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ABSTRACT. Generalized Gaussian estimates (GGEs) are the main tool for the
Lp-extension of L2-properties of elliptic operators without heat kernel, e.g. op-
erators of higher order and operators with complex or unbounded coefficients.
In this paper, we give several characterizations of GGEs which are important
for the applicability of such Lp-extension results. As an application of these
characterizations, we show a result on the spectral Lp-independence of oper-
ators satisfying GGEs.
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1. INTRODUCTION AND MAIN RESULTS

A central (almost) classical tool for extending properties of non-negative
selfadjoint operators −A or, more generally, of generators of semigroups
(etA)t∈R+ , from L2 to Lp are so-called Gaussian estimates (GEs). This means that
the etA have integral kernels kt(x, y) satisfying

(1.1) |kt(x, y)| 6 vrt (x)−1g
(d(x, y)

rt

)
for all x, y ∈ Ω, t ∈ R+

and some positive radii (rt)t∈R+ . Here (Ω, d, µ) is the underlying metric measure
space of homogeneous type, i.e.

(1.2) v2r(x) 6 Cvr(x) for all x ∈ Ω, r > 0,

vr(x) := µ(B(x, r)) for the ball B(x, r) around x of radius r, and g : R>0 → R+ is
some decreasing function such that h := − log(g) is convex and lim inf

t→∞
h(t)

t > 0.

We will use the Legendre transform h# : R→ [−h(0), ∞] defined by

h#(s) := sup
t>0

st− h(t), s ∈ R.
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Indeed, numerous authors showed results of the following type: A satisfies a
given operator property on Lp for all p ∈ (1, ∞), provided A satisfies the property
on L2 and GEs of type (1.1). We want to mention the properties of generating
an (analytic) semigroup [12], [21], having an H∞ functional calculus [15], [16],
maximal regularity [10], [17], and Riesz transforms [3], [9]; many other references
can be found in the papers we already mentioned. The following result can be
seen as the “heart” of Davies’ perturbation method, a well-known and important
tool for the verification of GEs. It is therefore not really new but the role of the
Legendre transform has never been pointed out before.

PROPOSITION 1.1. Let (Ω, µ, d) be a metric measure space and A a set of mea-
surable functions φ : Ω → R such that

d(x, y) = sup
φ∈A

(φ(x)− φ(y)) for all x, y ∈ Ω.

Let R be a linear operator having an integral kernel k(x, y) and let r > 0. Then the
following are equivalent:

(i) |k(x, y)| 6 e−h(d(x,y)r−1) for all x, y ∈ Ω;
(ii) ‖e−ρφRe ρφ‖1→∞ 6 eh#(ρr) for all φ ∈ A, ρ > 0.

Typical examples for the set A are A = {d(x, ·) : x ∈ Ω}, A = {φ ∈ C∞
b (Ω) :

|∇φ| 6 1} (Ω Riemannian manifold) and A = {〈x, ·〉 : |x| = 1} (Ω ⊂ RD).
Applying Proposition 1.1 for the Rt = etA and ht(s) = log(rD

t g(s)−1), where
D ∈ R+, is the standard method to verify estimates of the type

|kt(x, y)| 6 r−D
t g

(d(x, y)
rt

)
for all x, y ∈ Ω, t ∈ R+;

see e.g. [1], [8], [11]. Unfortunately, this estimate is a GE of the type (1.1) (and
thus helpful for the Lp-extension of L2-properties of A) only if Ω is of polynomial
volume growth (i.e. vr(x) 6 CrD for all x ∈ Ω, r > 0) which is a strictly stronger
condition than being of homogeneous type (1.2). Moreover, there are many im-
portant operators A whose semigroup etA does not satisfy GEs. This happens e.g.
for elliptic operators A of order m with measurable coefficients on RD if D > m
[2], [14] or if the coefficients are unbounded [20]. But in many of these cases A
still satisfies so-called Generalized Gaussian Estimates (GGEs) of the following
type [13], [22]:

(1.3) ‖χB(x,rt)e
tAχB(y,rt)‖p0→q0 6 vrt (x)1/q0−1/p0 g

(d(x, y)
rt

)

for all x, y ∈ Ω, t > 0, and for some 1 6 p0 < 2 < q0 6 ∞. Note that the
GGE (1.3) for the special case (p0, q0) = (1, ∞) is equivalent to the GE (1.1); see
Proposition 3.6 below. GGEs allow to extend L2-properties of A to Lp for all
p ∈ (p0, q0) (which is in general the optimal p-interval!). We mention again the
properties of generating an (analytic) semigroup [13], having an H∞ functional
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calculus [6], maximal regularity [5] and Riesz transforms [7], [18]. Hence, extend-
ing L2(Ω)-properties of A to Lp(Ω) via Proposition 1.1 requires (in general) too
strong restrictions on both Ω and A. This motivates the first main result of this
paper which is a generalization of Proposition 1.1 for GGEs of the “right” type
(1.3) on spaces of the “right” type (1.2).

