SPACES ON WHICH THE ESSENTIAL SPECTRUM OF ALL THE OPERATORS IS FINITE

MANUEL GONZÁLEZ and JOSÉ M. HERRERA

Communicated by Florian-Horia Vasilescu

ABSTRACT. We study the Banach spaces *X* for which the essential spectrum $\sigma_{e}(T)$ of every *T* in L(X) is finite. We show that there exists an integer *n* so that $|\sigma_{e}(T)| \leq n$ for every *T*. We also show that *X* admits an irreducible decomposition as a direct sum of indecomposable subspaces, and that the quotient algebra L(X)/In(X), In(X) the inessential operators, is isomorphic to a finite product of spaces of scalar matrices.

KEYWORDS: Indecomposable Banach spaces, Fredholm operators, Calkin algebra.

MSC (2000): 47A53.

1. INTRODUCTION

The essential spectrum $\sigma_e(T)$ of the operators $T \in L(X)$ is a useful tool to obtain information on the isomorphic properties of a Banach space *X*; see Section 2.c of [15] and [7]. Here we study the spaces *X* such that $\sigma_e(T)$ is finite for every $T \in L(X)$.

First we show that if $|\sigma_e(T)| < \infty$ for every $T \in L(X)$, then there exists an integer *n* so that $|\sigma_e(T)| \leq n$ for every $T \in L(X)$. Thus, denoting by Σ_e^n the class of the Banach spaces *X* such that $\max\{|\sigma_e(T)| : T \in L(X)\} = n$, our problem is reduced to study the spaces $X \in \Sigma_e^n$.

Let us denote by In(X, Y) the inessential operators in L(X, Y). For definitions we refer to the end of this introduction. We obtain several characterizations of the spaces in Σ_e^1 in terms of the inessential operators. For example, $X \in \Sigma_e^1$ if and only if we can write $L(X) = \mathbb{C}I_X \oplus In(X)$, where I_X is the identity operator on X.

Among our results, we prove that each $X \in \Sigma_{e}^{n}$ admits a decomposition $X = X_{1} \oplus \cdots \oplus X_{n}$, where each X_{i} is a subspace of X that belongs to Σ_{e}^{1} . Moreover, the summands X_{i} can be divided into r sets S_{1}, \ldots, S_{r} so that there exists a Fredholm operator in $L(X_{i}, X_{i})$ when i and j belong to the same set and $L(X_j, X_i) = In(X_j, X_i)$ when they belong to different sets. Let us denote by n_l the number of spaces in the class S_l . Clearly $n_1 + \cdots + n_r = n$.

From the decomposition described in the previous paragraph, we show that the quotient algebra L(X)/In(X) is isomorphic to the product $M_{n_1}(\mathbb{C}) \times \cdots \times M_{n_r}(\mathbb{C})$ where $M_l(\mathbb{C})$ is the algebra of complex $l \times l$ matrices. In particular,

$$\dim L(X)/\operatorname{In}(X) = n_1^2 + \dots + n_r^2.$$

Note that the essential spectrum of an operator $T \in L(X)$ coincides with the spectrum of the image of *T* in L(X)/In(X).

From the description of L(X)/In(X) we derive that all the irreducible decompositions of a space $X \in \Sigma_e^n$ as a direct sum of spaces in Σ_e^1 have *n* summands. Even more, they have associated the same integers n_1, \ldots, n_r .

A Banach space *X* is *n*-hereditarily decomposable [5] and we write $X \in HD_n$, if *n* is the maximal number of the integers *k* such that *X* contains a subspace which is the direct sum of *k* subspaces. The space *X* is *n*-quotient decomposable [10] and we write $X \in QD_n$, if *n* is the maximal number of the integers *k* such that *X* has a quotient which is the direct sum of *k* (closed infinite dimensional) subspaces. It follows from the results in [5] and [10] that the spaces in HD_n or QD_n belong to Σ_{e}^m for some $m \leq n$, and there exist examples for which m < n.

Let *SS* and *SC* denote the strictly singular and the strictly cosingular operators, respectively. In [5] Ferenczi proves that for every operator $T \in L(X)$ on a HD_n space X, $|\sigma_e(T)| \leq n$ and that dim $L(X)/SS(X) \leq n^2$. In [10] the authors prove for a QD_n space X that the quotient algebra L(X)/SC(X) is isomorphic to a subalgebra of the $n \times n$ complex matrices $M_n(\mathbb{C})$. Thus for every $T \in L(X)$, $|\sigma_e(T)| \leq n$ and dim $L(X)/SC(X) \leq n^2$. Our results on the structure of L(X)/In(X) give a better bound for $|\sigma_e(T)|$ and show that the algebra L(X)/In(X) is more suitable to study the essential spectrum of the spaces in Σ_e^m than L(X)/SS(X) or L(X)/SC(X). Note that the essential spectrum of $T \in L(X)$ coincides with the spectrum of the image of T in any of the algebras L(X)/SS(X), L(X)/SC(X) or L(X)/In(X).

