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ABSTRACT. We study the Banach spaces X for which the essential spectrum
σe(T) of every T in L(X) is finite. We show that there exists an integer n so that
|σe(T)| 6 n for every T. We also show that X admits an irreducible decom-
position as a direct sum of indecomposable subspaces, and that the quotient
algebra L(X)/In(X), In(X) the inessential operators, is isomorphic to a finite
product of spaces of scalar matrices.
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1. INTRODUCTION

The essential spectrum σe(T) of the operators T ∈ L(X) is a useful tool to obtain
information on the isomorphic properties of a Banach space X; see Section 2.c
of [15] and [7]. Here we study the spaces X such that σe(T) is finite for every
T ∈ L(X).

First we show that if |σe(T)| < ∞ for every T ∈ L(X), then there exists an
integer n so that |σe(T)| 6 n for every T ∈ L(X). Thus, denoting by Σn

e the class
of the Banach spaces X such that max{|σe(T)| : T ∈ L(X)} = n, our problem is
reduced to study the spaces X ∈ Σn

e .
Let us denote by In(X, Y) the inessential operators in L(X, Y). For defini-

tions we refer to the end of this introduction. We obtain several characterizations
of the spaces in Σ1

e in terms of the inessential operators. For example, X ∈ Σ1
e if

and only if we can write L(X) = CIX ⊕ In(X), where IX is the identity operator
on X.

Among our results, we prove that each X ∈ Σn
e admits a decomposition

X = X1 ⊕ · · · ⊕ Xn, where each Xi is a subspace of X that belongs to Σ1
e. More-

over, the summands Xi can be divided into r sets S1, . . . , Sr so that there ex-
ists a Fredholm operator in L(Xj, Xi) when i and j belong to the same set and
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L(Xj, Xi) = In(Xj, Xi) when they belong to different sets. Let us denote by nl the
number of spaces in the class Sl . Clearly n1 + · · ·+ nr = n.

From the decomposition described in the previous paragraph, we show that
the quotient algebra L(X)/In(X) is isomorphic to the product Mn1(C) × · · · ×
Mnr (C) where Ml(C) is the algebra of complex l × l matrices. In particular,

dim L(X)/In(X) = n2
1 + · · ·+ n2

r .

Note that the essential spectrum of an operator T ∈ L(X) coincides with the
spectrum of the image of T in L(X)/In(X).

From the description of L(X)/In(X) we derive that all the irreducible de-
compositions of a space X ∈ Σn

e as a direct sum of spaces in Σ1
e have n summands.

Even more, they have associated the same integers n1, . . . , nr.
A Banach space X is n-hereditarily decomposable [5] and we write X ∈ HDn, if

n is the maximal number of the integers k such that X contains a subspace which
is the direct sum of k subspaces. The space X is n-quotient decomposable [10] and
we write X ∈ QDn, if n is the maximal number of the integers k such that X has
a quotient which is the direct sum of k (closed infinite dimensional) subspaces. It
follows from the results in [5] and [10] that the spaces in HDn or QDn belong to
Σm

e for some m 6 n, and there exist examples for which m < n.
Let SS and SC denote the strictly singular and the strictly cosingular op-

erators, respectively. In [5] Ferenczi proves that for every operator T ∈ L(X)
on a HDn space X, |σe(T)| 6 n and that dim L(X)/SS(X) 6 n2. In [10] the
authors prove for a QDn space X that the quotient algebra L(X)/SC(X) is iso-
morphic to a subalgebra of the n × n complex matrices Mn(C). Thus for every
T ∈ L(X), |σe(T)| 6 n and dim L(X)/SC(X) 6 n2. Our results on the struc-
ture of L(X)/In(X) give a better bound for |σe(T)| and show that the algebra
L(X)/In(X) is more suitable to study the essential spectrum of the spaces in Σm

e
than L(X)/SS(X) or L(X)/SC(X). Note that the essential spectrum of T ∈ L(X)
coincides with the spectrum of the image of T in any of the algebras L(X)/SS(X),
L(X)/SC(X) or L(X)/In(X).

Finally we get some results about K-theory of HDn and QDn spaces using
the algebra L(X)/In(X) which a priori would be more difficult to obtain starting
from the algebras L(X)/SS(X) or L(X)/SC(X).

