COMPACT TOEPLITZ OPERATORS WITH UNBOUNDED SYMBOLS

JOSEPH A. CIMA and ŽELJKO ČUČKOVIĆ

Communicated by Nikolai K. Nikolski

Abstract

We construct bounded Toeplitz operators on the Bergman space L_{a}^{2} on the unit disk, whose symbols are unbounded functions. These operators can be compact and in some cases Hilbert-Schmidt. In fact we show that for any (essentially unbounded) function $H \in L^{2}$ there is a set Γ in the unit disk such that the (essentially unbounded) function given by $h=\chi_{\Gamma} H$ is the symbol for a compact Toeplitz operator on L_{a}^{2}.

Keywords: Toeplitz operators, compact operators, Hilbert-Schmidt operators.
MSC (2000): 47B35.

INTRODUCTION

In this paper \mathbb{D} denotes the open unit disk in \mathbb{C} and L_{a}^{2} denotes the Bergman space of all holomorphic functions f on \mathbb{D} that are square-integrable with respect to the normalized Lebesgue area measure $d A$ on \mathbb{D}. For $f \in L^{2}(\mathbb{D}, d A)$ we let T_{f} denote the Toeplitz operator with symbol f on L_{a}^{2} defined by $T_{f} g=P(f g)$, where P denotes the orthogonal projection of $L^{2}(\mathbb{D}, d A)$ onto L_{a}^{2}. This operator is densely defined only, and it is well-known that a bounded symbol f induces a bounded operator T_{f} on L_{a}^{2} (Zhu's book [6] is a good reference for Toeplitz operators).

There are five papers that are related to our work and to this topic. In [1] Axler and Zheng characterize bounded symbols on \mathbb{D} that induce compact Toeplitz operators on the Bergman space (also see [5]). Their result involves the Berezin transform of the symbol. In [2] Grudsky and Vasilevski proved that Toeplitz operators T_{f} with radial symbols are bounded (compact) on the Bergman space L_{a}^{2} if and only if the sequence

$$
\gamma_{n}(f) \equiv \int_{0}^{1} f\left(r^{1 /(2 n+2)}\right) \mathrm{d} r
$$

belongs to $l_{\infty}\left(\mathbb{Z}_{+}\right)$(respectively to $C_{0}\left(\mathbb{Z}_{+}\right)$). In [7], Zorboska defined the so-called radial operators and found an oscillation criterion that guarantees that the compactness of a radial operator is equivalent to the vanishing of the Berezin transform on the unit circle. Finally, there is the result of Luecking [3]. In his paper Luecking considers measures μ on the disk and the induced Toeplitz operators (for a large class of Banach spaces of analytic functions) to determine which trace classes they belong to. In terms of our interests, his result uses a condition for measures relating the convergence of a series of terms of the form $\left[\frac{\mu\left(R_{i}\right)}{\left|R_{i}\right|^{2}}\right]^{2}$, where the sum is taken over certain dyadic cubes R_{i} related to Carleson squares in the disk. Luecking's conditions are also necessary if the measure is positive.

Our main results are related to these earlier results in the following way. First, we produce a family of "essentially" unbounded functions (see Section 2 for a definition) with a restricted growth, which are parametrized by real parameters, which depend on a geometric construction for sets in the disk and these induce Hilbert-Schmidt Toeplitz operators on L_{a}^{2}. We then show that for any function F in $L^{p}(\mathbb{D}, d A), p \geqslant 2$ we can choose a subset of \mathbb{D}, say E, for which the function $f=\chi_{E} F$ is essentially unbounded and induces a compact operator on L_{a}^{2}. This is our second main result. Also in the first set of examples we have been unable to adjust Luecking's method to apply to our work.