Finally we get some results about *K*-theory of HD_n and QD_n spaces using the algebra L(X)/In(X) which a priori would be more difficult to obtain starting from the algebras L(X)/SS(X) or L(X)/SC(X).

Throughout the paper X, Y, Z, ... will denote complex Banach spaces. X^* will stand for the dual space of X and L(X, Y) for the (continuous linear) operators from X into Y. We set L(X) = L(X, X) and denote the identity map by I_X or simply I if there is no possible confusion. We denote by K(X, Y) the set of all compact operators from X into Y.

An operator $T \in L(X, Y)$ is *Fredholm*, $T \in \Phi(X, Y)$, if Ker *T* is finite dimensional and R(T) is finite codimensional (hence closed). It is *left-Atkinson*, $T \in \Phi_{l}(X, Y)$, if R(T) is complemented and Ker *T* is finite dimensional, and it is *right-Atkinson*, $T \in \Phi_{r}(X, Y)$, if Ker *T* is complemented and R(T) is finite codimensional.

An operator $T \in L(X, Y)$ is *inessential*, $T \in In(X, Y)$, if $I - ST \in \Phi(X)$ (or equivalently $I - TS \in \Phi(Y)$) for every $S \in L(Y, X)$.

Unless the contrary is specified, all the subspaces will be closed and infinite dimensional, and the quotients will be infinite dimensional.

2. FINITELY DECOMPOSABLE SPACES

The *essential spectrum* of an operator $T \in L(X)$ is defined by

$$\sigma_{\mathbf{e}}(T) := \{ \lambda \in \mathbb{C} : \lambda I - T \notin \Phi(X) \}.$$

Let π denote the quotient map from L(X) onto the Calkin algebra L(X)/K(X). It is well known that the essential spectrum of T coincides with the spectrum of $\pi(T)$ in L(X)/K(X).

We are interested in the spaces *X* so that $\sigma_e(T)$ is finite for every $T \in L(X)$. In order to study these spaces, the following result will be useful.

For each $n \in \mathbb{N}$, we denote by F_n the set of all $T \in L(X)$ such that $\sigma_e(T)$ has at most *n* connected components.

PROPOSITION 2.1. For each $n \in \mathbb{N}$, the set F_n is closed in L(X).

Proof. Let (T_k) be a sequence in F_n which converges to $T \in L(X)$. Suppose that $\sigma_e(T)$ includes *m* connected components, C_1, \ldots, C_m , with m > n. We select closed simple curves $\Gamma_1, \ldots, \Gamma_m$ on $\mathbb{C} \setminus \sigma_e(T)$ which do not intersect so that each C_i is in the interior U_i of Γ_i .

Let *V* be an open set containing $\sigma_e(T)$. We claim that $\sigma_e(T_k) \subset V$ for *k* large enough. If this is not the case, passing to a subsequence we can suppose that there exists $\alpha_k \in \sigma_e(T_k)$ so that $\alpha_k \notin V$ for every *k*. As $|\alpha_k| \leq ||T_k||$, α_k is a bounded sequence and, passing to a subsequence again, we can suppose that α_k converges to α . Since $\mathbb{C} \setminus V$ is closed, $\alpha \notin V$ and we get that $\alpha I - T = \lim(\alpha_k I - T_k)$ is Fredholm. As $\Phi(X)$ is open, $\alpha_k I - T_k$ must be Fredholm for *k* large, which is not the case. So the claim is proved.

Now we claim that $\sigma_e(T_k)$ meets each U_i for k large enough. If this is not the case, there exist some j and a subsequence $T_r \to T$ such that $\sigma_e(T_r)$ does not meet U_j . Then $\pi(T_r) \to \pi(T)$ and $\sigma(\pi(T_r))$ does not meet U_j . Moreover, by the continuity of the map $S \to S^{-1}$ ([2], Theorem 3.2.3), we can assume that $(\lambda I - \pi(T_r))^{-1}$ converges to $(\lambda I - \pi(T))^{-1}$ for all λ in Γ_j . Thus by the compactness of Γ_j we have

$$0 = \int_{\Gamma_j} (\lambda I - \pi(T_r))^{-1} d\lambda \to \int_{\Gamma_j} (\lambda I - \pi(T))^{-1} d\lambda \neq 0$$

and we get a contradiction.

The two claims proved show that $\sigma_e(T_k)$ has at least *m* connected components for *k* large enough, which is not the case. Hence *T* belongs to F_n .

The following result gives a classification of the spaces *X* such that $|\sigma_e(T)|$ is finite for every $T \in L(X)$.

THEOREM 2.2. Suppose that $\sigma_e(T)$ is finite for every $T \in L(X)$. Then there exists an integer n_X so that $|\sigma_e(T)| \leq n_X$ for every $T \in L(X)$.