Throughout the paper X, Y, Z, . . . will denote complex Banach spaces. X∗

will stand for the dual space of X and L(X, Y) for the (continuous linear) opera-
tors from X into Y. We set L(X) = L(X, X) and denote the identity map by IX
or simply I if there is no possible confusion. We denote by K(X, Y) the set of all
compact operators from X into Y.

An operator T ∈ L(X, Y) is Fredholm, T ∈ Φ(X, Y), if Ker T is finite di-
mensional and R(T) is finite codimensional (hence closed). It is left-Atkinson,
T ∈ Φl(X, Y), if R(T) is complemented and Ker T is finite dimensional, and it
is right-Atkinson, T ∈ Φr(X, Y), if Ker T is complemented and R(T) is finite codi-
mensional.
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An operator T ∈ L(X, Y) is inessential, T ∈ In(X, Y), if I − ST ∈ Φ(X) (or
equivalently I − TS ∈ Φ(Y)) for every S ∈ L(Y, X).

Unless the contrary is specified, all the subspaces will be closed and infinite
dimensional, and the quotients will be infinite dimensional.

2. FINITELY DECOMPOSABLE SPACES

The essential spectrum of an operator T ∈ L(X) is defined by

σe(T) := {λ ∈ C : λI − T /∈ Φ(X)}.

Let π denote the quotient map from L(X) onto the Calkin algebra L(X)/K(X).
It is well known that the essential spectrum of T coincides with the spectrum of
π(T) in L(X)/K(X).

We are interested in the spaces X so that σe(T) is finite for every T ∈ L(X).
In order to study these spaces, the following result will be useful.

For each n ∈ N, we denote by Fn the set of all T ∈ L(X) such that σe(T) has
at most n connected components.

PROPOSITION 2.1. For each n ∈ N, the set Fn is closed in L(X).

Proof. Let (Tk) be a sequence in Fn which converges to T ∈ L(X). Suppose
that σe(T) includes m connected components, C1, . . . , Cm, with m > n. We select
closed simple curves Γ1, . . . , Γm on C \ σe(T) which do not intersect so that each
Ci is in the interior Ui of Γi.

Let V be an open set containing σe(T). We claim that σe(Tk) ⊂ V for k large
enough. If this is not the case, passing to a subsequence we can suppose that
there exists αk ∈ σe(Tk) so that αk /∈ V for every k. As |αk| 6 ‖Tk‖, αk is a bounded
sequence and, passing to a subsequence again, we can suppose that αk converges
to α. Since C \ V is closed, α /∈ V and we get that αI − T = lim(αk I − Tk) is
Fredholm. As Φ(X) is open, αk I − Tk must be Fredholm for k large, which is not
the case. So the claim is proved.

Now we claim that σe(Tk) meets each Ui for k large enough. If this is not
the case, there exist some j and a subsequence Tr → T such that σe(Tr) does not
meet Uj. Then π(Tr) → π(T) and σ(π(Tr)) does not meet Uj. Moreover, by the
continuity of the map S → S−1 ([2], Theorem 3.2.3), we can assume that (λI −
π(Tr))−1 converges to (λI − π(T))−1 for all λ in Γj. Thus by the compactness of
Γj we have

0 =
∫

Γj

(λI − π(Tr))−1 dλ →
∫

Γj

(λI − π(T))−1 dλ 6= 0

and we get a contradiction.
The two claims proved show that σe(Tk) has at least m connected compo-

nents for k large enough, which is not the case. Hence T belongs to Fn.
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The following result gives a classification of the spaces X such that |σe(T)|
is finite for every T ∈ L(X).

THEOREM 2.2. Suppose that σe(T) is finite for every T ∈ L(X). Then there exists
an integer nX so that |σe(T)| 6 nX for every T ∈ L(X).

Proof. Observe that in this case Fn = {T ∈ L(X) : |σe(T)| 6 n}. By Propo-
sition 2.1, each Fn is closed. Applying Baire’s Lemma to L(X) =

⋃
k

Fk we get

that there exists n such that Fn has nonempty interior. We choose T0 in the inte-
rior of Fn. Now, for every fixed T ∈ L(X), the function f (λ) = T0 + λ(T − T0)
from C into L(X) is analytic and |σe( f (λ))| 6 n on a nonempty open set U.
Since U has nonzero capacity, Theorem 3.4 of [2] applied to π( f (λ)) implies that
|σe( f (λ))| 6 n for every λ. In particular, |σe( f (1))| = |σe(T)| 6 n, so we are
done.