1. COMPACT AND HILBERT-SCHMIDT EXAMPLES

In this section we work with unbounded functions on the unit disk \mathbb{D} that satisfy certain growth conditions. We want to construct specific types of subdomains in \mathbb{D} such that these unbounded functions "blow up" on a set of positive measure on $\partial \mathbb{D}$, but the corresponding Toeplitz operators remain bounded, compact or even Hilbert-Schmidt. We start with a basic "cusp" domain $\Delta_{0}=\{z \in \mathbb{D}: 0<m<$ $\left.\operatorname{Re} z<1,0<\operatorname{Arg} z<(1-|z|)^{b}, b \geqslant 1\right\}$ with m and b to be specified later. For an arbitrary ξ_{j} on the unit circle, let Δ_{j} be the rotation of Δ_{0} to this point and dilate Δ_{0} so that $0<m_{j}<|z|<1$, for some m_{j}, and $0<\operatorname{Arg} z-\operatorname{Arg} \xi_{j}<(1-|z|)^{b}$. The sequence $\left\{\xi_{j}\right\}$ will correspond to the end points of a certain Cantor set. We construct the Cantor set in $[0,1]$ first, by taking $0<\delta<1$ and remove the middle centered interval of length $\frac{\delta}{2}$. From the remaining set consisting of two disjoint intervals, remove the center of these two intervals of length $\frac{\delta}{4}$ and repeat. This process produces a compact set of positive measure in $[0,1]$. Using the function $f(x)=\mathrm{e}^{2 \pi \mathrm{i} x}$, we map this Cantor set to the unit circle and ξ_{j} 's will be the images of the end points. Hence every Δ_{j} reaches the unit circle at ξ_{j} and we can choose Δ_{j} 's so that they are disjoint.

Let $\Delta=\bigcup_{j=1}^{\infty} \Delta_{j}$. We consider a measurable function $H(z)$ satisfying $H(z)=$ $O\left((1-|z|)^{-c}\right)$, where $0<c<\frac{1}{2}$ and such that for every open ball $B\left(\xi_{j}, r\right)$ with
center ξ_{j} and radius r, we have

$$
\text { ess } \sup \left\{|H(z)|: z \in B\left(\xi_{j}, r\right) \cap \Delta_{j}\right\}=\infty
$$

for all r. Of course, it is the small r we are concerned with. We define $h(z)=$ $\chi_{\Delta}(z) H(z)$, where χ_{Δ} is the characteristic function of Δ. It is clear that h goes to ∞ at every ξ_{j}, but also at every other point of the Cantor set in $\partial \mathbb{D}$, since these other points are the limit points of the endpoints ξ_{j}. We therefore conclude that h "blows up" on this set of positive measure on $\partial \mathbb{D}$. It is easy to see that $H \in$ $L^{2}(\mathbb{D}, d A)$ and consequently $h \in L^{2}(\mathbb{D}, d A)$ too for an appropriate choice of b and the m_{j} 's (for example $b=2 c+1$ and $m_{j} \geqslant 1-\frac{1}{j^{2}}$).

We want to study boundedness of the Toeplitz operator T_{h}. We have the following theorem.

THEOREM 1.1. Let $H(z)$ be a function measurable on \mathbb{D} with a growth $O((1-$ $\left.|z|)^{-c}\right)$ where $0<c<\frac{1}{2}$. For any Cantor set in $\partial \mathbb{D}$ with "end points" $\xi_{j} \in \partial \mathbb{D}$ there are numbers $0<m_{j}<1$ and disjoint sets Δ_{j}, which are rotations of the set

$$
\left\{z \in \mathbb{D}: m_{j}<\operatorname{Re} z<1,0<\operatorname{Arg} z<(1-|z|)^{b}, b>0\right\}
$$

to ξ_{j}, with $\sum_{j=1}^{\infty} m_{j}^{(b-2 c-3) / 2}$ finite so that if $\Delta=\bigcup_{j=1}^{\infty} \Delta_{j}$, then the symbol $h=\chi_{\Delta} H$ produces a bounded Toeplitz operator on L_{a}^{2}. In particular, we can choose $b=2 c+5$ and the m_{j} so that $m_{j} \geqslant 1-\frac{1}{j^{2}}$.