Proof. Observe that in this case $F_n = \{T \in L(X) : |\sigma_e(T)| \leq n\}$. By Proposition 2.1, each F_n is closed. Applying Baire's Lemma to $L(X) = \bigcup_k F_k$ we get that there exists n such that F_n has nonempty interior. We choose T_0 in the interior of F_n . Now, for every fixed $T \in L(X)$, the function $f(\lambda) = T_0 + \lambda(T - T_0)$ from \mathbb{C} into L(X) is analytic and $|\sigma_e(f(\lambda))| \leq n$ on a nonempty open set U. Since U has nonzero capacity, Theorem 3.4 of [2] applied to $\pi(f(\lambda))$ implies that $|\sigma_e(f(\lambda))| \leq n$ for every λ . In particular, $|\sigma_e(f(1))| = |\sigma_e(T)| \leq n$, so we are done.

DEFINITION 2.3. We say that a Banach space *X* belongs to the class Σ_{e}^{n} if

 $n = \max\{|\sigma_{\mathbf{e}}(T)| : T \in L(X)\}.$

The following result follows easily from the definition of Σ_{e}^{n} .

PROPOSITION 2.4. Let $X \in \Sigma_{e}^{n}$. Then:

(i) if $T \in L(X)$ is semi-Fredholm, then ind(T) = 0;

(ii) there is no proper subspace or proper quotient of X isomorphic to X.

Proof. (i) Observe that $\mathbb{C} \setminus \sigma_{e}(T)$ is connected and $\operatorname{ind}(\lambda I - T) = 0$ for $|\lambda| > ||T||$. Since the index is a continuous map defined on the semi-Fredholm operators ([12], V.1.6 Theorem), $\operatorname{ind}(T) = 0$.

(ii) Let $Y \subseteq X$ be a subspace. Suppose that there is an isomorphism $U : X \longrightarrow Y$. Then composing U with the inclusion $i : Y \longrightarrow X$, we get an injective semi-Fredholm operator i U on X. By the previous part ind(i U) = 0, so Y = X.

The proof in the case of a proper quotient is analogous.

Recall that a Banach space *X* is said to be *n*-decomposable if it admits a decomposition $X = X_1 \oplus \cdots \oplus X_n$ where X_i are (infinite dimensional) subspaces of *X*.

THEOREM 2.5. Let $n \in \mathbb{N}$. For a complex Banach space X, the following assertions are equivalent:

(i) *X* is *n*-decomposable;

(ii) there exists an operator $T \in L(X)$ such that $|\sigma_{e}(T)| = n$;

(iii) there exists an operator $T \in L(X)$ such that $\sigma_e(T)$ consists of n connected components.

Proof. Suppose that *X* is *n*-decomposable, and hence, $X = X_1 \oplus \cdots \oplus X_n$. Then $T(x_1, x_2, \ldots, x_n) := (x_1, 2x_2, \ldots, nx_n)$ defines an operator on *X* such that $\sigma_e(T) = \{1, 2, \ldots, n\}$. Thus, (i) implies (ii).

That (ii) implies (iii) is trivial, so let us see that (iii) implies (i). Let $T \in L(X)$ be such that $\sigma_{e}(T)$ consists of *n* connected components, C_1, \ldots, C_n . By Theorem V.1.8 of [12], $\lambda I - T$ is invertible on the unbounded component of $\mathbb{C} \setminus \sigma_{e}(T)$ with the possible exceptions of isolated points.

We select closed simple curves $\Gamma_1, \ldots, \Gamma_n$ on $\mathbb{C} \setminus \sigma(T)$ which do not intersect so that each C_i is in the interior of Γ_i .

The analytic operational calculus ([18], Section V.8) allows us to define

$$P_i := \int_{\Gamma_i} (\lambda I - T)^{-1} \mathrm{d}\lambda, \quad i = 1, \dots, n.$$

Then each P_i is a projection. Moreover,

$$\pi(P_i) = \int_{\Gamma_i} (\lambda I - \pi(T))^{-1} \mathrm{d}\lambda \neq 0,$$

where π is the quotient map onto the Calkin algebra L(X)/K(X). Thus $R(P_i)$ is infinite dimensional. By Theorem V.9.1 of [18], $X = R(P_1) \oplus \cdots \oplus R(P_n)$. Thus, X is *n*-decomposable.

REMARK 2.6. It is not true in general that the operators acting on finitely decomposable spaces have finite essential spectrum, or index equal to 0 when they are semi-Fredholm. In Section 4.2 of [11] we can find an indecomposable space X and an operator $T \in L(X)$ such that $\sigma_{e}(T) = \{\alpha \in \mathbb{C} : |\alpha| = 1\}$ and ind(T) = -1.

Recall that $X \in HD_n$ if *n* is the maximal integer such that *X* has a *n*-decomposable subspace; and $X \in QD_n$ if *n* is the maximal integer such that *X* has a *n*-decomposable quotient.

REMARK 2.7. The spaces $X \in HD_n$ or $X \in QD_n$ belong to Σ_e^m for some $m \leq n$, but m < n in some cases. We refer to Section 3 of [6] for examples of spaces $X \in QD_2$ which are hereditarily indecomposable.

From now on we restrict ourselves to consider spaces in Σ_{e}^{n} .

