PRODUCT SYSTEMS OF GRAPHS AND THE TOEPLITZ ALGEBRAS OF HIGHER-RANK GRAPHS

IAIN RAEBURN and AIDAN SIMS

Communicated by William B. Arveson

ABSTRACT. There has recently been much interest in the *C**-algebras of directed graphs. Here we consider product systems *E* of directed graphs over semigroups and associated *C**-algebras *C**(*E*) and $\mathcal{T}C^*(E)$ which generalise the higher-rank graph algebras of Kumjian-Pask and their Toeplitz analogues. We study these algebras by constructing from *E* a product system *X*(*E*) of Hilbert bimodules, and applying recent results of Fowler about the Toeplitz algebras of such systems. Fowler's hypotheses turn out to be very interesting graph-theoretically, and indicate new relations which will have to be added to the usual Cuntz-Krieger relations to obtain a satisfactory theory of Cuntz-Krieger algebras for product systems of graphs; our algebras *C**(*E*) and $\mathcal{T}C^*(E)$ are universal for families of partial isometries satisfying these relations.

Our main result is a uniqueness theorem for $\mathcal{T}C^*(E)$ which has particularly interesting implications for the C^* -algebras of non-row-finite higher-rank graphs. This theorem is apparently beyond the reach of Fowler's theory, and our proof requires a detailed analysis of the expectation onto the diagonal in $\mathcal{T}C^*(E)$.

KEYWORDS: *C**-algebra of directed graphs, Hilbert bimodules, Toeplitz algebras, product systems of graphs.

MSC (2000): 46L05, 05C20.

1. INTRODUCTION

The *C**-algebras *C**(*E*) of infinite directed graphs *E* are generalisations of the Cuntz-Krieger algebras which include many interesting *C**-algebras and provide a rich supply of models for simple purely infinite algebras (see, for example, [15], [5], [11], [22]). In the first papers, it was assumed for technical reasons that the graphs were locally finite. However, after *C**(*E*) had been realised as the Cuntz-Pimsner algebra $\mathcal{O}_{X(E)}$ of a Hilbert bimodule X(E) in [9], it was noticed that $\mathcal{O}_{X(E)}$ made sense for arbitrary infinite graphs. The analysis in [9] applied to the Toeplitz algebra $\mathcal{T}_{X(E)}$ rather than $\mathcal{O}_{X(E)}$, but the two coincide for some infinite graphs *E*,

and hence the results of [9] gave information about $\mathcal{O}_{X(E)}$ for these graphs. The results of [9] therefore suggested an appropriate definition of $C^*(E)$ for arbitrary *E*, which was implemented in [8].

Higher-rank analogues of Cuntz-Krieger algebras and of the *C**-algebras of row-finite graphs have been studied by Robertson-Steger [21] and Kumjian-Pask [13], respectively. In [10], a general categorical notion of a product system was developed to encompass the product systems of Hilbert spaces and Hilbert bimodules developed and studied in, for example, [1] and [4]. It was also shown in [10] that the graphs of rank *k* defined by Kumjian and Pask could be viewed as product systems of graphs over the semigroup \mathbb{N}^k . The main object of this paper is to extend the construction $E \mapsto X(E)$ to product systems of graphs over \mathbb{N}^k and other semigroups, to apply the results of [7] to the resulting product systems of Hilbert bimodules, and to see what insight might be gained into the *C**-algebras of arbitrary higher-rank graphs.

It is relatively easy to extend the construction of X(E) to product systems, and to identify *Toeplitz E-families* which correspond to the Toeplitz representations of X(E) studied in [7]. The story becomes interesting when we investigate the conditions on *E* and on Toeplitz *E*-families which ensure that we can apply Theorem 7.2 of [7] to the corresponding representation of X(E). To understand the issues, we digress briefly.

The isometric representation theory of semigroups suggests that in general $\mathcal{T}_{X(E)}$ will be too big to behave like a Cuntz-Krieger algebra, and that we should restrict attention to the Nica covariant representations of [17], [16], [6] and [7]. However, Nica covariance is in general a spatial phenomenon, and to talk about the universal C^* -algebra $\mathcal{T}_{cov}(X)$ generated by a Nica covariant Toeplitz representation of a product system X of bimodules, we need to assume that X is compactly aligned in the sense of [6] and [7].

We identify the *finitely aligned* product systems *E* of graphs for which X(E) is compactly aligned, and the *Toeplitz-Cuntz-Krieger E-families* $\{S_{\lambda}\}$ which correspond to Nica covariant Toeplitz representations of X(E). The *C**-algebra generated by $\{S_{\lambda}\}$ is then spanned by the products $S_{\lambda}S_{\mu}^*$, as Cuntz-Krieger algebras and their Toeplitz analogues are. We therefore define the Toeplitz algebra $\mathcal{T}C^*(E)$ of a finitely aligned product system *E* to be the universal *C**-algebra generated by a Toeplitz-Cuntz-Krieger *E*-family; for technical reasons, we only define the Cuntz-Krieger algebra $\mathcal{C}^*(E)$ to be the appropriate quotient of $\mathcal{T}C^*(E)$ when *E* has no sinks.

Fowler's Theorem 7.2 in [7] gives a spatial condition under which a Nica covariant Toeplitz representation of a compactly aligned product system X of Hilbert bimodules is faithful on $\mathcal{T}_{cov}(X)$. Since $\mathcal{T}C^*(E)$ has essentially the same representation theory as $\mathcal{T}_{cov}(X(E))$, Fowler's theorem describes some faithful representations of $\mathcal{T}C^*(E)$. However, the resulting theorem about Toeplitz-Cuntz-Krieger *E*-families is not as sharp as we would like, for the same reasons that Theorem 2.1 of [9] is not: applied to the single graph *E* with $\mathcal{T}C^*(E) = \mathcal{O}_{\infty}$, it says

that isometries $\{S_i\}$ satisfying $1 > \sum_{i=1}^{\infty} S_i S_i^*$ generate an isomorphic copy of \mathcal{O}_{∞} , whereas we know from [2] that $1 \ge \sum_{i=1}^{\infty} S_i S_i^*$ suffices. Our main theorem is sharp in this sense: it is an analogue of Theorem 3.1 in [9] rather than Theorem 2.1 in [9]. It suggests an appropriate set of Cuntz-Krieger relations for product systems of not-necessarily-row-finite graphs, and gives a uniqueness theorem of Cuntz-Krieger type for *k*-graphs in which each vertex receives infinitely many edges of each degree.

We start with a short review of the basic facts about graphs and the Cuntz-Krieger bimodule X(E) of a single graph E. In Section 3, we associate to each product system E of graphs a product system X(E) of Cuntz-Krieger bimodules (Proposition 3.2). In Section 4, we define Toeplitz E-families, and show that there is a one-to-one correspondence between such families and Toeplitz representations of X(E) (Theorem 4.2). We then restrict attention to product systems over the quasi-lattice ordered semigroups of Nica, and identify the finitely aligned product systems E of graphs for which X(E) is compactly aligned (Theorem 5.4). In Section 6, we discuss Nica covariance, and show that for finitely aligned systems, it becomes a familiar relation which is automatically satisfied by Cuntz-Krieger families of a single graph. By adding this relation to those of a Toeplitz family, we obtain an appropriate definition of Toeplitz-Cuntz-Krieger E-families for more general E, and then $\mathcal{TC}^*(E)$ is the universal C^* -algebra generated by such a family. We can now apply Fowler's theorem to X(E) (Proposition 7.6), and deduce that the Fock representation of $\mathcal{TC}^*(E)$ is faithful (Corollary 7.7).

Our main Theorem 8.1 is a C^* -algebraic uniqueness theorem. It does not appear to follow from Fowler's results: its proof requires a detailed analysis of the expectation onto the diagonal in $\mathcal{T}C^*(E)$ and its spatial implementation, as well as an application of Corollary 7.7. In the last section, we apply Theorem 8.1 to the *k*-graphs of [13]. Our results are all interesting in this case, and those interested primarily in *k*-graphs could assume $P = \mathbb{N}^k$ throughout the paper without losing the main points.

2. PRELIMINARIES

2.1. GRAPHS AND CUNTZ-KRIEGER FAMILIES. A *directed graph* $E = (E^0, E^1, r, s)$ consists of a countable vertex set E^0 , a countable edge set E^1 , and range and source maps $r, s : E^1 \to E^0$. All graphs in this paper are directed.

A *Toeplitz-Cuntz-Krieger E-family* in a C^* -algebra *B* consists of mutually orthogonal projections $\{p_v : v \in E^0\}$ in *B* and partial isometries $\{s_\lambda : \lambda \in E^1\}$ in *B* satisfying $s_\lambda^* s_\lambda = p_{r(\lambda)}$ for $\lambda \in E^1$ and

$$p_v \geqslant \sum_{\lambda \in F} s_\lambda s_\lambda^*$$
 for every $v \in E^0$ and every finite set $F \subset s^{-1}(v)$.

It is a Cuntz-Krieger E-family if

$$p_v = \sum_{\lambda \in s^{-1}(v)} s_\lambda s^*_\lambda$$
 whenever $s^{-1}(v)$ is finite and nonempty.

2.2. HILBERT BIMODULES. Let *A* be a *C**-algebra. A *right-Hilbert A* – *A bimodule* (or *Hilbert bimodule over A*) is a right Hilbert *A*-module *X* together with a left action $(a, x) \mapsto a \cdot x$ of *A* by adjointable operators on *X*; we denote by ϕ the homomorphism of *A* into $\mathcal{L}(X)$ given by the left action. We say *X* is *essential* if

$$\overline{\operatorname{span}}\{a \cdot x : a \in A, x \in X\} = X.$$

A *Toeplitz representation* (ψ, π) of a Hilbert bimodule X in a C*-algebra B consists of a linear map $\psi : X \to B$ and a homomorphism $\pi : A \to B$ such that

$$\psi(x \cdot a) = \psi(x)\pi(a), \quad \psi(a \cdot x) = \pi(a)\psi(x), \quad \text{and} \quad \psi(x)^*\psi(y) = \pi(\langle x, y \rangle_A)$$

for $x, y \in X$ and $a \in A$. There is then a unique homomorphism $\psi^{(1)} : \mathcal{K}(X) \to B$ such that

$$\psi^{(1)}(\Theta_{x,y}) = \psi(x)\psi(y)^* \text{ for } x, y \in X;$$

see page 202 of [18], Lemma 2.2 of [12], or Remark 1.7 of [9] for details. The representation (ψ , π) is *Cuntz-Pimsner covariant* if

$$\psi^{(1)}(\phi(a)) = \pi(a)$$
 whenever $\phi(a) \in \mathcal{K}(X)$.

Pimsner associated to each Hilbert bimodule X a C^* -algebra \mathcal{T}_X which is universal for Toeplitz representations of X, and a quotient \mathcal{O}_X which is universal for Cuntz-Pimsner covariant Toeplitz representations of X ([18]; see also Section 1 of [9]).

2.3. CUNTZ-KRIEGER BIMODULES. The Cuntz-Krieger bimodule X(E) of a graph E, as in Example 1.2 of [9], consists of the functions $x : E^1 \to \mathbb{C}$ such that

(2.1)
$$\rho_x: v \mapsto \sum_{\lambda \in E^1, r(\lambda) = v} |x(\lambda)|^2$$

vanishes at infinity on E^0 . With

$$\begin{aligned} &(x \cdot a)(\lambda) := x(\lambda)a(r(\lambda)) \quad \text{and} \quad (a \cdot x)(\lambda) := a(s(\lambda))x(\lambda) \quad \text{for } \lambda \in E^1, \\ &\langle x, y \rangle_{C_0(E^0)}(v) := \sum_{\lambda \in E^1, r(\lambda) = v} \overline{x(\lambda)}y(\lambda) \qquad \qquad \text{for } v \in E^0, \end{aligned}$$

X(E) is a Hilbert bimodule over $C_0(E^0)$. The Toeplitz representations of X(E) are in one-to-one correspondence with the Toeplitz-Cuntz-Krieger *E*-families via $(\psi, \pi) \leftrightarrow \{\psi(\delta_\lambda), \pi(\delta_v)\}$ ([9], Example 1.2). Hence $\mathcal{T}_{X(E)}$ is universal for Toeplitz-Cuntz-Krieger *E*-families. When *E* has no sinks, the left action of $C_0(E^0)$ on X(E) is faithful, the Cuntz-Pimsner covariant representations correspond to Cuntz-Krieger *E*-families, and the quotient $\mathcal{O}_{X(E)}$ is the usual graph C^* -algebra $C^*(E)$.

Because of the correspondence $(\psi, \pi) \leftrightarrow {\psi(\delta_{\lambda}), \pi(\delta_{v})}$, it is convenient in calculations to work with the point masses $\delta_{\lambda} \in X(E)$. The following lemma explains why this suffices.

LEMMA 2.1. The space $X_c(E) := C_c(E^1)$ is a dense submodule of X(E), and the point masses $\{\delta_{\lambda} : \lambda \in E^1\}$ are a vector-space basis for $X_c(E^1)$.

Proof. As a Banach space, X(E) is the c_0 -direct sum $\bigoplus_{v \in E^0} \ell^2(r^{-1}(v))$, and $X_c(E)$ is the algebraic direct sum of the subspaces $C_c(r^{-1}(v))$. So it is standard that $X_c(E)$ is dense. For $x \in X_c(E)$, we have $x = \sum_{\lambda \in E^1} x(\lambda)\delta_{\lambda}$.

3. PRODUCT SYSTEMS OF GRAPHS AND OF HILBERT BIMODULES

Throughout the next two sections, *P* denotes an arbitrary countable semigroup with identity *e*. If $E = (E^0, E^1, r_E, s_E)$ and $F = (E^0, F^1, r_F, s_F)$ are two graphs with the same vertex set E^0 , then $E \times_{E^0} F$ denotes the graph with $(E \times_{E^0} F)^0 := E^0$,

$$(E \times_{E^0} F)^1 := \{ (\lambda, \mu) : \lambda \in E^1, \mu \in F^1, r_E(\lambda) = s_F(\mu) \},\$$

and $s(\lambda, \mu) := s_E(\lambda), r(\lambda, \mu) := r_F(\mu).$

We recall from [10] that a *product system* (E, φ) *of graphs over* P consists of graphs $\{(E^0, E_p^1, r_p, s_p) : p \in P\}$ with common vertex set E^0 and disjoint edge sets E_p^1 , and isomorphisms $\varphi_{p,q} : E_p \times_{E^0} E_q \to E_{pq}$ for $p,q \in P$ satisfying the associativity condition

(3.1)
$$\varphi_{pq,r}(\varphi_{p,q}(\lambda,\mu),\nu) = \varphi_{p,qr}(\lambda,\varphi_{q,r}(\mu,\nu))$$

for all $p, q, r \in P$, $(\lambda, \mu) \in (E_p \times_{E^0} E_q)^1$, and $(\mu, \nu) \in (E_q \times_{E^0} E_r)^1$; we require that

$$E_e = (E^0, E^0, \mathrm{id}_{E^0}, \mathrm{id}_{E^0}).$$

We write $d(\lambda) = p$ to mean $\lambda \in E_p^1$; because the E_p^1 are disjoint, this gives a welldefined *degree map* $d : E^1 := \bigcup_{p \in P} E_p^1 \to P$, which gives the vertices $E^0 = E_e^1$ degree

e. The range and source maps combine to give maps $r, s : E^1 \to E^0$.

