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ABSTRACT. We construct classes of von Neumann algebra modules by con-
sidering “column sums" of noncommutative Lp spaces. Our abstract char-
acterization is based on an Lp/2-valued inner product, thereby generalizing
Hilbert C∗-modules and representations on Hilbert space. While the (single)
representation theory is similar to the L2 case, the concept of Lp bimodule
(p 6= 2) turns out to be nearly trivial.
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1. INTRODUCTION

Noncommutative Lp spaces, by now, are standard objects in the theory of
operator algebras. Starting with a von Neumann algebra M, there are a variety
of equivalent methods for producing the (quasi-)Banach space Lp(M). If M is
L∞(X, µ), the result is (isometric to) Lp(X, µ), so this can rightfully be thought
of as a generalization to noncommutative measure spaces. When M is semifi-
nite, the presence of a trace offers great simplification, but in general one needs
modular theory ([5]).

These spaces have many aspects worthy of investigation. As Banach spaces,
their isometries have been investigated by many authors ([43], [39], [34]); others
have used the matrix order ([30]) or operator space techniques ([12]). (For a more
complete bibliography see [22].) We focus here on the module structure. Indeed,
the inclusion as left (or right) multipliers

M ↪→ B(Lp(M))

is isometric. If Hilbert space representations are (categorically) generated by
L2(M), and self-dual C∗-modules are generated by L∞(M) = M, where are
the modules generated by Lp(M)? This paper sets out to describe the missing Lp

representation theory.
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Proceeding by analogy, our target is the class of “columns of Lp(M)". We
show that a sufficient condition for an M-module to belong to this class is the
existence of an Lp/2(M)-valued inner product. The description which results is a
natural generalization of the cases p = 2 (the usual decomposition for Hilbert
space representations) and p = ∞ (see [20]). We employ a variety of methods,
but perhaps the most notable direction is a consistent translation of Connes’ L2

spatial theory ([3]) to the Lp setting.
Building on results about the module structure of Lp(M) which are interest-

ing in their own right, we find that the Lp representation theory is largely anal-
ogous to the L2 case, with a well-behaved sum and relative tensor product. It
would therefore seem natural that there be a similarly rich bimodule category,
i.e. a theory of Lp correspondences. But surprisingly, the category is nearly triv-
ial: when p 6= 2, there is an Lp M-N -bimodule if and only ifM andN are Morita
equivalent. Modulo a possible degeneracy where both algebras are abelian, such
bimodules naturally implement an equivalence of appropriate representation cat-
egories.

Only one application — to ultraproducts — of our theory is given. We plan
to discuss further examples and development in future articles.

2. THE MODULE STRUCTURE OF Lp(M)

Throughout, M, N , etc. are von Neumann algebras; we frequently abbre-
viate Lp(M) to Lp and understand L∞(M) as M. The set of projections in M is
written P(M). All weights are normal and semifinite, so we omit the adjectives
for brevity. Unsubscripted H denotes the separable infinite-dimensional Hilbert
space, s(ϕ) is the support of ϕ, and sl(x) (respectively sr(x)) stands for the left
(respectively right) support of x. Subscripts are occasionally used to represent an
action: e.g. XM indicates that X is a right M-module. But when the expressions
are longer, we signify a bimodule by writing out the triple: an M-N -bimodule
X is M-X-N . The phrase “left (respectively right) action of" is frequently abbre-
viated to L (respectively R) for operators or entire algebras, so that we speak of
L(x) or R(M). Finally, we often write M∞ for B(H) and M∞(M) for B(H)⊗M.
Note that in contrast to much of the literature, the results of this paper (except for
Section 7) do not require that algebras be σ-finite or that p > 1.

We assume that the reader has some basic familiarity with noncommutative
Lp spaces. For 0 < p < ∞, one can think

Lp
+ = (L1

+)1/p,

and we take this as a basis for our notation: the typical positive element is ϕ1/p,
where ϕ is a positive linear functional on M. What this means is a matter of
perspective, as there are many equivalent constructions of Lp, but we find the
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Haagerup construction ([5]) most useful. In this setting Lp is exactly the set of τ-
measurable operators affiliated with the core M̃ ' Moσ Rwhich are 1/p-scaled
by the dual action: θs(T) = e−s/pT. (The operator we call ϕ is more commonly
called hϕ. An unbounded weight corresponds to a positive operator satisfying all
the above conditions except for τ-measurability.) Operator concepts like compo-
sition, positivity, left and right support, adjoint, and polar decomposition transfer
directly into the Lp setting. Basic exposition can be found in [37], and the reader is
also referred to the elegant “coordinate-free" approaches in [42] (more algebraic)
and [4] (more analytic). We use the Haagerup notation Tr for the evaluation func-
tional on L1:

Tr(ω) = ω(1),
and recall that Tr implements the “tracial" duality between Lp and Lq:

〈ξ, η〉 = Tr(ξη) = Tr(ηξ), ξ ∈ Lp, η ∈ Lq,
1
p

+
1
q

= 1.

In this notation,

ψit ϕ−it = (Dψ : Dϕ)t, ϕitxϕ−it = σ
ϕ
t (x), t ∈ R,

whenever s(ϕ) dominates s(ψ), sl(x), sr(x). The cocycles or modular automor-
phism groups extend off the imaginary line exactly when the corresponding oper-
ator compositions do. For more discussion of negative powers of states, see [32].

A fundamental fact for us is Kosaki’s generalized Hölder inequality ([16],
Lemma 1):

‖ξη‖r 6 ‖ξ‖p‖η‖q, ξ ∈ Lp, η ∈ Lq,
1
p

+
1
q

=
1
r

.

In particular, left or right multiplication by an element x ∈ M is bounded with
norm 6 ‖x‖. We will show a stronger fact momentarily, but we first recall Lem-
ma 2.2(c) of [29]:

(2.1) ϕ1/p > ψ1/p ⇐⇒ ϕ−1/2pψ1/2p is a contraction in s(ϕ)Ms(ϕ) ⊂ M.

Then

(2.2) ϕ1/p > ψ1/p ⇒ ‖ψ1/p‖ = ‖(ψ1/2p ϕ−1/2p)ϕ1/p(ϕ−1/2pψ1/2p)‖ 6 ‖ϕ1/p‖.

LEMMA 2.1. Let x > 0, and consider the map ξ 7→ xξ on Lp. We have

inf sp(x) = inf
‖ξ‖=1

‖xξ‖, ‖x‖ = sup sp(x) = sup
‖ξ‖=1

‖xξ‖.

Proof. We discuss p < ∞; p = ∞ only requires different wording.
Hölder’s inequality is half of the second equation. To see the opposite in-

equality, choose ε > 0 and let ϕ be a state supported on the spectral projection
q = e([‖x‖ − ε, ‖x‖]) of x. We use (2.2) above to get

‖xϕ1/p‖ = ‖ϕ1/pqx2qϕ1/p‖1/2
p/2 > ‖ϕ1/pq(‖x‖ − ε)2qϕ1/p‖1/2

p/2 = (‖x‖ − ε)‖ϕ1/p‖.

The first equation is proven similarly.
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For an arbitrary element with polar decomposition x = v|x|, we have ‖xξ‖
= ‖|x|ξ‖, and the proposition alters naturally by considering the spectrum of |x|.

This does not give us an “Lp spatial spectral theorem". A positive operator
x generates a projection-valued decomposition of the identity, and the action on
Lp is still “multiplication” (in an appropriate sense) by

∫
λde(λ). But for disjoint

sets I and J, there is no simple norm relation between the Lp elements e(I)ξ, e(J)ξ
and their sum unless p = 2. This prevents us from using vectors to provide (pth
roots of) measures, and we cannot write, say, ‖ξ‖p =

∫
d‖e(λ)ξ‖p.

Now we turn to a full description of the intertwiner set Hom(Lp
M, Lq

M). The
next three lemmas facilitate the proofs; the second is a slight improvement of
Lemma 2.3 in [10].

LEMMA 2.2. For ϕ ∈ M+∗ ,

Mϕ1/p = Lps(ϕ), ϕ1/pM = s(ϕ)Lp.

Proof. This result is well-known for p > 1, but we present a full proof for
completeness.

Let p > 1. Suppose there is ξ ∈ s(ϕ)Lp \ ϕ1/pM. By Hahn-Banach separa-
tion we may find η ∈ Lq (p, q conjugate exponents) with

Tr(ηξ) > 0, 0 = Tr(ηϕ1/py), ∀y ∈ M.

Then we must have ηϕ1/p = 0, so ηs(ϕ) = 0. But 0 < Tr(ηξ) = Tr(ηs(ϕ)ξ) = 0, a
contradiction. By a symmetric argument we have Mϕ1/p = Lps(ϕ).

Keep the same p, and assume that we have

Mϕn/p = Lp/ns(ϕ), ϕn/pM = s(ϕ)Lp/n

for a positive integer n. We compute

ϕ(n+1)/pM = ϕ1/p ϕn/pM
= ϕ1/pLp/n

= ϕ1/pMLp/n

= s(ϕ)Lp · Lp/n = s(ϕ)Lp/(n+1),

where the first equality is justified by Hölder: if ϕn/pxj converges, the same is
true for ϕ(n+1)/pxj. The other equality is obtained similarly.

Since any positive number can be written as p/n with p > 1 and n a positive
integer, the result follows by induction.

LEMMA 2.3. Let ϕ ∈ M+∗ , p > 0, and {xα} be a bounded net in M. If

(2.3) xα ϕ1/p → 0,
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then xαξ → 0 for any ξ in s(ϕ)Lq, where q is any positive real. This implies that on
bounded sets, the strong topology that M acquires from its action on Lp does not depend
on p.

Proof. Suppose

(2.4) xα ϕβ → 0

for β = 1/p. Then (2.4) holds for β > 1/p, as ‖xα ϕβ‖ 6 ‖xα ϕ1/p‖ ‖ϕβ−1/p‖ → 0.
We may also conclude that (2.4) holds for β = 1

2p by

‖xα ϕ1/2p‖2 = ‖xα ϕ1/px∗α‖ 6 ‖xα ϕ1/p‖‖x∗α‖ → 0,

since ‖x∗α‖ is bounded. Together these two steps imply that (2.4) holds for all
positive β.

