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ABSTRACT. Let B be a von Neumann algebra and X a C∗ Hilbert B-module.
If p ∈ B is a projection, denote by Sp(X) = {x ∈ X : 〈x, x〉 = p}, the p-
sphere of X. For ϕ a state of B with support p in B and x ∈ Sp(X), consider
the state ϕx of LB(X) given by ϕx(t) = ϕ(〈x, t(x)〉). In this paper we study
certain sets associated to these states, and examine their topologic properties.
As an application of these techniques, we prove that the space of states of
the hyperfinite II1 factor R0, with support equivalent to a given projection
p ∈ R0, regarded with the norm topology (of the conjugate space of R0), has
trivial homotopy groups of all orders.
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1. INTRODUCTION

A few years ago Popa and Takesaki ([10]) studied the homotopy theory of
the unitary and automorphism groups of a factor in the weak topologies. They
proved, for example, that the unitary group UR of a II1 factor belonging to a fam-
ily that includes the hyperfinite factor R0, is contractible in the strong operator
topology. Their results and techniques can be employed to prove (Theorem 3.4
below) that the set of partial isometries with fixed initial space of such a factor R
has trivial homotopy groups when regarded with the strong operator topology.

Here we are interested in the set of (normal) states of a von Neumann alge-
bra B which have equivalent supports. The states which have the same support
form a convex set. There is a natural map relating partial isometries v ∈ B with
initial space p, normal states ϕ with support equal to p, and normal states with
support equivalent to p. Namely

v× ϕ 7→ ϕ(v∗ · v).

Clearly, all states with support equivalent to p arise in this manner. The purpose
of this paper is the study of the properties of this map. Mainly, under which
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assumptions it is a fibration. And in the affirmative case, to use this fibration to
describe the homotopy type of the sets involved.

First, there is the question of what is the right topology to consider in the
set of partial isometries (among the various topologies available in B). It turns
out that the norm topology of B forces on the set of states, via the map above, a
topology stronger than the norm topology for functionals. In order that this map
induces the usual norm topology in the set of states (as the quotient topology),
one has to consider on (the set of partial isometries of) B the strong operator
topology. The paper by S. Popa and M. Takesaki ([10]) deals with the topologic
properties of the unitary group in the weak topologies. There, Michael’s theory of
continuous selection ([7]) is used in a remarkable manner to obtain cross sections
(i.e. fibration properties) for the quotient of the unitary groups of an inclusion of
factors. We shall use their technique in our context.

In Section 2 of this paper we shall put our problem in the broader context of
Hilbert C∗-modules. All the concepts above have their analogue in this general
setting. We shall therefore state first the results valid in the general context.

In Section 3 we shall return again to our original situation, and shall be able
to state the Theorem 3.4 described in the abstract, for the family of II1 factors
considered in [10], which encloses the hyperfinite factor R0. Namely, that if B is
a separable factor of type II1 such that the tensor product B ⊗ B(K) (K a separable
Hilbert space) admits a one parameter automorphism group {θs : s ∈ R} scaling
the trace of B ⊗ B(K), i.e. τ ◦ θs = e−sθs, s ∈ R, with τ a faithful semifinite normal
trace in B ⊗ B(K), then, for any projection p ∈ B, the sets

{v ∈ B : v∗v = p}
and

{ϕ(v∗ · v) : ϕ with support p, v∗v = p}
have trivial homotopy groups of all orders.

Let us introduce some notation. Throughout this paper X will denote a
Hilbert C∗-module over B. For a fixed projection p ∈ B, let

Sp(X) = {x ∈ X : 〈x, x〉 = p}
be the p-sphere of X. If ϕ is a normal state of B with support projection p, and x
is an element of Sp(X), then one obtains a new state ϕx, defined on LB(X), the
C∗-algebra of adjointable operators on X, by means of

ϕx(t) = ϕ(〈x, t(x)〉).

If the module is selfdual, then ϕx is clearly a normal state of the von Neumann
algebra LB(X). We shall call these states modular vector states. We consider the
following sets of modular vector states. First, for a fixed ϕ,

Oϕ = {ϕx : x ∈ Sp(X)}.
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Denote by Σp(B) the set of normal states of B with support equal to p, and by

Σp,X = {ψx : x ∈ Sp(X), ψ ∈ Σp(B)},
the set of all modular vector states associated to the projection p.

As is usual notation, if x, y ∈ X, θx,y denotes the “rank one” operator given
by θx,y(z) = x〈y, z〉. Note that if x ∈ Sp(X), then ex = θx,x is a projection in
LB(X). A straightforward computation shows that ex is the support of ϕx, and
that all states with support (equivalent to) ex are of this form.

Also note that if ϕ, ψ ∈ Σp(B) and x, y ∈ Sp(X), then ϕx = ψy if and only
if there exists a unitary u ∈ pBp such that y = xu and ψ = ϕ ◦ Ad(u). These
elementary facts are proved in [3].