Proof. For $f \in L_{a}^{2}$, we denote

$$
F(z)=\left(T_{h} f\right)(z)=\sum_{j=1}^{\infty} \int_{\Delta_{j}} \frac{H(w) f(w)}{(1-z \bar{w})^{2}} \mathrm{~d} A(w)
$$

For each j,

$$
\begin{aligned}
\left|\int_{\Delta_{j}} \frac{H(w) f(w)}{(1-z \bar{w})^{2}} \mathrm{~d} A(w)\right| & \leqslant\|f\|\left[\int_{\Delta_{j}} \frac{|H(w)|^{2}}{|1-z \bar{w}|^{4}} \mathrm{~d} A(w)\right]^{1 / 2} \\
& \leqslant C\|f\|\left[\int_{m_{j}}^{1} \frac{(1-|w|)^{b}}{(1-|w|)^{2 c+4}} \mathrm{~d}|w|\right]^{1 / 2} \\
& =C\|f\|\left(1-m_{j}\right)^{(b-2 c-3) / 2}
\end{aligned}
$$

if $b-2 c-3>0$ for some constant C. It now follows that

$$
|F(z)| \leqslant C\left[\sum_{j=1}^{\infty}\left(1-m_{j}\right)^{(b-2 c-3) / 2}\right]\|f\| .
$$

Hence for $b=2 c+5$ and $m_{j} \geqslant 1-\frac{1}{j^{2}}$, the series will converge. Notice that the bound above is independent of z, hence $F \in H^{\infty}$. We conclude that T_{h} is bounded on L_{a}^{2}.

Hence, in spite of the fact that the symbol goes to infinity on a set of positive measure on $\partial \mathbb{D}$, we obtain a bounded Toeplitz operator. In fact, we can even make it compact. This is the content of our next theorem.

THEOREM 1.2. Let h and Δ be as in Theorem 1. Then we can choose constants b and m_{j} so that T_{h} is a compact operator on L_{a}^{2}.

Proof. We assume that a sequence $f_{n} \in L_{a}^{2}$ satisfies $\left\|f_{n}\right\| \leqslant 1$ and f_{n} converges uniformly to zero on compact subsets of \mathbb{D}. We want to show $\left\|T_{h} f_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. Let $\left\{m_{j}\right\}$ be chosen in a way that makes $\sum_{j=1}^{\infty}\left(1-m_{j}\right)<\infty$. Let $\varepsilon>0$ and choose J such that $\sum_{j=J}^{\infty}\left(1-m_{j}\right)<\varepsilon$. Then we can find a positive integer N so that $\left|f_{n}(z)\right|<\varepsilon$ for all $n \geqslant N$ and $|z|<m_{J}$. We now consider

$$
\begin{aligned}
&\left\|T_{h} f_{n}\right\|^{2}=\int_{\mathbb{D}}\left|\int_{\mathbb{D}} \frac{f_{n}(w) h(w)}{(1-z \bar{w})^{2}} \mathrm{~d} A(w)\right|^{2} \mathrm{~d} A(z) \\
& \leqslant \int_{\mathbb{D}}\left[\left|\int_{|w|<m_{J}} \frac{f_{n}(w) h(w)}{(1-z \bar{w})^{2}} \mathrm{~d} A(w)\right|\right. \\
& \quad+\left|\int_{m_{J}<|w|<1} \frac{f_{n}(w) h(w)}{(1-z \bar{w})^{2}} \mathrm{~d} A(w)\right|^{2} \mathrm{~d} A(z) \\
& \leqslant 2 \int_{\mathbb{D}}\left[\int_{|w|<m_{J}} \frac{\left|f_{n}(w)\right||h(w)|}{|1-z \bar{w}|^{2}} \mathrm{~d} A(w)\right]^{2} \mathrm{~d} A(z) \\
& \equiv 2 \int_{1}+2 I_{2} .
\end{aligned}
$$

Now let us evaluate the integrals I_{1} and I_{2}. For any $n>N$,

$$
\begin{aligned}
I_{1} & \leqslant \varepsilon^{2} \int_{\mathbb{D}}\left[\int_{\left\{|w| \leqslant m_{J}\right\} \cap \Delta} \frac{|H(w)|}{|1-z \bar{w}|^{2}} \mathrm{~d} A(w)\right]^{2} \mathrm{~d} A(z) \\
& \leqslant C \pi \varepsilon^{2}\left[\sum_{j=1}^{J-1} \int_{\Delta_{j}} \frac{1}{|1-|w||^{c+2}} \mathrm{~d} A(w)\right]^{2}
\end{aligned}
$$

$$
\begin{align*}
& \leqslant C \pi \varepsilon^{2}\left[\sum_{j=1}^{J-1} \int_{m_{j}}^{1}(1-r)^{b-c-2} \mathrm{~d} r\right]^{2}=C \pi \varepsilon^{2}\left[\sum_{j=1}^{J-1}\left(1-m_{j}\right)^{b-c-1}\right]^{2} \\
& \leqslant C \pi \varepsilon^{2}\left[\sum_{j=1}^{\infty}\left(1-m_{j}\right)^{b-c-1}\right]^{2} . \tag{1.1}
\end{align*}
$$