Now suppose that ξ ∈ s(ϕ)Lq = ϕ1/qM. Given ε > 0, choose y ∈ M so that

‖ξ − ϕ1/qy‖ 6 ε

2 sup ‖xα‖ .

Then

‖xαξ‖ 6 ‖xαξ − xα ϕ1/qy‖+ ‖xα ϕ1/qy‖ 6 (sup ‖xα‖) ‖ξ − ϕ1/qy‖+ ‖xα ϕ1/q‖ ‖y‖,

which is less than ε when α is so large that ‖xα ϕ1/q‖ < ε/(2‖y‖).
When M is σ-finite, this last step is the Lp version of the well-known fact

that for a faithful state ϕ, x 7→ ϕ(x∗x)1/2 implements the strong topology on
bounded subsets of M.

LEMMA 2.4. Let r < ∞ and {ξα} ⊂ Lr, {pα} ⊂ P(M) be nets such that

(2.5) ξα = ξα pα, ξβ pα = ξα for α < β, sup
α
‖ξα‖ = C < ∞.

Then ξα converges in norm, say to ξ, and ξβ = ξ pβ.

The idea is that adding columns (= increasing the right support) without
exceeding an Lr bound implies convergence in Lr.

Proof. First we handle the case where r > 2. We have ξαξ∗α increasing and
norm-bounded; let ϕ2/r be the weak-* limit in the reflexive Banach space Lr/2 and
write ξαξ∗α = ϕ1/rxα ϕ1/r with xα 6 q = s(ϕ). Using Lr(qMq) = qLr(M)q, weak
convergence implies that

〈ϕ1/rxα ϕ1/r, ψ1/s〉 → 〈ϕ2/r, ψ1/s〉, ∀ψ ∈ qLsq,
2
r

+
1
s

= 1,

or
〈xα, ϕ1/rψ1/s ϕ1/r〉 → 〈q, ϕ1/rψ1/s ϕ1/r〉;

that is, xα = qxαq ↗ q weakly in M. Now

q > x1/2
α > xα ↗ q weakly ⇒ x1/2

α ↗ q weakly

⇒ (q− x1/2
α )2 = q + xα − 2x1/2

α ↘ 0 weakly,
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so x1/2
α ↗ q strongly. By the preceding lemma, ϕ1/rx1/2

α → ϕ1/r, and therefore

ξαξ∗α = (ϕ1/rx1/2
α )(ϕ1/rx1/2

α )∗ → ϕ2/r.

Finally, for α < β the increasing right supports imply

‖ξα − ξβ‖2 = ‖ξαξ∗α + ξβξ∗β − ξαξ∗β − ξβξ∗α‖
= ‖ξαξ∗α + ξβξ∗β − ξαξ∗α − ξαξ∗α‖ = ‖ξβξ∗β − ξαξ∗α‖ → 0.

If r 6 2, still ξαξ∗α is increasing in Lr/2 and bounded. Choose γ > 2/r;
(ξαξ∗α)1/γ is then norm-bounded and increasing in a reflexive Banach space. By
the above argument it converges in norm, so the continuity of exponentiation
([24], Lemma 3.2) implies ξαξ∗α = ((ξαξ∗α)1/γ)γ converges in Lr/2. The last com-
putation of the previous paragraph again shows the convergence of ξα.

Finally, set ξ = lim
α

ξα and use that right multiplication by pβ is continuous:

ξ pβ =
(

lim
α

ξα

)
pβ = lim

α
(ξα pβ) = lim

α
ξβ = ξβ.

When p = ∞, Lemma 2.4 still holds. The same line of argument works, but
instead of reflexivity one uses that von Neumann algebras are monotone closed.

The next theorem extends work of several authors and solves a problem
stated by Yamagami ([42], p. 1091).

THEOREM 2.5. Assuming that 1
p + 1

r = 1
q , any bounded map in Hom(Lp

M, Lq
M)

is left composition with some element of Lr.

Proof. Let T be such a map. If p = ∞, this is easy: T(x) = T(1)x. So assume
p < ∞, and for the moment assume M is σ-finite. Choose a faithful ϕ ∈ M+∗ .
With T(ϕ1/p) = vψ1/q the polar decomposition, set ρ2/p = ϕ2/p + ψ2/p and write

ψ1/p = y1ρ1/p, ϕ1/p = y2ρ1/p

with y1, y2 contractive. The module property means that for any x ∈ M,

T(y2ρ1/px) = vψ1/qx = vψ1/ry1ρ1/px.

By continuity of T we may conclude T(y2ξ) = vψ1/ry1ξ for all ξ ∈ Lp.
Now let y2 = |y∗2|u be the polar decomposition and qn be the spectral pro-

jection of |y∗2| corresponding to [ 1
n , 1]. Since

qn = y2u∗|y∗2|−1qn, T(qnξ) = T(y2u∗|y∗2|−1qnξ) = (vψ1/ry1u∗|y∗2|−1qn)(qnξ).

It follows from this that ‖vψ1/ry1u∗|y∗2|−1qn‖r 6 ‖T‖ for all n, and notice the qn
are increasing to 1 since y2 is nonsingular.

If r < ∞, Lemma 2.4 allows us to conclude the convergence of this sequence;
say vψ1/ry1u∗|y∗2|−1qn → η. Since T agrees with L(η) on the dense set

⋃
qnLp,

they are identical.
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If r = ∞, then ψ1/r can be replaced with 1. The uniform bound implies that
vy1u∗|y∗2|−1qn converges strongly to an operator z with ‖z‖ 6 ‖T‖. Again, T and
L(z) agree on

⋃
qnLp, so they are identical.

Now we remove the σ-finiteness assumption.
Let r < ∞. If s is a σ-finite projection in M, we may find a state ϕ with

s(ϕ) = s and apply the same argument to conclude T |sLp= L(ηs). Then the ηs
satisfy

ηs = ηss, ηts = ηs for s < t, ‖ηs‖ 6 ‖T‖.

Lemma 2.4 tells us that ηs converges along the naturally-ordered net of σ-finite
projections, say to η, and ηs = ηs. Finally, if ξ ∈ Lp, f = sl(ξ) must be σ-finite,
and

T(ξ) = T( f ξ) = η f ξ = η f ξ = ηξ.

In case r = ∞, the vectors ηs, η are replaced by operators zs, z.

We single out the case r = ∞ as a separate corollary. Though basic, there
does not seem to be a proof for general p in the literature. (Terp ([37], Proposi-
tion 35) settled the case p > 1 by different methods.)

COROLLARY 2.6. The left and right actions of M on Lp are commutants of each
other.

Notice that for p > 1, (Lp)∗ = Lp′ can be identified with Hom(Lp
M, L1

M),
with Tr implementing the duality as usual. It is known ([38]) that (Lp)∗ = {0}
when p < 1 and M has no minimal projection; compare that with

COROLLARY 2.7. If M has no minimal projection and p < q,

Hom(Lp
M, Lq

M) = {0}.

Proof. Choose a state ϕ. If T is a bounded morphism and 1
p = 1

q + 1
r , set

T̃ : Lq
M → Lq

M by T̃(ξ) 7→ T(ϕ1/rξ). This is a bounded module map, so by the
preceding corollary there must be x ∈ M with xξ = T̃(ξ) = T(ϕ1/rξ). If x 6= 0,
let x = v|x| and choose ε > 0 so that e = e(ε, ∞) is a nonzero spectral projection
of |x|. For all ξ ∈ Lp, we have

‖eξ‖q = ‖veξ‖ = ‖v |x| e |x|−1eξ‖ = ‖T(ϕ1/re |x|−1eξ)‖
= ‖T(ηeξ)‖ 6 ‖T‖‖ηeξ‖p ,

where η = ϕ1/re|x|−1e. It remains to show that such a “reversed Hölder inequal-
ity" cannot hold.

Let fn be a decreasing sequence of nonzero projections 6 e and converging
strongly to 0. (This is where nonatomicity is essential.) Then by Lemma 2.3,
‖η fn‖ → 0. Choose an element f with ‖η f ‖r < 1

‖T‖ . Now take a functional ρ with
s(ρ) = f . It follows that

‖ρ1/q‖q 6 ‖T‖‖η f ρ1/q‖p 6 ‖T‖‖η f ‖r‖ρ1/q‖q < ‖ρ1/q‖q,
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which is impossible. So x = 0, which implies T(ϕ1/r·) is the zero map. Since this
holds for any choice of ϕ, T must also be the zero map.

3. Lp MODULES

Now we turn to the development of an Lp representation theory. Note that
this cannot mean representations on classical Lp spaces: Lp(M) itself is not a
classical Lp space unless p = 2 or M is commutative. We would like to build the
category out of Lp(M) in the same way that nondegenerate normal right Hilbert
space representations are built out of L2(M).

Let us examine a countably generated Hilbert module HM. Following stan-
dard arguments, H decomposes as a direct sum of cyclic representations (ξnM)M,
each of which is isomorphic to the GNS representation for the associated vector
state, and all GNS representations are reductions of L2(M). So we have

HM '
( ⊕

ξnM
)
M
'

( ⊕
Hωξn

)
M
'

( ⊕
qnL2(M)

)
M

.

Since this is a right module, it is natural to write vectors as columns with
the nth entry in qnL2:

H '




q1L2(M)
q2L2(M)

...


 '

(
∑ qn ⊗ enn

)



L2(M)
L2(M)

...


 .

Here enn are diagonal matrix units in M∞, so (∑ qn ⊗ enn) is a diagonal projection
in M⊗B(H). The right action of M is, of course, matrix multiplication (by 1× 1
matrices) on the right. Modules which are not countably generated can be rep-
resented by columns and projections of larger size, and non-diagonal projections
work equally well — see Section 6.