THEOREM 1.2. Let (Ω, A, µ, d) be a space of homogeneous type and A a set of
measurable functions φ : Ω → R such that

(1.4) d(E, F) = sup
φ∈A

(
inf

F
φ− sup

E
φ
)

for all E, F ∈ S

and for some S ⊂ A containing all balls. Let 1 6 p 6 q 6 ∞ and γ > 0. Let R be a
linear operator and r > 0. Then the following are equivalent:

(i) we have for some/all α, β > 0 such that α + β = γ:

‖χB(x,r)RχB(y,r)‖p→q 6 vr(x)−αvr(y)−βe−h(d(x,y)r−1) for all x, y ∈ Ω;

(ii) we have for some/all α, β > 0 such that α + β = γ:

‖e−ρφvα
r Rvβ

r e ρφ‖p→q 6 eh#(ρr) for all φ ∈ A, ρ > 0;

(iii) we have for some/all α, β > 0 such that α + β = γ:

‖χEvα
r Rvβ

r χF‖p→q 6 e−h(d(E,F)r−1) for all E, F ∈ S .

Here the statement is written modulo identification of h (similarly for h#)
and h̃, where h̃(u) := ch(bu)− a for some constants a, b, c > 0 independent of R
and r.

REMARK 1.3. (i) Proposition 1.1 is the part (i)⇒(ii) of Theorem 1.2 for the
special case (p, q) = (1, ∞) and (α, β, γ) = (0, 0, 0). Indeed, in this case, the parts
(i) of Proposition 1.1 and Theorem 1.2 are equivalent; see Proposition 3.6 below.

(ii) The implication (ii)⇒(iii) of Theorem 1.2 for γ = 1
p − 1

q , A = {φ ∈
C∞

b (Ω) : ‖∇jφ‖∞ 6 1 for j = 1, . . . , m} and the simple case Ω = RD is implicitly
used in [13] where Davies verifies GGEs for elliptic operators A of order 2m on
RD. Note that our hypothesis (1.4) appears in p.147 of [13].

(iii) The same implication (ii)⇒(iii) for γ = 1
p − 1

q , A = {〈x, ·〉 : |x| = 1}
and Ω = RD is implicitly used (for E, F =cubes in RD) in [22] where Schreieck
and Voigt verify GGEs for Schrödinger operators with singular potentials on RD.

(iv) Theorem 1.2 (in its detailed version Proposition 2.1 below) is the central
tool for the optimal extension of GGEs for real times t as in (1.3) to GGEs for
complex times z of the type

‖χB(x,rz)e
zAχB(y,rz)‖p0→q0 6 vrz (x)1/q0−1/p0 C(z)g

(d(x, y)
rz

)
,

for all x, y ∈ Ω and z ∈ C+; see the proof of Theorem 2.1 in [4]. This extension is of
great importance for many applications of GGEs. For example, the last estimate
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implies directly by Proposition 2.1(ii)

‖ezA‖p0→p0 6 C0C(z) for all z ∈ C+.

This ‖ezA‖p0→p0-estimate is optimal for the class of operators A satisfying (1.3)
(take A = ∆RD ) and crucial for the Lp-boundedness of Riesz means of the Schrö-
dinger group (eitA)t∈R; see Theorems 1.1 and 1.3 in [4].

Another application of Theorem 1.2 is the Lp-independence of the spec-
trum of operators R satisfying one of the equivalent conditions (i),(ii),(iii) (for
γ = 1

p − 1
q ). For (p, q) 6= (1, ∞), the first result in this direction is in [22], fur-

ther contributions may be found in [13], [12], [19], [20] and the literature cited in
these works. We take the opportunity to give the following result which extends
several of those we just mentioned. Moreover, the proof shows a nice interaction
between the different parts of Theorem 1.2 (and Proposition 2.1 below).

PROPOSITION 1.4. Let (Ω, µ, d) be a space of homogeneous type and 1 6 p 6
q 6 ∞. Let R be a linear operator and r > 0 such that

(1.5) ‖χB(x,r)RχB(y,r)‖p→q 6 vr(x)1/q−1/pe−h(d(x,y)r−1) for all x, y ∈ Ω.

Then R ∈ L(Lu(Ω)) for all u ∈ [p, q], and the spectrum of R on Lu(Ω) is independent
of u ∈ [p, q].