DEFINITION 2.3. We say that a Banach space X belongs to the class Σn
e if

n = max{|σe(T)| : T ∈ L(X)}.

The following result follows easily from the definition of Σn
e .

PROPOSITION 2.4. Let X ∈ Σn
e . Then:

(i) if T ∈ L(X) is semi-Fredholm, then ind(T) = 0;
(ii) there is no proper subspace or proper quotient of X isomorphic to X.

Proof. (i) Observe that C \ σe(T) is connected and ind(λI − T) = 0 for |λ| >
‖T‖. Since the index is a continuous map defined on the semi-Fredholm operators
([12], V.1.6 Theorem), ind(T) = 0.

(ii) Let Y ⊆ X be a subspace. Suppose that there is an isomorphism U :
X−→Y. Then composing U with the inclusion i : Y−→X, we get an injective
semi-Fredholm operator i U on X. By the previous part ind(i U) = 0, so Y = X.

The proof in the case of a proper quotient is analogous.

Recall that a Banach space X is said to be n-decomposable if it admits a de-
composition X = X1 ⊕ · · · ⊕ Xn where Xi are (infinite dimensional) subspaces
of X.

THEOREM 2.5. Let n ∈ N. For a complex Banach space X, the following assertions
are equivalent:

(i) X is n-decomposable;
(ii) there exists an operator T ∈ L(X) such that |σe(T)| = n;

(iii) there exists an operator T ∈ L(X) such that σe(T) consists of n connected
components.

Proof. Suppose that X is n-decomposable, and hence, X = X1 ⊕ · · · ⊕ Xn.
Then T(x1, x2, . . . , xn) := (x1, 2x2, . . . , nxn) defines an operator on X such that
σe(T) = {1, 2, . . . , n}. Thus, (i) implies (ii).
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That (ii) implies (iii) is trivial, so let us see that (iii) implies (i). Let T ∈ L(X)
be such that σe(T) consists of n connected components, C1, . . . , Cn. By Theo-
rem V.1.8 of [12], λI − T is invertible on the unbounded component of C \ σe(T)
with the possible exceptions of isolated points.

We select closed simple curves Γ1, . . . , Γn on C \ σ(T) which do not intersect
so that each Ci is in the interior of Γi.

The analytic operational calculus ([18], Section V.8) allows us to define

Pi :=
∫

Γi

(λI − T)−1dλ, i = 1, . . . , n.

Then each Pi is a projection. Moreover,

π(Pi) =
∫

Γi

(λI − π(T))−1dλ 6= 0,

where π is the quotient map onto the Calkin algebra L(X)/K(X). Thus R(Pi) is
infinite dimensional. By Theorem V.9.1 of [18], X = R(P1)⊕ · · · ⊕ R(Pn). Thus, X
is n-decomposable.

REMARK 2.6. It is not true in general that the operators acting on finitely
decomposable spaces have finite essential spectrum, or index equal to 0 when
they are semi-Fredholm. In Section 4.2 of [11] we can find an indecomposable
space X and an operator T ∈ L(X) such that σe(T) = {α ∈ C : |α| = 1} and
ind(T) = −1.

Recall that X ∈ HDn if n is the maximal integer such that X has a n-
decomposable subspace; and X ∈ QDn if n is the maximal integer such that X
has a n-decomposable quotient.

REMARK 2.7. The spaces X ∈ HDn or X ∈ QDn belong to Σm
e for some

m 6 n, but m < n in some cases. We refer to Section 3 of [6] for examples of
spaces X ∈ QD2 which are hereditarily indecomposable.

From now on we restrict ourselves to consider spaces in Σn
e .

LEMMA 2.8. Suppose that X ∈ Σn
e . Then each complemented subspace Y of X

belongs to Σm
e for some m 6 n. Moreover, if Y is finite codimensional, then Y ∈ Σn

e .