Our target class of modules is obtained by replacing the index 2 by p. Al-
though this seems simple enough, the geometry of such spaces presents certain
difficulties. To start with, one cannot obtain the norm of a column via an `p (or
`2) sum. The following example will serve as motivation.

Consider the right Lp M-module X =
(

Lp(M) Lp(M)
)t. This should be

a left Lp M2(M)-module, as it is

Lp(M2(M))e11 =
(

Lp(M) 0
Lp(M) 0

)
.

It is then a left submodule of Lp(M2(M)) and so inherits the norm:
∥∥∥∥
(

ξ
η

)∥∥∥∥ =
∥∥∥∥
(

ξ 0
η 0

)∥∥∥∥
Lp(M2(M))

= ‖ξ∗ξ + η∗η‖1/2
p/2,

which is in general not purely a function of the norms of ξ and η.
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Norm-determining expressions of the form ξ∗ξ recall inner products in Hil-
bert C∗-modules. Based on this parallel, we make

DEFINITION 3.1. Let p ∈ (0, ∞] and X be a complex vector space which is
a right M-module. By an Lp/2-valued inner product on X we mean a sesquilinear
mapping 〈·, ·〉 from X × X to Lp/2(M), conjugate linear in the first variable, so
that for all ξ, η ∈ X, all x ∈ M

(i) 〈ξ, ηx〉 = 〈ξ, η〉x;
(ii) 〈ξ, η〉 = 〈η, ξ〉∗;
(iii) 〈ξ, ξ〉 > 0; 〈ξ, ξ〉 = 0 ⇐⇒ ξ = 0.

PROPOSITION 3.2.

(3.1) 〈ξ, η〉 = 〈ξ, ξ〉1/2T〈η, η〉1/2

for some T ∈ M with ‖T‖ 6 1. So if we set ‖ξ‖ , ‖〈ξ, ξ〉1/2‖p, then

(3.2) ‖〈ξ, η〉‖p/2 6 ‖ξ‖ ‖η‖.

We have that ‖ · ‖ is a norm when p > 2 and a p/2-norm when p 6 2. (This is improved
by the end of the next section.)

Proof. Most of this proof is standard. For ξ, η ∈ X, consider the matrix

A =
(〈ξ, ξ〉 〈ξ, η〉
〈η, ξ〉 〈η, η〉

)
∈ M2(Lp/2(M)) ' Lp/2(M2(M)).

We claim that A is positive. IfM is semifinite, we may choose a faithful semifinite
trace τ and consider the Lp spaces to be spaces of τ-measurable operators. For
x, y ∈ L2 ∩ L∞, which is dense in L2,

〈(〈ξ, ξ〉 〈ξ, η〉
〈η, ξ〉 〈η, η〉

) (
x
y

)
,
(

x
y

)〉
= 〈ξx + ηy, ξx + ηy〉 > 0,

and by density the matrix is positive.
If M is purely infinite, then so is M2(M); let v be a partial isometry in

M2(M) with vv∗ = 1, v∗v = e11. Thus v is of the form
(

v11 0
v12 0

)
. We have

A = vv∗Avv∗ = v
(

v∗11 v∗12
0 0

)
A

(
v11 0
v12 0

)
v∗

= v
(〈ξv11 + ηv12, ξv11 + ηv12〉 0

0 0

)
v∗ > 0.

A von Neumann algebra decomposes as a direct sum of semifinite and purely
infinite summands, so we see that A is positive in general.

Now the usual matrix manipulations give (3.1) (see Exercise 3.2 (i) of [21]),
and (3.2) follows by Hölder’s inequality.

When p 6 2, use the inequality from Proposition 6 of [16]

‖v + w‖q
q 6 ‖v‖q

q + ‖w‖q
q, v, w ∈ Lq, q 6 1
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to write

‖ξ + η‖p = ‖〈ξ, ξ〉+ 〈ξ, η〉+ 〈η, ξ〉+ 〈η, η〉‖p/2
p/2

6 ‖〈ξ, ξ〉‖p/2
p/2 + ‖〈ξ, η〉‖p/2

p/2 + ‖〈η, ξ〉‖p/2
p/2 + ‖〈η, η〉‖p/2

p/2

6 ‖ξ‖p + 2‖ξ‖p/2‖η‖p/2 + ‖η‖p = (‖ξ‖p/2 + ‖η‖p/2)2.

(3.3)

Therefore ‖ξ + η‖p/2 6 ‖ξ‖p/2 + ‖η‖p/2.
When p > 2, one starts (3.3) with ‖ξ + η‖2 and proves the triangle inequality

via the same manipulations.

It is worth noting that ‖ξx‖ 6 ‖ξ‖ ‖x‖, so the action of M is continuous.

DEFINITION 3.3. For p < ∞, a right M-module X is called a right Lp M-
module if it has an Lp/2-valued inner product and is complete in the inherited
(quasi)norm. For p = ∞, we keep this condition (so X is a Hilbert C∗-module)
and impose the additional requirement that the unit ball of X be closed in the
strong topology, i.e. the topology arising from the seminorms ξ 7→ (ϕ(〈ξ, ξ〉))1/2,
ϕ ∈ M+∗ .

The set 〈X, X〉 is a closed self-adjoint sub-bimodule of Lp/2, which must
have the form zLp/2 for some central projection z ∈ M. So X is a faithful right Lp

zM-module.

EXAMPLE 3.4. (i) Any classical Lp space is a right Lp module for the corre-
sponding L∞ algebra, with inner product

〈 f , g〉 = f g.

(ii) Any normal right representation of M on a Hilbert space H = X admits
a unique structure as L2-module by setting the inner product 〈ξ, η〉X to be the
state ωξ,η defined by

〈ξ, ηx〉H = ωξ,η(x).

(For coherence, the inner product in H should be linear in the second argument.)
On the other hand, any L2 M-module X is also a Hilbert space via

〈ξ, η〉H , 〈ξ, η〉X(1) = Tr(〈ξ, η〉X),

where Tr denotes the Haagerup trace on L1. Since the X-inner product is M∗-
valued, the Hilbert space representation is automatically normal.

(iii) Lp(M) is a right Lp module with inner product 〈ξ, η〉 = ξ∗η. The same
holds for qLp, where q is a projection in M.

We wish to highlight a special class of right Lp M-modules; call them “prin-
cipal” for the time being. If {qα}α∈I are projections in M, the set

(3.4)
{

(ξα) : ξα ∈ qαLp, ∑ ξ∗αξα ∈ Lp/2
}
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is a right Lp M-module with 〈(ξα), (ηα)〉 = ∑ ξ∗αηα. For p = ∞, Paschke ([20])
showed that the directed net of finite sums converges strongly; he called this
construction an ultraweak direct sum.

For p < ∞, the limit (of finite sums) exists in norm. This follows from
the Cauchy-Schwarz inequality, which can be proven directly as follows. Let
HI be the Hilbert space with dimension |I|, and set ξ̃ = ∑ ξα ⊗ eα1 ∈ Lp(M⊗
B(HI)). (So we are placing ξ along the first column of a matrix.) Then the Hölder
inequality guarantees that ξ̃∗η̃ ∈ Lp/2(M⊗B(HI)) and

‖〈(ξα), (ηα)〉‖p/2 = ‖ξ̃∗η̃‖p/2 6 ‖ξ̃‖p‖η̃‖p =
∥∥∥
(

∑ ξ∗αξα

)1/2∥∥∥
p

∥∥∥
(

∑ η∗αηα

)1/2∥∥∥
p

=
∥∥∥
(

∑ ξ∗αξα

)∥∥∥
1/2

p/2

∥∥∥
(

∑ η∗αηα

)∥∥∥
1/2

p/2
= ‖ξ‖ ‖η‖.

We denote this module
⊕

c qαLp for column sum. Indeed, the reader should
think of principal modules as columns with entries from Lp. Motivated by this,
we make

DEFINITION 3.5. Let {Xα} be Lp modules. If (ξα) and (ηα) have finite sup-
port, set

〈(ξα), (ηα)〉 = ∑〈ξα, ηα〉.
The column sum,

⊕
c Xα, is the closure of the finitely supported vectors with re-

spect to the (quasi)norm (p < ∞) or strong topology (p = ∞) coming from this
inner product.

We denote the countably infinite column sum of Lp(M) as Cp(M), or sim-
ply Cp if the underlying algebra is clear.

Note: As above, it will turn out that
⊕

c Xα =
{

(ξα) : ∑
α
〈ξα, ξα〉 ∈ Lp/2

}
.

We can now state one of our main results.

THEOREM 3.6. Any Lp module is isometrically isomorphic, as a module, to a prin-
cipal Lp module.

If X is cyclic, this is easy. Take X = ξM and consider the densely-defined
isomorphism of Lp modules

X ↔ s(〈ξ, ξ〉1/2)Lp : ξx ↔ 〈ξ, ξ〉1/2x.

Since the inner product and the bounded action of M extend continuously to the
completion, this is an isomorphism.

The whole difficulty of the proof lies in devising the column sum decompo-
sition. This may be thought of as a generalization of the fact that Hilbert spaces
have an orthonormal basis. (A version of this theorem was proven for a special
type of Lp module in Proposition 2.8 of [10].)
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4. PROOF OF THEOREM 3.6

If p = 2, X is a Hilbert space. The previously mentioned decomposition
theorem gives

X '
⊕

qαL2(M)

isometrically as modules. Now the right-hand side admits a unique L1-valued
inner product and so is a column sum in our sense; therefore X is principal.

We consider the cases p = ∞, p > 2, and p < 2 separately.

Case 1. p = ∞.

Choose ξ ∈ X and set

ξn = ξ
(
〈ξ, ξ〉+

1
n

)−1/2
∈ X,

so ‖ξn‖ < 1.
For any ϕ ∈ M+∗ , ϕ(〈ξm − ξn, ξm − ξn〉) → 0 as m, n → ∞. So ξn converges

strongly, say to η1, and apparently 〈η1, η1〉 is a projection q1.
Consider a maximal set {ηα} with the property that 〈ηβ, ηγ〉 = δβγqβ. If the

strong closure of ∑ ηαM is not all of X, choose ξ outside this set and write

(4.1) ξ = ∑ ηα〈ηα, ξ〉+
(

ξ −∑ ηα〈ηα, ξ〉
)

.