As usual, on L∞(Ω) one considers the unique w∗-continuous extension of
R. By the spectral mapping theorem, Proposition 1.4 yields spectral Lp-indepen-
dence also for generators A of analytic semigroups (etA)r∈R+ satisfying GGEs.

COROLLARY 1.5. Let (Ω, µ, d) be a space of homogeneous type and 1 6 p 6
p0 6 q 6 ∞. Let (etA)t∈R+ be a bounded analytic semigroup on Lp0(Ω) such that

‖χB(x,rt)e
tAχB(y,rt)‖p0→q0 6 vrt (x)1/q−1/pg

(d(x, y)
rt

)
for all x, y ∈ Ω, t ∈ R+.

Then, for all u ∈ [p, q], u 6= ∞, the semigroup (etA)t∈R+ is bounded analytic on Lu(Ω),
and the spectrum of A on Lu(Ω) is independent of u ∈ [p, q], u 6= ∞.

Proof. Let u ∈ [p, q], u 6= ∞. Then (etA)t∈R+ is bounded analytic on Lu(Ω)
by interpolation; see e.g. the arguments in [13], [21]. Hence the spectral mapping
theorem σ(etA) \ {0} = etσ(A) holds on Lu(Ω). But σ(etA) on Lu(Ω) is indepen-
dent of u by Proposition 1.4.

Detailed examples of elliptic operators A whose semigroup (etA) satisfies
GGEs are given in [22], [13], [19], [20] and summarized e.g. in [6], [4] where oper-
ators of the following types are discussed: higher order operators with complex
coefficients, Schrödinger operators with singular potentials and (more generally)
second order operators with real and singular lower order coefficients.
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2. MODIFICATIONS OF THE MAIN RESULT

For arbitrary spaces of homogeneous type (i.e. without condition (1.4)), one
obtains the following version of Theorem 1.2.

PROPOSITION 2.1. Let (Ω, µ, d) be a space of homogeneous type. Let 1 6 p 6
q 6 ∞ and γ > 0. Let R be a linear operator and r > 0.

(i) The following are equivalent:
(1) We have for (u, v) = (p, q) and some α, β > 0 such that α + β = γ:

‖χB(x,r)RχB(y,r)‖u→v 6 vr(x)−αvr(y)−βg(d(x, y)r−1) for all x, y ∈ Ω.

(2) We have for (u, v) = (p, q) and some α, β > 0 such that α + β = γ:

‖χB1 vα
r Rvβ

r χB2‖u→v 6 g(d(B1, B2)r−1) for all balls B1, B2 ⊂ Ω.

(3) We have for (u, v) = (p, q) and some α, β > 0 such that α + β = γ:

‖χB(x,r)RχA(x,r,k)‖u→v 6 vr(x)−(α+β)g(k) for all x ∈ Ω, k ∈ N.

In (1), (2), and (3), one may replace “for (u, v) = (p, q) and some α, β > 0 such
that α + β = γ” equivalently by “for all p 6 u 6 v 6 q and all α, β > 0 such that
α + β− γ = 1

u + 1
q − 1

v − 1
p ”.

(ii) If (1) holds then we have for all p 6 u 6 v 6 q and all α, β > 0 such that
α + β− γ = 1

u + 1
q − 1

v − 1
p :

‖vα
r Rvβ

r ‖u→v 6 C0

∞

∑
k=0

(k + 1)λ0 g(k).

Here the constants C0, λ0 > 0 are independent of u, v, α, β and R, r, g.
(iii) If (1) holds for γ = 1

p − 1
q then, for all u ∈ [p, q], we have R ∈ L(Lu(Ω)) and

sup
x∈Ω

‖eρd(x,·)Re−ρd(x,·) − R‖u→u → 0 for ρ ↘ 0.

Here A(x, r, k) denotes the annular set B(x, (k + 1)r) \ B(x, kr). The state-
ment (i) is written modulo identification of g and g̃, where g̃(u) := ag(bu)c for
some constants a, b, c > 0 independent of R and r.

Note that d(B(x, r), A(x, r, k))r−1 ∈ [k − 1, k + 1], i.e. the conditions (2) and
(3) are of a similar type as condition (iii) in Theorem 1.2.

3. PROOFS

Recall that the function h : R>0 → R is convex, hence (h#)# = h by the
Fenchel-Moreau theorem. We extend h toR− by setting h(−t) := h(0), t > 0. This
extension is convex since h is increasing on R>0.



356 S. BLUNCK AND P.C. KUNSTMANN

We use the symbols ¹ and º to indicate domination up to constants inde-
pendent of the relevant parameters. The symbol∼ indicates the validity of¹ and
º.