LEMMA 2.8. Suppose that $X \in \Sigma_e^n$. Then each complemented subspace Y of X belongs to Σ_e^m for some $m \leq n$. Moreover, if Y is finite codimensional, then $Y \in \Sigma_e^n$.

Proof. Let $Y \subseteq X$ be a complemented subspace with $X = Y \oplus Z$. Given $S \in L(Y)$ we denote by *T* the extension of *S* to *X* defined by T(y + z) = S(y). It is clear that

$$\sigma_{\mathbf{e}}(S) \subset \sigma_{\mathbf{e}}(T) \subset \sigma_{\mathbf{e}}(S) \cup \{0\}.$$

Moreover, if *Z* is finite dimensional and for an operator $T \in L(X)$ we denote by *S* the operator on *Y* given by the matricial representation of *T* associated to $X = Y \oplus Z$, then it is easy to see that $\sigma_e(S) = \sigma_e(T)$.

PROPOSITION 2.9. Let X be a Banach space. The following conditions are equivalent:

(i) $X \in \Sigma^1_{e'}$

(ii) $L(X, Y) = \Phi_1(X, Y) \cup In(X, Y)$, for each Y;

(iii) $L(Y, X) = \Phi_{\mathbf{r}}(Y, X) \cup \operatorname{In}(Y, X)$, for each Y;

(iv) $L(X) = \Phi(X) \cup \operatorname{In}(X)$.

Proof. (i) \Rightarrow (ii). Let $T \in L(X, Y)$, $T \notin In(X, Y)$. Then there exists $A \in L(Y, X)$ such that $I_X - AT \notin \Phi(X)$. Since $X \in \Sigma_e^1$, $\sigma_e(AT) = \{1\}$. In particular, *AT* is Fredholm; hence $T \in \Phi_I(X, Y)$ ([18], Exercise 4.3).

(ii) \Rightarrow (iv). Taking X = Y we have $L(X) = \Phi_1(X) \cup In(X)$, so it will be enough to prove that $\Phi_1(X) = \Phi(X)$. In fact, let $T \in \Phi_1(X)$. Then we have decompositions $X = M \oplus F = N \oplus G$ so that T = diag(U, 0) where $U : M \longrightarrow N$ is an isomorphism and dim $F < \infty$. The operator \widetilde{T} with matrix diag $(U^{-1}, 0)$ with respect to the previous decomposition is not inessential because $R(I - \widetilde{T}T) = F$. Thus $\widetilde{T} \in \Phi_1(X)$ and Ker $\widetilde{T} = G$ has finite dimension, i.e., T is Fredholm.

(iv) \Rightarrow (i). Let $T \in L(X)$. As $\sigma_{e}(T)$ is nonempty we can find $\lambda_{0} \in \mathbb{C}$ so that $\lambda_{0}I - T = S \notin \Phi(X)$. Then $S \in In(X)$ and $\sigma_{e}(T) = \sigma_{e}(\lambda_{0}I - S) = \{\lambda_{0}\}$, so $X \in \Sigma_{e}^{1}$.

The proofs of (i) \Rightarrow (iii) and (iii) \Rightarrow (iv) are analogous to those of (i) \Rightarrow (ii) and (ii) \Rightarrow (iv), respectively.

REMARK 2.10. It is worth to compare Proposition 2.9 with the following results from [20]:

 $X \in HD_1$ if and only if $L(X, Y) = \Phi_+(X, Y) \cup SS(X, Y)$ for every Y; $X \in QD_1$ if and only if $L(Y, X) = \Phi_-(Y, X) \cup SC(Y, X)$ for every Y.

Here Φ_+ , *SS*, Φ_- and *SC* are the upper semi-Fredholm, strictly singular, lower

semi-Fredholm and strictly cosingular operators, respectively.

PROPOSITION 2.11. We have $X \in \Sigma^1_e$ if and only if $L(X) = \mathbb{C}I_X \oplus \ln(X)$.

Proof. Let us suppose $L(X) = \mathbb{C}I_X \oplus \ln(X)$ and let $T \in L(X)$. Then $T = \lambda I + S$ for some $\lambda \in \mathbb{C}$, $S \in \ln(X)$ and $\sigma_e(T) = \sigma_e(\lambda I) = \{\lambda\}$.

Conversely, given $T \in L(X)$ with $\sigma_e(T) = \{\lambda\}$, we have $\lambda I - T \notin \Phi(X)$ and Proposition 2.9 implies that $\lambda I - T \in In(X)$, so we are done.

PROPOSITION 2.12. Suppose that $X \in \Sigma_{e}^{1}$ and let Y be a Banach space.

(i) If there exists $T \in \Phi_1(X, Y)$, then $L(X, Y) = \mathbb{C} T \oplus In(X, Y)$.

(ii) If there exists $T \in \Phi_{\mathbf{r}}(Y, X)$, then $L(Y, X) = \mathbb{C} T \oplus \mathrm{In}(Y, X)$.

