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Abstract. We investigate spectral properties of operators on L2
a of the form

Cg(f)(z) =
1

z

zZ

0

f(t)g(t)dt.

We compute the spectrum when g is a rational function, as well as the essen-
tial spectrum and the Fredholm index. We also provide relations for these
operators in the Calkin algebra.
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1. INTRODUCTION

The class of generalized Cesàro operators has been getting considerable attention
recently. Pommerenke introduced the class in [11] by showing that

(1.1) IG(f)(z) =

z∫

0

f(t)G′(t)dt

is bounded on H2 if and only if G ∈ BMOA. Aleman and Siskakis extend this
result to Hp for 1 6 p < ∞ in [2]. Furthermore, they show that IG is compact if
and only if G ∈ VMOA. In [1], Aleman and Cima show that the results holds for
any p > 0.

A similiar boundedness property holds for the Bergman space L2
a. Aleman

and Siskakis show in [3] that IG is bounded on L2
a if and only if G ∈ B, the Bloch

space. Likewise, there is a corresponding compactness result given: IG is compact
on L2

a if and only if G ∈ B0, the little Bloch space.
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The Cesàro operator C is a paradigm of a noncompact operator in this class.

Recall that C has the following form on L2
a: if f(z) =

∞∑
n=0

anz
n ∈ L2

a, then

(1.2) C(f)(z) =
∞∑

n=0

1
n+ 1

( n∑

i=0

ai

)
zn.

It is known that C is bounded on L2
a. V.G. Miller and T.L. Miller show in

[9] that σ(C) = {z : |z − (1/2)| 6 (1/2)}. In contrast to the H2 case where C is
known to be subnormal (see [7]), they show that C on L2

a is not hyponormal (see
[10]).

Calculating Taylor series gives us the following integral representation:

C(f)(z) =
1
z

z∫

0

f(t)
1− t

dt.

We define the following class of operators on L2
a.

Definition 1.1. Let g be analytic on the unit disk D. The generalized
Cesàro operator on L2

a with symbol g is the map defined by

Cg(f)(z) =
1
z

z∫

0

f(t)g(t)dt.

Note that if S denotes multiplication by z on L2
a and G′ = g, then

(1.3) IG = SCg.

If we set

(1.4) (B)1 =
{
g : D→ C :

z∫

0

g(t)dt ∈ B
}

and

(1.5) (B0)1 =
{
g : D→ C :

z∫

0

g(t)dt ∈ B0

}

then we can restate the boundedness and compactness conditions as:
(i) Cg is bounded on L2

a if and only if g ∈ (B)1.
(ii) Cg is compact on L2

a if and only if g ∈ (B0)1.
In [12], the fine spectrum for Cg on H2 is computed when g is a rational

symbol. Furthermore, certain products of generalized Cesàro operators are shown
to be Hilbert-Schmidt. In the Bergman setting, we do not know if C is essentially
normal. We present computations to overcome this obstacle. We also show that
SC − CS is Hilbert-Schmidt. This allows us to compute the fine spectrum for IG
as well.

For notational convenience, if β or βj is notated, it is always assumed that
|β| = |βj | = 1. Furthermore, Cβ = C1/(1−βz).
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2. COMPACTNESS RESULTS FOR Cg

We have several goals for this section. We remark that Cβ
∼= C by the same

computation in [12]. We sketch the proof. Define the operator Uβ : L2
a → L2

a

by Uβ(f)(z) = f(βz). If we compute U∗βCgβ
Uβ and make the change of variables

s = βt, then we get the desired result.
We show that Cβ1Cβ2 ∈ B2(L2

a), the ideal of Hilbert-Schmidt operators on
L2

a. Since we do not have essential normality, we also show that C∗β1
Cβ2 ∈ B2(L2

a)
and Cβ1C∗β2

∈ B2(L2
a).

The first condition will allow us to compute the spectrum of Cg. The two
remaining relations will give us the essential spectrum and the Fredholm index.