Proof of Proposition 1.1. Since the operator R has integral kernel k(x, y), the
operator e−ρφRe ρφ has integral kernel (x, y) 7→ e−ρφ(x)k(x, y)eρφ(y).

(ii)⇒(i): We obtain from (ii) that

|k(x, y)|eρ(φ(y)−φ(x)) 6 eh#(ρr) for all x, y ∈ Ω, φ ∈ A, ρ > 0.

Optimizing with respect to φ ∈ A yields

|k(x, y)| 6 eh#(ρr)−ρd(x,y) for all x, y ∈ Ω, ρ > 0.

Finally, optimizing with respect to ρ > 0 yields

|k(x, y)| 6 e−(h#)#(d(x,y)r−1) = e−h(d(x,y)r−1) for all x, y ∈ Ω.

(i)⇒(ii): We have for all φ ∈ A, ρ > 0:

‖e−ρφRe ρφ‖1→∞ = sup
x,y

e−ρφ(x)|k(x, y)|eρφ(y)

6 sup
x,y

eρd(x,y)e−h(d(x,y)r−1) [by (i)]

6 sup
t>0

eρrt−h(t) = eh#(ρr).

For operators R without integral kernel, an adaptation of the above proof
(ii)⇒(i) yields the following.

REMARK 3.1. Let (Ω, A, µ, d) be a metric measure space, E, F ∈ A and A a
set of measurable functions φ : Ω → R such that

d(E, F) = sup
φ∈A

(
inf

F
φ− sup

E
φ
)

.

Let 1 6 p, q 6 ∞, let R be a linear operator and r > 0 such that

‖e−ρφRe ρφ‖p→q 6 eh(ρr) for all φ ∈ A, ρ > 0.

Then ‖χERχF‖p→q 6 e−h#(d(E,F)r−1).

Proof. By hypothesis, we have for all φ ∈ A and ρ > 0:

‖χERχF‖p→q 6 ‖e ρφ‖L∞(E)‖e−ρφRe ρφ‖p→q‖e−ρφ‖L∞(F)

6 eρ supE φeh(ρr)e−ρ infF φ.

Optimizing with respect to φ ∈ A yields for all ρ > 0:

‖χERχF‖p→q 6 eh(ρr)−ρd(E,F).

Optimizing with respect to ρ > 0 yields:

‖χERχF‖p→q 6 e−h#(d(E,F)r−1).
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LEMMA 3.2. Let (Ω, µ, d) be a space of homogeneous type. Then there exists a
constant C0 > 0 such that

C−1
0 6 |B(x, r)|

|B(y, r)| 6 C0 for all r > 0, x ∈ Ω, y ∈ B(x, r).

Proof. This is clear since |B(x, r)| 6 |B(y, 2r)| 6 C0|B(y, r)| if y ∈ B(x, r).

We will use the following notations:

Np,r f (x) := |B(x, r)|−1/p‖ f ‖Lp(B(x,r))

Np,q,r f (x) := |B(x, r)|−1/q‖ f ‖Lp(B(x,r)).

LEMMA 3.3. Let Ω be a space of homogeneous type, 1 6 p 6 q 6 ∞ and r > 0.

(i) Np,r f (x) 6 Nq,r f (x).
(ii) C−1

1 ‖ f ‖p 6 ‖Np,r f ‖p 6 C1‖ f ‖p.
(iii) Let 1 6 u 6 v 6 ∞ be such that 1

q + 1
u = 1

p + 1
v . Then ‖Np,q,r f ‖v 6 C1‖ f ‖u.

In (ii) and (iii) the constant C1 is independent of r > 0.

Proof. (i) follows directly from Hölder’s inequality.
(ii) A simple calculation using Fubini’s Theorem shows ‖ f ‖p = ‖Ñp,r f ‖p for

the

Ñp,r f (x) :=
( ∫

B(x,r)

| f (y)|p dµ(y)
|B(y, r)|

)1/p
.

But on the other hand we have C−1/p
0 Np,r f (x) 6 Ñp,r f (x) 6 C1/p

0 Np,r f (x), where
C0 is the constant in Lemma 3.2.

(iii) Note that we have for Kr(x, y) := |B(x, r)|−p/qχB(x,r)(y):

Np,q,r f (x)p =
∫

Ω

Kr(x, y)| f (y)|pdy = Kr(| f |p)(x).