The first summand should be interpreted as a strong limit; existence follows from
the Bessel-type inequality

0 6
〈

ξ −∑ ηα〈ηα, ξ〉, ξ −∑ ηα〈ηα, ξ〉
〉

= 〈ξ, ξ〉 −∑ |〈ηα, ξ〉|2.

By assumption the second summand in (4.1) is nonzero. We can normalize it as
above (which does not change orthogonality) and add it to our set {ηα} — but
this violates the maximality of {ηα}.

Therefore the strong closure of ∑ ηαM is X. Finally we have an isomor-
phism

X 3 ξ ↔ (〈ηα, ξ〉) ∈
⊕

c
qαM.

Essentially this is Paschke’s result ([20]), but we have started with a topo-
logical condition instead of an algebraic one (self-duality). A Hilbert C∗-module
X is called self-dual if X ' Hom(XM,MM) via ξ ↔ 〈ξ, · 〉. Weaker than the strong
topology we have defined is the weak topology on the unit ball, generated by the
functionals

ξ 7→ ϕ(〈η, ξ〉), ϕ ∈ M∗, η ∈ X.

We have arrived at

THEOREM 4.1. For a Hilbert C∗-module X over a von Neumann algebra M, the
following conditions are equivalent:

(i) the unit ball of X is strongly closed;
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(ii) X is principal; or, to say the same thing, X is an ultraweak direct sum of Hilbert
C∗-modules qαM, for some projections qα;

(iii) X is self-dual;
(iv) the unit ball of X is weakly closed.

This theorem has consequences for an arbitrary Hilbert C∗-module X over
a von Neumann algebra M. Set X to be the strong closure; a straightforward
argument shows that X is an L∞ module for M. Therefore X is representable as
a strongly dense submodule of a principal L∞ module. Related discussions are
found in [2] and [40].

Case 2. p > 2.
Let {ξα} be a maximal orthogonal set (with no condition on 〈ξα, ξα〉). Set

X0 = ∑ ξM ' ⊕
c qαLp. Any vector η in X0 can be written as a limit, i.e. η =

lim
n

∑ ξαxα,n. But if this is Cauchy, the orthogonality of {ξα} implies

0 = lim
m,n

∥∥∥ ∑ ξαxα,n −∑ ξαxα,m

∥∥∥ > lim
m,n

‖ξα(xα,n − xα,m)‖ for each α.

Thus η has a unique representation as ∑ ηα, ηα ∈ qαLp, and we have an isomor-
phism of Lp modules

X0 3 η ↔
⊕

c
qαLp.

So we just need to show that X0 = X. Now X is a Banach space since p > 2,
and X0 was seen to be reflexive in the last paragraph. Therefore X0 is a proximinal
subspace of X ([35], Corollary 2.1). This means that if ξ ∈ X \ X0, there exists an
element η0 in X0 with ‖ξ − η0‖ = inf

η∈X0
‖ξ − η‖. Then ζ = ξ − η0 has 0 as a best

approximant. What does this say about ζ?
Fix an index λ and x ∈ M. By assumption, the functionR 3 t 7→ ‖ζ + tξλx‖

attains its minimum at t = 0. Set 〈ζ, ξλ〉 = 〈ζ, ζ〉1/2Tλ〈ξλ, ξλ〉1/2, using (3.1), and
observe
‖ζ + tξλx‖
= ‖〈ζ, ζ〉+ 2t Re(〈ζ, ζ〉1/2Tλ〈ξλ, ξλ〉1/2x) + t2x∗〈ξλ, ξλ〉x‖1/2

o(t)∼ ‖〈ζ, ζ〉+ 2t Re(〈ζ, ζ〉1/2Tλ〈ξλ, ξλ〉1/2x) + t2x∗〈ξλ, ξλ〉1/2T∗λTλ〈ξλ, ξλ〉1/2x‖1/2

= ‖〈ζ, ζ〉1/2 + tTλ〈ξλ, ξλ〉1/2x‖ , fλ,x(t).

Now fλ,x is differentiable since ζ was presumed nonzero and the norm in Lp \ {0}
is Fréchet differentiable. (The Clarkson inequalities imply Lp is uniformly smooth
for 1 < p < ∞ ([22]).) It agrees up to o(t) with a function which has a local
minimum at t = 0, so f ′λ,x(0) = 0. Finally, it is convex by construction. It follows
that fλ,x attains its absolute minimum (= ‖〈ζ, ζ〉1/2‖ = ‖ζ‖) at 0.

Since this is true for all λ and x we get that in Lp

dist
(
〈ζ, ζ〉1/2, ∑ Tλ〈ξλ, ξλ〉1/2M

)
= ‖ζ‖.
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By Hahn-Banach there is a norm one functional on Lp which annihilates the sub-
space ∑ Tλ〈ξλ, ξλ〉1/2M and takes the value ‖ζ‖ at 〈ζ, ζ〉1/2. This functional must
have the form Tr(vρ1/q·) for some v ∈ M, ρ ∈ M+∗ . Then we fix λ and write out

(4.2) Tr(vρ1/qTλ〈ξλ, ξλ〉1/2M) = 0 ⇒ s(ρ)⊥sl(Tλ〈ξλ, ξλ〉1/2).

Also

(4.3) ‖〈ζ, ζ〉1/2‖p = |Tr(vρ1/q〈ζ, ζ〉1/2)| 6 ‖s(ρ)〈ζ, ζ〉1/2‖p 6 ‖〈ζ, ζ〉1/2‖p,

so these are equalities and in particular

(4.4) s(ρ) > s(〈ζ, ζ〉1/2).

Together (4.2) and (4.4) imply

〈ζ, ξλ〉 = 〈ζ, ζ〉1/2Tλ〈ξλ, ξλ〉1/2 = 0.

So the set {ξλ} was not a maximal orthogonal set in X, a contradiction. This
completes the proof for p > 2.

Case 3. p < 2.

By restricting the algebra (see the discussion following Definition 3.3), we
may assume that the module is faithful. We need two auxiliary constructions.

I. Let X be an Lp module, and 1/p + 1/q = 1/r. We write X⊗M Lq(M) for
the closure of the algebraic tensor product, modulo the null space, in the topology
arising from the degenerate inner product 〈ξ1 ⊗ η1, ξ2 ⊗ η2〉 = η∗1 〈ξ1, ξ2〉η2 ∈
Lr/2(M). It is easy to see that X⊗M Lq(M) satisfies the relation

(4.5) ξx⊗ η = ξ ⊗ xη

and is an Lr module in our sense.
II. Let X be an Lp module and ϕ be a fixed faithful strictly semifinite weight

on M. This means that ϕ = ∑ ϕα, where the ϕα are orthogonal and bounded. We
will create an L2 module with the same “shape" as X.

LEMMA 4.2. The following conditions on a vector ξ ∈ X are equivalent:
(i) 〈ξ, ξ〉 6 Cϕ2/p for some C;

(ii) 〈ξ, ξ〉1/2 = yϕ1/p for some y ∈ M;
(iii) 〈ξ, ξ〉1/2 = ϕ1/pz for some z ∈ M.

We denote the set of such vectors as Dϕ.

This is nothing but (2.1).

LEMMA 4.3. Dϕ is dense in X.

Proof. Given any ξ ∈ X, let q = s(〈ξ, ξ〉) and densely define the Lp module
isomorphism T by T : qLp ∼→ ξM ⊂ X, T(〈ξ, ξ〉1/2x) = ξx.

We need that elements of the form yϕ1/p are dense in Lp. Because ϕ1/p is
not necessarily τ-measurable, this is slightly more delicate than Lemma 2.2.
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Set qα = s(ϕα), and let {rβ} be the net of finite sums of the qα (ordered
naturally). Again by Lemma 2.4, the net {〈ξ, ξ〉1/2rβ} converges to 〈ξ, ξ〉1/2. Since
rβ commutes with ϕ1/p, we have

〈ξ, ξ〉1/2rβ ∈ Lprβ = Mrβ ϕ1/p.

Putting these two approximations together, we may find {yn} ⊂ M with yn ϕ1/p

→ 〈ξ, ξ〉1/2.
T is an isomorphism and preserves inner products, so

T(yn ϕ1/p) → T(〈ξ, ξ〉1/2) = ξ.

Also

〈T(yn ϕ1/p), T(yn ϕ1/p)〉 = 〈yn ϕ1/p, yn ϕ1/p〉 = ϕ1/py∗nyn ϕ1/p 6 ‖y‖2 ϕ2/p,

so by Lemma 4.2, T(yn ϕ1/p) ∈ Dϕ. Thus we have written ξ as a limit of vectors
in Dϕ.

With 1
2 + 1

r = 1
p , we define an L1-valued inner product on Dϕ by

(4.6) 〈ξ, η〉Dϕ , ϕ−1/r〈ξ, η〉Xϕ−1/r.

By (3.1) and Lemma 4.2, ϕ1/p factors out of 〈ξ, η〉 on both the left and the right,
and (4.6) is justified. The nontrivial fact that composition with ϕ−1/r is the inverse
of composition with ϕ1/r is found in [31] and [32].

We now describe the module action. Clearly the previous M-action is not
compatible with the new inner product (andDϕ is not a submodule of X). Instead
we need to work with Mϕ

a , the operators in M for which t 7→ σ
ϕ
t (x) = ϕitxϕ−it

extends off the real line to an entire M-valued function.
The action must be η · x = ηϕ−1/rxϕ1/r; then

〈ξ, η · x〉Dϕ = 〈ξ, ηϕ−1/rxϕ1/r〉Dϕ = ϕ−1/r〈ξ, ηϕ−1/rxϕ1/r〉Xϕ−1/r

= ϕ−1/r〈ξ, η〉Xϕ−1/rxϕ1/r ϕ−1/r = 〈ξ, η〉Dϕ x.