The isomorphisms $\varphi_{p,q}$ in a product system (E, φ) combine to give a partial multiplication on E^1 : for $(\lambda, \mu) \in E_p^1 \times_{E^0} E_q^1$, we define $\lambda \mu = \varphi_{p,q}(\lambda, \mu) \in E_{pq}^1$. This multiplication is associative by (3.1). Since each $\varphi_{p,q}$ is an isomorphism, the multiplication has the following *factorisation property*: for each $\gamma \in E_{pq}^1$, there is a unique $(\lambda, \mu) \in (E_p \times_{E^0} E_q)^1$ such that $\gamma = \lambda \mu$. It follows that if $\lambda \in E_{pqr}^1$, then there is a unique $\lambda(p, pq) \in E_q^1$ such that $\lambda = \lambda' \lambda(p, pq) \lambda''$ with $d(\lambda') = p$ and $d(\lambda'') = r$. By (3.1) and the factorisation property, $s(\lambda)\lambda = \lambda = \lambda r(\lambda)$ for all λ .

A single graph *E* gives a product system over \mathbb{N} in which E_n^1 consists of the paths of length *n* in *E*. More generally:

EXAMPLE 3.1. (*k*-graphs) It is shown in Examples 1.5, (4) of [10] that the product systems of graphs over \mathbb{N}^k are essentially the same as the *k*-graphs of Definitions 1.1 in [13]:

(i) Given a product system (E, φ) of graphs over \mathbb{N}^k , let Λ_E be the category with objects E^0 and morphisms E^1 , with dom $(\lambda) := r(\lambda)$ and cod $(\lambda) := s(\lambda)$. The degree map is that of E, the morphism $\lambda \circ \mu$ is by definition the morphism associated to the edge $\lambda \mu$, and the factorisation property for Λ_E reduces to that of E.

(ii) Given a *k*-graph (Λ, d) , let $(E_{\Lambda})^0 := \Lambda^0$, $(E_{\Lambda})^1_n := \Lambda^n$ for $n \in \mathbb{N}^k$, $\lambda \mu := \lambda \circ \mu \in \Lambda^{m+n}$ whenever $(\lambda, \mu) \in (E_m \times_{E^0} E_n)^1$, and define r := dom and s := cod. The direction of the edges is reversed in going from (Λ, d) to $(E_{\Lambda}, \varphi_{\Lambda})$ to ensure that the representations of the two coincide (compare Definition 4.1 with Definitions 1.5 of [13]).

PROPOSITION 3.2. If (E, φ) is a product system of graphs over P, then there is a unique associative multiplication on $X(E) := \bigcup_{p \in P} X(E_p)$ such that

(3.2)
$$\delta_{\lambda}\delta_{\mu} := \begin{cases} \delta_{\lambda\mu} & \text{if } (\lambda,\mu) \in (E_{d(\lambda)} \times_{E^0} E_{d(\mu)})^1, \\ 0 & \text{otherwise,} \end{cases}$$

and X(E) thus becomes a product system of Hilbert bimodules over $C_0(E^0)$ as in Definition 2.1 of [7].

REMARK 3.3. We have described the multiplication using point masses because we want to use them in calculations. However, we also write it out explicitly in Corollary 3.4.

Proof of Proposition 3.2. It follows from Lemma 2.1 that the elements $\delta_{\lambda} \otimes \delta_{\mu}$ are a basis for the algebraic tensor product $X_{c}(E_{p}) \odot X_{c}(E_{q})$, and hence there is a well-defined linear map $\pi : X_{c}(E_{p}) \odot X_{c}(E_{q}) \rightarrow X_{c}(E_{pq})$ such that

$$\pi(\delta_{\lambda} \otimes \delta_{\mu}) = \begin{cases} \delta_{\lambda\mu} & \text{if } (\lambda, \mu) \in (E_{d(\lambda)} \times_{E^0} E_{d(\mu)})^1, \\ 0 & \text{otherwise.} \end{cases}$$

Let $\lambda, \mu, \eta, \xi \in E^1$. Then

$$\langle \delta_{\lambda} \otimes \delta_{\mu}, \delta_{\eta} \otimes \delta_{\xi} \rangle_{C_{0}(E^{0})}(v) = \langle \langle \delta_{\eta}, \delta_{\lambda} \rangle_{C_{0}(E^{0})} \cdot \delta_{\mu}, \delta_{\xi} \rangle_{C_{0}(E^{0})}(v)$$

$$= \begin{cases} 1 & \text{if } \eta = \lambda, \, \xi = \mu, \, r(\lambda) = s(\mu) \text{ and } r(\mu) = v, \\ 0 & \text{otherwise.} \end{cases}$$

On the other hand,

$$\langle \pi(\delta_{\lambda} \otimes \delta_{\mu}), \pi(\delta_{\eta} \otimes \delta_{\xi}) \rangle_{C_{0}(E^{0})}(v)$$

$$= \begin{cases} \langle \delta_{\lambda\mu}, \delta_{\eta\xi} \rangle_{C_{0}(E^{0})}(v) & \text{if } r(\lambda) = s(\mu) \text{ and } r(\eta) = s(\xi), \\ 0 & \text{otherwise,} \end{cases}$$

$$= \begin{cases} 1 & \text{if } r(\lambda) = s(\mu), r(\eta) = s(\xi), \lambda\mu = \eta\xi \text{ and } r(\mu) = v, \\ 0 & \text{otherwise,} \end{cases}$$

which by the factorisation property is (3.3). Since $X_c(E_p)$ is dense in $X(E_p)$ (see Lemma 2.1), it follows that π extends to an isometric linear isomorphism of $X(E_p) \otimes_{C_0(E^0)} X(E_q)$ onto $X(E_{pq})$. It is easy to check on dense subspaces $X_c(E_p)$ and span $\{\delta_v\} \subset C_0(E^0)$ that π is an isomorphism of Hilbert $C_0(E^0)$ -bimodules. We now define $xy := \pi(x \otimes y)$, and associativity of this multiplication follows from (3.1). More calculations on dense subspaces show that $xa = x \cdot a$ and $ax = a \cdot x$ for $a \in C_0(E^0) = X(E_e)$ and $x \in X(E_p)$.

COROLLARY 3.4. For $x \in X(E_p)$ and $y \in X(E_q)$, we have

(3.4)
$$(xy)(\lambda\mu) = x(\lambda)y(\mu) \quad \text{for } (\lambda,\mu) \in (E_p \times_{E^0} E_q)^1.$$

Proof. The multiplication extends to an isomorphism of $X(E_p) \otimes_{C_0(E^0)} X(E_q)$ onto $X(E_{pq})$, $(x, y) \mapsto x \otimes y$ is continuous, and the various evaluation maps $z \mapsto z(\lambda)$ are continuous, so Lemma 2.1 implies that it is enough to prove (3.4) for $x \in X_c(E_p)$ and $y \in X_c(E_q)$. For such x, y we have

$$(xy)(\lambda\mu) = \sum_{\alpha \in E_p^1, \beta \in E_q^1} x(\alpha)y(\beta)(\delta_\alpha \delta_\beta)(\lambda\mu),$$

which collapses to $x(\lambda)y(\mu)$ by the factorisation property.

4. REPRESENTATIONS OF PRODUCT SYSTEMS

Throughout this section, (E, φ) is a product system of graphs over *P*.

DEFINITION 4.1. Partial isometries $\{s_{\lambda} : \lambda \in E^1\}$ in a C^* -algebra B form a *Toeplitz E-family* if:

- (i) $\{s_v : v \in E^0\}$ are mutually orthogonal projections;
- (ii) $s_{\lambda}s_{\mu} = s_{\lambda\mu}$ for all $\lambda, \mu \in E^1$ such that $r(\lambda) = s(\mu)$;
- (iii) $s_{\lambda}^* s_{\lambda} = s_{r(\lambda)}$ for all $\lambda \in E^1$; and
- (iv) for all $p \in P \setminus \{e\}, v \in E^0$ and every finite $F \subset s_p^{-1}(v), s_v \ge \sum_{\lambda \in F} s_\lambda s_\lambda^*$.

We recall from [7] that a Toeplitz representation ψ of a product system X of bimodules consists of linear maps $\psi_p : X_p \to B$ such that each (ψ_p, ψ_e) is a Toeplitz representation of X_p , and $\psi_p(x)\psi_q(y) = \psi_{pq}(xy)$. It is Cuntz-Pimsner

covariant if each (ψ_p , ψ_e) is Cuntz-Pimsner covariant. Fowler proves that there is a *C**-algebra \mathcal{T}_X generated by a universal Toeplitz representation i_X , and a quotient \mathcal{O}_X generated by a universal Cuntz-Pimsner covariant representation j_X ([7], Section 2).

THEOREM 4.2. Let (E, φ) be a product system of graphs over a semigroup P, and let X(E) be the corresponding product system of Cuntz-Krieger bimodules. If ψ is a Toeplitz representation of X(E), then

(4.1)
$$\{s_{\lambda} := \psi_{d(\lambda)}(\delta_{\lambda}) : \lambda \in E^{1}\}$$

is a Toeplitz E-family; conversely, if $\{s_{\lambda} : \lambda \in E^1\}$ is a Toeplitz E-family, then the map

(4.2)
$$x \in C_{c}(E_{p}^{1}) \mapsto \sum_{\lambda \in E_{p}^{1}} x(\lambda) s_{\lambda}$$

extends to a Toeplitz representation of X(E) from which we can recover $s_{\lambda} = \psi_{d(\lambda)}(\delta_{\lambda})$. The representation ψ is Cuntz-Pimsner covariant if and only if $\{s_{\lambda}\}$ satisfies

(4.3)
$$s_v = \sum_{\lambda \in s_p^{-1}(v)} s_\lambda s_\lambda^*$$
 whenever $s_p^{-1}(v)$ is finite (possibly empty).

Proof. If ψ is a Toeplitz representation of X(E), then Example 1.2 in [9] shows that

$$\{\psi_e(\delta_v), \psi_p(\delta_\lambda) : v \in E^0, \lambda \in E_p^1\}$$

is a Toeplitz-Cuntz-Krieger family for E_p as in [9], and this gives (i), (iii), and (iv) of Definition 4.1. Definition 4.1(ii) follows from (3.2) because ψ is a homomorphism.

Now suppose that ψ is Cuntz-Pimsner covariant and $s_p^{-1}(v)$ is finite. Write $\phi_p : C_0(E^0) \to \mathcal{L}(X_p)$ for the homomorphism that implements the left action on X_p . Then

(4.4)
$$\sum_{\lambda \in s_p^{-1}(v)} \psi_p(\delta_\lambda) \psi_p(\delta_\lambda)^* = \sum_{\lambda \in s_p^{-1}(v)} \psi_p^{(1)}(\Theta_{\delta_\lambda,\delta_\lambda}) = \psi_p^{(1)}\Big(\sum_{\lambda \in s_p^{-1}(v)} \Theta_{\delta_\lambda,\delta_\lambda}\Big).$$

For $x \in X_p$, $w \in E^0$ and $\mu \in E_p^1$,

$$\left(\sum_{\lambda \in s_p^{-1}(w)} \Theta_{\delta_{\lambda}, \delta_{\lambda}}(x)\right)(\mu) = \begin{cases} x(\mu) & \text{if } \mu \in s_p^{-1}(w), \\ 0 & \text{otherwise,} \end{cases} = (\delta_w \cdot x)(\mu).$$

Hence the right hand side of (4.4) is just $\psi_p^{(1)}(\phi_p(\delta_v))$. Since $\phi_p(\delta_v)$ belongs to $\mathcal{K}(X_p)$ ([9], Proposition 4.4), Cuntz-Pimsner covariance gives $\psi_p^{(1)}(\phi_p(\delta_v)) = \psi_e(\delta_v)$. Thus

$$\sum_{\lambda \in s_p^{-1}(v)} s_\lambda s_\lambda^* = \sum_{\lambda \in s_p^{-1}(v)} \psi_p(\delta_\lambda) \psi_p(\delta_\lambda)^* = \psi_e(\delta_v) = s_v.$$

If $\{s_{\lambda} : \lambda \in E^1\}$ is a Toeplitz *E*-family, Example 1.2 of [9] implies that $\psi_p(\delta_{\lambda}) := s_{\lambda}$ extend to Toeplitz representations (ψ_p, ψ_e) of X_p for $p \in P$; since

$$\psi_{pq}(\delta_{\lambda}\delta_{\mu}) = \psi_{pq}(\delta_{\lambda\mu}) = s_{\lambda\mu} = s_{\lambda}s_{\mu} = \psi_p(\delta_{\lambda})\psi_q(\delta_{\mu}),$$

it follows that ψ is a Toeplitz representation of X(E). We trivially have $s_{\lambda} = \psi_{d(\lambda)}(\delta_{\lambda})$.

If
$$\{s_{\lambda} : \lambda \in E^1\}$$
 satisfies (4.3), then for $p \in P$ and $v \in E^0$ with $s_p^{-1}(v)$ finite,

$$\psi_p^{(1)}(\phi_p(\delta_v)) = \psi_p^{(1)}\Big(\sum_{\lambda \in s_p^{-1}(v)} \Theta_{\delta_\lambda, \delta_\lambda}\Big) = \sum_{\lambda \in s_p^{-1}(v)} \psi_p(\delta_\lambda) \psi_p(\delta_\lambda)^*,$$

which is $\psi_e(\delta_v)$ by (4.3). Proposition 4.4 of [9] ensures that $\{\delta_v : |s_p^{-1}(v)| < \infty\}$ spans a dense subspace of $\{a \in C_0(E^0) : \phi(a) \in \mathcal{K}(X_p)\}$, so ψ is Cuntz-Pimsner covariant.

COROLLARY 4.3. Let (E, φ) be a product system of graphs over a semigroup *P*. Then $(\mathcal{T}_{X(E)}, i_{X(E)})$ is universal for Toeplitz E-families in the sense that:

(i) $\{s_{\lambda}\} := \{i_{X(E)}(\delta_{\lambda})\}$ is a Toeplitz E-family which generates $\mathcal{T}_{X(E)}$; and

(ii) for every Toeplitz E-family $\{s_{\lambda}\}$, there is a representation ψ_* of $T_{X(E)}$ such that $(\psi_* \circ i_{X(E)})(\delta_{\lambda}) = s_{\lambda}$ for every $\lambda \in E^1$.