On the other hand, we have ‖Kr(x, ·)‖q/p, ‖Kr(·, x)‖q/p 6 C0 for all x ∈ Ω and all
r > 0:

‖Kr(x, ·)‖q/p = |B(x, r)|−p/q
( ∫

B(x,r)

1dy
)p/q

= 1

‖Kr(·, x)‖q/p =
( ∫

B(x,r)

|B(y, r)|−1dy
)p/q

6 C0 [by Lemma 3.2].

Hence the assertion follows from a standard Young-type argument:

‖Np,q,r f ‖v = ‖Kr(| f |p)‖1/p
v/p 6 (‖Kr‖u/p→v/p‖| f |p‖u/p)

1/p

6 C1/p
0 ‖ f ‖u.
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LEMMA 3.4. Let Ω be a space of homogeneous type and p, p0, q ∈ [1, ∞]. Then
we have for all linear operators R, S and all r, s > 0:

‖RS‖p→q 6 C0

∫

Ω

‖RχB(z,r)‖p0→q‖χB(z,s)S‖p→p0 |B(z, r ∧ s)|−1dz

The constant C0 is independent of R, S and r, s.

Proof. Denoting t := r ∧ s, we can estimate in the following way:

〈r, RS f 〉 = 〈R′g, S f 〉 =
∫

Ω

(R′g)(x)
∫

Ω

χB(z,t)(x)dzvt(x)−1(S f )(x)dx

=
∫

Ω

〈R′g, χB(z,t)v
−1
t S f 〉dz [Fubini]

6 ‖g‖q′

∫

Ω

‖RχB(z,t)‖p0→q‖χB(z,t)v
−1
t S f ‖p0dz

¹ ‖g‖q′

∫

Ω

‖RχB(z,r)‖p0→q‖χB(z,t)S f ‖p0 vt(z)−1dz [t 6 r, Lemma 3.2]

6 ‖g‖q′‖ f ‖p

∫

Ω

‖RχB(z,r)‖p0→q‖χB(z,s)S‖p→p0 vt(z)−1dz [t 6 s].

Proof of Theorem 1.2. We will use condition (3) of Proposition 2.1 in the proof.
We will show the following implications:

(ii) ⇒ (iii) ⇒ (i) ⇒ (3) ⇒ (ii).

(ii)⇒(iii): This implication follows directly from Remark 3.1, applied for h#

and vα
r Rvβ

r instead of h and R. From now on we suppose that Ω is of homoge-
neous type. In particular, Ω is of some dimension D > 0, i.e.

(3.1) vλr(x) 6 CλDvr(x) for all x ∈ Ω, λ > 1, r > 0.

(iii)⇒(i): This implication can be seen as follows, using in the second step that
d(B(x, r), B(y, r)) > d(x, y)− 2r and h is increasing:

‖χB(x,r)RχB(y,r)‖p→q ∼
∥∥∥χB(x,r)

( vr

vr(x)

)α
R

( vr

vr(y)

)β
χB(y,r)

∥∥∥
p→q

[by Lemma 3.2]

6 vr(x)−αvr(y)−βe−h(d(x,y)r−1−2) [by (iii)].
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(i)⇒(3): This implication can be seen as follows:

‖χB(x,r)RχA(x,y,k)‖p→q

¹
∫

Ω

‖χB(x,r)RχB(y,r)‖p→q‖χB(y,r)χA(x,r,k)‖p→pvr(y)−1dy [by Lemma 3.4]

6
∫

B(x,(k+2)r)\B(x,(k−1)r)

vr(x)−αvr(y)−β−1e−h(d(x,y)r−1)dy [by (i)]

6 vr(x)−αe−h(k)
∫

B(x,(k+2)r)

vr(y)−β−1dy [h is incr.]

¹ vr(x)−(α+β)e−h(k)(k + 1)D(β+1) [by Lemma 3.2 and (3.1)].

(3)⇒(ii): Let α, β > 0 such that α + β = γ. Fix φ ∈ A, ρ > 0, ε > 0 and define

w(x) := e−ρφ(x). Denoting κ :=
(

1
q + γ − α

)
, q0 :=

(
1
q + γ − α − β

)−1
, bk :=

e−εh(k−2) − eεh(k−1) > 0, h1(s) := (1 − ε)h(s) we will show at first the following
claim:

Nq,r(wvα
r Rvβ

r w−1 f ) ¹ e2ρr+h#
1(ρr)

( ∞

∑
k=1

bkkκ(Np,q0,kr f )p
)1/p

.