Before we proceed to the proofs, we show the following lemma based on the
summation by parts.

Lemma 2.1. If α ∈ Z, Bj−1 = 0 and Bk =
n∑

k=j

βk for k = j, . . . , n, then

(2.1)
∣∣∣

n∑

k=j

kαβk
∣∣∣ 6 2

|1− β| (n
α + |jα − nα|).

Proof. It is clear that |Bk| 6 (2/|1− β|) for all k. We have the following
computation:

n∑

k=j

kαβk =
n∑

k=j

kα(Bk −Bk−1)

=
n∑

k=j

kαBk −
n−1∑

k=j

(k + 1)αBk

= nαBn +
n−1∑

k=j

Bk(kα − (k + 1)α).

By taking absolute values, the lemma follows.

Theorem 2.2. Cβ1Cβ2 ∈ B2(L2
a) for β1 6= β2.

Proof. As in [12], we reduce to the case when β2 = 1. Relabel β1 = β.
It is easy to check that the matrix for Cβ in the basis {√nzn−1}∞n=1 is

(2.2)




1 0 0 0 · · ·
β

2
√

2
1
2 0 0 · · ·

β2

3
√

3

β
√

2

3
√

3
1
3 0 · · ·

...
...

...
...

. . .



.

If we write the above matrix for Cβ in coordinates, we have the following
representation for each β:

(2.3) (Cβ)nj =
{ 0 n < j,

βn−j√j
n3/2 n > j.
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Thus

(2.4) (CβC)nj =
{ 0 n < j,

βn
∑n

k=j
β

k√
j

n3/2k
n > j .

We calculate the Hilbert-Schmidt norm of CβC:
‖CβC‖2HS =

∑

n,j

|(CβC)nj |2

=
∞∑

n=1

n∑

j=1

j

n3

∣∣∣
n∑

k=j

β
k

k

∣∣∣
2

.

Apply Lemma 2.1 with α = −1 to conclude

(2.5)
∣∣∣

n∑

k=j

β
k

k

∣∣∣
2

6
( 2
|1− β|

)2( 1
n

+
∣∣∣1
j
− 1
n

∣∣∣
)2

.

Therefore by (2.5) we have

‖CβC‖2HS 6
∞∑

n=1

n∑

j=1

j

n3

( 2
|1− β|

)2( 1
n2

+
2
n

∣∣∣1
j
− 1
n

∣∣∣ +
∣∣∣1
j
− 1
n

∣∣∣
2)

6
( 2
|1− β|

)2 ∞∑
n=1

n∑

j=1

1
n2

( 1
n2

+
2
n

∣∣∣1− 1
n

∣∣∣
)

=
( 2
|1− β|

)2 ∞∑
n=1

( 1
n3

+
2
n2

)
<∞.

Thus CβC ∈ B2(L2
a).

In order to complete our analysis, we need the next result.

Theorem 2.3. For β1 6= β2, C∗β1
Cβ2 , Cβ1C∗β2

∈ B2(L2
a).

Proof. Without loss of generality, assume that β2 = 1 and relabel β1 as β.
The reduction is similar to that for Theorem 2.2.

We first will show that C∗βC ∈ B2(L2
a).

From (2.2), we get that

(2.6) (C∗β)nj =
{ 0 n > j,

βn−j√n
j3/2 j > n .

Thus, we have that

(2.7) (C∗βC)nj = βn
∞∑

k=max{n,j}

β
k√

nj

k3
.

Therefore, we need to show that the following sum converges:

(2.8)
∞∑

n,j=1

∣∣∣
∞∑

k=max{n,j}

β
k√

nj

k3

∣∣∣
2

.
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We begin by eliminating the maximum that appears in the k index by rewrit-
ing the sum as follows:

(2.9)

∞∑
n=1

∞∑

j=1

∣∣∣
∞∑

k=max{n,j}

β
k√

nj

k3

∣∣∣
2

=
∞∑

n=1

( n∑

j=1

(nj)
∣∣∣
∞∑

k=n

β
k

k3

∣∣∣
2

+
∞∑

j=n+1

(nj)
∣∣∣
∞∑

k=j

β
k

k3

∣∣∣
2)
.