2. PURIFICATION OF Σp,X

There is a natural representation for LB(X), studied in [8] and [11], in which
all the states ϕx ∈ Σp,X turn out to be induced by vectors in the Hilbert space
of this representation. Let X ⊗ H be the algebraic tensor product, where H is a
Hilbert space on which B acts. We will choose H as the space of a standard repre-
sentation of B. Recall the fact that for such a standard representation there exists
a cone P , called the positive standard cone, with many remarkable properties.
Among them, any positive normal functional in B is implemented by a unique
vector in this cone. In the vector space X ⊗ H consider the semidefinite positive
form given by [x ⊗ ξ, y ⊗ η] = (ξ, 〈x, y〉η), where (·, ·) is the inner product of H.
Denote by Z = {z ∈ X ⊗ H : [z, z] = 0}, and let H be the Hilbert space obtained
as the completion of (X ⊗ H)/Z. The representation ρ : LB(X) → B(H) is given
by ρ(t)([x⊗ ξ]) = [t(x)⊗ ξ].

LEMMA 2.1. In the representation ρ, the state ϕx ∈ Σp,X is implemented by the
(class of the) vector x ⊗ ξ, where ξ is the unique vector in the positive cone P which
implements ϕ (ϕ(a) = ωξ(a) = (aξ, ξ)), that is

ϕx(t) = [ρ(t)(x⊗ ξ), x⊗ ξ], t ∈ LB(X).

Proof. Straightforward: [ρ(t)(x ⊗ ξ), x ⊗ ξ] = (ξ, 〈t(x), x〉ξ) = (〈x, t(x)〉ξ, ξ)
= ϕ(〈x, t(x)〉) = ϕx(t).

In order to simplify the exposition, we shall restrict ourselves to the case
p = 1. This is in fact not significant, since the general case can be easily reduced to
this situation (note that Sp(X) is the unit sphere of the pBp module Xp). The unit
vectors of the cone implementing the faithful states of B are the vectors which are
cyclic and separating for B. Let us denote

A(X) = {[x⊗ ξ] : x ∈ S1(X), ξ ∈ P cyclic and separating for B, ‖ξ‖ = 1} ⊂ H.
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LEMMA 2.2. Let x, y ∈ S1(X) and ξ, η ∈ P unit, cyclic and separating; then the
elements x⊗ ξ and y⊗ η induce the same element in A(X) only if x = y and ξ = η. In
other words, there is a bijection

S1(X)× Σ1(B) ↔ A(X), (x, ϕ) 7→ x⊗ ξ.

Proof. Suppose that x⊗ ξ ∼ y⊗ η, with x, y, ξ, η as above. Then

0 = [x⊗ ξ − y⊗ η, x⊗ ξ − y⊗ η] = 2− 2Re((ξ, 〈x, y〉η)).

That is, (ξ, 〈x, y〉η) = 1. Since ξ, η are unital and ‖〈x, y〉‖ 6 1, by the Cauchy-
Schwarz inequality this implies that 〈x, y〉η = λξ, for λ ∈ C, |λ| = 1. Again, using
that ξ, η are unital, this implies that λ = 1, i.e. 〈x, y〉η = ξ. On the other hand, the
states induced in LB(X) by the vectors [x ⊗ ξ] and [y⊗ η] via the representation
ρ were shown to be ϕx and ψy, where ϕ, ψ are the states induced in B by ξ, η,
respectively, as shown in the lemma above. By the last remark in the introduction,
ϕx = ψy implies that there exists u ∈ UB such that y = xu and ψ = ϕ ◦Ad(u).
So 〈x, y〉η = ξ translates into uη = ξ. The other identity ψ = ϕ ◦ Ad(u) can
also be interpreted in terms of these vectors in the cone P . Namely, the unique
vector in the cone associated to the state ϕ ◦Ad(u) is u∗ Ju∗ Jξ, where J denotes the
modular conjugation of the standard representation B ⊂ B(H). Indeed, clearly
u∗ Ju∗ Jξ ∈ P , and (au∗ Ju∗ Jξ, u∗ Ju∗ Jξ) = (Ju∗ Jau∗ξ, Ju∗ Ju∗ξ) = (au∗ξ, u∗ξ) =
(uau∗ξ, ξ) = ϕ(uau∗). Therefore, by the uniqueness condition (on vectors in the
cone inducing states), it follows that η = u∗ Ju∗ Jξ. Combining this with uη = ξ
yields

ξ = Ju∗ Jξ = Ju∗ξ, i.e. ξ = u∗ξ.

This implies that u∗ acts as the identity operator on B′ξ, which is dense in H,
because ξ is cyclic for B′. Therefore u = 1. Then x = y and ξ = η.