For the second integral we use the Cauchy-Schwarz inequality to obtain

$$
\begin{aligned}
& \int_{\mathbb{D}}\left[\int_{|w|>m_{J}} \frac{\left|f_{n}(w)\right||h(w)|}{|1-z \bar{w}|^{2}} \mathrm{~d} A(w)\right]^{2} \mathrm{~d} A(z) \\
& \quad \leqslant \int_{\mathbb{D}} \int_{|w|>m_{J}} \frac{|h(w)|^{2}}{|1-z \bar{w}|^{4}} \mathrm{~d} A(w) \mathrm{d} A(z) \\
& \quad \leqslant \pi \sum_{j=J}^{\infty} \int_{m_{j}}^{1} \frac{(1-|w|)^{b}}{(1-|w|)^{2 c+4}} \mathrm{~d}|w|=\frac{\pi}{b-2 c-3} \sum_{j=J}^{\infty}\left(1-m_{j}\right)^{b-2 c-3} .
\end{aligned}
$$

If we choose $b=2 c+4$, then the series on the right-hand side of equation (1.1) converges and the sum in (1.2) is less than a constant times ε by our assumption. Hence

$$
\left\|T_{h} f_{n}\right\|^{2}=2 I_{1}+2 I_{2} \leqslant c_{1} \varepsilon^{2}+c_{2} \varepsilon \quad \text { if } n>N .
$$

Therefore T_{h} is compact.
Remark 1.3. Recently, Axler and Zheng [1] proved that for a bounded f, T_{f} is a compact operator on L_{a}^{2} if and only if the Berezin transform of f

$$
B f(z)=\left(1-|z|^{2}\right)^{2} \int_{\mathbb{D}} \frac{f(w)}{|1-z \bar{w}|^{4}} \mathrm{~d} A(w) \rightarrow 0
$$

as $|z| \rightarrow 1$. It is not known if this condition is sufficient for unbounded symbols. There are some interesting recent results on this conjecture. Zorboska [8] has recently proved that the condition is sufficient if f belongs to the hyperbolic BMO space, which contains L^{∞}. Further Miao and Zheng [4] have introduced a class of functions, called $B T$, with $L^{\infty} \subset B T$ for which T_{f} is compact on L_{a}^{2} if and only if the Berezin transform of f vanishes on the unit circle.

Instead of using the Cantor set, we could position our disjoint cusps at the countable set $\left\{\xi_{j}\right\}$ that form a dense set in $\partial \mathbb{D}$. In this situation for every Δ_{j}, we define $g_{j}(z)=(1-|z|)^{-c} \chi_{\Delta_{j}}(z)$ and let $T_{j}=T_{g_{j}}$. As in the proof of Theorem 1.1, it is easy to show that $\left\|T_{j}\right\| \leqslant 1$ for all j, provided b is large enough. As in Theorem 1.2, each T_{j} is compact. Now form the operator $T=\sum_{j=0}^{\infty} \frac{1}{2 j} T_{j}$.

We will show that T is a compact Toeplitz operator. An obvious candidate for the symbol of this operator is $\sum_{j=0}^{\infty} \frac{1}{2^{j}} g_{j}$.