Proof. Let Y ⊆ X be a complemented subspace with X = Y ⊕ Z. Given
S ∈ L(Y) we denote by T the extension of S to X defined by T(y + z) = S(y). It is
clear that

σe(S) ⊂ σe(T) ⊂ σe(S) ∪ {0}.

Moreover, if Z is finite dimensional and for an operator T ∈ L(X) we denote
by S the operator on Y given by the matricial representation of T associated to
X = Y ⊕ Z, then it is easy to see that σe(S) = σe(T).
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PROPOSITION 2.9. Let X be a Banach space. The following conditions are equiv-
alent:

(i) X ∈ Σ1
e;

(ii) L(X, Y) = Φl(X, Y) ∪ In(X, Y), for each Y;
(iii) L(Y, X) = Φr(Y, X) ∪ In(Y, X), for each Y;
(iv) L(X) = Φ(X) ∪ In(X).

Proof. (i) ⇒ (ii). Let T ∈ L(X, Y), T /∈ In(X, Y). Then there exists A ∈
L(Y, X) such that IX − AT /∈ Φ(X). Since X ∈ Σ1

e, σe(AT) = {1}. In particular,
AT is Fredholm; hence T ∈ Φl(X, Y) ([18], Exercise 4.3).

(ii) ⇒ (iv). Taking X = Y we have L(X) = Φl(X) ∪ In(X), so it will be
enough to prove that Φl(X) = Φ(X). In fact, let T ∈ Φl(X). Then we have
decompositions X = M⊕ F = N⊕G so that T = diag(U, 0) where U : M−→N is
an isomorphism and dim F < ∞. The operator T̃ with matrix diag(U−1, 0) with
respect to the previous decomposition is not inessential because R(I − T̃T) = F.
Thus T̃ ∈ Φl(X) and Ker T̃ = G has finite dimension, i.e., T is Fredholm.

(iv) ⇒ (i). Let T ∈ L(X). As σe(T) is nonempty we can find λ0 ∈ C so
that λ0 I − T = S /∈ Φ(X). Then S ∈ In(X) and σe(T) = σe(λ0 I − S) = {λ0}, so
X ∈ Σ1

e.
The proofs of (i) ⇒ (iii) and (iii) ⇒ (iv) are analogous to those of (i) ⇒ (ii)

and (ii) ⇒ (iv), respectively.

REMARK 2.10. It is worth to compare Proposition 2.9 with the following
results from [20]:

X ∈ HD1 if and only if L(X, Y) = Φ+(X, Y) ∪ SS(X, Y) for every Y;
X ∈ QD1 if and only if L(Y, X) = Φ−(Y, X) ∪ SC(Y, X) for every Y.

Here Φ+, SS, Φ− and SC are the upper semi-Fredholm, strictly singular, lower
semi-Fredholm and strictly cosingular operators, respectively.

PROPOSITION 2.11. We have X ∈ Σ1
e if and only if L(X) = CIX ⊕ In(X).

Proof. Let us suppose L(X) = CIX ⊕ In(X) and let T ∈ L(X). Then T =
λI + S for some λ ∈ C, S ∈ In(X) and σe(T) = σe(λI) = {λ}.

Conversely, given T ∈ L(X) with σe(T) = {λ}, we have λI − T /∈ Φ(X) and
Proposition 2.9 implies that λI − T ∈ In(X), so we are done.

PROPOSITION 2.12. Suppose that X ∈ Σ1
e and let Y be a Banach space.

(i) If there exists T ∈ Φl(X, Y), then L(X, Y) = C T ⊕ In(X, Y).
(ii) If there exists T ∈ Φr(Y, X), then L(Y, X) = C T ⊕ In(Y, X).

(iii) If Y ∈ Σ1
e, and there exists T ∈ L(X, Y) \ In(X, Y), then T ∈ Φ(X, Y) and

L(X, Y) = C T ⊕ In(X, Y).

Proof. (i) Let T ∈ L(X, Y), T /∈ In(X, Y). Since X ∈ Σ1
e, by Proposition 2.9,

T ∈ Φl(X, Y). Therefore, there exists U ∈ L(Y, X) such that TU = IY − K, K a
compact operator ([18], Exercise IV.2).
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Given S ∈ L(X, Y), we have σe(US) = {λ0} for some λ0 ∈ C. Thus λ0 IX −
US ∈ In(X), by Proposition 2.9, and T(λ0 IX −US) = λ0T − TUS = λ0T − S +
KS ∈ In(X, Y). Hence S = λ0T + K0, with K0 ∈ In(X, Y) and we are done.