These two lemmas state that the map

℘1 : S1(X)× Σ1(B) → Σ1,X , ℘1(x, ϕ) = ϕx,

in this representation looks like

~℘1 : A(X) → ΩA(X), ~℘1([x⊗ ξ]) = ω[x⊗ξ],

where ω[x⊗ξ] is the vector state induced by [x⊗ ξ] ∈ H, and ΩA(X) is the space of
all such states with symbols in A(X). What one gains by taking this standpoint
is that A(X) has a natural topology, as a subset of the Hilbert space H. The set
ΩA(X) ∼ Σ1,X is therefore endowed with the quotient topology induced by A(X)
and ~℘1. The fibre of this map is a copy of the unitary group UB of B. The next
result examines how the unitary group UB appears inside A(X) and which is its
relative topology. By the above result, we can omit the brackets when dealing
with classes of elementary tensors of the form x ⊗ ξ in A(X) ⊂ H (x ∈ S1(X),
ξ unit, cyclic and separating in P). Also, note that the vectors x ⊗ ξ ∈ A(X) are
cyclic for ρ, but not separating in general.
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In what follows, we shall make the assumption that the module X is selfdual
([8]).

PROPOSITION 2.3. Given a fixed element x ⊗ ξ ∈ A(X), the fibre ~℘−1
1 (ωx⊗ξ) is

the set {xu⊗ u∗ Ju∗ Jξ : u ∈ UB} which is in one to one correspondence with UB . The
relative topology induced on UB by this bijection is the strong operator topology.

Proof. If y ⊗ η lies in the fibre ~℘−1
1 (ωx⊗ξ), then ωx⊗ξ = ωy⊗η , or ϕx = ψy,

where as in the previous lemma ϕ and ψ are the states of B associated to the
vectors ξ and η. Again, this implies that there exists a unitary in UB such that
y = xu and η = u∗ Ju∗ Jξ. Then y ⊗ η = xu ⊗ u∗ Ju∗ Jξ. Now suppose that a net
xuα ⊗ u∗α Ju∗α Jξ converges to xu ⊗ u∗ Ju∗ Jξ in the Hilbert space topology (of H).
This implies that

‖xuα ⊗ u∗α Ju∗α Jξ − xu⊗ u∗ Ju∗ Jξ‖2 = 2− 2Re((u∗α Ju∗α Jξ, 〈xuα, xu〉u∗ Ju∗ Jξ)) → 0

with α. In other words,

(u∗α Ju∗α Jξ, u∗α Ju∗ Jξ) = (u∗αξ, u∗ξ) → 1.

Equivalently, (uu∗αξ, ξ) → 1. This implies that ‖(u − uα)ξ‖ → 0 in the Hilbert
space norm (of H). Now let a′ ∈ B′; then

‖(u− uα)a′ξ‖ = ‖a′(u− uα)ξ‖ 6 ‖a′‖‖(u− uα)ξ‖ → 0.

That is, uαν → uν in a dense subset of vectors ν ∈ H. Since u, uα, being unitaries,
are bounded in norm, this implies strong operator convergence of uα to u. The
converse implication is straightforward.

The tensor product (X⊗ H)/Z is a B-bimodule tensor product, in the sense
that for any b ∈ B, x ∈ X and ν ∈ H, one has xb ⊗ ν equivalent to x ⊗ bν.
Then the elements xu ⊗ u∗ Ju∗ Jξ in the fibre of ωx⊗ξ = ϕx can be parametrized
x ⊗ Ju∗ Jξ = x ⊗ Ju∗ξ for u ∈ UB . We prefer the first presentation because the
vector Ju∗ξ does not belong to P . However the latter clarifies the action of UB on
A(X); namely, the right action

(x⊗ ξ) • u = x⊗ Ju∗ Jξ.

Note that it is indeed a right action: (x⊗ ξ) • vu = x⊗ J(vu)∗ Jξ = x⊗ Ju∗ J Jv∗ Jξ =
((x⊗ ξ) • v) • u.

The sphere S1(X) and the set Σ1(B) of faithful states of B lie inside A(X).
Pick fixed elements x0 ∈ S1(X) and ξ0 ∈ P unit, cyclic and separating, inducing
the state ϕ0. The following maps are one to one:

S1(X) → {x⊗ ξ0 : x ∈ S1(X)} ⊂ A(X), x 7→ x⊗ ξ0,

and

Σ1(B) → {x0 ⊗ ξ : ξ ∈ P unit, cyclic and separating}, ϕ 7→ x0 ⊗ ξ,

where ξ is the vector in the cone associated to ϕ.
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PROPOSITION 2.4. The first bijection endows S1(X) with the relative topology
induced from H, which is given by the following: a net xα converges to x if and only if
ϕ0(〈xα − x, xα − x〉) → 0, or equivalently

|xα − x| → 0

in the strong operator topology of B ⊂ B(H). The sphere S1(X) ⊂ X is closed in this
topology.

The second bijection is a homeomorphism when Σ1(B) is regarded with the norm
topology and {x0 ⊗ ξ : ξ ∈ P unit, cyclic and separating} ⊂ H is regarded with the
Hilbert space norm of H.