From Lemma 2.1 with α = −3 we know that

(2.10)
∣∣∣
∞∑

k=n

β
k

k3

∣∣∣
2

6
( 2
|1− β|

)2 1
n6
.

Completing the estimate using (2.10), we have
∞∑

n=1

( n∑

j=1

(nj)
∣∣∣
∞∑

k=n

β
k

k3

∣∣∣
2

+
∞∑

j=n+1

(nj)
∣∣∣
∞∑

k=j

β
k

k3

∣∣∣
2)

6
( 2
|1− β|

)2 ∞∑
n=1

( n∑

j=1

j

n5
+

∞∑

j=n+1

n

j5

)

6
( 2
|1− β|

)2 ∞∑
n=1

(n+ 1
n4

+

∞∫

n

n

x5
dx

)

=
( 2
|1− β|

)2 ∞∑
n=1

(n+ 1
n4

+
1

4n3

)
<∞.

Thus C∗βC ∈ B2(L2
a). Now we turn our attention to CβC∗. As before, we give the

following coordinate representation of the matrix for CβC∗ in the same basis as
above:

(2.11) (CβC∗)nj =
min{n,j}∑

k=1

βn−kk

(nj)3/2
= βn

min{n,j}∑

k=1

β
k
k

(nj)3/2
.

We use a similar trick as in the above computation to eliminate the minimum
that is in the k index.

(2.12)

∞∑
n=1

∞∑

j=1

∣∣∣
min{n,j}∑

k=1

β
k
k

(nj)3/2

∣∣∣
2

=
∞∑

n=1

( n∑

j=1

1
(nj)3

∣∣∣
j∑

k=1

β
k
k
∣∣∣
2

+
∞∑

j=n+1

1
(nj)3

∣∣∣
n∑

k=1

β
k
k
∣∣∣
2)
.

Using Lemma 2.1 for α = 1 we have

(2.13)
∣∣∣

n∑

k=1

kβ
k
∣∣∣
2

6
( 2
|1− β|

)2

(n+ |1− n|)2.
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Combining (2.13) and (2.12), we get

∞∑
n=1

( n∑

j=1

1
(nj)3

∣∣∣
j∑

k=1

kβ
k
∣∣∣
2

+
∞∑

j=n+1

1
(nj)3

∣∣∣
n∑

k=1

kβ
k
∣∣∣
2)

6
( 2
|1− β|

)2 ∞∑
n=1

( n∑

j=1

1
(nj)3

(j + |1− j|)2 +
∞∑

j=n+1

1
(nj)3

(n+ |1− n|)2
)

6
( 2
|1− β|

)2 ∞∑
n=1

( n∑

j=1

(2j + 1)2

n3j3
+

∞∫

n

(2n+ 1)2

n3x3
dx

)

6
( 2
|1− β|

)2 ∞∑
n=1

( 9
n2

+
(2n+ 1)2

2n5

)
<∞.

Therefore CβC∗ ∈ B2(L2
a).

Let π denote the natural projection of B(L2
a) onto the Calkin algebra Q(L2

a).
By Theorems 2.2 and 2.3 we have the following relations:

(2.14) π(CβC) = 0,

(2.15) π(C∗βC) = 0,

(2.16) π(CβC∗) = 0.

3. THE FINE SPECTRUM OF Cg

In this section, we prove the main result of the paper. We show that for a rational
g that is analytic on D, the spectrum of Cg is a union of disks and some isolated
points. The boundary of each disk contains 0. This result is completely analogous
to the H2 case presented in [12]. We first designate some notation. Let D(a) =
{z : |z − a| < |a|}. Let D(a) denote its closure and ∂D(a) denote its boundary.
Now we state the main result.