Similarly, $(\mathcal{O}_{X(E)}, j_{X(E)})$ is universal for Toeplitz E-families satisfying (4.3).

Proof. This follows from Theorem 4.2 and the universal properties of $\mathcal{T}_{X(E)}$ and $\mathcal{O}_{X(E)}$ described in Propositions 2.8 and 2.9 of [7].

If (E, φ) is a product system of row-finite graphs without sinks over \mathbb{N}^k , then Λ_E is row-finite and has no sources as in [13], and the Toeplitz *E*-families which satisfy (4.3) are precisely the *-representations of Λ_E . Hence:

COROLLARY 4.4. Let Λ be a row-finite k-graph with no sources as in [13], define E_{Λ} as in Example 3.1, and let $X = X(E_{\Lambda})$. Then there is an isomorphism of $C^*(\Lambda)$ onto \mathcal{O}_X carrying s_{λ} to $i_X(\delta_{\lambda})$.

REMARK 4.5. If there are vertices which are sinks in one or more E_p , then some subtle issues arise, and the Toeplitz *E*-families satisfying (4.3) are not necessarily the Cuntz-Krieger Λ_E -families studied in [19]. Here, though, we care primarily about Toeplitz familes, and the presence of sinks does not cause problems.

5. COMPACTLY ALIGNED PRODUCT SYSTEMS OF CUNTZ-KRIEGER BIMODULES

The compactly aligned product systems are a large class of product systems whose Toeplitz algebras have been analysed in [6] and [7]. To apply the results of [7], we need to identify the product systems *E* of graphs for which X(E) is compactly aligned.

In compactly aligned product systems, the underlying semigroup *P* has to be quasi-lattice ordered in the sense of Nica [17], [16]. Suppose *P* is a subsemigroup of a group *G* such that $P \cap P^{-1} = \{e\}$. Then $g \leq h \iff g^{-1}h \in P$ defines a partial order on *G*, and *P* is *quasi-lattice ordered* if every finite subset of *G* with an upper bound in *P* has a least upper bound in *P*. (Strictly speaking, it is the pair (*G*, *P*) which is quasi-lattice ordered.) If two elements *p* and *q* have a common upper bound in *P*, $p \lor q$ denotes their least upper bound; otherwise, we write $p \lor q = \infty$.

Totally ordered groups, free groups, and products of these groups are all quasi-lattice ordered. The main example of interest to us is $(G, P) = (\mathbb{Z}^k, \mathbb{N}^k)$, which is actually *lattice-ordered*: each pair $m, n \in \mathbb{N}^k$ has a least upper bound $m \lor n$ with *i*th coordinate $(m \lor n)_i := \max\{m_i, n_i\}$.

Let *X* be a product system of bimodules over a quasi-lattice ordered semigroup *P*, and suppose $p, q \in P$ have $p \lor q < \infty$. Since $S \in \mathcal{L}(X_p)$ acts as an adjointable operator $S \otimes 1$ on $X_p \otimes_A X_{p^{-1}(p \lor q)}$, the isomorphism of $X_p \otimes_A X_{p^{-1}(p \lor q)}$ onto $X_{p \lor q}$ induced by the multiplication gives an action of $\mathcal{L}(X_p)$ on $X_{p \lor q}$; we write $S_p^{p \lor q}$ for the image of $S \in \mathcal{L}(X_p)$, so that $S_p^{p \lor q}$ is characterised by

(5.1)
$$S_p^{p \lor q}(xy) := (Sx)y \text{ for } x \in X_p, y \in X_{p^{-1}(p \lor q)}$$

The product system X is compactly aligned ([7], Definition 5.7) if

$$S \in \mathcal{K}(X_p)$$
 and $T \in \mathcal{K}(X_q)$ imply $(S_p^{p \lor q})(T_q^{p \lor q}) \in \mathcal{K}(X_{p \lor q})$

When X = X(E) is a product system of Cuntz-Krieger bimodules, Lemma 2.1 implies that the point masses span dense subspaces of $X(E_p)$, and the rank-one operators $\Theta_{x,y}$ span dense subspaces of $\mathcal{K}(X)$; thus to prove that X(E) is compactly aligned, it suffices to check that every

(5.2)
$$(\Theta_{\delta_{\mu_1},\delta_{\mu_2}})_p^{p\vee q} (\Theta_{\delta_{\nu_1},\delta_{\nu_2}})_q^{p\vee q} \text{ belongs to } \mathcal{K}(X(E_{p\vee q})).$$

To prove that a given X(E) is not compactly aligned, we need to be able to recognise non-compact operators on X(E).

LEMMA 5.1. Let X(E) be the Cuntz-Krieger bimodule of a graph, and let $S \in \mathcal{K}(X(E))$. Then the function $x_S : E^1 \to \mathbb{R}$ defined by $x_S(\lambda) := \|S(\delta_\lambda)\|_{C_0(E^0)}$ vanishes at infinity on E^1 .

Proof. First suppose $S = \Theta_{x,y}$ for some $x, y \in X(E)$. Then for $\lambda \in E^1$, we have

$$\|\Theta_{x,y}(\delta_{\lambda})\|^{2} = \sum_{r(\mu)=r(\lambda)} |x(\mu)y(\lambda)|^{2} \leq |y(\lambda)|^{2} ||x||^{2};$$

since $y \in X(E) \subset C_0(E^1)$, so is $\lambda \mapsto ||\Theta_{x,y}(\delta_\lambda)||$. An easy calculation establishes that $|x_{wS+zT}(\lambda)| \leq |w| |x_S(\lambda)| + |z| |x_T(\lambda)|$ and $|x_S(\lambda)| \leq ||S||_{\mathcal{L}(X(E))}$, so the result for arbitrary $S \in \mathcal{K}(X(E))$ follows by linearity and continuity.

EXAMPLE 5.2. (A Cuntz-Krieger bimodule which is not compactly aligned.) Let $(G, P) = (\mathbb{Z}^2, \mathbb{N}^2)$. Let $E^0 := \{(0, 0), (0, 1), (1, 0), (1, 1)\},$

$$E^{1}_{(1,0)} := \{\lambda\} \cup \{\alpha_{i} : i \in \mathbb{N}\}, \quad E^{1}_{(0,1)} := \{\mu_{i} : i \in \mathbb{N}\} \cup \{\beta\},$$

and define

$$r(\lambda) = (1,0),$$
 $s(\lambda) = (0,0),$ $r(\alpha_i) = (1,1),$ $s(\alpha_i) = (0,1),$ and $r(\mu_i) = (1,1),$ $s(\mu_i) = (1,0),$ $r(\beta) = (0,1),$ $s(\beta) = (0,0).$

By Theorem 2.1 of [10], there is a unique product system *E* over \mathbb{N}^2 in which $\beta \alpha_i = \lambda \mu_i$. In pictures:

$$E_{(1,0)} = \begin{pmatrix} (0,1) & \vdots & \alpha_i \\ \vdots & & (1,1) \\ & & \vdots & \bullet \\ (0,0) & \bullet & \bullet \\ & & (1,0) \end{pmatrix} \qquad E_{(0,1)} = \begin{pmatrix} (0,1) & & & (1,1) \\ & & & & & \\ \beta & & & & & \\ & & & (1,0) \end{pmatrix}$$

For $S := \Theta_{\delta_{\lambda}, \delta_{\lambda}}$ and $T := \Theta_{\delta_{\beta}, \delta_{\beta}}$, we can compute $S_{(1,0)}^{(1,1)} \circ T_{(0,1)}^{(1,1)}(\delta_{\lambda\mu_i})$ using (5.1). To evaluate $T_{(0,1)}^{(1,1)}(\delta_{\lambda\mu_i})$ we need to factor $\lambda\mu_i$ as $\beta\alpha_i$, so that $\delta_{\lambda\mu_i} = \delta_{\beta}\delta_{\alpha_i}$. Then

(5.3)
$$S_{(1,0)}^{(1,1)} \circ T_{(0,1)}^{(1,1)}(\delta_{\lambda\mu_{i}}) = S_{(1,0)}^{(1,1)}(T(\delta_{\beta})\delta_{\alpha_{i}}) = S_{(1,0)}^{(1,1)}(\delta_{\beta}\delta_{\alpha_{i}})$$
$$= S_{(1,0)}^{(1,1)}(\delta_{\lambda}\delta_{\mu_{i}}) = S(\delta_{\lambda})\delta_{\mu_{i}} = \delta_{\lambda\mu_{i}}.$$

Thus $\lambda \mu_i \mapsto \|S_{(1,0)}^{(1,1)} \circ T_{(0,1)}^{(1,1)}(\delta_{\lambda \mu_i})\|$ does not vanish at infinity on $E_{(1,1)}^1$. Lemma 5.1 therefore implies that $S_{(1,0)}^{(1,1)} \circ T_{(0,1)}^{(1,1)}$ is not compact, and E is not compactly aligned.

To identify the *E* for which X(E) is compactly aligned, we legislate out the behaviour which makes Example 5.2 work. More precisely:

DEFINITION 5.3. Suppose (E, φ) is a product system of graphs over a quasilattice ordered semigroup P, and let $\mu \in E_p^1$ and $\nu \in E_q^1$. A *common extension* of μ and ν is a path γ such that $\gamma(e, p) = \mu$ and $\gamma(e, q) = \nu$. Notice that $d(\gamma)$ is then an upper bound for p and q, so $p \lor q < \infty$; we say that γ is a *minimal common extension* if $d(\gamma) = p \lor q$. We denote by MCE (μ, ν) the set of minimal common extensions of μ and ν , and say that (E, φ) is *finitely aligned* if MCE (μ, ν) is finite (possibly empty) for all $\mu, \nu \in E^1$. THEOREM 5.4. Let (E, φ) be a product system of graphs over a quasi-lattice ordered semigroup P. Then X(E) is compactly aligned if and only if (E, φ) is finitely aligned.

Proof. If MCE(λ , β) is infinite for some α and β , there are infinitely many paths μ_i and α_i such that $\lambda \mu_i = \beta \alpha_i$, and the argument of Example 5.2 shows that X(E) is not compactly aligned. Suppose that (E, φ) is finitely aligned, $p, q \in P$ satisfy $p \lor q < \infty$, and $\mu_1, \mu_2 \in E_p^1, \nu_1, \nu_2 \in E_q^1$. Then computations like (5.3) show that $(\Theta_{\delta_{\nu_1}, \delta_{\nu_2}})_q^{p \lor q}(\delta_{\lambda}) = 0$ unless $\lambda(e, q) = \nu_2$, and then with $\sigma := \nu_1 \lambda(q, p \lor q)$ we have

$$\begin{split} (\Theta_{\delta_{\mu_1},\delta_{\mu_2}})_p^{p\vee q}(\Theta_{\delta_{\nu_1},\delta_{\nu_2}})_q^{p\vee q}(\delta_{\lambda}) &= \delta_{\nu_2}(\lambda(e,q))\delta_{\mu_2}(\sigma(e,p))\delta_{\mu_1\sigma(p,p\vee q)}\\ &= \begin{cases} \delta_{\mu_1\sigma(p,p\vee q)} & \text{if } \sigma(e,p) = \mu_2, \\ 0 & \text{otherwise.} \end{cases} \end{split}$$

Thus

$$(\Theta_{\delta_{\mu_1},\delta_{\mu_2}})_p^{p\vee q}(\Theta_{\delta_{\nu_1},\delta_{\nu_2}})_q^{p\vee q} = \sum_{\sigma\in\mathsf{MCE}(\mu_2,\nu_1)} \Theta_{\delta_{\mu_1\sigma(p,p\vee q)},\delta_{\nu_2\sigma(q,p\vee q)}},$$

which belongs to $\mathcal{K}(X(E))$ because MCE(μ_2, ν_1) is finite.

EXAMPLE 5.5. Since $MCE(\mu, \nu) \subset s_{d(\mu)\vee d(\nu)}^{-1}(s(\mu))$, we automatically have that *E* is finitely aligned when each E_p is row-finite. For an example of a finitely aligned product system of graphs where the E_p are not all row-finite, consider the following.

Let $(G, P) = (\mathbb{Z}^2, \mathbb{N}^2)$. Let $E^0 := \{(0, 0), (0, 1), (1, 0), (1, 1)\},\$

$$E^{1}_{(1,0)} := \{\lambda_{i}, \alpha_{i} : i \in \mathbb{N}\}, \quad E^{1}_{(0,1)} := \{\mu, \beta\},$$

and define

$$r(\lambda_i) = (1,0),$$
 $s(\lambda_i) = (0,0),$ $r(\alpha_i) = (1,1),$ $s(\alpha_i) = (0,1),$ and $r(\mu) = (1,1),$ $s(\mu) = (1,0),$ $r(\beta) = (0,1),$ $s(\beta) = (0,0).$

By Theorem 2.1 of [10], there is a unique product system *E* over \mathbb{N}^2 in which $\beta \alpha_i = \lambda_i \mu$ for all $i \in \mathbb{N}$. In pictures:

$$E_{(1,0)} = \begin{pmatrix} (0,1) & \vdots & \alpha_i \\ \bullet & (1,1) \\ (0,0) & \bullet & \bullet \\ & (1,0) \end{pmatrix} \qquad E_{(0,1)} = \begin{pmatrix} (0,1) & \bullet & (1,1) \\ & & & \mu \\ & (0,0) & \bullet & (1,0) \end{pmatrix}$$

$$(0,1) & \bullet & (1,1)$$

 $E_{(1,1)} = \underbrace{\beta \alpha_i = \lambda_i \mu}_{(0,0)} \bullet (1,0)$

We see that $E_{(1,0)}$ and $E_{(1,1)}$ are not row-finite. However, we clearly have $|MCE(\sigma, \tau)| \leq 1$ unless $\sigma = \lambda_i$ for some $i \in \mathbb{N}$ and $\tau = \beta$ or vice versa. Since $MCE(\lambda_i, \beta) = \{\lambda_i \mu\} = \{\beta \alpha_i\}$ for all *i*, it follows that *E* is finitely aligned, so X(E) is compactly aligned. For other examples of finitely aligned product systems of graphs, see, for example, Appendix A of [20].

6. NICA COVARIANCE

In this section, we show that when X = X(E), Fowler's Nica covariance condition reduces to an extra relation for Toeplitz *E*-families, which will look familiar to anyone who has studied any generalisation of Cuntz-Krieger algebras. This relation automatically holds for Toeplitz-Cuntz-Krieger families of single graphs, but is not automatic for the Toeplitz families of product systems.

