ S̃ \ K̃.
The following lemma decreases the need for cumbersome notation.

Lemma 3.7. Let H = H1 ⊕H2 be a direct sum of Hilbert spaces and let f1

and f2 be the orthogonal projections on H1 and H2. Let x ∈ f1B(H)f1+f2B(H)f2.
Assume that [x, d] = 0 for all d ∈ B(H) for which d = f1df2. Then there is a scalar
λ such that x = λf1 + λf2.

Remark 3.8. Of course, the conclusion simply says that x is a scalar op-
erator. But in the application of the lemma, there will be additional summands
present, so the λf1 + λf2 format is more suitable.

Proof. Let α1, α2, . . . be an orthonormal basis for H1 and β1, β2, . . . an or-
thonormal basis for H2. Let d = αiβ

∗
j be the rank one partial isometry in B(H)

with initial space Cβj and final space Cαi. Since d = f1df2,

f1xf1d− df2xf2 = [f1xf1 + f2xf2, d] = [x, d] = 0.

For any p, 〈f1xf1dβj , αp〉 = 〈f1xf1αi, αp〉 = 〈xαi, αp〉. If p 6= i then 〈df2xf2βj , αp〉
= 0. (The range of d is Cαi, which is orthogonal to αp.) It follows that

〈xαi, αp〉 = 〈(f1xf1d− df2xf2)βj , αp〉 = 0.

This is valid for all pairs of indices p and i with p 6= i.
Similarly, for any q, 〈df2xf2βq, αi〉 = 〈f2xf2βq, βj〉 = 〈xβq, βj〉. And if q 6= j,

then f1xf1dβq = 0. Hence

〈xβq, βj〉 = −〈(f1xf1d− df2xf2)βq, αi〉 = 0.

This too is valid for all pairs q and j with q 6= j.
We also have

〈f1xf1dβj , αi〉 = 〈xαi, αi〉, and 〈df2xf2βj , αi〉 = 〈xβj , βj〉.
Therefore,

〈xαi, αi〉 − 〈xβj , βj〉 = 〈(f1xf1d− df2xf2)βj , αi〉 = 0

and 〈xαi, αi〉 = 〈xβj , βj〉. This holds for any pair i and j. Letting λ be this
common value, we now have x = λf1 + λf2.

It remains to show that if fiAfj 6= {0} and fiLfj = {0}, then for each x ∈ G
there is a scalar λ such that fixfi = λfi and fjxfj = λfj . Recall that when
fiAfj 6= {0}, then fiAfj = fiB(H)fj . Let d ∈ B(H) be such that d = fidfj . For
x ∈ G, [x, d] = fi[x, d]fj ∈ fiLfj , so [x, d] = 0. An application of Lemma 3.7
completes the proof of the Proposition 3.5.

We now have a complete description of the structure of a Lie ideal in a
digraph algebra. Using this description, we give an alternate proof of Theorem 2.1
in the digraph algebra context:
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Proof. (Alternate proof of Theorem 2.1 for digraph algebras) We only need
to show that if L is a Lie ideal then it is invariant under all similarity transforms.
Write L in the form G+K as above. Since K is an associative ideal, it is invariant
under any similarity transform. This reduces the proof to showing that if x ∈ G
and if t ∈ A is invertible, then t−1xt ∈ G +K.

If t is an invertible element of A, then its diagonal part d =
∑
i

fitfi is an

invertible element of E . (The inverse is
∑
i

fit
−1fi.) Now d−1t is invertible in A

and can be written in the form d−1t = 1 + n, where 1 is the identity element and
n is strictly block upper triangular and therefore nilpotent. So we can split the
argument into two cases.

Case 1. Assume that x ∈ G and that d is an invertible element of E . For
each i, let xi = fixfi and di = fidfi. Then d−1xd =

∑
i

d−1
i xidi. (Here, d−1

i is to

be interpreted as the inverse of di in fiB(H)fi.) If i is such that fiGfi is either
{0} or the trace zero elements of fiB(H)fi, then d−1

i xdi is a trace zero element of
fiGfi and so is in G. If i is such that fiGfi are scalar elements, then d−1

i xidi = xi;
in particular, all the scalar constraints are preserved by conjugation by d. This
leaves