Proof. The second statement is straightforward, because ‖x0 ⊗ ξ − x0 ⊗ η‖2

= 2 − 2Re(ξ, η) = ‖ξ − η‖2 and the well known fact that the topology of the
distance between the vectors in P yields a topology which is equivalent to the
one given by the norm of the induced states in the conjugate space. Let xα ⊗
ξ0 be a net, and x ⊗ ξ0 an element in A(X). Then ‖xα ⊗ ξ0 − x ⊗ ξ0‖2 = 2 −
2Re(ξ0, 〈xα, x〉ξ0) = 2− 2Re(ϕ0(〈xα, x〉)) = ϕ0(〈xα − x, xα − x〉). Next we check
that the convergence of the net in the sense described is equivalent to conver-
gence to zero of |xα − x| in the strong topology, where, as is usual notation,
|y| = 〈y, y〉1/2 for y ∈ X. Since ϕ0 is implemented by the vector ξ0, ϕ0(〈xα −
x, xα − x〉) = ‖|xα − x|ξ0‖2, and therefore convergence in the strong topology im-
plies convergence in the former sense. Suppose now that ‖|xα − x|ξ0‖ → 0, and
take a′ ∈ B′. Then ‖|xα − x|a′ξ0‖ = ‖a′|xα − x|ξ0‖ 6 ‖a′‖‖|xα − x|ξ0‖ → 0. The
set {a′ξ0 : a′ ∈ B′} is dense in H, and the operators |xα − x| have bounded norms,
therefore |xα − x| tends strongly to zero.

Let us prove now that the sphere S1(X) ⊂ X is closed in this topology.
First note that this topology, on norm bounded sets, is induced by the seminorms
nν(x) = (〈x, x〉ν, ν), ν ∈ H, ‖ν‖ = 1 ([8]). Then it suffices to see that if xα → x with
xα ∈ S1(X), then x ∈ S1(X). Now, (〈x, x〉ν, ν) = 1. Indeed, if ων(a) = (aν, ν),
then (〈xα− x, x〉ν, ν) = ων(〈xα− x, x〉) 6 ων(〈xα− x, xα− x〉)1/2 = nν(xα− x)1/2,
i.e. (〈xα, x〉ν, ν) → (〈x, x〉ν, ν). Therefore

0← (〈xα − x, xα − x〉ν, ν) = 1 + ((〈x, x〉 − 〈xα, x〉 − 〈x, xα〉)ν, ν) → 1− (〈x, x〉ν, ν).

Since this is true for all unit vectors ν ∈ H, it follows that x ∈ S1(X).

REMARK 2.5. Since X is selfdual, it is a conjugate space ([8]). The result
above shows that the topology of S1(X) induced by the Hilbert space norm of
H coincides with the w∗-topology of X ⊃ S1(X). Indeed, it was shown in [8]
that a net xα → x in the w∗-topology if and only if ϕ(〈xα, y〉) → ϕ(〈x, y〉) for all
y ∈ X, ϕ ∈ B+∗ . This clearly implies that ϕ(〈xα − x, xα − x〉) → 0, which is the
topology considered in the lemma (here the fact 〈x, x〉 = 〈xα, xα〉 = 1 is crucial).
Conversely,

ϕ(〈xα − x, y〉) 6 ϕ(〈xα − x, xα − x〉)1/2 ϕ(〈y, y〉)1/2
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yields the other implication.

We have examined the topologies induced on S1(X) and Σ1(B) by the de-
scribed inclusions on A(X). We have seen above that A(X) ∼ S1(X) × Σ1(B).
These facts alone however do not imply that A(X) is homeomorphic to S1(X)×
Σ1(B) in the product topology (of the w∗-topology and the norm topology re-
spectively). The next result shows that this is the case.

THEOREM 2.6. The bijection

S1(X)× Σ1(B) → A(X) , (x, ϕ) 7→ x⊗ ξ,

is a homeomorphism when S1(X)× Σ1(B) is endowed with the product topology of the
w∗-topology of S1(X) and the norm topology of Σ1(B).

Proof. By the Proposition 2.4 above, it is clear that if xα → x in S1(X) and
ϕβ → ϕ in Σ1(B), then xα ⊗ ξβ → x⊗ ξ, where ξβ, ξ are the vectors in the positive
cone inducing ϕβ, ϕ. In the other direction, suppose that xα ⊗ ξα → x ⊗ ξ in
A(X). This means that (〈x, xα〉ξα, ξ) → 1. Then, since ‖〈x, xα〉ξα‖ 6 1, it follows
that ‖〈x, xα〉ξα − ξ‖2 = 1 + ‖〈x, xα〉ξα‖2 − 2Re(〈x, xα〉ξα, ξ) → 0 and similarly
‖〈xα, x〉ξ − ξα‖ → 0. Then we get

(2.1) 〈x, xα〉ξα − ξ → 0 and 〈xα, x〉ξ − ξα → 0.

This implies that

(2.2) ω〈x,xα〉ξα
−ωξ = ϕα (〈xα, x〉 · 〈x, xα〉)− ϕ( · ) → 0.