Theorem 3.1. For g(z) =
n∑

i=1

ai

1−βiz
where βi are distinct and ai 6= 0, the

following holds for Cg on L2
a:

(i) σ(Cg) =
n⋃

i=1

D(ai/2) ∪
({

g(0)
k

}∞
k=1

\
n⋃

i=1

D(ai/2)
)
;

(ii) σe(Cg) =
n⋃

i=1

∂D(ai/2);

(iii) for λ /∈ σe(Cg), ind(Cg − λ) = −G(λ), where G(z) = −
n∑

i=1

χD(ai/2).

The proof will be based on several lemmas.



Generalized Cesàro operators and the Bergman space 347

Lemma 3.2. If a1, . . . , an are elements of a C∗-algebra A such that aiaj =
ajai = 0 and a∗i aj = aja

∗
i = 0 for i 6= j and αi ∈ C, then

(3.1) {0} ∪ σ
( n∑

i=1

ai

)
=

n⋃

i=1

σ(ai).

We note that the {0} in (3.1) is necessary since the sum of non-invertible
elements can be invertible. For example, let P be a projection; PP⊥ = P⊥P = 0,
but P + P⊥ = I.

Proof. We omit the details. We note that under the above conditions, the
C∗-subalgebra generated by a1, . . . , an is isomorphic to the direct sum of the C∗-
subalgebras generated by the separate ai.

Lemma 3.3. (Miller-Miller)

σe(C) =
{
z :

∣∣∣z − 1
2

∣∣∣ =
1
2

}
.

Proof. The proof of the lemma is due to V.G. Miller and T.L. Miller. The
author received the proof in a private correspondence. It is reproduced here with
permission from them. For the proof, let C|H2 denote the Cesàro operator on H2

and C denote the Cesàro operator on L2
a.

Let i be the inclusion mapping i : H2 → L2
a. The mapping i has dense range

and intertwines C|H2 and C. The fact that 1 is a cyclic vector for C|H2 (see [7])
implies that 1 is a cyclic vector for C.

For each λ ∈ intσ(C), define

ψλ(z) =
d
dz

(z(1− z)(1−λ)/λ).

Then by Proposition 2.1 (3) of [9], ker(λ − C∗) = span{ψλ} and for each λ, the
mapping

λ→ 〈f, ψλ〉
is analytic on intσ(C). By definition, it follows that the set of analytic bounded
point evaluations of C is precisely intσ(C) (see [8]). C has Bishop’s property (β)
(see [9] for definition). Thus Theorem 3.1 in [8] shows that the set of analytic
point evaluations of C is abpe(C) = σ(C)\σap(C). Since C − λ has closed range
with dim ker(λ− C∗) = 1 for all λ ∈ intσ(C), it follows that

σe(C) = σap(C) = ∂σ(C).
The next lemma appears in [12]. We reproduce the proof here. Recall that

F(H) denotes the set of Fredholm operators on the Hilbert space H. Also recall
that for T, S ∈ F(H) and K compact:

(i) TS ∈ F(H) and ind(TS) = ind(T ) + ind(S);
(ii) ind(T +K) = ind(T ).
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Lemma 3.4. If T1, . . . , Tn ∈ B(H) such that TiTj is compact for i 6= j and

αi ∈ C, then for λ /∈
n⋃

i=1

σe(Ti), we have that

(3.2) ind
( n∑

i=1

αiTi − λ
)

=
n∑

i=1

ind(αiTi − λ).

Proof. We will proceed by induction.
Assume λ /∈ σe(T1) ∪ σe(T2).
If λ = 0, then T1 ∈ F(H) and T2 ∈ F(H). So, T1T2 ∈ F(H). However,

π(T1T2) = 0, and 0 is not invertible. Therefore, 0 ∈ σe(T1)∪σe(T2). Thus, we can
assume λ 6= 0.