∑
d−1

i xdi where the sum is taken over those i for which fiGfi is a full matrix
algebra. There may be constraints involving these indices, but they are all on tr xi

only. Since similarity preserves traces, the d−1
i xdi satisfy the same constraints, so∑

d−1
i xdi ∈ G. Thus d−1xd is an element of G ⊆ G + K. (We do not need the

details, but the constraints which determine G as a subspace of F take the form of
a set of linear equations in the indeterminates Ti, where the Ti correspond to those
fi for which fiGfi is either the full matrix algebra or the scalars. The elements of
G are those x ∈ F such that the numbers tr(f−1

i xfi) satisfies all the equations.)
Case 2. Assume that x ∈ G and that n is a nilpotent element of A. Let k be

the order of nilpotence for n. Observe that

(1 + n)−1x(1 + n) = (1− n + n2 − n3 + · · ·+ (−1)knk)x(1 + n)

= x + (−nx + xn) + (−nxn + n2x) + (n2xn− n3x)

+ (−n3xn + n4x) + · · ·+ ((−1)k−1nk−1xn + (−1)knkx)

+ (−1)knkxn

= x− [n, x] + n[n, x]− n2[n, x] + · · ·+ (−1)k+1nk[n, x].

The last equality uses the fact that nk+1 = 0. Since x ∈ G ⊆ L, [n, x] ∈ L. But
n is strictly block upper triangular in A; it follows that [n, x] is also strictly block
upper triangular. Hence, [n, x] ∈ K. Since K is an associative ideal, nj [n, x] ∈ K
for all j. This shows that (1 + n)−1x(1 + n) ∈ G +K, completing the proof of the
theorem.

3.1. Triangular algebras (finite dimensional). Finite dimensional tri-
angular algebras form a subclass of the digraph algebras; consequently the work
above on digraph algebras gives a description of the Lie ideals in a finite dimen-
sional triangular algebra. Since our goal is to extend these results to triangular
subalgebras of AF C∗-algebras, we pause to describe explicitly the specialization
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of the digraph algebra results to the triangular algebra context. There is more
than one way to phrase this description; the one used below was selected for its
compatibility with the use of groupoids in studying subalgebras of AF C∗-algebras.

Any finite dimensional triangular operator algebra is isomorphic to a sub-
algebra of the upper triangular matrices Tn which contains the diagonal Dn, for
some positive integer n. Accordingly, B = Mn(C) is the context for the following
discussion.

With n fixed, we let D be the algebra of diagonal matrices; T , the algebra of
upper triangular matrices; and S, the algebra of strictly upper triangular matrices
in B. If C ⊆ B is a bimodule over D, let

spec(C) = {(i, j) : cij 6= 0, for some c ∈ C}.
It is easy to check that C = {x ∈ B : xij = 0 whenever (i, j) /∈ spec(C)}.

Let A be a triangular subalgebra of T (so A ∩ A∗ = D). Suppose that K
is an associative ideal in A and that K ∩ D = {0} (i.e., K ⊆ A ∩ S). Then K is
the smallest Lie ideal in A with the property that L ∩ S = K. Let A = spec(A),
D = spec(D) and K = spec(K).

Let E = {d ∈ D : dii = djj whenever (i, j) ∈ A \K}. Then E + K is a Lie
ideal and is the largest Lie ideal such that L ∩ S = K. Furthermore, if F is a
subspace of E , then F + K is a Lie ideal whose off-diagonal part is K. Letting
Lie(K) = {F+K : F ⊆ E}, Lie(K) is the family of all Lie ideals whose off-diagonal
part is K. Finally, if L is any Lie ideal in A, and if K = L ∩ S, then K is an
associative ideal and L ∈ Lie(K).

A direct proof of this description of the Lie ideals in a finite dimensional
triangular algebra is somewhat simpler than the argument for the digraph algebra
case. The primary simplification arises from the fact that all blocks are 1× 1 and
therefore have no non-zero elements with trace zero. For the full upper triangular
matrix algebra case, the description is covered by the literature on Lie ideals in
nest algebras.

4. TRIANGULAR SUBALGEBRAS OF AF C∗-ALGEBRAS

In this section, B will denote an AF C∗-algebra with canonical diagonal D and
A will be a triangular subalgebra of B with diagonal D (i.e., A ∩ A∗ = D). This
implies that there is a sequence Bn of finite dimensional C∗-algebras, each with a
maximal abelian self-adjoint subalgebra Dn such that B = lim

−→
Bn and D = lim

−→
Dn.

We can, and do, view the Bn as a chain of subalgebras of B in the usual way.
Since A is a bimodule over D, A is inductive. This means that An

def= A∩Bn is a
triangular subalgebra of Bn with diagonal Dn and A = lim

−→
An.