Using (2.1) it follows that J〈xα, x〉J〈x, xα〉ξα − ξα → 0 and so

(2.3) ωJ〈xα ,x〉J〈x,xα〉ξα
−ωξα

= ωJ〈xα ,x〉J〈x,xα〉ξα
− ϕα → 0.

Note that for every a ∈ B
ωJ〈xα ,x〉J〈x,xα〉ξα

(a) = (aJ〈xα, x〉J〈x, xα〉ξα, J〈xα, x〉J〈x, xα〉ξα)

= (〈xα, x〉a〈x, xα〉ξα, J〈x, xα〉〈xα, x〉Jξα).(2.4)

But

‖J〈x, xα〉〈xα, x〉Jξα − ξα‖ 6 ‖J〈x, xα〉〈xα, x〉Jξα − J〈x, xα〉〈xα, x〉J〈xα, x〉ξ‖
+ ‖J〈x, xα〉〈xα, x〉J〈xα, x〉ξ − ξα‖.

It is easy to prove that the first term on the right hand side of the last inequality
tends to zero using (2.1). The second term is equal to ‖J〈x, xα〉〈xα, x〉J〈xα, x〉Jξ −
ξα‖ = ‖J J〈xα, x〉J〈x, xα〉〈xα, x〉ξ − ξα‖, which also tends to zero again using (2.1).
Therefore J〈x, xα〉〈xα, x〉Jξα − ξα → 0, and using (2.4) we get that

(2.5) ωJ〈xα ,x〉J〈x,xα〉ξα
− ϕα (〈xα, x〉 · 〈x, xα〉) → 0.

Finally, using (2.2), (2.3) and (2.5) it follows that ϕα → ϕ in norm.
This last convergence is equivalent to ξα → ξ in H. Then (〈x, xα〉ξα, ξ) → 1

implies that (〈x, xα〉ξ, ξ) → 1. Then ϕ(|x − xα|) → 0, i.e. xα → x in the w∗-
topology.
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COROLLARY 2.7. The spaceA(X) is homotopically equivalent to the sphere S1(X)
with the w∗-topology.

Proof. Recall that Σ1(B) is convex.

Now we focus on the map

~℘1 : A(X) → ΩA(X), ~℘1(x⊗ ξ) = ωx⊗ξ .

In order to see if this map is a fibration, we shall look for local cross sections. A
powerful tool to state the existence of cross sections is Michael’s theory of con-
tinuous selections ([7]). An example of the use of this theory in the context of
operator algebras is the paper by S. Popa and M. Takesaki ([10]). To use Michael’s
theorem one must check first that the set function ωz⊗ξ 7→ ~℘−1

1 (ωz⊗ξ), which
assigns to each point in the base space the fibre over it, is lower semicontinuous
([7]).

REMARK 2.8. In our context lower semicontinuity means that, for any r > 0,
and x ⊗ ξ ∈ A(X), the set {ωy⊗η : ‖y⊗ Ju∗η − x ⊗ ξ‖ < r} is open in ΩA(X). In
other words, for a state ωy⊗η close to ωx⊗ξ one should find an element y⊗ Ju∗η in
the fibre of ωy⊗η at distance less than r to the fibre of ωx⊗ξ . We have not specified
yet the topology of this set ΩA(X). Lower semicontinuity implies that whatever
topology one chooses, it must be stronger than the quotient topology given by
~℘1. Indeed, two states in ΩA(X) are close in this quotient topology if and only if
there are elements in their fibres which are close in A(X).

On the other hand, this quotient topology is stronger than the norm topol-
ogy. Recall Bures metric for states ([4]), defined as the infimum of the distances
between vectors inducing the states, taken over all possible representations where
the two states are vector states. The topology induced by Bures metric on the state
space is equivalent to the norm topology. This raises the question of whether this
two topologies, the norm topology and the one induced by this purification, co-
incide in ΩA(X) (= Σ1,X).

THEOREM 2.9. The quotient and the norm topology coincide in ΩA(X).

Proof. It was noted that the quotient topology is stronger than the norm
topology. Let us check the converse statement. Let ωyn⊗ηn be a sequence in ΩA(X)
converging to ωx⊗ξ in norm. Testing convergence in operators of the form θyna,yn ,
for a ∈ B, yields

‖a‖‖ωyn⊗ηn −ωx⊗ξ‖ = ‖θyna,yn‖‖ωyn⊗ηn −ωx⊗ξ‖
> |ωyn⊗ηn (θyna,yn )−ωx⊗ξ(θyna,yn )|.

Note that ωyn⊗ηn (θyna,yn ) = (aηn, ηn) and ωx⊗ξ(θyna,yn ) = (a〈yn, x〉ξ, 〈yn, x〉ξ).
This implies that

‖ωηn −ω〈yn ,x〉ξ‖ → 0 as n → ∞.
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In particular, testing this difference at 1 ∈ B, implies (〈x, yn〉〈yn, x〉ξ, ξ) → 1.
Therefore,

‖〈x, yn〉〈yn, x〉ξ − ξ‖2 = 1 + ‖〈x, yn〉〈yn, x〉ξ‖2 − 2Re(〈x, yn〉〈yn, x〉ξ, ξ) → 0.