As we noted before, an L1-valued inner product composed with Tr is a usual
inner product; therefore the closure of Dϕ in the inner product norm is a Hilbert
space HX,ϕ. The ∗-algebra Mϕ

a is represented isometrically on it — in fact it is a
∗-representation:

〈ξ, η · x∗〉HX,ϕ = Tr(〈ξ, η · x∗〉Dϕ ) = Tr(〈ξ, η〉Dϕ x∗)

= Tr(x∗〈ξ, η〉Dϕ ) = Tr(〈ξ · x, η〉Dϕ ) = 〈ξ · x, η〉HX,ϕ .

We need to show that the von Neumann closure of Mϕ
a in this representa-

tion is exactly M. A dense set of (positive) vector functionals is

(4.7) x 7→ 〈ξ, ξ · x〉HX,ϕ , ξ ∈ Dϕ,
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and these are identical to the linear functionals

x 7→ Tr(〈ξ, ξ〉Dϕ x), ξ ∈ Dϕ.

Deducing further and using Lemma 4.2,

{〈ξ, ξ〉Dϕ : ξ ∈ Dϕ} = {ϕ−1/rψ2/p ϕ−1/r : Cϕ2/p > ψ2/p ∈ Lp/2}
= {ϕ1/2|y|2 ϕ1/2 : yϕ1/p ∈ Lp}.

Now we need another double approximation argument, and we are brief. Since
ϕ is semifinite, any element of M+∗ is a norm limit of elements ϕ1/2|yn|2 ϕ1/2,
where yn ∈ Nϕ, the definition ideal of ϕ. Each of these can be approximated by
an element

rβ ϕ1/2|y|2 ϕ1/2rβ = ϕ1/2rβ|y|2rβ ϕ1/2

(rβ are as in the proof of Lemma 4.3), and these belong to the sets above since
yrβ ϕ1/p ∈ Lp.

The upshot of all this is that the vector functionals in (4.7) form a dense set
in M+∗ . Thus the strong topology in this representation agrees with the strong
topology in the representation of Mϕ

a on L2(M). Happily, Mϕ
a is dense in M in

the latter topology, so the von Neumann closure is M.
The reader can check that the extensions of the M-action and L1-valued

inner product to HX,ϕ do make it into an L2 module for M.
Now consider the Lp module HX,ϕ ⊗M Lr. We will make two observations:

that it is principal, and that it is isomorphic to X.
HX,ϕ is an L2 module and so of the form

⊕
c qαL2. It is not hard to see that

the functor “⊗MLr" commutes with column sums; i.e.

HX,ϕ ⊗M Lr =
( ⊕

c
qαL2

)
⊗M Lr '

⊕
c

(
qαL2 ⊗M Lr

)
=

⊕
c
(qαLp),

which is principal.
Consider the dense submodule Dϕ ⊗M (ϕ1/rM∩ Lr) ⊂ HX,ϕ ⊗M Lr. For

elements of this subset, we have

〈ξ ⊗ ϕ1/rx, η ⊗ ϕ1/ry〉 = x∗ϕ1/r〈ξ, η〉Hϕ1/ry = x∗〈ξ, η〉Xy = 〈ξx, ηy〉X.

So the correspondence ξ ⊗ ϕ1/rx ↔ ξx densely defines an Lp module isomor-
phism HX,ϕ ⊗M Lr ' X. As before, the M-action and inner product must agree
on the closure, and the proof is complete.

Since any Lp module is principal, we see that
(1) ‖ · ‖ is a norm for p > 1 and a p- (not just p/2-) norm for p < 1; and
(2) ⊕

c
Xα =

{
(ξα) : ∑

α

〈ξα, ξα〉 ∈ Lp/2
}

;

as were mentioned in Section 3.
It also follows from the proof that for any subset S of an Lp module X,

(4.8) S⊥⊥ = SM.



NONCOMMUTATIVE Lp MODULES 19

So if S is already an Lp module, X = S ⊕c S⊥; that is, right Lp submodules are
necessarily column summands.

5. AN APPLICATION TO ULTRAPRODUCTS

Here we give a nontrivial application of Theorem 3.6.
Fix a free ultrafilter U onN. For a Banach space X, we define the ultrapower

XU by `∞(X)/NU , where NU =
{

(xn) : lim
n→U

‖xn‖ = 0
}

.

We will need the following result of Raynaud:

THEOREM 5.1. ([24], Theorem 3.1) Let M be a von Neumann algebra. Set N =
((M∗)U )∗. Then N is a von Neumann algebra and

Lp(M)U ' Lp(N ).

In fact MU is strongly dense in N .
Now take p > 2 for simplicity, and consider the Banach space Cp(M)U .

While Cp(M)U naturally contains Cp(N ), they are not equal; the reader should
think of a sequence of unit vectors in Cp(M) where the support wanders off to
infinity. (Evaluating the limit componentwise is a projection from Cp(M)U onto
Cp(N ).) As huge as Cp(M)U is, we can still gain some control over it via

PROPOSITION 5.2. Cp(M)U is a right Lp N -module.

Proof. We explain the Lp module structure. Let x ∈ MU ⊂ N have rep-
resenting sequence (xn), and let ξ, η ∈ Cp(M)U have representing sequences( ∞⊕

c
k=1

ξn
k

)
,
( ∞⊕

c
k=1

ηn
k

)
. We define ξx by the representing sequence

(⊕
c ξn

k xn

)
; it is

easy to see that this does not depend on the initial choices. Similarly, we set

〈ξ, η〉 = lim
n→U

〈 ∞⊕
c

k=1

ξn
k ,

∞⊕
c

k=1

ηn
k

〉
∈ Lp/2(M)U = Lp/2(N ).

It is clear that this inner product generates the norm and is compatible with the
module action.

Finally, we show that the module action extends naturally from MU to N .
The strong topology that MU inherits from its action on Cp(M)U is generated by
seminorms of the form

(xn) = x 7→ ‖ξx‖ = lim
n→U

∥∥∥x∗n
〈 ⊕

c
ξn

k ,
⊕

c
ξn

k

〉
xn

∥∥∥
1/2

= lim
n→U

∥∥∥x∗n ∑
k
〈ξn

k , ξn
k 〉xn

∥∥∥
1/2

= lim
n→U

∥∥∥
(

∑
k
〈ξn

k , ξn
k 〉

)1/2
xn

∥∥∥

= lim
n→U

‖ϕ
1/p
n xn‖ = ‖ϕ1/px‖,
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where the ϕ
1/p
n ∈ Lp(M) form a representing sequence for ϕ1/p ∈ Lp(N ). By

Lemma 2.3, these are exactly the seminorms which generate the strong topology
on MU inside N . This completes the proof.

By Theorem 3.6, we know that any Lp module can be written as a column
sum. One can think of Cp(M)U as containing countably many copies of Lp(N )
from componentwise limits, plus uncountably many more from all the directions
in which support might wander. Perhaps it is more natural to think of Cp(M)U as
a continuous column integral of Lp(N ) over a very large space; the adventurous
reader may want to consider how to make this statement more precise.

6. COMMUTANTS AND CATEGORICAL PROPERTIES

Consider a countably generated right Lp module X for a σ-finite von Neu-
mann algebra M. By Theorem 3.6, there are projections {qn} with

X '
⊕

c
qnLp '

(
∑ qn ⊗ enn

)
Cp = qCp.

If two such projections q, q′ ∈ M∞(M) are Murray-von Neumann equivalent via
a partial isometry v, we have an isometric module isomorphism qCp ' q′Cp via
left multiplication by v. We will obtain the converse after proving

PROPOSITION 6.1. On qCp, the right action of M (= R(M)) and the left action
of qM∞(M)q (= L(qM∞(M)q)) are commutants of each other.

Proof. Once again we may assume that the module is faithful for the right
action of M. Now note that the two actions mentioned are commuting and
bounded: boundedness of L(qM∞(M)q) follows by viewing it as a subalgebra
of M∞(M) and using the Hölder inequality. Finally, by the remark before the
proposition, we may assume that q⊥ ∼ 1.

So let T be a bounded operator on qCp commuting with the right action of
M, and then set T′ = T ◦ L(q). T′ is bounded and commutes with R(M) on all of
Cp.

Since T′ acts on column vectors, it has a matrix representation as (T′ij), where
each T′ij operates on Lp(M). Fix a single T′ij. For any ξ ∈ Lp(M) and x ∈ M we

may consider the vector ξ in Cp with ξ in the jth position and 0 elsewhere. Since
T′ commutes with R(M),

(T′ijξ)x = ((T′ξ)x)i = (T′(ξx))i = T′ij(ξx).

By Corollary 2.6 we know that T′ij = L(yij) for some yij ∈ M. Considering the ker-
nel and range, we deduce that yij ∈ qiMqj. Then T′ = L((yij)) for some bounded
operator (yij) ∈ qM∞(M)q, and this representation is the restriction T as well.

Instead of trying to check that any operator commuting with L(qM∞(M)q)
must lie inside R(M), we give a small argument involving projections in order
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to invoke symmetry. In the σ-finite algebra M∞ ⊗ M∞ ⊗M, the projections

I ⊗ q and e11 ⊗ I ⊗ IM

are both properly infinite and therefore equivalent ([14], Corollary 6.3.5). They
remain so after subtracting their common subprojection e11⊗ q (we assumed q⊥ ∼
I⊗ IM), allowing us to find a partial isometry v between them which fixes e11⊗ q.
Conjugation by v gives an isomorphism

M∞(qM∞(M)q) = (I ⊗ q)(M∞ ⊗ M∞ ⊗M)(I ⊗ q)

' (e11 ⊗ I ⊗ IM)(M∞ ⊗ M∞ ⊗M)(e11 ⊗ I ⊗ IM)

= M∞(M).