In addition to the presentation for A described above, we shall make use
of “coordinitization” for A. Coordinitization, or groupoids, for C∗-algebras is
treated in detail in the books of Renault ([13]) and Paterson ([11]). For a good
introduction to the use of groupoids in non-self-adjoint algebras, see Muhly and
Solel ([9]). For the convenience of the reader, we provide a brief sketch of the most
relevant aspects of coordinitization.

Since B is an AF C∗-algebra, it is a groupoid C∗-algebra. Let G be the
groupoid. The groupoid can be realized as a topological equivalence relation on
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a compact Hausdorff, completely disconnected set X; X will be such that D ∼=
C(X). It is possible to pick a system of matrix units {en

ij} for A such that,
for each n, {en

ij} are the matrix units which generate An and each matrix unit
in An can be written as a sum of matrix units in An+1. The matrix units are
all normalizing partial isometries for D. (A partial isometry v is normalizing if
v∗Dv ⊆ D and vDv∗ ⊆ D.) The action of a normalizing partial isometry on D
induces a partial homeomorphism on X and the equivalence relation G is exactly
the union of the graphs of all the partial homeomorphisms induced by normalizing
partial isometries. The multiplication on G is defined for those pairs of elements
(x, y) and (w, z) for which w = y; the product for a composable pair is given by
(x, y)(y, z) = (x, z). Inversion is given by (x, y)−1 = (y, x). The topology on G is
the one obtained by declaring that each such graph is an open subset of G. It turns
out that these sets are all also closed, in fact, compact. This description makes it
clear that the groupoid is independent of the presentation, but a very handy fact
is that G is the union of the graphs of the matrix units in the presentation.

The elements of B can be identified with elements of C0(G) (but not all
elements of C0(G) correspond to elements of B). We won’t need all the details of
this, but we will need the formula for multiplication: if f and g are elements of B
viewed as functions in C0(G), then

f · g(x, y) =
∑

u

f(x, u)g(u, y)

where u varies over the equivalence class of x (which is the same as the equivalence
class of y). Note, in particular, that if g ∈ D then the support of g is in {(x, x) :
x ∈ X} and f · g(x, y) = f(x, y)g(y, y) and g · f(x, y) = g(x, x)f(x, y).

If C ⊆ B is any bimodule over D, then C = {(x, y) ∈ G : f(x, y) 6=
0 for some f ∈ C} has the property that C = {f ∈ B : supp(f) ⊆ C}. (This
is the spectral theorem for bimodules ([9]); we shall refer to C as the spectrum of
C and write C = spec(C).)

With this terminology, spec(D) = {(x, x) : x ∈ X}. It is customary to
identify D = spec(D) with X (which is the spectrum of D in the usual sense for
abelian C∗-algebras) by writing x in place of (x, x), but we won’t do so in this
treatment. If A = spec(A), then A is a subrelation of G whose intersection with
its reversal (the spectrum of A∗) is exactly D. Let S = A \D. If f ∈ A, then we
can write f = f |D + f |S ; this gives a decomposition of f into a diagonal part and
an off-diagonal part.

There is another way to effect the same decomposition, via a contractive
conditional expectation onto the diagonal. To define this conditional expectation
we use the presentation lim

−→
Bn and the matrix unit system {en

ij}. For each n, define

πn on B by πn(f) =
∑
i

en
iifen

ii. The sequence of maps πn converges pointwise to

a contractive conditional expectation of B onto D. If f ∈ A, it can be shown
that π(f) = f |D and f − π(f) = f |S . In particular, the conditional expectation is
independent of the choice of presentation or the choice of matrix units.

If f and g are elements of A, then the index of summation in the formula
for the product f · g(x, y) =

∑
u

f(x, u)g(u, y), runs over all elements u such that

(x, u) ∈ A and (u, y) ∈ A. (This is always a countable set.) In particular, if x = y
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then the only possible value for u is x, so f · g(x, x) = f(x, x)g(x, x). From this it
immediately follows that all commutators vanish on D.

Let K be an associative ideal in A such that K∩D = {0}. Let K = spec(K).
Thus K ∩D = ∅ and K ⊆ S. Also, π(f) = 0 for all f ∈ K. Trivially, K is a Lie
ideal in A. Now let E = {f ∈ D : f(x, x) = f(y, y) whenever (x, y) ∈ S \K}. Let
F be any subspace of E and let L = F +K. With this notation:

Proposition 4.1. L is a Lie ideal in A.