Indeed, this is obtained as follows by making double use of w(x)
w(y) 6 eρd(x,y):

Nq,r(wvα
r Rvβ

r w−1 f )(x)

= vr(x)−1/q
∥∥∥χB(x,r)

w
w(x)

vα
r Rvβ

r
w(x)

w
f
∥∥∥

q

6 vr(x)α−1/qeρr
∞

∑
k=0

∥∥∥χB(x,r)v
α
r Rvβ

r χA(x,r,k)
w(x)

w
f
∥∥∥

q

6 vr(x)α−1/q−γeρr
∞

∑
k=0

e−h(k)
∥∥∥χA(x,r,k)v

β
r

w(x)
w

f
∥∥∥

p
[by (3)]

6 vr(x)α−1/q−γeρr
∞

∑
k=0

e−h(k)+(k+1)ρr‖χA(x,r,k)v
β
r f ‖p

6 vr(x)α−1/q−γe2ρr
(

sup
k>0

ekρr−h1(k)
) ∞

∑
k=0

e−εh(k)‖χA(x,r,k)v
β
r f ‖p

¹ vr(x)α−1/q−γe2ρr+h#
1(ρr)

( ∞

∑
k=1

bk‖χB(x,kr)v
β
r f ‖p

p

)1/p
[summ. by parts]

¹ e2ρr+h#
1(ρr)

( ∞

∑
k=1

bkkκ |B(x, kr)|−p/q0‖χB(x,kr) f ‖p
p

)1/p
[by (3.1)].



360 S. BLUNCK AND P.C. KUNSTMANN

Now the proof of (ii) can be finished as follows:

e−2ρr−h#
1(ρr)‖wvα

r Rvβ
r w−1 f ‖q

∼ e−2ρr−h#
1(ρr)‖Nq,r(wvα

r Rvβ
r w−1 f)‖q [by Lemma 3.3(ii)]

¹
∥∥∥
( ∞

∑
k=1

bkkκ(Np,q0,kr f)p
)1/p∥∥∥

q
[by claim]

6
( ∞

∑
k=1

bkkκ‖Np,q0,kr f ‖p
q

)1/p

¹
( ∞

∑
k=1

bkkκ‖ f ‖p
p

)1/p
[by Lemma 3.3(iii)]

¹ ‖ f ‖p.

Proof of Proposition 2.1. (ii) Let p 6 u 6 v 6 q and α, β > 0 such that α +

β− γ = 1
u + 1

q − 1
v − 1

p . Denoting κ := Dp
(

1
q + γ− α

)
, λ0 := max(κ − 1, 0), K :=

∞
∑

k=0
(k + 1)λ0 g(k), q0 :=

(
1
q + γ− α− β

)−1
, bk := g(k− 1)− g(k) > 0, one obtains

as in the first part of the implication (3)⇒(ii) in the proof of Theorem 1.2 (for
ρ = 0, i.e. w ≡ 1):

Nq,r(vα
r Rvβ

r f) ¹ K1/p′
( ∞

∑
k=1

bkkκ(Np,q0,kr f )p
)1/p

.

Now arguing similarly to the second part of the implication (3)⇒(ii) in the proof
of Theorem 1.2 yields

‖vα
r Rvβ

r f‖v ¹ ‖Nq,r(vα
r Rvβ

r f )‖v ¹ K1/p′
( ∞

∑
k=1

bkkκ
)1/p

‖ f ‖u ¹ K‖ f ‖u.

(i) We denote by (1’), (2’), (3’) the “for-all-versions” of the conditions (1), (2), (3).
Note that the implications (1’)⇒(1), (2’)⇒(2) and (3’)⇒(3) are clear. The implica-
tions (2’)⇒(1’) and (2)⇒(1) are obvious since d(B(x, r), B(y, r)) > d(x, y)− 2r and
g is decreasing.

(3)⇒(2’): By (ii), applied for g
(

d(B1,B2)
r − 2

)−1/2
χB1 RχB2 and g1/2 instead of

R and g, it suffices to show

‖χB(x,r)χB1 RχB2 χA(x,r,k)‖p→q 6 vr(x)−γg
(d(B1, B2)

r
− 2

)1/2
g(k)1/2.

Since g is decreasing, the latter is direct from (i) once we show

B(x, r) ∩ B1, B2 ∩ A(x, r, k) 6= ∅ =⇒ k > d(B1, B2)
r

− 2.

Hence suppose a ∈ B(x, r) ∩ B1 and b ∈ B2 ∩ A(x, r, k). Then

d(B1, B2) 6 d(a, b) 6 d(a, x) + d(x, b) 6 (k + 2)r.
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(1’)⇒(3’) and (1)⇒(3): Since vr(x) 6 v(l+2)r(z) 6 C(l + 2)Dvr(z) whenever z ∈
A(x, r, l), we can estimate as follows:

‖χB(x,r)RχA(x,r,k)‖

¹
∫

Ω

‖χB(x,r)RχB(z,r)‖u→v‖χB(z,r)χA(x,r,k)‖u→uvr(z)−1dz [by Lemma 3.4]

6
∫

B(x,(k−1)+r)c

vr(x)−αvr(z)−β−1g(d(x, z)r−1)dz [(1’) resp. (1)]

¹ vr(x)−α
∞

∑
l=[k−1]+

∫

A(x,r,l)

[(l + 2)−Dvr(x)]−β−1g(l − 2)dz

¹ vr(x)−(α+β)
∞

∑
l=[k−1]+

(l + 2)D(β+2)g(l − 2) = vr(x)−(α+β) g̃(k).