(iii) If $Y \in \Sigma_{e}^{1}$, and there exists $T \in L(X, Y) \setminus In(X, Y)$, then $T \in \Phi(X, Y)$ and $L(X, Y) = \mathbb{C} T \oplus In(X, Y)$.

Proof. (i) Let $T \in L(X, Y)$, $T \notin In(X, Y)$. Since $X \in \Sigma_{e}^{1}$, by Proposition 2.9, $T \in \Phi_{l}(X, Y)$. Therefore, there exists $U \in L(Y, X)$ such that $TU = I_{Y} - K$, K a compact operator ([18], Exercise IV.2).

Given $S \in L(X, Y)$, we have $\sigma_e(US) = \{\lambda_0\}$ for some $\lambda_0 \in \mathbb{C}$. Thus $\lambda_0 I_X - US \in In(X)$, by Proposition 2.9, and $T(\lambda_0 I_X - US) = \lambda_0 T - TUS = \lambda_0 T - S + KS \in In(X, Y)$. Hence $S = \lambda_0 T + K_0$, with $K_0 \in In(X, Y)$ and we are done.

Analogous proof for part (ii). Part (iii) follows from the fact that if $Y \in \Sigma_{e}^{1}$, and $T \notin In(X, Y)$, then $T \in \Phi_{1}(X, Y) \cap \Phi_{r}(X, Y) = \Phi(X, Y)$ by Proposition 2.9.

DEFINITION 2.13. Let X and Y be Banach spaces. We say that X and Y are *essentially isomorphic* if $\Phi(X, Y) \neq \emptyset$.

We say that *X* and *Y* are essentially incomparable if L(X, Y) = In(X, Y).

COROLLARY 2.14. Let X and Y be spaces in Σ_{e}^{1} . Then either X and Y are essentially isomorphic, or they are essentially incomparable.

Proof. This follows from part (iii) of Proposition 2.12.

REMARK 2.15. It follows easily from the definition that X and Y are essentially isomorphic if and only if X has a finite codimensional subspace which is isomorphic to a finite codimensional subspace of Y. Moreover, since the composition of Fredholm operators is a Fredholm operator, the property of being essentially isomorphic is transitive.

REMARK 2.16. The essentially incomparable spaces were introduced and studied in [7]. It was proved there that for X, Y arbitrary Banach spaces it holds that

$$L(X,Y) = In(X,Y)$$
 if and only if $L(Y,X) = In(Y,X)$.

DEFINITION 2.17. Let *X* be a Banach space. A decomposition $X = X_1 \oplus \cdots \oplus X_m$ is said to be *irrefinable* if the summands X_i are indecomposable.

THEOREM 2.18. Let $X \in \Sigma_e^n$. Then there exist integers n_1, \ldots, n_r so that $n_1 + \cdots + n_r = n$ and

$$L(X)/\operatorname{In}(X) \simeq M_{n_1}(\mathbb{C}) \times \cdots \times M_{n_r}(\mathbb{C}).$$

In particular, dim $L(X)/In(X) = n_1^2 + \cdots + n_r^2$.

Proof. By Theorem 2.5 there exists a decomposition $X = X_1 \oplus \cdots \oplus X_n$ with *n* summands. Clearly this decomposition is irrefinable.

Applying Corollary 2.14, we can divide the set $\{1, ..., n\}$ into r subsets $S_1, ..., S_r$ so that there exists a Fredholm operator in $L(X_j, X_i)$ when i and j belong to the same set and $L(X_j, X_i) = In(X_j, X_i)$ when they belong to different sets. Let us denote by n_i the number of spaces in the class S_i , so that $n_1 + \cdots + n_r = n$.

Clearly, for every S_l there exists a space Y which is isomorphic to a finite codimensional subspace of each X_i with $i \in S_l$. Let U_i denote an isomorphism from Y into a finite codimensional subspace of X_i . Since $R(U_i)$ is complemented, there exists $V_i \in L(X_i, Y)$ such that $V_i U_i = I_Y$.

For every $i, j \in S_l$ we define $E_{ij} := U_i V_j \in L(X_j, X_i)$. Then, for $i, j, k \in S_l$ we have $E_{ij}E_{ik} = E_{ik}$.

Let $T \in L(X)$ and let (T_{ij}) be the associated matrix with respect to the given decomposition. By Proposition 2.12, there exist $\lambda_{ij} \in \mathbb{C}$ and $S_{ij} \in \text{In}(X_j, X_i)$ so that $T_{ij} = \lambda_{ij}E_{ij} + S_{ij}$ when *i* and *j* belong to the same set, and $T_{ij} \in \text{In}(X_j, X_i)$ when *i* and *j* belong to different subsets. In the latter case we set $\lambda_{ij} = 0$.

The identities $E_{ij}E_{jk} = E_{ik}$ imply that the map

$$\Theta: T \in L(X) \longrightarrow (\lambda_{ij}) \in M_n(\mathbb{C})$$

induces an algebra isomorphism from L(X)/In(X) into a subalgebra of $M_n(\mathbb{C})$ isomorphic to $M_{n_1}(\mathbb{C}) \times \cdots \times M_{n_r}(\mathbb{C})$.