We calculate (T1 − λ)(T2 − λ) = T1T2 − λ(T1 + T2 − λ). Hence, we have
1
λ (T1 − λ)(T2 − λ) = 1

λT1T2 − T1 − T2 + λ. Here, we note that σe(T1 + T2) ⊆
σe(T1) ∪ σe(T2) since T1 + T2 − λ is a compact perturbation of the Fredholm
operator (1/λ)(T1 − λ)(T2 − λ).

Computing, we see ind(T1 + T2 − λ) = ind
(

1
λ (T1 − λ)(T2 − λ)

)
. We have

that

ind
( 1
λ

(T1 − λ)(T2 − λ
)
) = ind

( 1
λ
I
)

+ ind(T1 − λ) + ind(T2 − λ).

Therefore,

ind(T1+T2−λ) = ind
( 1
λ
I
)

+ind(T1−λ)+ind(T2−λ) = ind(T1−λ)+ind(T2−λ).

The proof for n operators now follows easily by induction.

The final lemma is well-known, and we omit the details.

Lemma 3.5. If T ∈ B(H) has a lower triangular matrix representation in
an orthnormal basis B with diagonal entries D = {αi}∞i=0, then σp(T ) ⊆ D.

Proof of Theorem 3.1. Since g(z) =
n∑

i=1

ai

1−βiz
, we have that

(3.3) Cg =
n∑

i=1

aiCβi .

By (2.14), (2.15), (2.16), Lemma 3.2, and Lemma 3.3 we have that

(3.4) {0} ∪ σe(Cg) =
n⋃

i=1

σe(aiCβi) =
n⋃

i=1

∂D(ai/2).

Notice that 0 is a limit point of the RHS in (3.4). Thus, 0 ∈ σe(Cg). There-
fore,

(3.5) σe(Cg) =
n⋃

i=1

∂D(ai/2).

Likewise, we use Lemma 3.4 to conclude ind(Cg − λ) =
∑n

i=1 ind(aiCβi −
λ) ∀λ /∈ σe(Cg).
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For λ ∈ D(ai/2), we have ind(aiCβi
− λ) = −1. If λ /∈ D(ai/2), we have

ind(aiCβi − λ) = 0. Therefore, ind(aiCβi − λ) = −χD(ai/2). By Lemma 3.4, we

know the index is additive for Cg. Thus, for λ /∈ σe(Cg) =
n⋃

i=1

∂D(ai/2), we have

(3.6) ind(Cg − λ) = −
n∑

i=1

χD(ai/2) = −G(λ).

By (3.2), the only way for ind(Cg − λ) = 0 is for λ /∈ D(ai/2) ∀i.
Now, we investigate the points λ ∈ σ(Cg) such that ind(Cg − λ) = 0. First,

note that this implies that λ ∈ σp(Cg). Define E = {λ ∈ σ(Cg) : ind(Cg − λ) = 0}.
Observe that E ∩

n⋃
i=1

D(ai/2) = ∅.
It is easy to check that the matrix for Cg in the standard basis of L2

a is lower
triangular. Applying Lemma 3.5, we know that the only possible eigenvalues of
Cg are the diagonal elements

{
g(0)

k

}∞
k=1

. From (2.6), we know that
{

g(0)
k

}∞
k=1

⊆
σp(C∗g ). Hence, E ⊆

{
g(0)

k

}∞
k=0

.

Thus,

σ(Cg) =
n⋃

i=1

D(ai/2) ∪
({g(0)

k

}∞
k=1

\
n⋃

i=1

D(ai/2)
)
.

Corollary 3.6. If g(z) =
n∑

i=1

ai

1−βiz
, where βi are distinct, ai 6= 0, and

h ∈ (B0)1, then the only change to the conclusion of Theorem 3.1 is that

σ(Cg+h) =
n⋃

i=1

D(ai/2) ∪
({g(0) + h(0)

k

}∞
k=1

\
n⋃

i=1

D(ai/2)
)
.