Analogous proof for part (ii). Part (iii) follows from the fact that if Y ∈ Σ1
e,

and T /∈ In(X, Y), then T ∈ Φl(X, Y) ∩Φr(X, Y) = Φ(X, Y) by Proposition 2.9.

DEFINITION 2.13. Let X and Y be Banach spaces. We say that X and Y are
essentially isomorphic if Φ(X, Y) 6= ∅.

We say that X and Y are essentially incomparable if L(X, Y) = In(X, Y).

COROLLARY 2.14. Let X and Y be spaces in Σ1
e. Then either X and Y are essen-

tially isomorphic, or they are essentially incomparable.

Proof. This follows from part (iii) of Proposition 2.12.

REMARK 2.15. It follows easily from the definition that X and Y are essen-
tially isomorphic if and only if X has a finite codimensional subspace which is
isomorphic to a finite codimensional subspace of Y. Moreover, since the com-
position of Fredholm operators is a Fredholm operator, the property of being
essentially isomorphic is transitive.

REMARK 2.16. The essentially incomparable spaces were introduced and
studied in [7]. It was proved there that for X, Y arbitrary Banach spaces it holds
that

L(X, Y) = In(X, Y) if and only if L(Y, X) = In(Y, X).

DEFINITION 2.17. Let X be a Banach space. A decomposition X = X1 ⊕
· · · ⊕ Xm is said to be irrefinable if the summands Xi are indecomposable.

THEOREM 2.18. Let X ∈ Σn
e . Then there exist integers n1, . . . , nr so that n1 +

· · ·+ nr = n and
L(X)/In(X) ' Mn1(C)× · · · × Mnr (C).

In particular, dim L(X)/In(X) = n2
1 + · · ·+ n2

r .

Proof. By Theorem 2.5 there exists a decomposition X = X1 ⊕ · · · ⊕ Xn with
n summands. Clearly this decomposition is irrefinable.

Applying Corollary 2.14, we can divide the set {1, . . . , n} into r subsets
S1, . . . , Sr so that there exists a Fredholm operator in L(Xj, Xi) when i and j be-
long to the same set and L(Xj, Xi) = In(Xj, Xi) when they belong to different sets.
Let us denote by nl the number of spaces in the class Sl , so that n1 + · · ·+ nr = n.

Clearly, for every Sl there exists a space Y which is isomorphic to a finite
codimensional subspace of each Xi with i ∈ Sl . Let Ui denote an isomorphism
from Y into a finite codimensional subspace of Xi. Since R(Ui) is complemented,
there exists Vi ∈ L(Xi, Y) such that ViUi = IY.

For every i, j ∈ Sl we define Eij := UiVj ∈ L(Xj, Xi). Then, for i, j, k ∈ Sl we
have EijEjk = Eik.
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Let T ∈ L(X) and let (Tij) be the associated matrix with respect to the given
decomposition. By Proposition 2.12, there exist λij ∈ C and Sij ∈ In(Xj, Xi) so
that Tij = λijEij + Sij when i and j belong to the same set, and Tij ∈ In(Xj, Xi)
when i and j belong to different subsets. In the latter case we set λij = 0.

The identities EijEjk = Eik imply that the map

Θ : T ∈ L(X)−→(λij) ∈ Mn(C)

induces an algebra isomorphism from L(X)/In(X) into a subalgebra of Mn(C)
isomorphic to Mn1(C)× · · · × Mnr (C).

It is worth to observe that for any ideal J of L(X) such that K(X) ⊆ J ⊆
In(X) we have In(X) = π−1(rad(L(X)/J)) where π is the quotient map from
L(X) onto L(X)/J. Therefore rad(L(X)/J) = In(X)/J. In particular, L(X)/In(X)
is semisimple.

REMARK 2.19. Note that L(X)/In(X) is finite dimensional when X ∈ Σn
e .