Coming back to ωηn and ω〈yn,x〉ξ , note that the vectors ηn belong to the cone
P , but not necessarily the vectors 〈yn, x〉ξ. However δn = 〈yn, x〉J〈yn, x〉ξ =
〈yn, x〉J〈yn, x〉Jξ ∈ P and we shall see that ωδn − ω〈yn ,x〉ξ → 0 in norm. Indeed,
note that

ωδn (a) = (a〈yn, x〉J〈yn, x〉ξ, 〈yn, x〉J〈yn, x〉ξ)

= (a〈yn, x〉J〈x, yn〉〈yn, x〉Jξ, 〈yn, x〉ξ),

and therefore

|(a〈yn, x〉ξ, 〈yn, x〉ξ)− (aδn, δn)| = |(a〈yn, x〉(ξ − J〈x, yn〉〈yn, x〉Jξ), 〈yn, x〉ξ)|
6 ‖a‖‖ξ − J〈x, yn〉〈yn, x〉ξ‖,

which tends to zero. Combining these results one obtains that ‖ωδn − ωηn‖ → 0.
Now, because the vectors δn, ηn lie in P , and the fact that norm convergence of
vector states with symbols in P implies norm convergence of those symbols, one
has that ‖δn − ηn‖ → 0 in H. In other words,

Re(〈yn, x〉ξ, J〈x, yn〉Jηn) → 1.

Suppose now that the states ωyn⊗ηn do not converge to ωx⊗ξ in the quotient topol-
ogy of ΩA(X). This means that the fibres of these states are not near in H, i.e., there
exists a subsequence ynk ⊗ ηnk such that ‖x ⊗ ξ − ynk ⊗ Ju∗ηnk‖ > d > 0 for all
u ∈ UB . Or equivalently,

Re(〈ynk , x〉ξ, Ju∗ηnk ) 6 1− d2

2
for all u ∈ UB .

Clearly this inequality is preserved by taking convex combinations of unitaries
u ∈ UB (and leaving everything else fixed), as well as by taking norm limits
of such combinations. It follows, using the Russo-Dye theorem, that for a ∈ B,
‖a‖ 6 1,

Re(〈ynk , x〉ξ, JaJηnk ) 6 1− d2

2
.

This clearly contradicts the inequality above, as seen by taking a = 〈x, ynk 〉 for
appropriate k.

The next result uses part of the proof of Lemma 3 of [10].

THEOREM 2.10. If B is a separable factor of type II1 such that the tensor product
B ⊗ B(K) (K a separable Hilbert space) admits a one parameter automorphism group
{θs : s ∈ R} scaling the trace of B ⊗ B(K), i.e. τ ◦ θs = e−sθs, s ∈ R, with τ a faithful
semifinite normal trace in B ⊗ B(K), then the map

~℘1 : A(X) → ΩA(X) , ~℘1(x⊗ ξ) = ωx⊗ξ ,
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admits a (global) continuous cross section when ΩA(X) is endowed with the norm topol-
ogy.

Proof. In this case, since B is finite, UB is complete in the strong ( = strong∗)
operator topology ([12]). Moreover, Popa and Takesaki proved in [10] that UB
admits a geodesic structure in the sense of Michael ([7]). It has been already
remarked that the set function ωx⊗ξ 7→ {xu ⊗ u∗ Ju∗ Jξ : u ∈ UB} is lower semi-
continuous in the norm topology. Therefore Theorem 5.4 of [7] applies, and ~℘1
has a continuous cross section.

COROLLARY 2.11. If B is a II1 factor satisfying the conditions of Theorem 2.10,
then for all n > 0, x ∈ S1(X), ϕ = ωξ ∈ Σ1(B),

πn(ΩA(X), ωx⊗ξ) = πn(S1(X), x),

where ΩA(X) is considered with the norm topology, and S1(X) with the w∗-topology.

Proof. In [10] it was proven that the unitary group UB of such a factor is
contractible in the ultra strong operator topology, and therefore also in the strong
operator topology. The result follows using the above theorem, recalling that the
fibre of the fibration ~℘1 is UB with this topology.

In [10] it is noted that remarkable examples of II1 factors enjoy this property
(of having a one parameter group of automorphisms that scale the trace when
tensored with an infinite type I factor), for example the hyperfinite II1 factor R0.

3. STATES OF THE HYPERFINITE II1 FACTOR

We will apply the results of the previous section to obtain our main result,
namely, that the set of states of R0, or more generally, of a factor satisfying the
hypothesis of Theorem 2.10, having support equivalent to a given projection p,
considered with the norm topology, has trivial homotopy groups of all orders.