(iii) First observe that R ∈ L(Lu(Ω)) for all u ∈ [p, q] by (ii). Let ρ > 0, x, y ∈ Ω

and denote eρ,x := eρd(x,·). Then

Nq,r(eρ,yRe−ρ,y − R) f (x)

6 Nq,r(eρ,ye−ρ,y(x)R(eρ,y(x)e−ρ,y − 1) f )(x) + Nq,r((eρ,ye−ρ,y(x)− 1)R f )(x).

We estimate the first term on the right hand side where we use

eρ,ye−ρ,y(x) 6 eρ,x and |eρ,y(x)e−ρ,y − 1| 6 eρ,x − 1

which follow from the triangle inequality. Our assumption yields

Nq,r(eρ,ye−ρ,y(x)R(eρ,y(x)e−ρ,y − 1) f )(x)

6 eρrvr(x)−1/p
∞

∑
k=0

g(k)‖χA(x,r,k)(eρ(x)e−ρ,y − 1) f ‖p

6 eρrvr(x)−1/p
∞

∑
k=0

g(k)(eρ(k+1)r − 1)‖χB(x,(k+1)r) f ‖p

¹
∞

∑
k=0

ak(ρ)Np,(k+1)r f (x) [dim. D],

where ak(ρ) := eρrg(k)(k + 1)D/p(eρ(k+1) − 1). The second term on the right hand
side is easier to estimate. We use |eρ,ye−ρ,y(x)− 1| 6 eρ,x − 1 again and obtain

Nq,r((eρ,ye−ρ,y(x)− 1)R f )(x) 6 (eρr − 1)NqR f (x)

6 (eρr − 1)vr(x)−1/p
∞

∑
k=0

g(k)‖χA(x,r,k) f ‖p

¹
∞

∑
k=0

bk(ρ)Np,(k+1)r f (x) [dim. D],
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where bk(ρ) := (eρr − 1)g(k)(k + 1)D/p. Putting everything together, we deduce
for all u ∈ [p, q]:

‖(eρ,yRe−ρ,y − R) f ‖u ∼ ‖Nu,r(eρ,yRe−ρ,y − R) f ‖u [Lemma 3.3(ii)]

6 ‖Nq,r(eρ,yRe−ρ,y − R) f ‖u [Lemma 3.3(i)]

¹
∞

∑
k=0

(ak(ρ) + bk(ρ))‖Np,(k+1)r f ‖u

6
∞

∑
k=0

(ak(ρ) + bk(ρ))‖Nu,(k+1)r f ‖u [Lemma 3.3(i)]

∼
∞

∑
k=0

(ak(ρ) + bk(ρ))‖ f ‖u. [Lemma 3.3(ii)].

Finally, note that ∑
k
(ak(ρ) + bk(ρ)) → 0 for ρ ↘ 0 by dominated convergence and

the growth condition on g.

We quote a lemma ([19], Lemma 9) which, for linear operators, reduces the
proof of bounded invertibility to a problem of boundedness. Let E, F, G be Haus-
dorff spaces with E, F ↪→ G such that E ∩ F is dense in both E and F, and let
D ⊂ E∩ F be dense for the initial topology induced by the embeddings E∩ F ↪→ E
and E ∩ F ↪→ F.

LEMMA 3.5. Let SE : E → E and SF : F → F be continuous mappings that
coincide on D. Assume that SE is continuously invertible and that the restriction of
(SE)−1 to D extends to a continuous mapping T : F → F. Then SF is continuously
invertible, and (SF)−1 = T.

Proof. Since D is dense in E ∩ F and E, F ↪→ G, we have SE = SF on E ∩ F
and (SE)−1 and T coincide on E ∩ F. Hence TSF = SFR = Id on E ∩ F. The
density of E ∩ F in F yields the claim.