It is worth to observe that for any ideal *J* of L(X) such that $K(X) \subseteq J \subseteq$ In(*X*) we have In(*X*) = $\pi^{-1}(\operatorname{rad}(L(X)/J))$ where π is the quotient map from L(X) onto L(X)/J. Therefore $\operatorname{rad}(L(X)/J) = \operatorname{In}(X)/J$. In particular, $L(X)/\operatorname{In}(X)$ is semisimple.

REMARK 2.19. Note that L(X)/In(X) is finite dimensional when $X \in \Sigma_e^n$. Therefore, since L(X)/In(X) is semisimple, the existence of the isomorphism

$$L(X)/\operatorname{In}(X) \simeq M_{n_1}(\mathbb{C}) \times \cdots \times M_{n_r}(\mathbb{C})$$

can be obtained also by applying the Theorem of Wedderburn on finite semisimple algebras over an algebraically closed field ([2], Theorem 2.1.2).

The following example, that can be found in the proof of Proposition 4.5 of [13], shows that for spaces $X \in \Sigma_{e}^{n}$, the quotient algebra L(X)/SS(X) is not always semisimple.

EXAMPLE 2.20. Let *X* be a hereditarily indecomposable Banach space and let us consider an ascending chain of subspaces $X_1 \subset \cdots \subset X_n = X$ such that X_i has infinite codimension in X_{i+1} for $i = 1, \ldots, n-1$. If we denote by J_{ik} the inclusion map of X_i into X_k for $i \leq k$, then we have:

- For $i \leq k$, $L(X_i, X_k) = \mathbb{C}J_{ik} \oplus SS(X_i, X_k)$ and for i > k, $L(X_i, X_k) = SS(X_i, X_k)$. Both facts follow from Proposition 1 in [4].

- As $SS(X_i, X_k) \subseteq In(X_i, X_k)$, then $L(X_i, X_k) = In(X_i, X_k)$ for i > k and, by symmetry (see Remark 2.16), $L(X_i, X_k) = In(X_i, X_k)$ for $i \neq k$.

Let us define $Z = X_1 \oplus \cdots \oplus X_n$. If we set every element $T \in L(X)$ in matrix form $T = (T_{ik})$ with $T_{ik} \in L(X_k, X_i)$, then we get that L(Z)/SS(Z) is isomorphic to the algebra of all lower triangular $n \times n$ matrices and that L(Z)/In(Z) is isomorphic to the algebra of all diagonal $n \times n$ matrices. Thus, rad(L(Z)/SS(Z)) = $In(Z)/SS(Z) \neq 0$. Indeed, dim rad(L(Z)/SS(Z)) = n(n-1)/2.

COROLLARY 2.21. Let X be a Σ_{e}^{n} space. Then every irrefinable decomposition of X has n summands.

Proof. Let $X = X_1 \oplus \cdots \oplus X_m$ be an irrefinable decomposition. Obviously, $m \leq n$. Moreover, if we proceed as in the proof of Theorem 2.18, we get that $|\sigma_e(T)| \leq m$, for every $T \in L(X)$. Thus m = n.

COROLLARY 2.22. Let $X \in \Sigma_{e}^{n}$ and $Y \in \Sigma_{e}^{m}$. Then $X \oplus Y \in \Sigma_{e}^{n+m}$.

Proof. Let $X = X_1 \oplus \cdots \oplus X_n$ and $Y = Y_1 \oplus \cdots \oplus Y_m$ be irrefinable decompositions. Then $X_1 \oplus \cdots \oplus X_n \oplus Y_1 \oplus \cdots \oplus Y_m$ is an irrefinable decomposition of $X \oplus Y$, and the result follows from Corollary 2.21.

Let $X \in \Sigma_e^n$ and let $X = X_1 \oplus \cdots \oplus X_n$ be an irrefinable decomposition. As in the proof of Theorem 2.18, we divide the set $\{1, \ldots, n\}$ into r subsets S_1, \ldots, S_r so that X_i and X_j are essentially isomorphic when i and j belong to the same set, and they are essentially incomparable when they belong to different sets. We denote by n_l the number of spaces in the class S_l . We also assume that $n_1 \leq \cdots \leq n_r$.

We set

$$\tau(X_1\oplus\cdots\oplus X_n):=(n_1,\ldots,n_r).$$

THEOREM 2.23. Let $X \in \Sigma_e^n$ and let $Y_1 \oplus \cdots \oplus Y_n$ and $Z_1 \oplus \cdots \oplus Z_n$ be irrefinable decompositions of X. Then

$$\tau(Y_1 \oplus \cdots \oplus Y_n) = \tau(Z_1 \oplus \cdots \oplus Z_n).$$

Moreover, each summand Y_i is essentially isomorphic to some Z_i , and vice versa.