Suppose *X* is a product system of A - A bimodules over a quasi-lattice ordered semigroup *P*, and ψ is a nondegenerate Toeplitz representation of *X* on *H*. Fowler shows in Proposition 4.1 of [7] that there is an action $\alpha^{\psi} : P \to \text{End } \psi_e(A)'$ such that

(6.1)
$$\alpha_p^{\psi}(T)\psi_p(x) = \psi_p(x)T \text{ for } T \in \psi_e(A)' \text{ and } \alpha_p^{\psi}(1)h = 0 \text{ for } h \in \psi_p(X_p)^{\perp}.$$

The representation ψ is *Nica covariant* if

(6.2)
$$\alpha_p^{\psi}(1_p)\alpha_q^{\psi}(1_q) = \begin{cases} \alpha_{p\vee q}^{\psi}(1_{p\vee q}) & \text{if } p\vee q < \infty, \\ 0 & \text{otherwise.} \end{cases}$$

We denote by $(\mathcal{T}_{cov}(X), i_X)$ the pair which is universal for Nica covariant Toeplitz representations of X in the sense of Theorem 6.3 of [7]. When X is compactly aligned, it follows from Lemma 5.5 and Proposition 5.6 of [7] that the Nica covariance condition (6.2) makes sense for a representation taking values in a C^{*}algebra, and then $(\mathcal{T}_{cov}(X), i_X)$ is universal in the usual sense of the word. When *P* is the positive cone in a totally ordered group, $p \lor q$ is either *p* or *q*, and Nica covariance is automatic. Thus Toeplitz representations of a single Cuntz-Krieger bimodule *X*(*E*) are always Nica covariant. For product systems of row-finite graphs over lattice-ordered semigroups such as \mathbb{N}^k , Nica covariance is a consequence of Cuntz-Pimsner covariance:

LEMMA 6.1. Let (E, φ) be a product system of graphs over a lattice-ordered semigroup P. If every E_p is row-finite, then every Toeplitz representation of X(E) which is Cuntz-Pimsner covariant is also Nica covariant. In particular, if Λ is a row-finite k-graph, every Cuntz-Pimsner covariant representation of $X(E_{\Lambda})$ is Nica covariant.

Proof. Since each E_p is row-finite, $C_0(E^0)$ acts by compact operators on the left of each $X(E_p)$ ([9], Proposition 4.4), and the result follows from Proposition 5.4 in [7].

COROLLARY 6.2. Let (E, φ) be a product system of row-finite graphs over a latticeordered semigroup P. Then $\mathcal{O}_{X(E)}$ is isomorphic to a quotient of $\mathcal{T}_{cov}(X(E))$.

PROPOSITION 6.3. Let (E, φ) be a product system of graphs over a quasi-lattice ordered semigroup P, and let ψ be a nondegenerate Toeplitz representation of X(E) on \mathcal{H} . For $p \in P$, $T \in B(\mathcal{H})$ and $h \in \mathcal{H}$, the sum

$$\sum_{\lambda \in E_n^1} \psi_p(\delta_\lambda) T \psi_p(\delta_\lambda)^* h$$

converges in \mathcal{H} ; if $T \in \psi_e(C_0(E^0))'$, it converges to $\alpha_p^{\psi}(T)h$.

Proof. By Proposition 4.1(1) of [7], it suffices to work with a representation (ψ, π) of a single graph *E*, and show

(i) that the sum $\alpha(T)h := \sum_{\lambda \in E^1} \psi(\delta_\lambda) T \psi(\delta_\lambda)^* h$ converges for all $h \in \mathcal{H}$;

(ii) that $\alpha(T) \in B(\mathcal{H})$ for each $T \in B(\mathcal{H})$;

(iii) that α is an endomorphism of $\pi(C_0(E^0))'$; and

(iv) that α satisfies $\alpha(T)\psi(x) = \psi(x)T$ for $T \in \psi_e(C_0(E^0))'$, and that $\alpha(1)|_{(\psi(X)\mathcal{H})^{\perp}} = 0$.

Because the $\psi(\delta_{\lambda})$ are partial isometries with orthogonal ranges, we have

$$\sum_{\lambda \in E^1} \|\psi(\delta_{\lambda})T\psi(\delta_{\lambda})^*h\|^2 \leqslant \sum_{\lambda \in E^1} \|T\|^2 \|\psi(\delta_{\lambda})^*h\|^2 \leqslant \|T\|^2 \|h\|^2$$

Thus $\sum_{\lambda \in E^1} \psi(\delta_\lambda) T \psi(\delta_\lambda)^* h$ is a sum of orthogonal vectors which converges in \mathcal{H} , and the sum satisfies

$$\|\alpha(T)h\|^2 = \left\|\sum_{\lambda \in E^1} \psi(\delta_{\lambda}) T \psi(\delta_{\lambda})^* h\right\|^2 = \sum_{\lambda \in E^1} \|\psi(\delta_{\lambda}) T \psi(\delta_{\lambda})^* h\|^2 \leq \|T\|^2 \|h\|^2.$$

This gives (i) and (ii).

Multiplying $\psi(\delta_{\lambda})T\psi(\delta_{\lambda})^*$ on either side by $\psi(\delta_v)$ gives 0 unless $v = s(\lambda)$, and leaves it alone if $v = s(\lambda)$. Thus each $\psi(\delta_{\lambda})T\psi(\delta_{\lambda})^*$ belongs to $\pi(C_0(E^0))'$,

and so does the strong sum $\alpha(T)$. If *S* and *T* belong to $\pi(C_0(E^0))'$, then

$$\begin{split} \psi(\delta_{\lambda})S\psi(\delta_{\lambda})^{*}\psi(\delta_{\mu})T\psi(\delta_{\mu})^{*} &= \psi(\delta_{\lambda})S\psi(\langle\delta_{\lambda},\delta_{\mu}\rangle_{C_{0}(E^{0})})T\psi(\delta_{\mu})^{*} & \text{if } \mu = \lambda, \\ 0 & \text{otherwise,} \\ &= \begin{cases} \psi(\delta_{\lambda})ST\psi(\delta_{\lambda})^{*} & \text{if } \mu = \lambda, \\ 0 & \text{otherwise,} \end{cases} \end{split}$$

and it follows by taking sums and limits that α is multiplicative on $\pi(C_0(E^0))'$. It is clearly *-preserving.

For (iv), we let $T \in \psi_{e}(C_{0}(E^{0}))'$ and calculate:

$$\begin{split} \alpha(T)\psi(\delta_{\lambda}) &= \sum_{\mu \in E^{1}} \psi(\delta_{\mu})T\psi(\delta_{\mu})^{*}\psi(\delta_{\lambda}) \\ &= \psi(\delta_{\lambda})T\pi(\delta_{r(\lambda)}) = \psi(\delta_{\lambda})\pi(\delta_{r(\lambda)})T = \psi(\delta_{\lambda})T. \end{split}$$

Extending by linearity gives $\alpha(T)\psi(x) = \psi(x)T$ for $x \in X_c(E)$, which suffices by continuity. If $h \perp \psi(X)\mathcal{H}$, then $\psi(\delta_{\lambda})^*h = 0$ for all λ , and $\alpha(T)h = 0$.

Suppose that $\{S_{\lambda}\} \subset B(\mathcal{H})$ is a Toeplitz *E*-family for a product system (E, φ) of graphs over a quasi-lattice ordered semigroup *P*. Proposition 6.3 implies that the corresponding Toeplitz representation ψ of X(E) is Nica covariant if and only if

(6.3)
$$\left(\sum_{\mu\in E_p^1}S_{\mu}S_{\mu}^*\right)\left(\sum_{\nu\in E_q^1}S_{\nu}S_{\nu}^*\right) = \begin{cases} \sum_{\lambda\in E_{p\vee q}^1}S_{\lambda}S_{\lambda}^* & \text{if } p\vee q < \infty, \\ 0 & \text{otherwise.} \end{cases}$$

The sums in (6.3) may be infinite, and then only converge in the strong operator topology, so this is a spatial criterion rather than a C^* -algebraic one. When *E* is finitely aligned, however, there is an equivalent condition which only uses finite sums.

PROPOSITION 6.4. Let (E, φ) be a finitely aligned product system of graphs over a quasi-lattice ordered semigroup P, and let $\{S_{\lambda}\} \subset B(\mathcal{H})$ be a Toeplitz E-family. The corresponding Toeplitz representation ψ of X(E) is Nica covariant if and only if, for all $p, q \in P, \mu \in E_{v}^{1}$ and $v \in E_{a}^{1}$, we have

(6.4)
$$S^*_{\mu}S_{\nu} = \sum_{\mu\alpha = \nu\beta \in \text{MCE}(\mu,\nu)} S_{\alpha}S^*_{\beta} \quad (which is \ 0 \text{ if } p \lor q = \infty).$$

Proof. First suppose ψ is Nica covariant, and let $\mu \in E_p^1$ and $\nu \in E_q^1$. Then because the S_λ corresponding to λ of the same degree have mutually orthogonal ranges, we have

$$\begin{split} S_{\mu}^{*}S_{\nu} &= S_{\mu}^{*}\Big(\sum_{\gamma \in E_{p}^{1}} S_{\gamma}S_{\gamma}^{*}\Big)\Big(\sum_{\sigma \in E_{q}^{1}} S_{\sigma}S_{\sigma}^{*}\Big)S_{\nu} \\ &= \begin{cases} S_{\mu}^{*}(\sum_{\lambda \in E_{p \lor q}^{1}} S_{\lambda}S_{\lambda}^{*})S_{\nu} & \text{if } p \lor q < \infty, \\ 0 & \text{if } p \lor q = \infty, \end{cases} \\ &= \sum_{\mu \alpha = \nu \beta \in \text{MCE}(\mu, \nu)} S_{\alpha}S_{\beta}^{*}, \end{split}$$

because $(S^*_{\mu}S_{\lambda})(S^*_{\lambda}S_{\nu}) = 0$ unless $\lambda = \mu \alpha = \nu \beta$, and MCE (μ, ν) is empty if $p \lor q = \infty$.

On the other hand, let $p, q \in P$ and suppose that (6.4) holds. Then

$$\Big(\sum_{\mu\in E_p^1}S_{\mu}S_{\mu}^*\Big)\Big(\sum_{\nu\in E_q^1}S_{\nu}S_{\nu}^*\Big)=\sum_{\mu\in E_p^1,\nu\in E_q^1}S_{\mu}\Big(\sum_{\mu\alpha=\nu\beta\in\mathrm{MCE}(\mu,\nu)}S_{\alpha}S_{\beta}^*\Big)S_{\nu}^*$$

which is $\sum \{S_{\lambda}S_{\lambda}^* : \lambda \in E_{p\vee q}^1\}$ if $p \vee q < \infty$ because the factorisation property implies that each λ appears exactly once as a $\mu\alpha$ and as a $\nu\beta$, and 0 if $p \vee q = \infty$ because then each MCE(μ , ν) is empty.

7. TOEPLITZ-CUNTZ-KRIEGER FAMILIES

Relation (6.4) is familiar: some version of it is used in every theory of Cuntz-Krieger algebras to ensure that span{ $S_{\mu}S_{\nu}^{*}$ } is a dense *-subalgebra of $C^{*}({S_{\mu}})$ (see, for example, Lemma 2.2 of [3], Lemma 1.1 of [14], Proposition 3.5 of [19]). As Lemma 6.1 shows, it is often automatic when the graphs are row-finite, but otherwise it will have to be assumed if we want $C^{*}({S_{\mu}})$ to behave like a Cuntz-Krieger algebra.

We therefore make the following definition:

DEFINITION 7.1. Let *E* be a finitely aligned product system of graphs over a quasi-lattice ordered semigroup *P*. Partial isometries $\{s_{\lambda} : \lambda \in E^1\}$ in a *C*^{*}algebra *B* form a *Toeplitz-Cuntz-Krieger E-family* if:

- (i) $\{s_v : v \in E^0\}$ are mutually orthogonal projections;
- (ii) $s_{\lambda}s_{\mu} = s_{\lambda\mu}$ for all $\lambda, \mu \in E^1$ such that $r(\lambda) = s(\mu)$;
- (iii) $s_{\lambda}^* s_{\lambda} = s_{r(\lambda)}$ for all $\lambda \in E^1$;
- (iv) for all $p \in P \setminus \{e\}, v \in E^0$ and every finite $F \subset s_p^{-1}(v), s_v \ge \sum_{\lambda \in F} s_\lambda s_\lambda^*$;

(v)
$$s_{\mu}^* s_{\nu} = \sum_{\mu \alpha = \nu \beta \in \text{MCE}(\mu, \nu)} s_{\alpha} s_{\beta}^*$$
 for all $\mu, \nu \in E^1$.

They form a Cuntz-Pimsner E-family if they also satisfy

(vi) $s_v = \sum_{\lambda \in s_p^{-1}(v)} s_\lambda s_\lambda^*$ whenever $s_p^{-1}(v)$ is finite.

REMARK 7.2. Multiplying both sides of (v) on the left by s_{μ} and on the right by s_{ν}^{*} gives

(7.1)
$$(s_{\mu}s_{\mu}^{*})(s_{\nu}s_{\nu}^{*}) = \sum_{\gamma \in \mathrm{MCE}(\mu,\nu)} s_{\gamma}s_{\gamma}^{*},$$

and this is equivalent to (v) because we can get back by multiplying on the left by s_{μ}^{*} and on the right by s_{ν} .

REMARK 7.3. We have called families satisfying (vi) Cuntz-Pimsner families rather than Cuntz-Krieger families because of the problems with sinks mentioned in Remark 4.5: if v is a sink in a single graph E, then (vi) implies that $s_v = 0$, whereas the generally accepted Cuntz-Krieger relations impose no relation at v. The Cuntz-Pimsner families are the ones which correspond to Cuntz-Pimsner covariant representations of X(E).

EXAMPLE 7.4. (The Fock representation) For $\lambda \in E^1$, let S_{λ} be the partial isometry on $\ell^2(E^1)$ such that

$$S_{\lambda}e_{\mu} := \begin{cases} e_{\lambda\mu} & \text{if } r(\lambda) = s(\mu), \\ 0 & \text{otherwise.} \end{cases}$$

We claim that $\{S_{\lambda} : \lambda \in E^1\}$ is a Toeplitz-Cuntz-Krieger *E*-family. Conditions (i)–(iii) of Definition 7.1 are obvious, and (iv) holds because

(7.2)
$$\left(S_v - \sum_{\lambda \in s_p^{-1}(v)} S_\lambda S_\lambda^*\right) e_v = e_v$$

for all $v \in E^0$ and $p \in P \setminus \{e\}$. To verify (v), we compute on the one hand

$$(S_{\lambda}^*S_{\mu}e_{\nu}|e_{\sigma}) = (S_{\mu}e_{\nu}|S_{\lambda}e_{\sigma}) = \begin{cases} 1 & \text{if } \mu\nu = \lambda\sigma, \\ 0 & \text{otherwise,} \end{cases}$$

and on the other hand,

$$\left(\sum_{\lambda\alpha=\mu\beta\in\mathsf{MCE}(\lambda,\mu)}S_{\alpha}S_{\beta}^{*}e_{\nu}\Big|e_{\sigma}\right)=\sum_{\lambda\alpha=\mu\beta\in\mathsf{MCE}(\lambda,\mu)}(S_{\beta}^{*}e_{\nu}|S_{\alpha}^{*}e_{\sigma})$$
$$=\sum_{\lambda\alpha=\mu\beta\in\mathsf{MCE}(\lambda,\mu)}\begin{cases}1 & \text{if }\nu=\beta\tau \text{ and }\sigma=\alpha\tau \text{ for some }\tau,\\0 & \text{otherwise.}\end{cases}$$

By the factorisation property, at most one term in this last sum can be nonzero, and there is one precisely when $\mu\nu = \mu\beta\tau = \lambda\alpha\tau = \lambda\sigma$ for some $\lambda\alpha = \mu\beta \in MCE(\lambda, \mu)$, giving (v).