There is a first result which can be obtained directly from the previous sec-
tion. If R is a factor as in Theorem 2.10, and p ∈ R is a proper projection, put
X = Rp and B = pRp. Clearly B is a factor which also verifies the hypothesis
of Theorem 2.10. Note that 〈X, X〉 = span{px∗yp : x, y ∈ Rp} = pRp = B in
this case. Therefore by 2.2 of [9], {θx,y : x, y ∈ X} spans an ultraweakly dense
two sided ideal of LB(X). On the other hand, it is clear that R ⊂ LB(X) as left
multipliers, and also that θx,y ∈ R, for x, y ∈ X = Rp. Indeed, θx,y(z) = x〈y, z〉 =
xpy∗z, i.e. left multiplication by xpy∗ ∈ R. Therefore LB(X) = R. In particular, if
x ∈ S1(X), ex = θx,x = xpx∗ which is equivalent to px∗xp = 〈x, x〉 = p in LB(X).
The set Σ1,X = ΩA(X) equals, then the set of states of R with support (unitarily)
equivalent to p. Note that this set is (arcwise) connected in the norm topology. In-
deed, if B is finite, S1(X) is connected ([1]). It was remarked that Σ1(B) is convex.
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Using the (onto) map ℘1,

℘1 : S1(X)× Σ1(B) → Σ1,X

it follows that Σ1,X is connected.
Applying Theorem 2.10 in this situation implies the following:

COROLLARY 3.1. Let R be a factor as in Theorem 2.10, and p ∈ R an arbitrary
projection. The set of normal states ofR with support equivalent to p considered with the
norm topology has the same homotopy groups as the set

Sp(R) = {v ∈ R : v∗v = p} ⊂ R
regarded with the (relative) ultraweak topology.

Proof. In this case S1(X) clearly equals Sp(R) above, and the topology is the
w∗ (i.e.) ultraweak topology of R. If p = 0 the statement is trivial. If p = 1 it
follows from the strong operator contractibility of UR for such R proved in [10].
The case of a proper projection follows from 2.10 and the above remark.

If p = 0, 1, then Sp(R) is contractible (if p = 1, Sp(R) = UR). A natural
question would be if Sp(R) is contractible for proper p ∈ R.

We need the following elementary fact:

LEMMA 3.2. LetM ⊂ B(H) be a finite von Neumann algebra, and let an ∈ M
be such that ‖an‖ 6 1 and a∗nan tends to 1 in the strong operator topology. Then there
exist unitaries un inM such that un − an converges strongly to zero.

Proof. Consider the polar decomposition an = un|an|, where un can be cho-
sen unitaries because M is finite. Note that |an| → 1 strongly. Indeed, since
‖an‖ 6 1, a∗nan 6 (a∗nan)1/2. Therefore, for any unit vector ξ ∈ H, 1 > (|an|ξ, ξ) >
(a∗nanξ, ξ) → 1. Therefore

‖(an − un)ξ‖2 = ‖un(|an| − 1)ξ‖2 6 ‖|an|ξ − ξ‖2 = 1 + (a∗nanξ, ξ)− 2(|an|ξ, ξ),

which tends to zero.

In [1] it was proven that for a fixed x0 ∈ S1(X) the map πx0 : ULB(X) →
S1(X) given by πx0(U) = U(x0) is onto when B is finite. In that paper it was
considered with the norm topologies. Here we shall regard it with the weak
topologies and in the particular case at hand, namely X = Rp and B = pRp
with R as above. Then, choosing x0 = p ∈ S1(X) = Sp(R), the mapping πp is

πp : UR → Sp(R), πp(u) = up.

THEOREM 3.3. IfR is a factor satisfying the hypothesis of Theorem 2.10, then the
map πp above is a trivial principal bundle, when UR is regarded with the strong operator
topology and Sp(R) is regarded with the ultraweak topology. The fibre is (homeomorphic
to) the unitary group of qRq, where q = 1− p, again with the strong operator topology.
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Proof. The key of the argument is again Lemma 3 of [10]. In that result
it is shown that the homogeneous space UR/UM admits a global continuous
cross section, where M ⊂ R are factors, with M satisfying the hypothesis of
Theorem 2.10, and their unitary groups are endowed with the strong operator
topology. In our situation, the fibre of πp (over p) is the set {u ∈ UR : up =
p} = {qwq + p : qwq ∈ UqRq} = UqRq × {p}. The fibre is the unitary group
of the factor qRq, which also verifies the hypothesis of Theorem 2.10. Indeed,
qRq ' R. Therefore in order to prove our result it suffices to show that in Sp(R)
the ultraweak topology (equal to the weak operator topology) coincides with the
quotient topology induced by the map πp. In other words, that the bijection

UR/UqRq × {p} → Sp(R), [u] → up

is a homeomorphism in the mentioned topologies. It is clearly continuous. It
suffices to check continuity of the inverse at the point p. Suppose that uα is a net
of unitaries in UR such that uα p converges weakly to p. Then we claim that there
are unitaries qwαq in qRq such that qwαq + p − uα converges strongly to zero,
which would end the proof. This amounts to saying that there exists unitaries
qwαq verifying that

Re((qwαq + p)ξ, uαξ) → ‖ξ‖2

for all ξ ∈ H. Now since uα p → p, one has uα pξ → pξ, the former limit is
equivalent to the following

Re(qwαqξ, uαqξ) → ‖qξ‖2.