For $f \in L_{a}^{2},\|f\|=1$, we estimate

$$
\left\|\sum_{j=N}^{M} \frac{1}{2^{j}} T_{j} f\right\| \leqslant \sum_{j=N}^{M} \frac{1}{2^{j}}\left\|T_{j} f\right\| \leqslant\|f\| \sum_{j=N}^{M} \frac{1}{2^{j}}
$$

which goes to 0 as $N, M \rightarrow \infty$. Thus we have a Cauchy sequence of operators that converges in norm to T so T must be compact. For $\varepsilon>0$, we estimate

$$
\left\|T-T_{\sum_{j=0}^{\infty} \frac{1}{2 j} g_{j}}\right\| \leqslant\left\|T-T_{\sum_{j=0}^{N} \frac{1}{2 j} g_{j}}\right\|+\left\|T_{\sum_{j=N+1}^{\infty} \frac{1}{2 j} g_{j}}\right\| .
$$

The first norm is less than ε since $T_{\sum_{j=0}^{N} \frac{1}{2 j} g_{j}}=\sum_{j=0}^{N} \frac{1}{2 j} T_{j}$ converges in norm to T and we choose N large enough. For an arbitrary polynomial p, using the estimates we have done before, one can show that

$$
\left\|T_{\sum_{j=N+1}^{\infty} \frac{1}{2^{j} g_{j}}} p\right\|^{2} \leqslant\|p\|^{2} \sum_{j=N+1}^{\infty} \frac{1}{2^{j}}\left(1-m_{j}\right)^{b-2 c-3}
$$

which is smaller than $\varepsilon^{2}\|p\|^{2}$ for a proper choice of b, m_{j} and N. By the density argument we see that $\left\|T_{\sum_{j=N+1}^{\infty} \frac{1}{2 j} g_{j}}\right\|<\varepsilon$ and the claim is proved.

So now we have an example of a compact Toeplitz operator whose symbol is unbounded on a set of positive measure in a neighborhood of each point of the unit circle. In fact, T is not just compact.

THEOREM 1.4. Let Δ_{j} be a rotation of the set

$$
\left\{z \in \mathbb{D}: m_{j}<\operatorname{Re} z<1,0<\operatorname{Arg} z<(1-|z|)^{b}, b>0\right\}
$$

to the point ξ_{j} and assume $\left\{\xi_{j}\right\}$ is a dense subset of the unit circle. If $g_{j}(z)=(1-$ $|z|)^{-c} \chi_{\Delta_{j}}(z)$ for $c<1$ and all $j=0,1, \ldots$, then we can find b and $\left\{m_{j}\right\}$ so that $T=$ $T_{\sum_{j=0}^{\infty} \frac{1}{2} g_{j}}$ is a Hilbert-Schmidt operator on L_{a}^{2}.

Proof. Let $e_{k}(z)=\sqrt{k+1} z^{k}$ be the standard orthonormal basis for L_{a}^{2}. We have to show that

$$
\sum_{n=0}^{\infty} \sum_{k=0}^{\infty}\left|\left\langle T e_{k}, e_{n}\right\rangle\right|^{2}<\infty
$$

At first, we compute the following:

$$
\left|\left\langle T_{j} e_{k}, e_{n}\right\rangle\right|=\left|\int_{\mathbb{D}}\left[\int_{\mathbb{D}} \frac{g_{j}(w) \sqrt{k+1} w^{k}}{(1-z \bar{w})^{2}} \mathrm{~d} A(w)\right] \sqrt{n+1} \bar{z}^{n} \mathrm{~d} A(z)\right|
$$

$$
\begin{aligned}
& =\sqrt{k+1} \sqrt{n+1}\left|\int_{\mathbb{D}} g_{j}(w) w^{k} \bar{w}^{n} \mathrm{~d} A(w)\right| \\
& \leqslant c \sqrt{n k} \int_{m_{j}}^{1}(1-r)^{5-c} r^{k+n+1} \mathrm{~d} r
\end{aligned}
$$

if we choose $b=5$. Choosing the sequence m_{j} as in the proof of Theorem 1.2 and using a repeated integration by parts yields that

$$
\int_{m_{j}}^{1}(1-r)^{4} r^{k+n+1} \mathrm{~d} r \leqslant d \frac{\left(1-m_{j}\right)^{k+n+6}}{(k+n)^{5}}<\frac{d}{(k+n)^{5}}
$$