If there is a vertex v which emits just finitely many edges in some E_p , then (7.2) implies that (vi) does not hold, and hence $\{S_{\lambda}\}$ is not a Cuntz-Pimsner family.

If (E, φ) is finitely aligned, then Theorem 4.2 and Proposition 6.4 imply that the Toeplitz *E*-family $\{i_{X(E)}(\delta_{\lambda}) : \lambda \in E^1\}$ in $\mathcal{T}_{cov}(X(E))$ is a Toeplitz-Cuntz-Krieger *E*-family. It then follows from Lemma 2.1 that $\mathcal{T}_{cov}(X(E))$ is generated by $\{i_{X(E)}(\delta_{\lambda})\}$. We can now apply the other direction of Theorem 4.2 to see that $\mathcal{T}_{cov}(X(E))$ is universal for Toeplitz-Cuntz-Krieger *E*-families. Thus:

COROLLARY 7.5. Let (E, φ) be a finitely aligned product system of graphs over a quasi-lattice ordered semigroup P. Then $(\mathcal{T}_{cov}(X(E)), \{i_{X(E)}(\delta_{\lambda})\})$ is universal for Toeplitz-Cuntz-Krieger E-families.

In view of Corollary 7.5, we define $\mathcal{T}C^*(E)$ to be the universal algebra $\mathcal{T}_{cov}(X(E))$. If there are no sinks, we define $C^*(E)$ to be the quotient of $\mathcal{T}C^*(E)$ which is universal for Cuntz-Pimsner *E*-families. If Λ is a row-finite *k*-graph with no sources, it follows from Lemma 6.1 that $C^*(E_{\Lambda})$ is the C^* -algebra $C^*(\Lambda)$ studied in [13].

From now on, we denote by $\{s_{\lambda} : \lambda \in E^1\}$ the canonical generating family in $\mathcal{T}C^*(E)$, and if $\{t_{\lambda} : \lambda \in E^1\}$ is a Toeplitz-Cuntz-Krieger *E*-family in a C^* algebra *B*, then we write π_t for the homomorphism of $\mathcal{T}C^*(E)$ into *B* such that $\pi_t(s_{\lambda}) = t_{\lambda}$.

We now see what Fowler's theory tells us about faithful representations.

PROPOSITION 7.6. Let (G, P) be quasi-lattice ordered with G amenable, and let (E, φ) be a finitely aligned product system of graphs over P. Let $\{S_{\lambda} : \lambda \in E^1\}$ be a Toeplitz-Cuntz-Krieger E-family in $B(\mathcal{H})$, and suppose that for every finite subset R of $P \setminus \{e\}$ and every $v \in E^0$, we have

(7.3)
$$\prod_{p \in R} \left(S_v - \sum_{\lambda \in s_p^{-1}(v)} S_\lambda S_\lambda^* \right) > 0.$$

Then the corresponding representation $\pi_S : \mathcal{T}C^*(E) \to B(\mathcal{H})$ is faithful.

Proof. We consider the representation ψ of X(E) associated to $\{S_{\lambda}\}$. Theorem 5.4 says that X(E) is compactly aligned, and Proposition 6.4 that ψ is Nica covariant. Since the δ_v span a dense subspace of $C_0(E^0)$ and the $\psi_e(\delta_v) = S_v$ are mutually orthogonal, Proposition 6.3 implies that (7.3) is equivalent to the displayed hypothesis in Theorem 7.2 of [7]. Thus Theorem 7.2 of [7] implies that ψ_* is faithful on $\mathcal{T}_{cov}(X(E))$. But π_S is by definition the representation ψ_* of $\mathcal{T}C^*(E) := \mathcal{T}_{cov}(X(E))$.

COROLLARY 7.7. Let (G, P) be a quasi-lattice ordered group such that G is amenable, and let (E, φ) be a finitely aligned product system of graphs over P. Then the representation π_S of $TC^*(E)$ associated to the Fock representation of Example 7.4 is faithful.

Proof. Equation (7.3) follows from (7.2).

8. A C*-ALGEBRAIC UNIQUENESS THEOREM

THEOREM 8.1. Let (G, P) be a quasi-lattice ordered group such that G is amenable, and let (E, φ) be a finitely aligned product system of graphs over P. Let $\{t_{\lambda} : \lambda \in E^1\}$ be a Toeplitz-Cuntz-Krieger E-family in a C*-algebra B. Suppose that for every finite subset R of $P \setminus \{e\}$, every $v \in E^0$, and every collection of finite sets $F_p \subset s_p^{-1}(v)$, we have

(8.1)
$$\prod_{p \in R} \left(t_v - \sum_{\lambda \in F_p} t_\lambda t_\lambda^* \right) > 0.$$

Then the associated homomorphism $\pi_t : \mathcal{T}C^*(E) \to B$ is injective.

To prove Theorem 8.1, we first establish that there is a linear map Φ^E onto the diagonal in $\mathcal{T}C^*(E)$ which is faithful on positive elements, and show that there is a norm-decreasing linear map Φ^B on $\pi_t(\mathcal{T}C^*(E))$ such that $\pi_t \circ \Phi^E = \Phi^B \circ \pi_t$.

PROPOSITION 8.2. There is a linear map $\Phi^E : \mathcal{T}C^*(E) \to \mathcal{T}C^*(E)$ such that

$$\Phi^{E}(s_{\lambda}s_{\mu}^{*}) = \begin{cases} s_{\lambda}s_{\lambda}^{*} & \text{if } \lambda = \mu, \\ 0 & \text{otherwise,} \end{cases}$$

and Φ^E is faithful on positive elements.

Proof. Let $\{e_i : i \in I\}$ be an orthonormal basis for a separable Hilbert space \mathcal{H} , and for $i \in I$, let P_i be the projection onto $\mathbb{C}e_i$. Then for $T \in B(\mathcal{H})$, $\sum_{i \in I} P_i TP_i$ converges in the strong operator topology, and $T \mapsto \sum_{i \in I} P_i TP_i$ is the diagonal map on $B(\mathcal{H})$ which takes the rank-one operator Θ_{e_i,e_j} to Θ_{e_i,e_i} if i = j and to 0 otherwise. It follows that this diagonal map is linear and norm-decreasing, and it is faithful on positive elements: $\Phi(T^*T) = 0$ implies $(T^*Te_i|e_i) = 0$ for all i, and hence T = 0.

Let $\mathcal{H} := \ell^2(E^1)$ and let $\{S_{\lambda} : \lambda \in E^1\}$ be the Toeplitz-Cuntz-Krieger family of Example 7.4. Then a calculation using the basis elements $\{e_{\nu} : \nu \in E^1\}$ shows that

$$P_{\gamma}S_{\lambda}S_{\mu}^{*}P_{\gamma} = \begin{cases} P_{\gamma} & \text{if } \lambda = \mu = \gamma(e, d(\mu)), \\ 0 & \text{otherwise.} \end{cases}$$

Thus if Φ denotes the diagonal map on $\ell^2(E^1)$, then

$$\Phi(S_{\lambda}S_{\mu}^{*}) = P_{\overline{\operatorname{span}}\{e_{\gamma}:\lambda=\mu=\gamma(e,d(\mu))\}} = \begin{cases} S_{\lambda}S_{\lambda}^{*} & \text{if } \lambda=\mu, \\ 0 & \text{otherwise.} \end{cases}$$

Because the representation π_S associated to the Fock representation is faithful by Corollary 7.7, and because Φ has the required properties, we can pull Φ back to $\mathcal{TC}^*(E)$ to get the required map Φ^E .

We must now establish the existence of Φ^B : $\pi_t(\mathcal{T}C^*(E)) \to \pi_t(\mathcal{T}C^*(E))$ and show that π_t is faithful on $\Phi^E(\mathcal{T}C^*(E))$. To do this, we analyse the structure of the diagonal $\Phi^E(\mathcal{T}C^*(E))$. Since $\mathcal{T}C^*(E)$ is spanned by elements of the form $s_\lambda s^*_\mu$, we consider the image of span $\{s_\lambda s^*_\mu : \lambda, \mu \in E^1\}$ in the diagonal. We show that for a finite subset F of E^1 , $C^*(\{t_\lambda t^*_\lambda : \lambda \in F\})$ sits inside a finite-dimensional diagonal subalgebra of B, and use the matrix units in this diagonal subalgebra to show that Φ^B exists and is norm-decreasing. We can then show that π_t is faithful on span $\{s_\lambda s^*_\lambda : \lambda \in E^1\}$ just by checking that the matrix units are nonzero.

Condition (v) of Definition 7.1 shows that $C^*(\{t_\lambda t_\lambda^* : \lambda \in F\})$ is typically bigger than span $\{t_\lambda t_\lambda^* : \lambda \in F\}$; the two can only be equal if $\lambda, \mu \in F$ implies MCE $(\lambda, \mu) \subset F$. Thus we need to pass to a larger finite set H such that $\lambda, \mu \in H$ imply MCE $(\lambda, \mu) \subset H$.

DEFINITION 8.3. For each finite subset F of E^1 , let

$$MCE(F) := \Big\{ \lambda \in E^1 : d(\lambda) = \bigvee_{\alpha \in F} d(\alpha) \text{ and } \lambda(e, d(\alpha)) = \alpha \text{ for all } \alpha \in F \Big\},\$$

and let $\forall F := \bigcup_{G \subset F} MCE(G)$.

Definition 8.3 is consistent with Definition 5.3, due to the fact that we have $MCE(\{\lambda, \mu\}) = MCE(\lambda, \mu)$.

LEMMA 8.4. Let F be a finite subset of E^1 . Then:

- (i) $F \subset \lor F$;
- (ii) $\forall F$ is the union of the disjoint sets $\forall \{\lambda \in F : s(\lambda) = v\}$ over $v \in s(F)$;
- (iii) $\lor F$ is finite; and
- (iv) $G \subset \lor F$ implies $MCE(G) \subset \lor F$.

Proof. (i) For $\lambda \in F$, $\{\lambda\} \subset F$ and $\lambda \in MCE(\{\lambda\})$.

(ii) If $\lambda, \mu \in G$ and $s(\lambda) \neq s(\mu)$, then MCE(*G*) is empty.

(iii) It suffices to show that if $F \subset E^1$ is finite, then MCE(*F*) is finite. When |F| = 1, this assertion is trivial. Suppose as an inductive hypothesis that MCE(*F*) is finite whenever $|F| \leq k$ for some $k \geq 1$, and suppose that |F| = k + 1. Let $\lambda \in F$, and let $F' := F \setminus \{\lambda\}$. Suppose that $\gamma \in MCE(F)$. Since $\gamma\left(e, \bigvee_{\alpha \in F'} d(\alpha)\right) \in MCE(F')$, we have $\gamma \in MCE(\lambda, \mu)$ for some $\mu \in MCE(F')$. Hence $|MCE(F)| \leq \sum_{\mu \in MCE(F')} |MCE(\lambda, \mu)|$. Each term in this sum is finite because (E, φ) is finitely $\mu \in MCE(F')$.

aligned, and the sum has only finitely many terms by the inductive hypothesis. Hence MCE(F) is finite.

(iv) Let $G \subset \forall F$ and for $\alpha \in G$ choose $G_{\alpha} \subset F$ such that $\alpha \in MCE(G_{\alpha})$. Let $H := \bigcup_{\alpha \in G} G_{\alpha}$. We will show that $MCE(G) \subset MCE(H) \subset \forall F$. Suppose $\lambda \in G$

MCE(G). Then
$$d(\lambda) = \bigvee_{\alpha \in G} d(\alpha) = \bigvee_{\alpha \in G} \left(\bigvee_{\beta \in G_{\alpha}} d(\beta) \right) = \bigvee_{\beta \in H} d(\beta)$$
. For $\beta \in H$,

choose $\alpha \in G$ such that $\beta \in G_{\alpha}$. Then $\lambda(e, d(\beta)) = \alpha(e, d(\beta)) = \beta$. Thus $\lambda \in MCE(H)$.

It follows from Lemma 8.4(iv) that $\lambda, \mu \in \forall F$ implies that $MCE(\lambda, \mu) \subset \forall F$. Consequently, Lemma 8.4(i) and (7.1) imply that

$$C^*(\{t_{\lambda}t_{\lambda}^*:\lambda\in F\})\subset C^*(\{t_{\lambda}t_{\lambda}^*:\lambda\in \lor F\})=\operatorname{span}\{t_{\lambda}t_{\lambda}^*:\lambda\in \lor F\}.$$

To write this as a diagonal matrix algebra, we need to be able to orthogonalise the range projections associated to the edges in $\forall F$.

LEMMA 8.5. Let
$$\lambda \in E^1$$
. If $F \subset s^{-1}(r(\lambda))$ is finite and $r(\lambda) \notin F$, then
 $t_{\lambda}t_{\lambda}^* \Big(\prod_{\mu \in F} (t_{s(\lambda)} - t_{\lambda\mu}t_{\lambda\mu}^*)\Big) > 0.$

Proof. We have

$$\left\| t_{\lambda} t_{\lambda}^* \Big(\prod_{\mu \in F} (t_{s(\lambda)} - t_{\lambda\mu} t_{\lambda\mu}^*) \Big) \right\| = \left\| \prod_{\mu \in F} (t_{\lambda} t_{\lambda}^* - t_{\lambda\mu} t_{\lambda\mu}^*) \right\| = \left\| t_{\lambda} \Big(\prod_{\mu \in F} (t_{r(\lambda)} - t_{\mu} t_{\mu}^*) \Big) t_{\lambda}^* \right\|,$$

which is nonzero by (8.1).

We now define our matrix units. First note that (7.1) for the Toeplitz-Cuntz-Krieger family $\{t_{\lambda}\}$ implies that the range projections $t_{\lambda}t_{\lambda}^*$ commute with each other. Thus for every finite subset *F* of E^1 and every $\lambda \in \lor F$, the operator $Q_{\lambda}^{\lor F}$ defined by

$$Q_{\lambda}^{\vee F} := t_{\lambda} t_{\lambda}^{*} \Big(\prod_{\lambda \alpha \in \vee F, \, d(\alpha) \neq e} (t_{s(\lambda)} - t_{\lambda \alpha} t_{\lambda \alpha}^{*}) \Big)$$

is a projection which commutes with every $t_{\mu}t_{\mu}^{*}$.