Again, uα p → p strongly (and the fact that R is finite), imply that quα p, puαq,
qu∗α p and pu∗αq all converge to zero strongly. Using that uα are unitaries, these
facts imply that qu∗αquαq → q strongly. Using the lemma above, for the algebra
M = qRq, and aα = quαq, it follows that there exist unitaries qwαq in qRq such
that qwαq − quαq converges to zero strongly. Since puαq also tends to zero, it
follows that

qwαq− uαq = qwαq− quαq− puαq → 0

strongly. Clearly this last limit proves our claim.

Our main result then follows easily

THEOREM 3.4. Let R be a factor satisfying the hypothesis of Theorem 2.10, and
let p be a projection in R. Then both Sp(R) with the ultraweak topology, and the set
of normal states of R with support equivalent to p with the norm topology, have trivial
homotopy groups of all orders.

Proof. By the Theorem 3.3, Sp(R) has trivial homotopy groups, since it is
the base space of a fibration with contractible space and contractible fibre. The
same consequence holds for the set of normal states with support equivalent to
p, using the Corollary 3.1.
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REMARK 3.5. Consider now the restriction of the fibration A(X) → ΩA(X)
to the subset {ωx⊗ξ0 : x ∈ S1(X)} ⊂ ΩA(X), for a fixed unit, cyclic and separating
vector ξ0, i.e.

{x⊗ ξ0 : x ∈ S1(X)} ' S1(X) → {ωx⊗ξ0 : x ∈ S1(X)}, x⊗ ξ0 7→ ωx⊗ξ0 ,

which is again a fibration with the relative topologies. Note that the latter set is
in one to one correspondence with Oϕ, where ϕ = ωξ0 . Therefore one obtains the
map σ : S1(X) → Oϕ, σ(x) = ϕx = ωx⊗ξ0 . It follows that this map is a fibration.
The fibre is equal to URϕ in the strong operator topology, where Rϕ is the von
Neumann algebra fixed by the modular group of ϕ, or centralizer algebra of ϕ
([3]).

One can consider this fibration σ in the particular case X = B = R, for R as
above, to obtain the following:

COROLLARY 3.6. Let ϕ be a faithful normal state of a factorR as in Theorem 2.10.
Then the map

σ : UR → Uϕ = {ϕ ◦Ad(u) : u ∈ UR}, σ(u) = ϕ ◦Ad(u),

is a fibration when the unitary group UR is considered with the strong operator topology
and the unitary orbit Uϕ of ϕ is considered with the norm topology. The fibre is the uni-
tary group URϕ of the centralizer of ϕ also with the strong operator topology. Moreover,
for n > 0 one has

πn+1(Uϕ, ϕ) = πn(URϕ , 1).

Proof. When X = R is a finite von Neumann algebra, then S1(X) is UR
and Oϕ is the unitary orbit of ϕ. S1(X) = UR is endowed with the ultraweak
topology, which coincides in UR with the strong operator topology. The rest of
the corollary follows using that in this case σ is (the restriction) of a fibration, and
again ([10]) that for such factors R the unitary group is contractible in the strong
operator topology.

When n = 0, since URϕ is connected, one obtains that Uϕ is simply con-
nected in the norm topology. A related result was obtained in [2], where it was
shown that Uϕ is simply connected in the quotient topology (UB/UBϕ ) for any
von Neumann algebra B.

Let p1, . . . , pn be pairwise orthogonal projections in R such that p1 + · · · +
pn = 1 and put h = r1 p1 + · · · + rn pn, where ri are positive real numbers such
that ri 6= rj if i 6= j and τ(h) = 1. Consider the state ϕ = τ(h ·). Then clearly
Rϕ = p1Rp1 ⊕ · · · ⊕ pnRpn. Now UpiRpi is contractible in the strong operator
topology, and therefore URϕ is contractible. It follows that the unitary orbit Uϕ

(with the norm topology) has trivial homotopy groups of all orders for such ϕ.
Consider this other example: letA ⊂ R be a maximal abelian sub (von Neumann)
algebra; then there exists a normal faithful state ϕ ofR such thatRϕ = A. Clearly,
since R is of type II1, A has no atomic projections. It follows that A ' L∞(0, 1).
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It is fairly elementary to see that UL∞(0,1) is contractible in the ultraweak, i.e. w∗-
topology. It follows that also for such states ϕ, Uϕ (in the norm topology) has
trivial homotopy groups of all orders. We would like to know if this holds for
any faithful normal state of R.
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