Proof. Let q_i be the projection of X onto Z_i . Clearly, for each index i there exists an index j so that $(q_i)_{|Y_j}$ is not inessential. Hence, by Proposition 2.14, $(q_i)_{|Y_j}$ is Fredholm.

After a reordering of the summands we can suppose that i = j = 1 and set $Y =: Y_1 \oplus \cdots \oplus Y_k, Z =: Z_1 \oplus \cdots \oplus Z_l$, for Y_1, \ldots, Y_k the summands essentially isomorphic to Y_1 , and Z_1, \ldots, Z_l the summands essentially isomorphic to Z_1 . By Corollary 2.22, $Y \in \Sigma_e^k$ and $Z \in \Sigma_e^l$.

Since the sum of a Fredholm operator and an inessential operator is Fredholm [16], the operator from *Y* into *Z* induced by both decompositions is Fredholm. Thus, there exist isomorphic finite codimensional subspaces $Y_0 \subseteq Y$ and $Z_0 \subseteq Z$. By Lemma 2.8 we have $Y_0 \in \Sigma_e^k$ and $Z_0 \in \Sigma_{e'}^l$, so k = l.

REMARK 2.24. The first part of Theorem 2.23 can be proved in a more algebraic way by observing that the numbers n_i are uniquely determined by X. In fact, they are the dimensions of the irreducible representations of the semisimple algebra $L(X)/\operatorname{In}(X) \simeq M_{n_1}(\mathbb{C}) \times \cdots \times M_{n_r}(\mathbb{C})$.

3. K-THEORY FOR Σ_{e}^{n} SPACES

The basic concepts, definitions and results used in this section can be found in [3], [17] or [19]. Let K_0 and K_1 denote the usual *K*-functors in *K*-theory. Given a projection $P \in L(X)$, $[P]_0$ stands for the class of P in $K_0(L(X))$.

Let *X* be a Σ_e^n space (for instance a HD_n space or a QD_n space) and let $X = X_1 \oplus \cdots \oplus X_n$ be an irrefinable decomposition with $\tau(X_1 \oplus \cdots \oplus X_n) = (n_1, \ldots, n_r)$. We select summands X_{i_1}, \ldots, X_{i_r} pairwise essentially incomparable

and denote by P_j the natural projection on X with $R(P_j) = X_{i_j}$. Let P_0 denote a projection on X with one-dimensional range.

It is not difficult to see that two projections on a Banach space *X* define the same class in $K_0(L(X))$ if and only if their ranges are linearly homeomorphic (see Proposition 2.1 of [13]). Therefore, for *X* as in the previous paragraph, it is reasonable to hope that the K_0 group of L(X) can be described in terms of the classes $[P_0]_0, \ldots, [P_r]_0 \in K_0(L(X))$. We will show that this is the case.

In the particular case that *X* is indecomposable, the algebra $\mathcal{A} = L(X)/J$ for J = SC(X) or J = SS(X), is a subalgebra of the algebra \mathcal{U}_n of all the upper triangular $n \times n$ complex matrices with constant diagonal ([10], Theorem 5.7). For example, if $\mathcal{A} = \mathcal{U}_n$, \mathcal{A} is homotopy equivalent (as an algebra) to its diagonal, i.e., to \mathbb{C} . Therefore, $K_0(\mathcal{A}) = \mathbb{Z}$, $K_1(\mathcal{A}) = 0$. Since $K_0(J) = \mathbb{Z}[P_0]_0$ and $K_1(J) = 0$ (see Theorem 5.2 of [14]) it follows easily from the cyclic six-term exact sequence ([17], Theorem 12.1.2) that $K_0(L(X)) = \mathbb{Z}^2 \simeq \mathbb{Z}[P_0]_0 \oplus \mathbb{Z}[I_X]_0$, (P_0 as above).

Now we can obtain a more general result using the algebra L(X)/In(X). Observe that a priori it does not seems straightforward to prove this result directly for the algebras L(X)/SS(X) or L(X)/SC(X).

THEOREM 3.1. With the previous notations, let J be a non-zero, closed ideal of inessential operators on X and let $\mathcal{B} = L(X)/J$. Then $K_1(L(X)) = K_1(\mathcal{B}) = 0$ and

$$K_0(L(X)) = \bigoplus_{i=0}^r \mathbb{Z}[P_i]_0; \qquad K_0(\mathcal{B}) = \bigoplus_{i=1}^r \mathbb{Z}[P_i]_0$$

Proof. Let us consider the exact sequence $0 \longrightarrow J \longrightarrow L(X) \longrightarrow \mathcal{B} \longrightarrow 0$. By Theorem 5.2 of [14], the associated cyclic six-term exact sequence looks as follows

$$0 \longrightarrow K_1(L(X)) \longrightarrow K_1(\mathcal{B}) \xrightarrow{\delta_1} \mathbb{Z} = K_0(J) \xrightarrow{\omega} K_0(L(X)) \longrightarrow K_0(\mathcal{B}) \longrightarrow 0$$

where $\omega(k) = k[P_0]_0$ and δ_1 is called index map because it fits into the commutative diagram (see Proposition 4.1 of [13])

$$\begin{array}{ccc} \Phi(X^m) & \stackrel{\text{onto}}{\longrightarrow} & \operatorname{Inv}_m(\mathcal{B}) & \longrightarrow & K_1(\mathcal{B}) \\ \\ & & & & \downarrow^{\delta_1} \\ \mathbb{Z} & \stackrel{\sim}{\longrightarrow} & K_0(J) \end{array}$$

where $Inv_m(\mathcal{B})$ are the invertible elements of $M_m(\mathcal{B})$.