PROPOSITION 8.6. Let *F* be a finite subset of E^1 such that $\lambda \in F$ implies $s(\lambda) \in F$. Then $\{Q_{\lambda}^{\vee F} : \lambda \in \vee F\}$ is a collection of nonzero mutually orthogonal projections in *B* such that span $\{Q_{\lambda}^{\vee F} : \lambda \in \vee F\} = \text{span}\{t_{\lambda}t_{\lambda}^* : \lambda \in \vee F\}$. In particular,

(8.2)
$$\sum_{\lambda \in \vee F} Q_{\lambda}^{\vee F} = \sum_{v \in s(F)} t_v$$

The key to proving Proposition 8.6 is establishing (8.2), which we do by induction on |F|. This requires two technical lemmas.

LEMMA 8.7. Let *F* be as in Proposition 8.6, suppose $\lambda \in F \setminus E^0$ and let $G := F \setminus \{\lambda\}$. Then for every $\gamma \in \lor F \setminus \lor G$ there is a unique $\mu_{\gamma} \in \lor G$ such that $\gamma(e, d(\mu_{\gamma})) = \mu_{\gamma}$ and

(8.3) *if*
$$\mu \in \forall G$$
 and $\gamma(e, d(\mu)) = \mu$ then $d(\mu) \leq d(\mu_{\gamma})$.

We then have $\gamma \in MCE(\mu_{\gamma}, \lambda)$ *; in particular,* $d(\gamma) = d(\mu_{\gamma}) \lor d(\lambda)$ *.*

Proof. For $\gamma \in \forall F \setminus \forall G$, let $(\forall G)_{\gamma} := \{\mu \in \forall G : \gamma(e, d(\mu)) = \mu\}$, which is nonempty because $s(\gamma) \in (\forall G)_{\gamma}$. For every $\mu \in (\forall G)_{\gamma}$, $d(\mu) \leq d(\gamma)$, so

d := \bigvee $d(\mu)$ satisfies $d \leq d(\gamma)$. Lemma 8.4(iv) shows that $\gamma(e, d) \in \forall G$, and $\mu \in (\vee G)_{\gamma}$ then $\mu_{\gamma} := \gamma(e, d)$ has the required property. To see that $\gamma \in MCE(\mu_{\gamma}, \lambda)$, notice

that $\gamma \in \forall F \setminus \forall G$ implies $\gamma \in MCE(\mu, \lambda)$ for some $\mu \in \forall G$. Thus $\mu \in (\forall G)_{\gamma}$, $d(\mu) \leq d(\mu_{\gamma})$, and

$$d(\gamma) = d(\mu) \lor d(\lambda) \leqslant d(\mu_{\gamma}) \lor d(\lambda).$$

On the other hand, we have $d(\gamma) \ge d(\mu_{\gamma})$ by definition, and $d(\gamma) \ge d(\lambda)$ since $\gamma \in MCE(\lambda, \mu)$. Hence $d(\gamma) = d(\mu_{\gamma}) \lor d(\lambda)$, and $\gamma \in MCE(\mu_{\gamma}, \lambda)$.

LEMMA 8.8. Let F be as in Proposition 8.6, suppose $\lambda \in F \setminus E^0$ and let G := $F \setminus \{\lambda\}$. Then for each $\delta \in \lor F \setminus \lor G$,

(8.4)
$$Q_{\delta}^{\forall F} = Q_{\mu_{\delta}}^{\forall G} t_{\delta} t_{\delta}^{*}.$$

Proof. We shall show that

- (i) $Q_{\delta}^{\vee F} = Q_{\mu_{\delta}}^{\vee G} Q_{\delta}^{\vee F}$, and (ii) $Q_{\mu_{\delta}}^{\vee G} t_{\delta \varepsilon} t_{\delta \varepsilon}^{*} = 0$ whenever $\delta \varepsilon \in \vee F$ and $d(\varepsilon) \neq e$,

and then use these to prove (8.4).

To prove (i), let $\delta \in \forall F \setminus \forall G$. Since $t_{\mu_{\delta}} t_{\mu_{\delta}}^* \ge t_{\delta} t_{\delta}^*$,

$$Q_{\mu_{\delta}}^{\vee G} Q_{\delta}^{\vee F} = t_{\delta} t_{\delta}^* \Big(\prod_{\mu_{\delta} \nu \in \vee G, \, d(\nu) \neq e} (t_{s(\delta)} - t_{\mu_{\delta} \nu} t_{\mu_{\delta} \nu}^*) \Big) Q_{\delta}^{\vee F}.$$

Suppose $\mu_{\delta}\nu \in \forall G$ and $d(\nu) \neq e$. Then

$$t_{\delta}t^*_{\delta}(t_{s(\delta)} - t_{\mu_{\delta}\nu}t^*_{\mu_{\delta}\nu}) = t_{\delta}t^*_{\delta} - \sum_{\gamma \in \mathrm{MCE}(\delta, \mu_{\delta}\nu)} t_{\gamma}t^*_{\gamma} \quad \text{by (7.1)}.$$

Now suppose $\gamma \in MCE(\delta, \mu_{\delta}\nu)$. Then $d(\mu_{\gamma}) \ge d(\mu_{\delta}\nu)$ because $\mu_{\delta}\nu \in \forall G$, and $d(\mu_{\delta}\nu) > d(\mu_{\delta})$ because $d(\nu) \neq e$. In particular $\gamma \neq \delta$. But $\gamma(e, d(\delta)) = \delta$ because $\gamma \in MCE(\delta, \mu_{\delta}\nu)$. Hence there exists $\varepsilon \in E^1$ such that $d(\varepsilon) \neq e$ and $\gamma = \delta \varepsilon$. Since δ and $\mu_{\delta}\nu$ are in $\forall F$, Lemma 8.4(iv) ensures that $\gamma \in \forall F$, so $t_{s(\delta)} - t_{\gamma}t_{\gamma}^*$ is a factor in $Q_{\delta}^{\vee F}$, and $t_{\gamma}t_{\gamma}^{*}Q_{\delta}^{\vee F} = 0$. Thus

$$t_{\delta}t_{\delta}^{*}(t_{s(\delta)}-t_{\mu_{\delta}\nu}t_{\mu_{\delta}\nu}^{*})Q_{\delta}^{\vee F}=t_{\delta}t_{\delta}^{*}Q_{\delta}^{\vee F}-\Big(\sum_{\gamma\in\mathrm{MCE}(\delta,\mu_{\delta}\nu)}t_{\gamma}t_{\gamma}^{*}\Big)Q_{\delta}^{\vee F}=Q_{\delta}^{\vee F}.$$

Applying this equation to each $\mu_{\delta} \nu \in \forall G$ with $d(\nu) \neq e$ establishes (i).

To prove (ii), suppose that $\delta \varepsilon \in \forall F$ with $d(\varepsilon) \neq e$. Then $\mu_{\delta \varepsilon} \in \forall G$, and $\mu_{\delta \varepsilon} \neq e$ μ_{δ} : if $\mu_{\delta\varepsilon} = \mu_{\delta}$, then $d(\delta\varepsilon) = d(\lambda) \lor d(\mu_{\delta\varepsilon}) = d(\lambda) \lor d(\mu_{\delta}) = d(\delta)$, contradicting $d(\varepsilon) \neq e$. However, $(\delta \varepsilon)(e, d(\mu_{\delta})) = \delta(e, d(\mu_{\delta})) = \mu_{\delta}$, so Lemma 8.7 implies that $d(\mu_{\delta}) < d(\mu_{\delta\varepsilon})$, and $\mu_{\delta\varepsilon} = \mu_{\delta}\alpha$ for some α with $d(\alpha) \neq e$. Since $\mu_{\delta\varepsilon} \in \forall G$, it follows that

$$Q_{\mu_{\delta}}^{\vee G} t_{\delta\varepsilon} t_{\delta\varepsilon}^* \leqslant (t_{s(\mu_{\delta})} - t_{\mu_{\delta}\alpha} t_{\mu_{\delta}\alpha}^*) t_{\delta\varepsilon} t_{\delta\varepsilon}^*,$$

which vanishes because $\mu_{\delta} \alpha = (\delta \varepsilon)(e, d(\mu_{\delta \varepsilon}))$. This gives (ii).

To finish off, we compute:

$$\begin{aligned} Q_{\delta}^{\vee F} &= Q_{\mu_{\delta}}^{\vee G} Q_{\delta}^{\vee F} \quad \text{by (i)} \\ &= Q_{\mu_{\delta}}^{\vee G} \Big(\prod_{\delta \varepsilon \in \vee F, d(\varepsilon) \neq e} (t_{s(\mu_{\delta})} - t_{\delta \varepsilon} t_{\delta \varepsilon}^*) \Big) t_{\delta} t_{\delta}^* \\ &= Q_{\mu_{\delta}}^{\vee G} t_{\delta} t_{\delta}^* \quad \text{by (ii).} \quad \blacksquare \end{aligned}$$

Proof of Proposition 8.6. The $Q_{\lambda}^{\vee F}$ are nonzero by Lemma 8.5. To see that the $Q_{\lambda}^{\vee F}$ are orthogonal, suppose that $\lambda \neq \mu \in \vee F$. If $d(\lambda) = d(\mu)$ then $Q_{\lambda}^{\vee F}Q_{\mu}^{\vee F} \leq t_{\lambda}t_{\lambda}^{*}t_{\mu}t_{\mu}^{*} = 0$ by (iv) of Definition 7.1. So suppose that $d(\lambda) \neq d(\mu)$. We can assume without loss of generality that $d(\lambda) \vee d(\mu) > d(\lambda)$. Then $\gamma \in \text{MCE}(\lambda, \mu)$ implies $\gamma = \lambda \alpha$ where $d(\alpha) \neq e$, and $\gamma \in \vee F$ by Lemma 8.4(iv). Thus (7.1) shows that

$$Q_{\lambda}^{\vee F}Q_{\mu}^{\vee F} \leqslant \Big(\sum_{\gamma \in \mathrm{MCE}(\lambda,\mu)} t_{\gamma}t_{\gamma}^{*}\Big)Q_{\lambda}^{\vee F} = 0.$$

Assuming that (8.2) has been established, let $\lambda \in \lor F$ and calculate:

(8.5)
$$t_{\lambda}t_{\lambda}^{*} = t_{\lambda}t_{\lambda}^{*}\left(\sum_{\mu\in\forall F}Q_{\mu}^{\forall F}\right) \text{ by (8.2)}$$
$$= \sum_{\mu\in\forall F}\left(t_{\lambda}t_{\lambda}^{*}t_{\mu}t_{\mu}^{*}\left(\prod_{\mu\alpha\in\forall F,d(\alpha)\neq e}(t_{s(\mu)}-t_{\mu\alpha}t_{\mu\alpha}^{*})\right)\right)$$
$$= \sum_{\mu\in\forall F}\left(\left(\sum_{\gamma\in\mathsf{MCE}(\lambda,\mu)}t_{\gamma}t_{\gamma}^{*}\right)\left(\prod_{\mu\alpha\in\forall F,d(\alpha)\neq e}(t_{s(\mu)}-t_{\mu\alpha}t_{\mu\alpha}^{*})\right)\right).$$

Suppose $\mu \in \forall F$ and $\mu \neq \lambda \lambda'$ for any path λ' , and also suppose that $\gamma \in MCE(\lambda, \mu)$. Lemma 8.4(iv) ensures that $\gamma \in \forall F$, and $\gamma \neq \mu$ because $\mu \neq \lambda \lambda'$. Thus $\gamma = \mu \alpha$ for some path α such that $d(\alpha) \neq e$. Hence the product in (8.5) vanishes for such μ , and (8.5) collapses to

$$t_{\lambda}t_{\lambda}^* = \sum_{\lambda\lambda' \in \vee F} Q_{\lambda\lambda'}^{\vee F}.$$

It therefore suffices to establish (8.2). Indeed, $Q_{\lambda}^{\vee F} \leq s(\lambda)$ for all λ , so Lemma 8.4(ii) shows that it suffices to establish (8.2) when $F \subset s^{-1}(v)$ for some $v \in E^0$. We do this by induction on |F|. Recall that $\lambda \in F$ implies $s(\lambda) \in F$, so if |F| = 1 then $F = \vee F = \{v\}$ and $Q_v^{\vee F} = t_v$.

Suppose that $|F| = k + 1 \ge 2$, and that the proposition holds for all subsets of $s^{-1}(v)$ containing v and having at most k elements. Since |F| > 1 there exists $\lambda \neq v$ in F. Let $G := F \setminus \{\lambda\}$. For $\mu \in \lor G$, we have

$$Q_{\mu}^{\vee F} = t_{\mu}t_{\mu}^{*}\Big(\prod_{\mu\alpha\in\vee G,\,d(\alpha)\neq e}(t_{\upsilon}-t_{\mu\alpha}t_{\mu\alpha}^{*})\Big)\Big(\prod_{\gamma=\mu\beta\in\vee F\setminus\vee G}(t_{\upsilon}-t_{\gamma}t_{\gamma}^{*})\Big).$$

Suppose that $t_v - t_\gamma t_\gamma^*$ is a factor in the second product and $\mu_\gamma \neq \mu$. Then $\mu_\gamma = \mu \alpha$ for some α such that $d(\alpha) \neq e$ because μ_γ is the maximal subpath of γ in $\lor G$. Thus

 $t_v - t_\gamma t_\gamma^*$ is larger than the factor $t_v - t_{\mu\gamma} t_{\mu\gamma}^*$ from the first product. So such terms in the second product can be deleted without changing the product, and we have

$$Q_{\mu}^{\vee F} = Q_{\mu}^{\vee G} \Big(\prod_{\gamma \in \vee F \setminus \vee G, \, \mu_{\gamma} = \mu} (t_v - t_{\gamma} t_{\gamma}^*) \Big).$$

Thus

$$\begin{split} \sum_{\lambda \in \forall F} Q_{\lambda}^{\forall F} &= \sum_{\mu \in \forall G} Q_{\mu}^{\forall G} \Big(\prod_{\gamma \in \forall F \setminus \forall G, \ \mu_{\gamma} = \mu} (t_{v} - t_{\gamma} t_{\gamma}^{*}) \Big) + \sum_{\delta \in \forall F \setminus \forall G} Q_{\delta}^{\forall F} \\ &= \sum_{\mu \in \forall G} \Big(Q_{\mu}^{\forall G} \Big(\prod_{\gamma \in \forall F \setminus \forall G, \ \mu_{\gamma} = \mu} (t_{v} - t_{\gamma} t_{\gamma}^{*}) \Big) + \sum_{\delta \in \forall F \setminus \forall G, \ \mu_{\delta} = \mu} Q_{\delta}^{\forall F} \Big) \end{split}$$

by Lemma 8.7, and Lemma 8.8 gives

$$\sum_{\lambda \in \vee F} Q_{\lambda}^{\vee F} = \sum_{\mu \in \vee G} \left(Q_{\mu}^{\vee G} \Big(\prod_{\gamma \in \vee F \setminus \vee G, \, \mu_{\gamma} = \mu} (t_{v} - t_{\gamma} t_{\gamma}^{*}) \Big) + \sum_{\delta \in \vee F \setminus \vee G, \, \mu_{\delta} = \mu} Q_{\mu\delta}^{\vee G} t_{\delta} t_{\delta}^{*} \Big)$$

$$(8.6) \qquad = \sum_{\mu \in \vee G} Q_{\mu}^{\vee G} \Big(\Big(\prod_{\gamma \in \vee F \setminus \vee G, \, \mu_{\gamma} = \mu} (t_{v} - t_{\gamma} t_{\gamma}^{*}) \Big) + \sum_{\delta \in \vee F \setminus \vee G, \, \mu_{\delta} = \mu} t_{\delta} t_{\delta}^{*} \Big).$$

If $\mu \in \lor G$ and $\delta \in \lor F \setminus \lor G$ satisfies $\mu_{\delta} = \mu$, then Lemma 8.7 implies that $d(\delta) = d(\mu) \lor d(\lambda)$. Thus $\{t_{\delta}t_{\delta}^* : \mu_{\delta} = \mu\}$ are mutually orthogonal, and (8.6) is just $\sum_{\mu \in \lor G} Q_{\mu}^{\lor G}$. Applying the inductive hypothesis to *G* now establishes (8.2) for the given *F*.