Now let r = v∗(e11 ⊗ e11 ⊗ 1M)v be the projection in the first algebra which cor-
responds to e11 ⊗ 1M in the second, and notice e11 ⊗ q is the “outer" matrix unit
e′11 for M∞(qM∞(M)q). Via the isomorphism above, we have the isomorphic bi-
module presentations

q(M∞(M))q− qLp(M∞(M))e11 −M
' q(M∞(M))q− e′11Lp(M∞(q(M∞(M))q))r− r(M∞(q(M∞(M))q))r.

(6.1)

(The point is to observe that module and commutant are written as reduced am-
plifications of the left algebra.) Now applying the first argument finishes the
proof.

That q be diagonal, i.e. of the form ∑ qn ⊗ enn, is actually unnecessary. For
any projection q in M∞(M), the Lp module qCp inherits its structure from Cp.

COROLLARY 6.2. If the Lp modules q1Cp, q2Cp are isometrically isomorphic, then
the projections q1, q2 are Murray-von Neumann equivalent.

Proof. If S is the isometric module isomorphism, extend it to

S̃ : q1Cp ⊕c q⊥1 Cp = Cp → Cp, S̃(ξ ⊕c η) = S(ξ).

S̃ is bounded and commutes with the right action of M, so by Proposition 6.1, it
is given by left composition with some y ∈ M∞(M). By considering the kernel
and range of S̃ (and the fact that S̃ is isometric on q1Cp), we see that y must be a
partial isometry with sr(y) = q1 and sl(y) = q2.

By virtually the same argument we obtain

COROLLARY 6.3. If 1
p + 1

r = 1
q ,

Hom(q1Cp
M, q2Cq

M) = L(q2Lr(M∞(M))q1).

REMARK 6.4. Proposition 6.1 and its corollaries still hold without the as-
sumptions that the algebra is σ-finite and the module is countably generated.
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(This requires either a direct limit argument or a subtler calculation with projec-
tions.) In the general case, the typical module is qLp(MJ(M))e11 for some cardi-
nal J and projection q ∈ MJ(M); we will not need the full result in the sequel and
so opted for clarity.

By an isomorphism of right Lp M-modules, we mean a linear isomorphism
which preserves both the M-action and the Lp/2(M)-valued inner product (so
an isomorphism is automatically isometric). We define Right-Lp-Mod(M) to be
the category of isomorphism classes of countably generated right Lp M-modules,
with intertwiners as morphisms. Every class contains submodules of Cp; from the
foregoing results we may conclude that they are parameterized by Murray-von
Neumann equivalence classes of projections in M∞(M), which is V(M∞(M)) in
the language of K-theory ([41]). It should be clear that this is an additive category,
with addition being the column sum of orthogonal representatives. This actually
gives us monoidal equivalence with V(M∞(M)):

q1Cp ⊕c q2Cp = (q1 + q2)Cp, q1 ⊥ q2

corresponds exactly to

[q1] + [q2] = [q1 + q2], q1 ⊥ q2.

It follows that Cp ⊕c qCp ' Cp, which is the Lp version of Kasparov’s stabilization
theorem for Hilbert C∗-modules ([18], Theorem 6.2). In caseM is a II1 factor with
trace τ, we can make the correspondence with V(M∞(M)) ' [0, ∞] explicit via
the natural definition

(6.2) dimM(qCp) = (tr⊗ τ)(q).

Clearly dimM(⊕cXi) = ∑ dimM Xi.
All of this is identical to the L2 case ([9], Sections 2.1-2), but we recall the

difference at the vector level: the norm in a column sum (p 6= 2)

‖ξ ⊕c η‖ = ‖ξ∗ξ + η∗η‖1/2

is not, in general, a function of the norms in each component. Now it may occur to

the reader to try a “diagonal" sum
(

X 0
0 Y

)
, as is done for operator spaces. This

is an `p direct sum, but no compatibility is required or retained: the diagonal sum
of a right Lp M1-module and a right Lp M2-module is a right Lp (M1 ⊕M2)-
module. If M1 = M2 = M, the diagonal sum is algebraically an M-module, but
not necessarily an Lp module in our sense: the inner product would naturally be
Lp/2(M⊕M)-valued. The difference is already apparent in the simplest possible
case:

M = X = Y = C.
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As modules,

C⊕c C =
(
C
C

)

C
,
∥∥∥∥
(

a
b

)∥∥∥∥ = (|a|2 + |b|2)1/2,

C⊕d C =
(
C 0
0 C

)

CI2⊂M2

,
∥∥∥∥
(

a 0
0 b

)∥∥∥∥ = (|a|p + |b|p)1/p.
(6.3)

C ⊕d C cannot be a right Lp C-module, since it is apparently not isometrically
isomorphic to the only two-dimensional right Lp C-module, C⊕cC. (Instead it is
a right Lp (C⊕C)-module.)

Since there are many equivalent constructions of Lp(M), it should not be
surprising that there are other ways to build the class of Lp modules. We do
not reproduce the details from [31] but simply note that Right-Lp-Mod(M) also
arises from

– a minimal class of complete right M-modules which contains Lp(M) and
is closed under taking submodules and forming countable column sums (recall
equation (4.8));

– a class of spaces of “column" operators which satisfy a−1/p-homogeneity
condition in the sense of Connes-Hilsum ([8]);

– a class of interpolation spaces, following Kosaki ([15]).

In the sequel we will frequently be concerned with left actions. Of course,
the theory of left Lp modules is entirely analogous. The counterparts to column
sums, Cp, and Right-Lp-Mod we call row sums, Rp, and Left-Lp-Mod. There is
a 1-1 correspondence between left and right Lp M-modules given by the con-
tragredient MX of XM: X is conjugate linearly isomorphic to X, with left action
x · ξ = ξx∗ and inner product 〈ξ, η〉 = 〈ξ, η〉. Of course, one may similarly take
the contragredient of a left Lp module; X is canonically isomorphic to X. It is easy
to see that when X is represented as a principal Lp module, the contragredient
corresponds to the operator adjoint.

DEFINITION 6.5. An LpM-N bimodule is an M-N bimodule (meaning that
the actions commute) which is simultaneously a left Lp M-module and a right Lp

N -module. We denote the category of isomorphism classes, with intertwiners as
morphisms, by Lp-Bimod(M,N ).

Notice, by Proposition 6.1 and (6.1), that every left or right Lp M-module
is an Lp bimodule, with opposite action coming from the commutant. We will
explore this more fully in the next section.

Our final observation of this section concerns the relative tensor product,
a sort of “multiplication" for Hilbert modules. The original arguments are due
to Connes and Sauvageot (and found in [28] and [23]); the informed reader will
recognize our Lp formulation as a minor modification. As explained in [33], on
the module level the relative tensor product only “sees" the projections (more
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precisely, the elements of V(M∞(M))) which determine the modules. The den-
sities of the modules — all 1/2 in the usual case — are irrelevant, and so we may
choose any p, q, r we please. In the following definition the notations L(XM) and
L(MY) stand for commutants.

DEFINITION 6.6. By an (M, p, q, r)-relative tensor product we mean a functor,
covariant in both variables,

Right-Lp-Mod(M)× Left-Lq-Mod(M) → Lr-Bimod(L(XM),L(MY));

(X, Y) 7→ X⊗M,p,q,r Y

which satisfies

Lp(M)⊗M,p,q,r Lq(M) ' Lr(M)

as bimodules.

We remind the reader that the sums in these categories (which the relative
tensor product must distribute, by functoriality) are not direct. So, for example,

( ⊕
c

Lp
)
⊗M,p,q,r Lq '

⊕
c
(Lr).

By decomposition and functoriality, it is simple to see that such functors exist
and are unique up to unitary equivalence. One has the following representation
result:

PROPOSITION 6.7. Let X ' q1Cp ∈ Right-Lp-Mod(M) and Y ' Rqq2 ∈
Left-Lq-Mod(M), for some q1, q2 ∈ P(M∞(M)). Then

X⊗M,p,q,r Y ' q1Lr(M∞(M))q2

with natural action of the commutants.

It is also possible to give an element-wise construction of the relative tensor
product based on a fixed faithful state (or weight) ϕ. The usual construction is

ξ ⊗ϕ η = ξϕ−1/2η

for a suitable dense set of ξ, η, and the (p, q, r)-relative tensor product requires

ξ ⊗ϕ η = ξϕ
1
r −

1
p−

1
q η.

Both of these identities are discussed in [32], and in [33] the preclosedness of this
relative tensor map is investigated for p = q = r = 1/2. The reader will notice
that the auxiliary constructions introduced to prove the p < 2 case of Theorem
3.6 are nothing but relative tensor products.
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7. Lp BIMODULES

The theory of L2 bimodules, which contains that of subfactors, is one of
the most fruitful fields in the study of von Neumann algebras. But for the Lp

analogues with p 6= 2, the lack of Hilbert space symmetry makes for a much
more restrictive theory. One deficit which is apparent from the outset is that Lp

bimodules do not add: row and column sums preserve one algebra only. We
will see that there are other significant limitations. In this section we simplify the
discussion by assuming 1 < p < ∞, p 6= 2, all algebras to be σ-finite, and all Lp modules
to be countably generated and faithful.

The structure theorems proven so far show that every left or right Lp M-
module is an Lp bimodule, with opposite action coming from the commutant. But
of course the commutant is the “largest" choice, so an M-N Lp bimodule gives
injective homomorphisms of each algebra into an amplification of the other.

LEMMA 7.1. Let X be an M-N Lp bimodule, and suppose that X ' Rp(M)q
via an isomorphism T. Then there is an injective normal ∗-homomorphism π : N ↪→
qM∞(M)q such that T(ξn) = T(ξ)π(n).

Proof. The only things to show are that π is normal and ∗-preserving. For
normality, note that by Lemma 2.3 the strong topologies on the unit balls of N
and π(N ) are both given by the module actions, which are identical.