By Corollary 2.22, X^m is in Σ_e^{nm} . Therefore $\delta_1 = 0$ by Proposition 2.4. It follows from the exact sequence that $K_0(\mathcal{B})$ and $K_1(\mathcal{B})$ do not depend on J. Therefore, we can calculate them taking J = In(X). In that case we have, by Theorem 2.18, that $\mathcal{B} = M_{n_1}(\mathbb{C}) \times \cdots \times M_{n_r}(\mathbb{C})$, so $K_1(\mathcal{B}) = 0$. We conclude the proof by observing that $[P_i]_0$ generates the factor $K_0(M_{n_i}(\mathbb{C}))$ in $K_0(\mathcal{B})$ for $i = 1, \ldots, n$, and $[P_0]_0$ generates $K_0(J)$.

Acknowledgements. Supported in part by DGI (Spain), Grant MTM2004–06620.

REFERENCES

- P. AIENA, M. GONZÁLEZ, Essentially incomparable Banach spaces and Fredholm theory, *Proc. Roy. Irish Acad. Sect. A* 93(1993), 49–59.
- [2] B. AUPETIT, A Primer on Spectral Theory, Springer, Berlin–Heidelberg 1991.
- [3] B. BLACKADAR, K-Theory for Operator Algebras, Math. Sci. Res. Inst. Publ., vol. 5, Cambridge Univ. Press, Cambridge 1998.
- [4] V. FERENCZI, Operators on subspaces of hereditarily indecomposable Banach spaces, Bull. London Math. Soc. 29(1997), 338–344.
- [5] V. FERENCZI, Hereditarily finitely decomposable spaces, *Studia Math.* 123(1997), 135–149.
- [6] V. FERENCZI, Quotient hereditarily indecomposable Banach spaces, *Canad. J. Math.* 51(1999), 566–584.
- [7] M. GONZÁLEZ, On essentially incomparable Banach spaces, *Math. Z.* 215(1994), 621–629.
- [8] M. GONZÁLEZ, J.M. HERRERA, Operators on quotient indecomposable spaces, *Publ. Math. Debrecen* 59(2001), 271–288.
- [9] M. GONZÁLEZ, J.M. HERRERA, Finitely decomposable Banach spaces and the threespace property, *Arch. Math. (Basel)* **80**(2003), 647–654.
- [10] M. GONZÁLEZ, J.M. HERRERA, Calkin algebras for Banach spaces with finitely decomposable quotients, *Studia Math.* 157(2003), 279–293.
- [11] W.T. GOWERS, B. MAUREY, Banach spaces with small spaces of operators, *Math. Ann.* 307(1997), 543–568.
- [12] S. GOLDBERG, Unbounded Linear Operators: Theory and Applications, McGraw-Hill, New York 1966.
- [13] N.J. LAUSTSEN, K-Theory for algebras of operators on Banach spaces. J. London Math. Soc. 59(1999), 715–728.
- [14] N.J. LAUSTSEN, K-Theory for the Banach algebra of operators on James's quasireflexive Banach spaces, *K-Theory* 23(2000), 115–127.
- [15] J. LINDENSTRAUSS AND L. TZAFRIRI, Classical Banach Spaces I. Sequence Spaces, Springer, Berlin 1977.
- [16] A. PIETSCH, Inessential operators in Banach spaces, Integral Equations Operator Theory 1(1978), 589–591.
- [17] M. RØRDAM, F. LARSEN, N.J. LAUSTSEN, An Introduction to K-Theory for C*-Algebras. Cambridge Univ. Press, Cambridge 2000.
- [18] A.E. TAYLOR, D.C. LAY, Introduction to Functional Analysis, Wiley, New York 1980.
- [19] N.E. WEGGE-OLSEN, K-Theory and C*-Algebras, Oxford Univ. Press, Oxford 1993.

[20] L. WEIS, Perturbation classes of semi-Fredholm operators, Math. Z. 178(1981), 429– 442.

MANUEL GONZÁLEZ, UNIVERSIDAD DE CANTABRIA, DEPARTAMENTO DE MA-TEMÁTICAS, E-39071 SANTANDER, SPAIN *E-mail address*: gonzalem@unican.es

JOSÉ M. HERRERA, UNIVERSIDAD DE CANTABRIA, DEPARTAMENTO DE MATE-MÁTICAS, E-39071 SANTANDER, SPAIN *E-mail address*: herreraj@unican.es

Received March 21, 2003; revised June 6, 2003.