Proof. Ch is a compact operator. Therefore, Cg+h is a compact perturbation
of Cg. Hence, the Fredholm index and the essential spectrum do not change.

As in the proof of Theorem 3.1, we get that

E = {λ ∈ σ(Cg+h) : ind(Cg+h − λ) = 0} =
{g(0) + h(0)

k

}∞
k=1

\
n⋃

i=1

D(ai/2).

4. RELATING IG AND Cg

This final section concerns the relationship between S, IG, and Cg. Specifically,
we show that for a rational g, SCg − CgS is Hilbert-Schmidt. Furthermore by
(1.3) and CgS = Czg, we can determine the fine spectrum of IG. We draw other
consequences in the final corollary by relating Toeplitz operators on L2

a to Cg.
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Theorem 4.1. For a function g with
z∫
0

g(t)dt ∈ BMOA, SCg − CgS ∈
B2(L2

a). In particular, there is a compact operator K such that SCg = Czg +K.

Proof. First note that
z∫
0

g(t)dt ∈ BMOA implies that
z∫
0

g(t)dt ∈ H2. There-

fore if g(z) =
∞∑

n=0
anz

n, then

(4.1)
∞∑

n=0

( |an|
n+ 1

)2

= M <∞.

We compute matrices for SCg and CgS, expressed in their coordinate repre-
sentations:

(4.2) (SCg)nj =
{

an−j−1
√

j√
n(n−1)

n > j,
0 n 6 j.

(4.3) (CgS)nj =
{

an−j−1
√

j

n3/2 n > j,
0 n 6 j.

By (4.2) and (4.3) we know

(SCg − CgS)nj =
{ √

j√
n

an−j−1
n(n−1) n > j,

0 n 6 j .

Now we calculate the Hilbert-Schmidt norm:

‖(SCg − CgS)‖2HS =
∞∑

n=2

n−1∑

j=1

√
j√
n

( |an−j−1|
n(n− 1)

)2

6
∞∑

n=2

( 1
n− 1

)2 n−1∑

j=1

( |an−j−1|
n− j

)2

6
∞∑

n=2

( 1
n− 1

)2

M <∞.

Notice that for g(z) = 1/(1− βz) we have zg(z) = β(−1+1/(1− βz)). Thus
Czg is a compact perturbation of Cβg. Furthermore we know that the spectrum
of SCg is the union of disks with the boundary circles containing 0. Notice that
0 ∈ σp((SCg)∗) and E = ∅.

In light of these comments we have the following theorem.

Theorem 4.2. Let g(z) =
n∑

i=1

ai

1−βiz
, where βi ∈ T are distinct and ai 6= 0.

Let h ∈ (B0)1. Then for SCg, the following are true:

(i) σ(SCg+h) =
n⋃

i=1

D(βiai/2).

(ii) σe(SCg+h) =
n⋃

i=1

∂D(βiai/2).
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(iii) If λ /∈ σe(SCg+h) and H =
n∑

i=1

χD(βiai/2) then ind(Cg − λ) = −H(λ).

We conclude our study of generalized Cesàro operators on L2
a with the fol-

lowing corollary.

Corollary 4.3. If g is a rational function, ϕ ∈ A(D) and Tϕ is the analytic
Toeplitz operator with symbol ϕ, then there is a compact operator K such that
TϕCg = CgTϕ +K = Cgϕ +K.
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26(1965), 125-137.

5. J.B. Conway, A Course in Functional Analysis, Springer-Verlag, New York 1990.
6. J.B. Conway, A Course in Operator Theory, Amer. Math. Soc., Providence, RI,

2000.
7. T.L. Kriete, D. Trutt, The Cesaro operator in `2 is subnormal, Amer. J. Math.

93(1971), 215–225.
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