A variant of Lemma 2.1 says that the norms are also generated by the mod-
ule actions. Since (orthogonal) projections are exactly idempotents of norm 1,
π takes projections to projections. By approximating with projections, we see π
takes self-adjoint elements to self-adjoint elements. Finally,

π(x∗) = π(Re x)− iπ(Im x) = π(x)∗.

One is tempted to follow the theory of correspondences ([23]) and guess
that Lp bimodules are equivalent to normal unital ∗-homomorphisms, but this is
asking too much. For example, Lp(M) is an M-M Lp bimodule, and naturally
C ⊂ M. But if Lp(M) is a right Lp C-module, necessarily Lp(M) ' qCp(C) for
some q, and this last object is actually a Hilbert space. Then the norm in Lp(M)
follows the parallelogram law; if ϕ, ψ are states with orthogonal supports,

(7.1) 4 = 2(‖ϕ1/p‖2 + ‖ψ1/p‖2) = ‖ϕ1/p + ψ1/p‖2 + ‖ϕ1/p − ψ1/p‖2 = 2 · 22/p.

Since this is false when p 6= 2, such states cannot exist. Thus Lp(M) is a right Lp

C-module if and only if M = C.
The cause of such a phenomenon is clear: noncommutative Lp spaces re-

member the Jordan structure of their generating algebras ([34]), except for amne-
siac p = 2. The existence of an Lp M-N bimodule therefore implies a relationship
between M and N , and the remainder of this section is devoted to a precise de-
scription of this relationship.
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A major tool will be the following result of Raynaud and Xu (relying heavily
on a subcase proved by Kosaki ([17], Theorem 6.6)).

THEOREM 7.2. ([25], Theorem A.1) When p 6= 2, two elements ξ, η of a non-
commutative Lp space satisfy sl(ξ) ⊥ sl(η), sr(ξ) ⊥ sr(η) if and only if they satisfy

(7.2) ‖ξ + η‖p + ‖ξ − η‖p = 2 (‖ξ‖p + ‖η‖p) .

PROPOSITION 7.3. Let X ' Rp(M)q be an Lp M-N bimodule. Then the centers
of M and N are spatially isomorphic as operators on X.

Proof. We will use the classical Lp notion of Lp-projection ([1]): an idempo-
tent E on a Banach space satisfying

(7.3) ‖ξ‖p = ‖Eξ‖p + ‖ξ − Eξ‖p

for all elements ξ. Commutative Lp spaces are characterized by having suffi-
ciently many Lp-projections, but the same is not true in the noncommutative set-
ting. We will show that the Lp-projections on X can be identified spatially with
the central projections of either M or N .

That a central projection is an Lp-projection is clear. So let E be an Lp-
projection, and make the identification X ' Rp(M)q. For any two vectors ξ ∈
Ran E, η ∈ ker E, (7.3) implies (7.2) (since −η ∈ ker E also). Then ξ and η have
orthogonal left and right supports, and we have the decomposition in M

∨

ξ∈Ran E

sl(ξ) +
∨

η∈ker E

sl(η) = 1.

Now the left action of the first projection above is apparently E, which must also
equal the right action of

∨
ξ∈Ran E

sr(ξ) ∈ (M′)op = qM∞(M)q. This is only possible

if the projection in M is central.
Thus each central projection in N , being an Lp-projection, is identified spa-

tially with a central projection in M. It follows that the centers of M and N are
isomorphic.

At this point, our original approach was to decompose X into a direct in-
tegral of Lp bimodules between factors. This requires a significant detour into
measure theory, and we have opted to omit these arguments (which may appear
elsewhere) and deal with central projections.

We will use the following two results, which characterize isometries be-
tween noncommutative Lp spaces under certain circumstances.

THEOREM 7.4. ([43], Theorem 2) Let {M, τM}, {N , τN } be semifinite von Neu-
mann algebras with given traces, and 1 < p < ∞, p 6= 2. Suppose that T is a linear
isometry from Lp(M, τM) to Lp(N , τN ), where we view these as spaces of τM or τN -
measurable operators. Then there exist, uniquely, a partial isometry w ∈ N , an injective
normal Jordan ∗-homomorphism J of M into N , and a positive unbounded operator B
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affiliated with J(M)′ ∩N , all satisfying

w∗w = J(1) = s(B);

τM(x) = τN (Bp J(x)), ∀x ∈ M+;

T(x) = wBJ(x), ∀x ∈ M∩ Lp(M, τM).

It is worth explaining here that a map between von Neumann algebras is
Jordan if it preserves the Jordan product (x, y) 7→ (1/2)(xy + yx). An injec-
tive normal Jordan ∗-homomorphism is the sum of a ∗-homomorphism and a
∗-antihomomorphism; the two supports, which are central projections, have sum
> 1, and the two ranges are orthogonal. A surjective Jordan ∗-isomorphism is
necessarily normal and so can be centrally decomposed, in both domain and
range, into a ∗-isomorphism and a ∗-antiisomorphism. (See [7] for details. The
only ambiguity in these decompositions arises from abelian summands.)

THEOREM 7.5. ([34]) Suppose that T : Lp(M) → Lp(N ) is a surjective isome-
try, 1 < p < ∞, p 6= 2. Then there are a surjective Jordan ∗-isomorphism J : M → N
and a unitary u ∈ N such that

(7.4) T(ϕ1/p) = u(ϕ ◦ J−1)1/p, ∀ϕ ∈ M+
∗ .

We have T(ξx) = T(ξ)J(x) (respectively T(ξx) = uJ(x)u∗T(ξ)) when ξx is supported
on a central summand for which J is multiplicative (respectively antimultiplicative).

PROPOSITION 7.6. Let X ' Rp(M)q be an Lp M-N bimodule with q 4 e11.
Then the inclusion π : N ↪→ qMq is surjective.

Proof. If necessary, implement an isomorphism so that q 6 e11. The hy-
potheses mean that we have bimodules

(7.5) M− Lp(M)q− qMq, q′M∞(N )q′ − q′Cp(N )−N ,

where q′ ∈ P(M∞(N)) and the bimodules are isometrically isomorphic as Banach
spaces. By Lemma 7.1 we have inclusions consistent with the module actions:

(7.6) M ⊂ q′M∞(N )q′, N π⊂ qMq.

So via its left action the projection q ∈ M is identified with a projection q′′ ∈
q′M∞(N )q′. If we implement L(q) = L(q′′) we get subbimodules

(7.7) qMq − Lp(qMq) − qMq, q′′M∞(N )q′′ − q′′Cp(N ) − N .

Again the modules themselves are isometrically isomorphic, and we still have

the same inclusion N π⊂ qMq from the right actions.
Our next step will be to show that q′′ ∼ eN11, so that q′′Cp(N ) may be re-

placed with Lp(N ) in (7.7). By implementing projections from the common cen-
ter of M and N , we may consider separately the cases where N is finite or prop-
erly infinite. If N is properly infinite, then the given center-preserving inclusions
N ↪→ qMq ↪→ q′′M∞(N )q′′ imply that q′′ is properly infinite, and so q′′ ∼ eN11.
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IfN is finite, first we argue that qMq must be finite. For otherwise Lp(qMq)
contains an isometric copy of the Schatten class Sp (= Lp(B(H), tr)), and so we
have that Sp embeds isometrically in q′′Cp(N ), where N is finite. Letting τ be a
faithful normal trace on N , we show that this is impossible. Indeed, if p > 2, it
is easily seen that Cp(N ) is a subspace of the intersection X = Lp(M∞(N ), τ ⊗
tr) ∩ L2(M∞(N ), τ⊗ tr). According to [11], X embeds into Lp(M̃) for some finite
M̃. This yields an embedding of Sp into Lp(M̃), which is absurd in view of the
result of Sukochev ([36], Theorem 3.1). For 1 < p < 2, we redefine X as the sum
Lp(M∞(N ), τ⊗ tr) + L2(M∞(N ), τ⊗ tr). Again by [11] X embeds into Lp(M̃) for
some finite M̃ and thus an embedding of Sp in Cp(N ) provides an embedding
of Sp into Lp(M̃). In this case, we may refer to the main result of [6] for the fact
that this is impossible. So qMq is finite with faithful normal trace τ′, and we may
apply Theorem 7.4 to the Lp isometry

T : Lp(qMq, τ′) ' q′′Cp(N ) ↪→ Lp(M∞(N ), τ ⊗ tr).

With T = wBJ(·), the conditions of the theorem imply that q′′ = sl(w) ∼ sr(w) =
eN11, as desired.

This means that we may replace the bottom line of (7.7) byN − Lp(N )−N .
We still have π : N ↪→ qMq, and we set S : Lp(N ) → Lp(qMq) to be the
isometric isomorphism of Banach spaces. Applying Theorem 7.5 to S we find the
underlying pair u ∈ qMq, J : N → qMq; let z, z⊥ be central projections of N
which divide J into multiplicative and antimultiplicative parts. The intertwining
relation between S and π gives

u(ϕ ◦ J−1)1/pπ(x)

= S(ϕ1/p)π(x) = S(ϕ1/px)

= u(ϕ ◦ J−1)1/p J(xz) + uJ(xz⊥)(ϕ ◦ J−1)1/p, ϕ ∈ N+
∗ , x ∈ N .

(7.8)

We observe that J and π both identify the centers, so we may multiply on the left
by π(z⊥)u∗ to get

(7.9) (ϕ ◦ J−1)1/pπ(xz⊥) = J(xz⊥)(ϕ ◦ J−1)1/p, ϕ ∈ N+
∗ , x ∈ N .

Then R(π(xz⊥)) = L(J(xz⊥)) is central for any x, so that N z⊥ is abelian, and
in fact J is multiplicative. Now (7.8) shows that π = J. Since we know that J is
surjective, this finishes the proof.