Proof. It suffices to prove that [f, e] ∈ L for any f ∈ F and any matrix unit e
in a matrix unit system for A. If e is a diagonal matrix unit, then [f, e] = 0 ∈ L. So
assume that e is off-diagonal. Viewed as a function in C0(G), e is the characteristic
function of a G-set which is contained in S. Since the support of [f, e] is disjoint
from D, it is contained in S. If we can show that it is contained in K, then
[f, e] ∈ K ⊆ L. So let (x, y) ∈ S \K. Then

[f, e](x, y) = f · e(x, y)− e · f(x, y) = f(x, x)e(x, y)− e(x, y)f(y, y)

= (f(x, x)− f(y, y))e(x, y) = 0.

This shows that [f, e] is supported in K.

The next theorem shows that all closed Lie ideals have this form.

Theorem 4.2. If L is a Lie ideal in A then L = F + K, where K is a
diagonal disjoint associative ideal in A and F is a subspace of

EK = {f ∈ D : f(x, x) = f(y, y) whenever (x, y) ∈ S \K}.
Proof. Assume that L is a Lie ideal in A. We may define K in any of several

equivalent ways:

K = {f ∈ L : π(f) = 0} = {f − π(f) : f ∈ L} = {f ∈ L : supp(f) ⊆ S}.
We must show that K is an associative ideal in A; the first step in that direction
is to show that K is a bimodule over D. (The inductivity of K will be helpful in
showing that K is an associative ideal.) The following lemma is useful in showing
that K is a bimodule over D.

Lemma 4.3. Let L be a Lie ideal in A and let f ∈ L. Let d1, . . . , dq be the
minimal diagonal projections in Dm. Then, for each i, dif − difdi is an element
of L.

Proof. Fix i. If j 6= i then [[di, f ], dj ] = [dif − fdi, dj ] = difdj + djfdi ∈ L.
Hence,

∑
j 6=i

difdj +
∑
j 6=i

djfdi ∈ L. We also have

[di, f ] = dif − fdi =
n∑

j=1

difdj −
n∑

j=1

djfdi =
∑

j 6=i

difdj −
∑

j 6=i

djfdi ∈ L.

Take an average to see that
∑

j 6=i

difdj = dif(1− di) = dif − difdi ∈ L. (Or, more

succinctly, dif − difdi = (1/2)
(
[di, f ] +

∑

j 6=i

[di, [f, dj ]]
)
∈ L.)
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Let f ∈ K. Fix n and let e1, . . . , ep be the minimal diagonal projections in
Dn. As above

f − πn(f) =
∑

i 6=j

eifej

and eifej + ejfei ∈ L for each pair i, j with i 6= j. By the way, even when
ejAnei = {0}, it is possible that both eifej and ejfei are non-zero.

In order to show that K is a left D module, it suffices to show that d(eifej +
ejfei) ∈ K for all d ∈ D and all pairs i, j with i 6= j. It then follows that
df − dπn(f) ∈ K and, since K is closed, df = lim

n
(df − dπn(f)) ∈ K. To do this for

all d, it is enough to show that d(eifej + ejfei) ∈ K when d is a minimal diagonal
matrix unit in Dm and m > n.

Fix m > n and let d be a minimal diagonal matrix unit in Dm. Since m > n,
d is a subprojection of one of the ek. In particular, since i 6= j, either dei = 0 or
dej = 0; in either case d(eifej + ejfei)d = 0. But then Lemma 4.3 yields

d(eifej + ejfei) = d(eifej + ejfei)− d(eifej + ejfei)d ∈ L.

But π(d(eifej + ejfei)) = dπ(eifej + ejfei) = 0, so d(eifej + ejfei) ∈ K, as
desired.

This shows that K is a left D-module. A similar argument shows that K is
a right D-module. Or, alternatively, K∗ is the off-diagonal part of a closed Lie
ideal in A∗ and so is a left D-module, which immediately implies that K is a right
D-module. One consequence of this fact is that we now know that K is the closed
linear span of all the off-diagonal matrix units in L. (Note: the diagonal part of
L is not inductive, in general.)

Next, we show that K is a left ideal. Let f ∈ K. It suffices to show that
ef ∈ K for all matrix units e in A. Assume that e is an off-diagonal matrix unit
in An. (We do not need to consider diagonal matrix units, since we know that K
is a D-module.)

Let ε > 0. We claim that there is g ∈ K such that ‖g − ef‖ < ε, i.e.,
dist(ef,K) < ε. Since K is closed and ε is arbitrary, the claim implies that ef ∈ K
and K is a left ideal.