Therefore, since L(X)/In(X) is semisimple, the existence of the isomorphism

L(X)/In(X) ' Mn1(C)× · · · × Mnr (C)

can be obtained also by applying the Theorem of Wedderburn on finite semisim-
ple algebras over an algebraically closed field ([2], Theorem 2.1.2).

The following example, that can be found in the proof of Proposition 4.5
of [13], shows that for spaces X ∈ Σn

e , the quotient algebra L(X)/SS(X) is not
always semisimple.

EXAMPLE 2.20. Let X be a hereditarily indecomposable Banach space and
let us consider an ascending chain of subspaces X1 ⊂ · · · ⊂ Xn = X such that
Xi has infinite codimension in Xi+1 for i = 1, . . . , n − 1. If we denote by Jik the
inclusion map of Xi into Xk for i 6 k, then we have:

– For i 6 k, L(Xi, Xk) = CJik ⊕ SS(Xi, Xk) and for i > k, L(Xi, Xk) =
SS(Xi, Xk). Both facts follow from Proposition 1 in [4].

– As SS(Xi, Xk) ⊆ In(Xi, Xk), then L(Xi, Xk) = In(Xi, Xk) for i > k and, by
symmetry (see Remark 2.16), L(Xi, Xk) = In(Xi, Xk) for i 6= k.

Let us define Z = X1 ⊕ · · · ⊕Xn. If we set every element T ∈ L(X) in matrix
form T = (Tik) with Tik ∈ L(Xk, Xi), then we get that L(Z)/SS(Z) is isomorphic
to the algebra of all lower triangular n × n matrices and that L(Z)/In(Z) is iso-
morphic to the algebra of all diagonal n× n matrices. Thus, rad(L(Z)/SS(Z)) =
In(Z)/SS(Z) 6= 0. Indeed, dim rad(L(Z)/SS(Z)) = n(n− 1)/2.

COROLLARY 2.21. Let X be a Σn
e space. Then every irrefinable decomposition of

X has n summands.

Proof. Let X = X1 ⊕ · · · ⊕ Xm be an irrefinable decomposition. Obviously,
m 6 n. Moreover, if we proceed as in the proof of Theorem 2.18, we get that
|σe(T)| 6 m, for every T ∈ L(X). Thus m = n.
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COROLLARY 2.22. Let X ∈ Σn
e and Y ∈ Σm

e . Then X ⊕Y ∈ Σn+m
e .

Proof. Let X = X1 ⊕ · · · ⊕ Xn and Y = Y1 ⊕ · · · ⊕ Ym be irrefinable decom-
positions. Then X1 ⊕ · · · ⊕ Xn ⊕ Y1 ⊕ · · · ⊕ Ym is an irrefinable decomposition of
X ⊕Y, and the result follows from Corollary 2.21.

Let X ∈ Σn
e and let X = X1⊕ · · · ⊕Xn be an irrefinable decomposition. As in

the proof of Theorem 2.18, we divide the set {1, . . . , n} into r subsets S1, . . . , Sr so
that Xi and Xj are essentially isomorphic when i and j belong to the same set, and
they are essentially incomparable when they belong to different sets. We denote
by nl the number of spaces in the class Sl . We also assume that n1 6 · · · 6 nr.

We set
τ(X1 ⊕ · · · ⊕ Xn) := (n1, . . . , nr).

THEOREM 2.23. Let X ∈ Σn
e and let Y1 ⊕ · · · ⊕Yn and Z1 ⊕ · · · ⊕ Zn be irrefin-

able decompositions of X. Then

τ(Y1 ⊕ · · · ⊕Yn) = τ(Z1 ⊕ · · · ⊕ Zn).

Moreover, each summand Yi is essentially isomorphic to some Zj, and vice versa.

Proof. Let qi be the projection of X onto Zi. Clearly, for each index i there
exists an index j so that (qi)|Yj

is not inessential. Hence, by Proposition 2.14, (qi)|Yj

is Fredholm.
After a reordering of the summands we can suppose that i = j = 1 and set

Y =: Y1 ⊕ · · · ⊕ Yk, Z =: Z1 ⊕ · · · ⊕ Zl , for Y1, . . . , Yk the summands essentially
isomorphic to Y1, and Z1, . . . , Zl the summands essentially isomorphic to Z1. By
Corollary 2.22, Y ∈ Σk

e and Z ∈ Σl
e.