Return now to the general situation of an Lp M-N bimodule X ' Rp(M)q
' q′Cp(N ), and identify the centers of M and N . Use the comparability theorem
to find the largest central projections z, z′ satisfying zq 4 zeM11 , z′q′ 4 z′eN11. With
z′′ = z ∨ z′, Proposition 7.6 tells us that z′′M and (z′′N )op are commutants on
z′′X. On every central summand of the complement, both q and q′ are strictly
larger than eM11 and eN11, respectively. It follows that z′′⊥M and z′′⊥N are finite;
we will show that in fact they are abelian.
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PROPOSITION 7.7. Let M and N be finite algebras, and assume that M has
no abelian central summand. If q ∈ P(M∞(M)) and q′ ∈ P(M∞(N )) are pro-
jections such that qz 6=Â eM11 z and q′z′ 6=Â eN11z′ for all central projections z ∈ M∞(M),
z′ ∈ M∞(N ), then there is no M-N Lp bimodule X ' Rp(M)q ' q′Cp(N ).

Proof. Seeking a contradiction, let X be such a bimodule. Choose finite
traces τM, τN and consider the Lp elements to be measurable operators. As be-
fore, we may assume that q > eM11 and q′ > eN11. Let T be the isometric isomor-
phism from Rp(M)q to q′Cp(N ); the domain naturally contains RpeM11 ' Lp(M)
to give the isometric restriction

T1 : Lp(M, τM) ∩M 3 x 7→ T((x 0 · · ·)) ∈ q′Cp(N ) ⊂ Lp(M∞(N ), τN ⊗ tr).

The vector ξ = (1 0 · · ·) ∈ Rp(M)q has full left support, so by Theo-
rem 7.2 it satisfies equation (7.2) for no nonzero η ∈ X. Since T is an isometric
identification, the same is true for T(ξ) ∈ q′Cp(N ). Now our assumption on the
size of q′ means that T(ξ) can have full left support on no central summand, so
by Theorem 7.2 again we must have sr(T(ξ)) = eN11 = 1N .

Theorem 7.4 tells us that T1(x) = wBJ(x). A priori these operators are affili-
ated with M∞(N ), but the conditions in the theorem imply

wB = T1(1) ∈ Lp(M∞(N ))e11 ⇒ J(1) = sr(w) = s(B) = eN11.

We see that B is affiliated with, and J(M) are elements in, e11M∞(N )e11. We
naturally identify the latter algebra with N , so that J is unital.

Choose y ∈ Rp(M)(q− e11) with sl(y) strictly between 0 and 1 on all central
summands. (Recall that M has no abelian central summands.) So whenever
x ∈ M, sl(x) ⊥ sl(y), (7.2) gives

2(‖wBJ(x)‖p + ‖T(y)‖p) = 2(‖(x 0 · · ·)‖p + ‖y‖p)

= ‖(x 0 · · ·) + y‖p + ‖(x 0 · · ·)− y‖p

= ‖wBJ(x) + T(y)‖p + ‖wBJ(x)− T(y)‖p,

and this implies the right supports of J(x) and T(y) are orthogonal.
Write J = J1 + J2 for the unique decomposition into multiplicative and anti-

multiplicative ∗-homomorphisms, with orthogonal ranges in N . So

sl(x) 6 sl(y)⊥ ⇒ sr(T(y)) ⊥ [sr(J1(x)) + sr(J2(x))]

⇒ sr(T(y)) ⊥ [J1(sr(x)) + J2(sl(x))].

Since sr(x) can be any projection subequivalent to sl(y)⊥, and J is unital, it follows
in particular that sr(T(y)) 6 J2(1). This inequality passes to the closed linear
span of all y under discussion, which is Rp(M)(q− eM11 ) by an easy Hahn-Banach
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argument. We obtain

q′Cp(N ) = T(Rp(M)q)

= T(Rp(M)eM11 ) + T(Rp(M)(q− eM11 ))

⊂ wBJ(M) + q′Cp(N )J2(1)

⊂ sl(w)Cp(N ) + q′Cp(N )J2(1).

Now sl(w) is equivalent to eN11, so (q′ − sl(w)) has full central support. Multiply-
ing the containment above by (q′ − sl(w)) on the left, we get

(q′ − sl(w))Cp(N ) ⊂ (q′ − sl(w))Cp(N )J2(1).

This is only possible if J2(1) = 1N , and so J = J2 is antimultiplicative.
Finally, let v be any partial isometry between orthogonal projections in M.

With π : N ↪→ qM∞(M)q as before, we have

T((v∗v 0 · · ·)) = wBJ(v∗v) = (wBJ(v))J(v∗) = T((v 0 · · ·)(π(J(v∗))).

Since T is one-to-one, (v∗v 0 · · ·) = (v 0 · · ·)(π(J(v∗))). But look at the left
supports in M of these vectors; the first is v∗v and the second is 6 sl(v) = vv∗.
This contradiction finishes the proof.

The only case remaining is an abelian central summand of M and N . Be-
cause column and row sums of Lp(C) = C are identical, we cannot control the
sizes of the commutants.

PROPOSITION 7.8. Let A = L∞(X, µ) be an abelian von Neumann algebra. The
Lp A-A-bimodules are exactly the p-direct integrals of measurable fields of Hilbert spaces
over (X, µ).

By a p-direct integral we mean exactly the same construction as a direct integral of
a measurable field of Hilbert spaces, except that the norm is

‖ξ( · )‖ =
( ∫

‖ξ(ω)‖p dµ(ω)
)1/p

.

Proof. By Proposition 7.3, we may identify the left and right actions of A.
(If presentations of A are given, this may involve an algebraic isomorphism.)
Subject to this, we claim that a right Lp A-module admits a unique structure as an
Lp A-A-bimodule: left action of A given by f · ξ = ξ f and left inner product by
〈ξ, η〉L = 〈η, ξ〉R.

For suppose we are given an Lp A-A-bimodule. That f · ξ = ξ f is automatic
from the assumption; we further have, for any measurable set E ⊂ X,

‖χE〈ξ, ξ〉L‖ = ‖〈χEξ, χEξ〉L‖ = ‖χEξ‖2

= ‖ξχE‖2 = ‖〈ξχE, ξχE〉R‖ = ‖〈ξ, ξ〉RχE‖.
(7.10)

Both 〈ξ, ξ〉L and 〈ξ, ξ〉R are positive functions in Lp/2(X, µ). Taking E in (7.10) to
be the set where one dominates the other, we deduce that 〈ξ, ξ〉L = 〈ξ, ξ〉R µ-a.e.
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By polarization,

4〈ξ, η〉L =
4

∑
k=1

ik〈ξ + ikη, ξ + ikη〉L =
4

∑
k=1

ik〈ξ + ikη, ξ + ikη〉R = 4〈η, ξ〉R.

So it is the same problem to describe the right Lp A-modules. Any random
projection q : X → P(B(H)) gives a bimodule of the form qCp, and since the iso-
morphism class of qCp depends only on the Murray-von Neumann equivalence
class of q, we may assume that

q = ∑ pn ⊗ χXn ∈ M∞(A), pn =
n

∑
k=1

ekk,

where Xn is {ω : Tr(q(ω)) = n}.
By direct calculation, we see that Cp(A) is the Bochner space Lp(`2, X, µ),

and (pn ⊗ χXn )Cp ' Lp(`2
n, Xn, µ), where we still use µ to denote the restricted

measure on Xn. This last is a constant measurable field of Hilbert spaces with

norm
( ∫

Xn

‖ f (ω)‖p dµ(ω)
)1/p

. The full module qCp is a central/`p sum of these,

qCp =
(

∑ pn ⊗ χXn

)
Cp =

⊕

`p

Lp(`2
n, Xn, µ),

which is exactly a p-direct integral of the measurable field of Hilbert spaces which
has dimension n over Xn. It is clear that any such p-direct integral can be obtained
in this way, so we are done.

We summarize the results in

THEOREM 7.9. Let M and N be σ-finite algebras, let 1 < p < ∞, p 6= 2, and let
X be an M-N Lp-bimodule which is countably generated and faithful for each action.

The centers of M and N are isomorphic and act identically on X. Let z be the
largest central projection which is abelian for both M and N . Then the left action of
z⊥M and the right action of z⊥N are commutants on z⊥X. On the other hand, zX is
isomorphic to a p-direct integral of a measurable field of Hilbert spaces over (X, µ), where
zM = zN ' L∞(X, µ).

This has an appealing consequence.

THEOREM 7.10. Under the same assumptions as above, there exists an M-N Lp-
bimodule if and only if M and N are Morita equivalent.

Proof. M and N are Morita equivalent exactly when N ' qM∞(M)q for
some projection q with central support one. (This fact, and many other funda-
mental ideas, may be found in Rieffel’s discussions of Morita equivalence [26] and
[27].) When this happens, one may take X ' Rp(M)q and notice N ' (M′)op.

If there is an M-N Lp-bimodule X, then X ' Rp(M)q and N ' π(N ) ⊂
qM∞(M)q. Let z be as in Theorem 7.9. We have that π(z⊥N ) = z⊥qM∞(M)q,
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while
π(zN ) = zM = ze11M∞(M)e11 ⊂ zqM∞(M)q.

Then
N ' (z⊥q + ze11)M∞(M)(z⊥q + ze11),

so M and N are Morita equivalent.

In fact, an M-N Lp-bimodule X which does not degenerate on its abelian
component (so L(M) and R(N ) are commutants) implements an equivalence of
representation categories just as in the Hilbert C∗-module case. Here the densities
are nonzero, and one makes use of the generalized relative tensor product, with
functorial equivalence given by

Left-Lq-Mod(N ) → Left-Lr-Mod(M) : NY 7→ (MXN )⊗N ,p,q,r (NY) .

To see that this is an isomorphism, we let NXM be the contragredient and
note that “(NXM)⊗M,p,r,q" is the inverse map. By associativity of the relative
tensor product, it suffices to show that

X⊗N ,p,q,r X ' Lp(M); X⊗M,p,r,q X ' Lp(N ).

We verify the first, using Proposition 6.7:

X⊗N ,p,q,r X ' qCp(N )⊗N ,p,q,r Rp(N )q ' qLp(M∞(N))q ' Lp(M).

The second follows by symmetry.
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