PROPOSITION 8.9. There is a norm-decreasing linear map

$$\Phi^B: C^*(\{t_\lambda: \lambda \in E^1\}) \to \overline{\operatorname{span}}\{t_\lambda t_\lambda^*: \lambda \in E^1\}$$

such that $\Phi^B \circ \pi_t = \pi_t \circ \Phi^E$.

Proof. It suffices to show that if $F \subset E^1$ is finite and $\{\alpha_{\lambda,\mu} : \lambda, \mu \in F\} \subset \mathbb{C}$, then $\left\|\sum_{\lambda,\mu\in F} \alpha_{\lambda,\mu} t_{\lambda} t_{\mu}^*\right\| \ge \left\|\sum_{\lambda\in F} \alpha_{\lambda,\lambda} t_{\lambda} t_{\lambda}^*\right\|$.

Since $\sum_{\gamma \in F} Q_{\gamma}^{\vee F} = \sum_{v \in s(F)} t_v$ and the $Q_{\gamma}^{\vee F}$ commute with the $t_{\lambda} t_{\lambda}^*$, there exists $\gamma \in \vee F$ such that

(8.7)
$$\left\| Q_{\gamma}^{\vee F} \Big(\sum_{\lambda \in F} \alpha_{\lambda,\lambda} t_{\lambda} t_{\lambda}^{*} \Big) \right\| = \left\| \sum_{\lambda \in F} \alpha_{\lambda,\lambda} t_{\lambda} t_{\lambda}^{*} \right\|.$$

If $\lambda \in F$ and $\gamma \neq \lambda\beta$ for any β , then $\delta \in MCE(\lambda, \gamma)$ implies $d(\delta) > d(\gamma)$, giving

$$Q_{\gamma}^{\vee F}t_{\lambda} = Q_{\gamma}^{\vee F}t_{\lambda}t_{\lambda}^{*}t_{\lambda} = \Big(\prod_{\gamma\beta\in\vee F,\,d(\beta)\neq e}(t_{\gamma}t_{\gamma}^{*}-t_{\gamma\beta}t_{\gamma\beta}^{*})\Big)\Big(\sum_{\delta\in\mathrm{MCE}(\gamma,\lambda)}t_{\delta}t_{\delta}^{*}\Big)t_{\lambda} = 0.$$

Thus

$$Q_{\gamma}^{\vee F} \Big(\sum_{\lambda,\mu \in F} \alpha_{\lambda,\mu} t_{\lambda} t_{\mu}^{*} \Big) Q_{\gamma}^{\vee F} = Q_{\gamma}^{\vee F} \Big(\sum_{\substack{\lambda,\mu \in F \\ \gamma(e,d(\lambda)) = \lambda \\ \gamma(e,d(\mu)) = \mu}} \alpha_{\lambda,\mu} t_{\lambda} t_{\mu}^{*} \Big) Q_{\gamma}^{\vee F}.$$

In particular, notice that for $\lambda \in \lor F$,

(8.8)
$$Q_{\gamma}^{\vee F} t_{\lambda} t_{\lambda}^{*} = \begin{cases} Q_{\gamma}^{\vee F} & \text{if } d(\gamma) \ge d(\lambda) \text{ and } \gamma(e, d(\lambda)) = \lambda, \\ 0 & \text{otherwise.} \end{cases}$$

We will replace $Q_{\gamma}^{\vee F}$ with a smaller nonzero projection Q_{γ} so that the remaining off-diagonal terms are eliminated. Since $0 < Q_{\gamma} \leq Q_{\gamma}^{\vee F}$, we will then have

(8.9)
$$Q_{\gamma}t_{\lambda}t_{\lambda}^{*} = \begin{cases} Q_{\gamma} & \text{if } d(\gamma) \ge d(\lambda) \text{ and } \gamma(e, d(\lambda)) = \lambda, \\ 0 & \text{otherwise,} \end{cases}$$

which, in conjunction with (8.8), will imply that

(8.10)
$$\left\| Q_{\gamma} \Big(\sum_{\lambda \in F} \alpha_{\lambda,\lambda} t_{\lambda} t_{\lambda}^{*} \Big) \right\| = \Big| \sum_{\substack{\lambda \in F, d(\lambda) \leq d(\gamma), \\ \gamma(e,d(\lambda)) = \lambda}} \alpha_{\lambda,\lambda} \Big| = \Big\| Q_{\gamma}^{\vee F} \Big(\sum_{\lambda \in F} \alpha_{\lambda,\lambda} t_{\lambda} t_{\lambda}^{*} \Big) \Big\|.$$

To produce Q_{γ} , we consider pairs $\lambda, \mu \in \forall F$ such that $\gamma(e, d(\lambda)) = \lambda$ and $\gamma(e, d(\mu)) = \mu$. For each such (λ, μ) , factorise γ as $\lambda\lambda' = \gamma = \mu\mu'$, and define

$$d_{\gamma}(\lambda,\mu) := \{ \sigma : \sigma = \delta(d(\lambda'), d(\delta)) \text{ or } \sigma = \delta(d(\mu'), d(\delta))$$

for some $\delta \in \text{MCE}(\lambda', \mu') \}.$

Now λ' and μ' are uniquely determined by λ , μ and γ , each MCE(λ', μ') is finite, and $\delta(d(\lambda'), d(\delta))$ and $\delta(d(\mu'), d(\delta))$ are uniquely determined by $\delta \in MCE(\lambda', \mu')$, so each $d_{\gamma}(\lambda, \mu)$ is finite. Let

$$Q_{\gamma} := Q_{\gamma}^{\vee F} \prod_{\substack{\lambda \neq \mu \in \vee F, \, \gamma(e,d(\lambda)) = \lambda, \\ \gamma(e,d(\mu)) = \mu, \, \sigma \in d_{\gamma}(\lambda,\mu)}} (t_{\gamma}t_{\gamma}^* - t_{\gamma\sigma}t_{\gamma\sigma}^*).$$

Lemma 8.5 implies $Q_{\gamma} > 0$, and $Q_{\gamma} \leq Q_{\gamma}^{\vee F}$ by definition, so we have (8.9) and (8.10). For $\lambda, \mu \in \vee F$ with $\lambda \lambda' = \gamma = \mu \mu'$ and $\lambda \neq \mu$, we calculate:

$$Q_{\gamma}t_{\lambda}t_{\mu}^{*}Q_{\gamma} = Q_{\gamma}(t_{\lambda}(t_{\lambda'}t_{\lambda'}^{*}t_{\mu'}t_{\mu'}^{*})t_{\mu}^{*})Q_{\gamma}$$
$$= Q_{\gamma}\Big(t_{\lambda}\Big(\sum_{\nu \in \mathrm{MCE}(\lambda',\mu')}t_{\nu}t_{\nu}^{*}\Big)t_{\mu}^{*}\Big)Q_{\gamma},$$

which vanishes because $\nu \in MCE(\lambda', \mu')$ implies that $\lambda \nu = \gamma \sigma$ for some $\sigma \in d_{\gamma}(\lambda, \mu)$. Thus

$$\begin{split} \left\| \sum_{\lambda,\mu\in F} \alpha_{\lambda,\mu} t_{\lambda} t_{\mu}^{*} \right\| &\geq \left\| Q_{\gamma} \Big(\sum_{\lambda,\mu\in F} \alpha_{\lambda,\mu} t_{\lambda} t_{\mu}^{*} \Big) Q_{\gamma} \right\| \\ &= \left\| Q_{\gamma} \Big(\sum_{\lambda\in F} \alpha_{\lambda,\lambda} t_{\lambda} t_{\lambda}^{*} \Big) Q_{\gamma} \right\| \\ &= \left\| Q_{\gamma}^{\vee F} \Big(\sum_{\lambda\in F} \alpha_{\lambda,\lambda} t_{\lambda} t_{\lambda}^{*} \Big) \right\| \quad \text{by (8.10)} \\ &= \left\| \sum_{\lambda\in F} \alpha_{\lambda,\lambda} t_{\lambda} t_{\lambda}^{*} \right\| \quad \text{by (8.7).} \quad \bullet \end{split}$$

Proof of Theorem 8.1. It suffices to show that if *F* is a finite subset of E^1 and

$$a = \sum_{\lambda,\mu\in F} \alpha_{\lambda,\mu} s_{\lambda} s_{\mu}^*$$

then $\pi_t(a) = 0$ implies a = 0. Suppose $\pi_t(a) = 0$. Then $\pi_t(a^*a) = 0$, $\Phi^B(\pi_t(a^*a)) = 0$, and Proposition 8.9 implies that $\pi_t(\Phi^E(a^*a)) = 0$. Now $\Phi^E(a^*a)$ belongs to $D := \text{span}\{s_\lambda s^*_\lambda : \lambda \in \forall F\}$, and applying Proposition 8.6 to the universal Toeplitz-Cuntz-Krieger *E*-family $\{s_\lambda\}$ shows that *D* is a finite-dimensional diagonal matrix algebra with matrix units

$$\Big\{e_{\lambda,\lambda}:=s_{\lambda}s_{\lambda}^{*}\Big(\prod_{\lambda\alpha\in\vee F,\,d(\alpha)\neq e}(s_{s(\lambda)}-s_{\lambda\alpha}s_{\lambda\alpha}^{*})\Big):\lambda\in\vee F\Big\}.$$

Lemma 8.5 implies that $\pi_t(e_{\lambda,\lambda}) \neq 0$ for $\lambda \in \forall F$, so π_t is faithful on D. In particular $\|\Phi^E(a^*a)\| = \|\pi_t(\Phi^E(a^*a))\| = 0$. Proposition 8.2 now shows that $a^*a = 0$, and hence a = 0.

9. THE C*-ALGEBRA OF AN INFINITE k-GRAPHS

We show how the finitely-aligned hypothesis, relation (v) of Definition 7.1, and the hypothesis (8.1) in Theorem 8.1 all simplify when the underlying semigroup is \mathbb{N}^k . We then prove a uniqueness theorem for the *C*^{*}-algebras of *k*-graphs in which every vertex receives infinitely many paths of every degree.

9.1. PRODUCT SYSTEMS OF GRAPH OVER \mathbb{N}^k .

LEMMA 9.1. Let (E, φ) be a product system of graphs over \mathbb{N}^k . Then (E, φ) is finitely aligned if and only if

(9.1) MCE (μ, ν) is finite for every pair $\mu \in E_{e_i}^1$ and $\nu \in E_{e_i}^1$ with $i \neq j$.

Proof. Every finitely aligned system trivially satisfies (9.1). For the reverse implication, suppose *E* satisfies (9.1). Then MCE(μ , ν) is finite whenever $|d(\mu) \vee$

 $|d(\nu)| \leq 2$. Suppose as an inductive hypothesis that MCE(μ, ν) is finite whenever $|d(\mu) \lor d(\nu)| \leq n$, and consider $\mu \in E_p^1, \nu \in E_q^1$ with $|p \lor q| = n + 1$.

If the coordinate-wise minimum $p \land q$ of p and q is nonzero, then either $\mu(0, p \land q) \neq \nu(0, p \land q)$, in which case the factorisation property implies MCE(μ, ν) = \emptyset , or

$$MCE(\mu,\nu) = \{\mu(0,p \land q)\gamma : \gamma \in MCE(\mu(p \land q,p),\nu(p \land q,q))\}$$

is finite by the inductive hypothesis. Thus we may assume that $p \land q = 0$, and hence that $p \lor q = p + q$. If $p \ge q$ or $q \ge p$ then MCE(μ, ν) has at most one element. So we may further assume that there exist $i \ne j$ such that $p_i > q_i$ and $q_j > p_j$. Since $p \land q = 0$, this implies that $p_j = q_i = 0$.

Now let $\gamma \in MCE(\mu, \nu)$. Then $d(\gamma) - e_i = p + q - e_i = (p - e_i) \lor q$ since $q_i = 0$. Thus $\gamma_i := \gamma(0, d(\gamma) - e_i)$ satisfies

$$\gamma_i(0, p - e_i) = \gamma(0, p - e_i) = \mu(0, p - e_i)$$
 and $\gamma_i(0, q) = \gamma(0, q) = \nu$,

so $\gamma_i \in MCE(\mu(0, p - e_i), \nu)$. Similarly, $\gamma_j := \gamma(0, d(\gamma) - e_j) \in MCE(\mu, \nu(0, q - e_j))$. But now $p \lor q = d(\gamma_i) + e_i = d(\gamma_j) + e_j$, and since $i \neq j$, it follows that $d(\gamma) = d(\gamma_i) \lor d(\gamma_j)$. Furthermore, $\gamma(0, d(\gamma_i)) = \gamma_i$ and $\gamma(0, d(\gamma_j)) = \gamma_j$, so $\gamma \in MCE(\gamma_i, \gamma_j)$. Hence

$$|\mathsf{MCE}(\mu,\nu)| \leqslant \sum_{\substack{\gamma_i \in \mathsf{MCE}(\mu(0,p-e_i),\nu)\\\gamma_i \in \mathsf{MCE}(\mu,\nu(0,q-e_i))}} |\mathsf{MCE}(\gamma_i,\gamma_j)|.$$

By the inductive hypothesis, $MCE(\mu(0, p - e_i), \nu)$ and $MCE(\mu, \nu(0, q - e_j))$ are finite, so the sum has only finitely many terms. Thus we take $\gamma_i \in MCE(\mu(0, p - e_i), \nu)$ and $\gamma_j \in MCE(\mu, \nu(0, q - e_j))$, and show that $MCE(\gamma_i, \gamma_j)$ is finite. If it is nonempty, then the initial segments of degree $(p \lor q) - e_i - e_j$ of γ_i and γ_j are the same; call it β , and write $\gamma_i = \beta \gamma'_i$, $\gamma_j = \beta \gamma'_j$. Then $d(\gamma'_i) = e_i$ and $d(\gamma'_j) = e_j$, so $|MCE(\gamma_i, \gamma_j)| = |MCE(\gamma'_i, \gamma'_i)|$ is finite by (9.1).