Let p be a positive integer such that p > n and ‖πq(f)‖ < ε/3 for all
q > p. (We can find such p since πp(f) → π(f) = 0 as p → ∞.) With q > p,
let b ∈ K ∩ Bq = K ∩ Aq be such that ‖b − f‖ < ε/3. (K is inductive.) Let
c = b− πq(b). Since b ∈ K and K is a bimodule over D, πq(b) ∈ K ⊆ L. Therefore
c ∈ K ∩Aq ⊆ L ∩Aq. Now

‖c− f‖ = ‖b− πq(b)− f‖ = ‖b− f − πq(f) + πq(f − b)‖
6 ‖b− f‖+ ‖πq(f)‖+ ‖πq(f − b)‖ =

ε

3
+

ε

3
+

ε

3
= ε.

Thus, ‖ec− ef‖ 6 ‖c− f‖ 6 ε. So we just need to show that ec ∈ K.
Since e is an off-diagonal matrix unit in An and q > n, e can be written as a

sum of off-diagonal matrix units in Aq. So we need to prove that hc ∈ K when h
is an off-diagonal matrix unit in Aq, and for this it is enough to prove that hc ∈ L,
since π(hc) = 0. Let Sq be the subalgebra of Aq generated by all the off-diagonal
matrix units in Aq and let L′ = L∩Sq. If x ∈ Aq and y ∈ L′ ⊆ L, then [x, y] ∈ L,
since L is a Lie ideal. But [x, y] ∈ Sq also, since it is a commutator of two elements
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in Aq. Thus L′ is a diagonal disjoint Lie ideal in Aq. But this implies that L′ is an
associative ideal in Aq (Proposition 3.4). Since c ∈ L ∩ Aq and πq(c) = 0, c ∈ L′.
Therefore, hc ∈ L′ ⊆ L. This completes the argument that K is a left ideal. It
also shows that K∗ is a left ideal in A∗, whence K is a right ideal in A.

We have now shown that if L is a Lie ideal in A then the diagonal disjoint
part K is an associative ideal in A. Let F = L∩D. From the way that K is defined,
it is clear that L = F+K. To complete the description of L, we need to show that
if f ∈ F then f(x, x) = f(y, y) whenever (x, y) ∈ S \K. Let (x, y) ∈ S \K. Let
e be a matrix unit in A such that (x, y) ∈ supp(e). Since f ∈ L, the commutator
[f, e] is also in L. Since commutators vanish on the diagonal, [f, e] ∈ K. Hence

0 = [f, e](x, y) = f · e(x, y)− e · f(x, y)

= f(x, x)e(x, y)− e(x, y)f(y, y) = f(x, x)− f(y, y).

Thus, f(x, x) = f(y, y) whenever (x, y) ∈ S \K.

With L and K as above, if we let

EK = {f ∈ D : f(x, x) = f(y, y) whenever (x, y) ∈ S \K},
then we have shown that K is the smallest Lie ideal and EK + K is the largest
Lie ideal which has K as its off-diagonal part. Once again, the structure of Lie
ideals in triangular AF algebras permits an alternative proof of Theorem 2.1 for
this context.

Proof. (Alternate proof of Theorem 2.1 for triangular subalgebras of AF C∗-
algebras). As usual, we need only prove that closed Lie ideals are invariant under
similarities. Let L be a closed Lie ideal and write L = F+K as above. Let t be an
invertible element of A. Since the invertible elements of an operator algebra form
an open set, there is a sequence tp ∈ Ap of invertible elements in Ap such that
tp → t and t−1

p → t−1. If we can show that t−1
p Ltp ⊆ L for all p, then t−1Lt ⊆ L.

So we have reduced the proof to the case where t ∈ Ap for some p. Since Ap

is isomorphic to a triangular matrix algebra, we can write t = d(1 + n), where d
is a diagonal invertible element of Ap and n is a nilpotent element of Ap. Let k
be the order of nilpotence of n.

Since K is an associative ideal, t−1Kt ⊆ K. So we need prove that t−1Ft ⊆
F + K = L. Since d is diagonal, d−1Fd = F . This leaves invariance under
conjugation by 1 + n. For any f ∈ F ,

(1 + n)−1f(1 + n) = (1− n + n2 − n3 + · · ·+ (−1)knk)f(1 + n)

= f + (−nf + fn) + (−nfn + n2f) + (n2fn− n3f)

+ (−n3fn + n4f) + · · ·+ ((−1)k−lnk−1fn + (−1)knkf)

+ (−1)knkfn

= f − [n, f ] + n[n, f ]− n2[n, f ] + · · ·+ (−1)k+1nk[n, f ].

Now [n, f ] ∈ L and has off-diagonal support, so [n, f ] ∈ K. SinceK is an associative
ideal, (1+n)−1f(1+n) ∈ F +K = L. Thus t−1Lt ⊆ L; L is invariant under inner
automorphisms.
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