Proof of Proposition 1.4. By hypothesis (1.5) and Theorem 2.1(ii), we have R ∈
L(Lu(Ω)) for all u ∈ [p, q]. We fix s, u ∈ [p, q], assume that λ ∈ ρLs (R) and
have to show that λ ∈ ρLu (R). By Lemma 3.5 this amounts to showing that
(λ − R)−1|L∞,c(Ω) ∈ L(Lu(Ω)). We consider only the case s 6 u, the other case
s > u can be seen by simple modifications of our arguments. If λ 6= 0 then

(λ− R)−1 = λ−1 I + λ−1R(λ− R)−1

by the resolvent equation, hence it remains to prove S := R(λ−R)−1 ∈ L(Lu(Ω)).
Since u ∈ [s, q], it suffices to show for some ε > 0:

(3.2) ‖e−ρd(x,·)v1/s−1/q
r Seρd(x,·)‖s→q 6 C for all x ∈ Ω, ρ ∈ [0, ε].

Indeed, the latter means ‖e−ρφv1/s−1/q
r Seρφ‖s→q 6 eh#

1(ρr) for all φ ∈ A, ρ > 0
and for A := {d(x, ·) : x ∈ Ω}, h1(t) := εrt − C (i.e. h#

1(ρr) = ∞ · χ(ε,∞)(ρ) + C),
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which implies S ∈ L(Lu(Ω)) by Theorem 1.2(ii)⇒(i) (for S = set of balls in Ω)
and Proposition 2.1(ii). We factor the LHS in (3.2):

‖e−ρd(x,·)v1/s−1/q
r Seρd(x,·)‖s→q

≤ ‖e−ρd(x,·)v1/s−1/q
r Reρd(x,·)‖s→q‖e−ρd(x,·)(λ− R)−1eρd(x,·)‖s→s

= ‖e−ρd(x,·)v1/s−1/q
r Reρd(x,·)‖s→q‖(λ− eρd(x,·)Re−ρd(x,·))−1‖s→s .(3.3)

The first term in (3.3) can be estimated uniformly in x ∈ Ω as follows:

‖e−ρd(x,·)v1/s−1/q
r Reρd(x,·)‖s→q

6 eh#(ρr) for all ρ > 0 [by hyp. (1.5), Prop. 2.1, Thm. 1.2]

6 C for all ρ ∈ [0, ε] [by growth cond. on h].

The second term in (3.3) is uniformly bounded in x ∈ Ω and ρ > 0 small enough
since (λ− R)−1 ∈ L(Ls(Ω)), inversion is continuous on the open set of bounded
invertible operators on Ls(Ω) and

sup
x∈Ω

‖eρd(x,·)Re−ρd(x,·) − R‖s→s → 0 forρ ↘ 0

by hypothesis (1.5) and Proposition 2.1(iii). If λ = 0 we simply write R−1 =
R((−R)−1)2 and argue as before.

Finally, we prove the equivalence of GGEs for the special case (p0, q0) =
(1, ∞) and GEs. It has already been shown in Proposition 2.9 of [5]; we give the
proof for the sake of completeness.

PROPOSITION 3.6. Let (Ω, d, µ) be a space of homogeneous type, R ∈ L(L1(Ω),
and L∞(Ω)) have the integral kernel k ∈ L∞(Ω2). Furthermore, let g : R>0 → R>0 be
a decreasing function and r > 0. Then the following are equivalent:

(i) for all x, y ∈ Ω we have

‖χB(x,r)RχB(y,r)‖1→∞ 6 vr(x)−1g
(d(x, y)

r

)
;

(ii) for all x, y ∈ Ω we have

|k(x, y)| 6 vr(x)−1g
(d(x, y)

r

)
.

Here the statement is written modulo identification of g and g̃, where g̃(s) =
Cg((s− 2)+) and C is the doubling constant from (1.2).

Proof. (ii)⇒(i) We fix x, y ∈ Ω and observe that the operator χB(x,r)RχB(y,r)
has the integral kernel

(u, v) 7→ χB(x,r)(u)k(u, v)χB(y,r)(v).
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Hence we can estimate as follows:

‖χB(x,r)RχB(y,r)‖1→∞ = sup
u,v∈Ω

χB(x,r)(u)|k(u, v)|χB(y,r)(v)

6 sup
u∈B(x,r)

sup
v∈B(y,r)

vr(u)−1g
(d(u, v)

r

)
[by (ii)]

6 vr(x)−1 g̃
(d(x, y)

r

)
[d(x, y) 6 d(u, v) + 2].

(i)⇒(ii) A reformulation of (i) is the following:

sup
u,v∈Ω

χB(x,r)(u)|k(u, v)|χB(y,r)(v) 6 vr(x)−1g
(d(x, y)

r

)

for all x, y ∈ Ω. Applying this for u = x and v = y yields

|k(x, y)| 6 vr(x)−1g
(d(x, y)

r

)
.
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