LEMMA 9.2. Let (E, φ) be a finitely aligned product system of graphs over \mathbb{N}^k . Then a Toeplitz E-family $\{t_\lambda\}$ is a Toeplitz-Cuntz-Krieger E-family if and only if

(9.2)
$$t^*_{\mu}t_{\nu} = \sum_{\mu\alpha = \nu\beta \in \mathrm{MCE}(\mu,\nu)} t_{\alpha}t^*_{\beta}$$

for every $\mu \in E_{e_i}^1$ and $\nu \in E_{e_i}^1$ with $s(\mu) = s(\nu)$ and $i \neq j$.

Proof. Since (9.2) is a special case of Definition 7.1(v), we have to show that (9.2) implies Definition 7.1(v). If $|d(\mu) \lor d(\nu)| \le 2$, this is trivially true. Suppose as an inductive hypothesis that (6.4) holds whenever $|d(\mu) \lor d(\nu)| \le n$ for some $n \ge 2$. Suppose $\mu \in E_p^1$ and $\nu \in E_q^1$ where p and q satisfy $|p \lor q| = n + 1$. We give separate arguments for $p \land q \ne 0$ and $p \land q = 0$.

(9.3)
If
$$p \wedge q \neq 0$$
, then
 $t_{\mu}^{*}t_{\nu} = t_{\mu(p \wedge q, p)}^{*}t_{\mu(0, p \wedge q)}^{*}t_{\nu(0, p \wedge q)}t_{\nu(p \wedge q, q)}$
 $= \begin{cases} t_{\mu(p \wedge q, p)}^{*}t_{\nu(p \wedge q, q)} & \text{if } \mu(0, p \wedge q) = \nu(0, p \wedge q), \\ 0 & \text{otherwise.} \end{cases}$

The set MCE(μ , ν) is empty unless $\mu(0, p \land q) = \nu(0, p \land q)$, and if so we have

$$MCE(\mu,\nu) = \{\mu(0,p \land q)\gamma : \gamma \in MCE(\mu(p \land q,p),\nu(p \land q,q))\}.$$

Applying the inductive hypothesis to (9.3) gives Definition 7.1(v).

Now suppose $p \land q = 0$, or equivalently that $p \lor q = p + q$. Since $|p \lor q| \ge 3$, we can assume that $|q| \ge 2$. If $p \ge q$ then (6.4) is trivial, so we may further assume that there exists *i* such that $q_i > p_i$, and then $p \land q = 0$ forces $p_i = 0$. In particular, $|p \lor (q - e_i)| = n$, and the inductive hypothesis gives

$$t_{\mu}^{*}t_{\nu} = t_{\mu}^{*}t_{\nu(0,q-e_{i})}t_{\nu(q-e_{i},q)} = \Big(\sum_{\mu\delta = \nu(0,q-e_{i})\varepsilon \in \text{MCE}(\mu,\nu(0,q-e_{i}))} t_{\delta}t_{\varepsilon}^{*}\Big)t_{\nu(q-e_{i},q)}$$

Each ε appearing in this sum has $d(\varepsilon) = p$, so $d(\varepsilon) \lor d(\nu(q - e_i, q) = p + e_i)$, which has length at most n because $|q| \ge 2$. Thus we can apply the inductive hypothesis to each summand to get

(9.4)
$$t_{\mu}^{*}t_{\nu} = \sum_{\substack{\mu\delta = \nu(0, q-e_{i})\varepsilon \in \text{MCE}(\mu, \nu(0, q-e_{i}))\\\varepsilon\sigma = \nu(q-e_{i}, q)\tau \in \text{MCE}(\varepsilon, \nu(q-e_{i}, q))}} t_{\delta\sigma}t_{\tau}^{*}.$$

It remains to show that the pairs ($\delta \sigma$, τ) arising in this sum are precisely the pairs (α , β) arising in the right-hand side of (6.4). Given ($\delta \sigma$, τ), we certainly have

$$\mu\delta\sigma=\nu(0,q-e_i)\varepsilon\sigma=\nu(0,q-e_i)\nu(q-e_i,q)\tau=\nu\tau,$$

and $d(\delta\sigma) = d(\delta) + d(\sigma) = q - e_i + e_i = q$, so $\mu\delta\sigma \in MCE(\mu, \nu)$. Conversely, given (α, β) , we take $\delta := \alpha(0, q - e_i), \sigma := \alpha(q - e_i, q)$ and $\tau := \beta$.

LEMMA 9.3. Let *E* be a finitely aligned product system of graphs over \mathbb{N}^k . Then a Toeplitz *E*-family $\{t_\lambda\}$ satisfies (8.1) if and only if

(9.5)
$$\prod_{m=1}^{k} \left(t_v - \sum_{\lambda \in G_m} t_\lambda t_\lambda^* \right) > 0$$

for every choice of finite sets $G_m \subset s_{e_m}^{-1}(v)$.

Proof. The necessity of (9.5) is obvious. Suppose (9.5) holds, and R, v and F_p are as in Theorem 8.1. For $p \in R$, choose i_p such that $p_{i_p} > 0$, and for each m, set

$$G_m := \bigcup_{\{p \in R: i_p = m\}} \{\lambda(0, e_m) : \lambda \in F_p\}.$$

Then each G_m is a finite subset of $s_{e_m}^{-1}(v)$, and

$$\begin{split} \prod_{p \in R} \left(t_v - \sum_{\lambda \in F_p} t_\lambda t_\lambda^* \right) &\ge \prod_{p \in R} \left(t_v - \sum_{\lambda \in F_p} t_{\lambda(0, e_{i_p})} t_{\lambda(0, e_{i_p})}^* \right) \\ &= \prod_{m=1}^k \left(t_v - \sum_{\mu \in G_m} t_\mu t_\mu^* \right), \end{split}$$

which is nonzero by (9.5).

9.2. THE C^* -ALGEBRA OF AN INFINITE *k*-GRAPH. If (Λ, d) is a *k*-graph, and $\lambda, \mu \in \Lambda$, we regard MCE $(\lambda, \mu) \subset (E_\Lambda)^1$ as a subset of Λ . In view of Lemma 9.2, we say that Λ is finitely aligned if MCE (λ, μ) is finite whenever $d(\lambda) = e_i$ and $d(\mu) = e_j$. By a Toeplitz-Cuntz-Krieger Λ -family we mean a Toeplitz-Cuntz-Krieger E_Λ -family. If Λ has no sources, so that the graphs in E_Λ have no sinks, then we define a Cuntz-Krieger Λ -family to be a Cuntz-Pimsner E_Λ -family. We have only made this last definition for *k*-graphs without sources to avoid clashing with the definitions given for row-finite graphs in [19]; for row-finite *k*-graphs without sources, therefore, our $C^*(E_\Lambda)$ coincides with the graph algebra $C^*(\Lambda)$ used in [13] and [19].

Recall that $\Lambda^n(v) := \{\lambda \in \Lambda : d(\lambda) = n \text{ and } \operatorname{cod}(\lambda) = v\}$. If $|\Lambda^{e_i}(v)| = \infty$ for every $v \in \Lambda^0$, and every $1 \leq i \leq k$, then conditions (vi) and (iv) of Definition 7.1 are equivalent, so Theorem 8.1 gives a uniqueness theorem for $C^*(\Lambda)$.

COROLLARY 9.4. Let (Λ, d) be a finitely aligned k-graph such that $|\Lambda^{e_i}(v)| = \infty$ for every $v \in \Lambda^0$ and $1 \leq i \leq k$. Let $\{t_{\lambda} : \lambda \in \Lambda\}$ be a Cuntz-Krieger Λ -family such that $t_v \neq 0$ for all $v \in \Lambda^0$. Then the representation π_t of $C^*(\Lambda) := C^*(E_\Lambda)$ is faithful.

Proof. That each $|\Lambda^{e_i}(v)| = \infty$ implies both that $C^*(E_\Lambda) = \mathcal{T}C^*(E_\Lambda)$, and that Λ has no sources, so that $C^*(\Lambda) := C^*(E_\Lambda)$. Lemma 9.1 implies that $(E_\Lambda, \varphi_\Lambda)$ is finitely aligned. To establish (8.1), we fix $v \in \Lambda^0$ and finite sets $G_m \subset \Lambda^{e_m}(v)$ for $1 \leq m \leq k$. By Lemma 9.3, it suffices to show that

$$\prod_{m=1}^k \left(t_v - \sum_{\lambda \in G_m} t_\lambda t_\lambda^* \right) > 0.$$

We shall construct paths $\mu_m \in \Lambda(v)$ of degree $\sum_{i=1}^m e_i$ for $m \leq k$ such that $\mu_m(0, e_i)$ does not belong to G_i for $1 \leq i \leq m$. We take μ_1 to be any edge of degree e_1 which is not in G_1 . If we have μ_m , then because the set $\Lambda^{e_{m+1}}(\operatorname{dom}(\mu_m))$ is infinite, there is a path $\mu_{m+1} = \mu_m \alpha$ of degree $\sum_{i=1}^{m+1} e_i$ which is not in the finite set $\bigcup_{\lambda \in G_{m+1}} \operatorname{MCE}(\mu_m, \lambda)$. Then $\mu_{m+1}(0, e_i) = \mu_m(0, e_i)$ is not in G_i for $i \leq m$, and $\mu_{m+1}(0, e_{m+1})$ cannot be in G_{m+1} because $\mu_{m+1} \in \operatorname{MCE}(\mu_m, \mu(0, e_{m+1}))$.

Now for $\lambda \in G_i$, we have MCE(λ, μ_k) = \emptyset , and relation (v) of Definition 7.1 in the form (7.1) gives $t_\lambda t_\lambda^* t_{\mu_k} t_{\mu_k}^* = 0$. Thus

$$\prod_{m=1}^{K} \left(t_v - \sum_{\lambda \in G_m} t_\lambda t_\lambda^* \right) t_{\mu_k} t_{\mu_k}^* = t_{\mu_k} t_{\mu_k}^*,$$

which is nonzero because $t_{\mu_k}^* t_{\mu_k} = t_{s(\mu_k)}$ is nonzero. Since \mathbb{Z}^k is amenable, the result now follows from Theorem 8.1.

Acknowledgements. This research was supported by the Australian Research Council.

REFERENCES

- W. ARVESON, Continuous analogues of Fock space, Mem. Amer. Math. Soc. 80(1989), No. 409.
- [2] J. CUNTZ, Simple C*-algebras generated by isometries, Comm. Math. Phys. 57(1977), 173–185.
- [3] J. CUNTZ, W. KRIEGER, A class of C*-algebras and topological Markov chains, *Invent. Math.* 56(1980), 251–268.
- [4] H.T. DINH, Discrete product systems and their C*-algebras, J. Funct. Anal. 102(1991), 1–34.
- [5] D. DRINEN, Viewing AF-algebras as graph algebras, Proc. Amer. Math. Soc. 128(2000), 1991–2000.
- [6] N.J. FOWLER, Compactly aligned product systems, and generalizations of O_∞, *Internat. J. Math.* **10**(1999), 721–738.
- [7] N.J. FOWLER, Discrete product systems of Hilbert bimodules, *Pacific J. Math.* 204 (2002), 335–375.
- [8] N.J. FOWLER, M. LACA, I. RAEBURN, The C*-algebras of infinite graphs, Proc. Amer. Math. Soc. 128(2000), 2319–2327.
- [9] N.J. FOWLER, I. RAEBURN, The Toeplitz algebra of a Hilbert bimodule, *Indiana Univ. Math. J.* 48(1999), 155–181.
- [10] N.J. FOWLER, A. SIMS, Product systems over right-angled Artin semigroups, *Trans. Amer. Math. Soc.* 354(2002), 1487–1509.
- [11] J.H. HONG, W. SZYMAŃSKI, Quantum spheres and projective spaces as graph algebras, *Comm. Math. Phys.* 232(2002), 157–188.
- [12] T. KAJIWARA, C. PINZARI, Y. WATATANI, Ideal structure and simplicity of the C*algebras generated by Hilbert bimodules, J. Funct. Anal. 159(1998), 295–322.
- [13] A. KUMJIAN, D. PASK, Higher rank graph C*-algebras, New York J. Math 6(2000), 1–20.

- [14] A. KUMJIAN, D. PASK, I. RAEBURN, Cuntz-Krieger algebras of directed graphs, Pacific J. Math. 184(1998), 161–174.
- [15] A. KUMJIAN, D. PASK, I. RAEBURN, J. RENAULT, Graphs, groupoids, and Cuntz-Krieger algebras, J. Funct. Anal. 144(1997), 505–541.
- [16] M. LACA, I. RAEBURN, Semigroup crossed products and the Toeplitz algebras of nonabelian groups, J. Funct. Anal. 139(1996), 415–440.
- [17] A. NICA, C*-algebras generated by isometries and Wiener-Hopf operators, J. Operator Theory 27(1992), 17–52.
- [18] M.V. PIMSNER, A class of C*-algebras generalizing both Cuntz-Krieger algebras and crossed products by Z, *Fields Inst. Commun.* **12**(1997), 189–212.
- [19] I. RAEBURN, A. SIMS, T. YEEND, Higher-rank graphs and their C*-algebras, Proc. Edinburgh Math. Soc. (2) 46(2003) 99–115.
- [20] I. RAEBURN, A. SIMS, T. YEEND, The C*-algebras of finitely aligned higher-rank graphs, J. Funct. Anal. 213(2004), 206–240.
- [21] G. ROBERTSON, T. STEGER, Affine buildings, tiling systems and higher rank Cuntz-Krieger algebras, J. Reine Angew. Math. 513(1999), 115–144.
- [22] W. SZYMAŃSKI, The range of *K*-invariants for C*-algebras of infinite graphs, *Indiana Univ. Math. J.* **51**(2002), 239–249.

IAIN RAEBURN, SCHOOL OF MATHEMATICAL AND PHYSICAL SCIENCES, UNI-VERSITY OF NEWCASTLE, CALLAGHAN, NSW 2308, AUSTRALIA *E-mail address*: Iain.Raeburn@frey.newcastle.edu.au

AIDAN SIMS, SCHOOL OF MATHEMATICAL AND PHYSICAL SCIENCES, UNIVER-SITY OF NEWCASTLE, CALLAGHAN, NSW 2308, AUSTRALIA *E-mail address*: Aidan.Sims@frey.newcastle.edu.au

Received May 13, 2003; revised March 4, 2004.