Since the sum of a Fredholm operator and an inessential operator is Fred-
holm [16], the operator from Y into Z induced by both decompositions is Fred-
holm. Thus, there exist isomorphic finite codimensional subspaces Y0 ⊆ Y and
Z0 ⊆ Z. By Lemma 2.8 we have Y0 ∈ Σk

e and Z0 ∈ Σl
e, so k = l.

REMARK 2.24. The first part of Theorem 2.23 can be proved in a more al-
gebraic way by observing that the numbers ni are uniquely determined by X. In
fact, they are the dimensions of the irreducible representations of the semisimple
algebra L(X)/In(X) ' Mn1(C)× · · · × Mnr (C).

3. K-THEORY FOR Σn
e SPACES

The basic concepts, definitions and results used in this section can be found in [3],
[17] or [19]. Let K0 and K1 denote the usual K-functors in K-theory. Given a
projection P ∈ L(X), [P]0 stands for the class of P in K0(L(X)).

Let X be a Σn
e space (for instance a HDn space or a QDn space) and let

X = X1 ⊕ · · · ⊕ Xn be an irrefinable decomposition with τ(X1 ⊕ · · · ⊕ Xn) =
(n1, . . . , nr). We select summands Xi1 , . . . , Xir pairwise essentially incomparable
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and denote by Pj the natural projection on X with R(Pj) = Xij . Let P0 denote a
projection on X with one-dimensional range.

It is not difficult to see that two projections on a Banach space X define
the same class in K0(L(X)) if and only if their ranges are linearly homeomorphic
(see Proposition 2.1 of [13]). Therefore, for X as in the previous paragraph, it is
reasonable to hope that the K0 group of L(X) can be described in terms of the
classes [P0]0, . . . , [Pr]0 ∈ K0(L(X)). We will show that this is the case.

In the particular case that X is indecomposable, the algebra A = L(X)/J
for J = SC(X) or J = SS(X), is a subalgebra of the algebra Un of all the upper
triangular n× n complex matrices with constant diagonal ([10], Theorem 5.7). For
example, if A = Un, A is homotopy equivalent (as an algebra) to its diagonal, i.e.,
to C. Therefore, K0(A) = Z, K1(A) = 0. Since K0(J) = Z[P0]0 and K1(J) = 0
(see Theorem 5.2 of [14]) it follows easily from the cyclic six-term exact sequence
([17], Theorem 12.1.2) that K0(L(X)) = Z2 ' Z[P0]0 ⊕Z[IX ]0, (P0 as above).

Now we can obtain a more general result using the algebra L(X)/In(X).
Observe that a priori it does not seems straightforward to prove this result di-
rectly for the algebras L(X)/SS(X) or L(X)/SC(X).

THEOREM 3.1. With the previous notations, let J be a non-zero, closed ideal of
inessential operators on X and let B = L(X)/J. Then K1(L(X)) = K1(B) = 0 and

K0(L(X)) =
r⊕

i=0

Z[Pi]0; K0(B) =
r⊕

i=1

Z[Pi]0.

Proof. Let us consider the exact sequence 0−→J−→L(X)−→B−→0. By The-
orem 5.2 of [14], the associated cyclic six-term exact sequence looks as follows

0−→K1(L(X))−→K1(B)
δ1−→Z = K0(J) ω−→K0(L(X))−→K0(B)−→0

where ω(k) = k[P0]0 and δ1 is called index map because it fits into the commuta-
tive diagram (see Proposition 4.1 of [13])

Φ(Xm) Invm(B) K1(B)

Z K0(J)

-onto

?
ind

-

?
δ1

-∼
ω

where Invm(B) are the invertible elements of Mm(B).
By Corollary 2.22, Xm is in Σnm

e . Therefore δ1 = 0 by Proposition 2.4. It fol-
lows from the exact sequence that K0(B) and K1(B) do not depend on J. There-
fore, we can calculate them taking J = In(X). In that case we have, by Theo-
rem 2.18, that B = Mn1(C)× · · · × Mnr (C), so K1(B) = 0. We conclude the proof
by observing that [Pi]0 generates the factor K0(Mni (C)) in K0(B) for i = 1, . . . , n,
and [P0]0 generates K0(J).
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