for some constant d. Hence

$$
\begin{aligned}
\sum_{k=0}^{\infty} \sum_{n=0}^{\infty}\left|\left\langle T e_{k}, e_{n}\right\rangle\right|^{2} & \leqslant \sum_{k=0}^{\infty} \sum_{n=0}^{\infty}\left[\sum_{j=0}^{\infty} \frac{1}{2^{j}}\left|\left\langle T_{j} e_{k}, e_{n}\right\rangle\right|\right]^{2} \\
& \leqslant d^{2} \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \frac{n k}{(k+n)^{10}}=d^{2} \sum_{k=1}^{\infty} k \sum_{n=1}^{\infty} \frac{n}{(n+k)^{10}} \\
& =d^{2} \sum_{k=1}^{\infty} \frac{k}{k^{10}} \sum_{n=1}^{\infty} \frac{n}{\left(1+\frac{n}{k}\right)^{10}}
\end{aligned}
$$

Using the integral test, we show $\int_{1}^{\infty} \frac{x \mathrm{~d} x}{\left(1+\frac{x}{k}\right)^{10}}$ converges to $I k^{2}$, where $I=$ $\int_{1}^{\infty} \frac{u \mathrm{~d} u}{(1+u)^{10}}$. Hence

$$
\sum_{k=0}^{\infty} \sum_{n=0}^{\infty}\left|\left\langle T e_{k}, e_{n}\right\rangle\right|^{2} \leqslant d^{2} I \sum_{k=1}^{\infty} \frac{1}{k^{7}}<\infty
$$

and T is Hilbert-Schmidt.

2. COMPACTNESS VIA LEBESGUE POINTS OF THE SYMBOL

Let H be a measurable function on \mathbb{D} and for positive integers n and k set $A_{n}=\{z \in \mathbb{D}: n+1>|H(z)| \geqslant n\}$ and the annulus $B_{k}=\left\{z: 1-\frac{1}{k}<|z|<1\right\}$.

Definition 2.1. The function H is essentially unbounded near $\partial \mathbb{D}$ if and only if for every positive integer k we have

$$
\text { ess } \sup \left\{|H(z)|: z \in B_{k}\right\}=\infty
$$

where the ess sup norm is calculated with respect to $\mathrm{d} A$.

Assume the function H is essentially unbounded near $\partial \mathbb{D}$. The sets A_{n} are disjoint. We set $C_{n, k}=A_{n} \cap B_{k}$. Since

$$
\left(\bigcup_{n=1}^{\infty} A_{n}\right) \cap B_{k}=\bigcup_{n, k=1}^{\infty} C_{n, k}
$$

and the measure $d A$ of this set is positive we may choose a subsequence $n(k)$ so that $d A\left(C_{n(k), k}\right)>0$. We may choose it so that it is increasing. Also we write $C_{n(k), k}$ as $C_{n(k)}$.

For each $n(k)$ choose a point of density $P_{n(k)}$ in the set $C_{n(k)}$. We also let $r_{n(k)}$ be a positive radius to be chosen later. At this point we choose the $r_{n(k)}$ so small that the disks $D_{k}=D\left(P_{n(k)}, r_{n(k)}\right)$ with center $P_{n(k)}$ and radius $r_{n(k)}$ are all pairwise disjoint, and so that $r_{n(k)}<\frac{1-\left|P_{n(k)}\right|}{2}$. Here $\left|P_{n(k)}\right|$ denotes the absolute value of the complex number (point) $P_{n(k)}$. Denote by $D_{k}^{*}=D_{k} \cap C_{n(k)}$, and recall that each D_{k}^{*} has positive measure. Set $\Gamma=\bigcup D_{k}^{*}$ and let $h(z)=\chi_{\Gamma}(z) H(z)$, where χ_{Γ} denotes the characteristic function of the set in question. One can check that the function h is essentially unbounded near $\partial \mathbb{D}$. We are now ready to state the second main result of the paper.

THEOREM 2.2. Let $H \in L^{2}(\mathbb{D}, d A)$ be an essentially unbounded function near $\partial \mathbb{D}$. Then there is a set Γ in \mathbb{D} such that the function $h=\chi_{\Gamma} H$ is essentially unbounded near $\partial \mathbb{D}$ and the Toeplitz operator T_{h} is compact on L_{a}^{2}.

Proof. We show that the Toeplitz operator

$$
\left(T_{h} f\right)(z) \equiv \int_{\mathbb{D}} \frac{h(w) f(w)}{(1-z \bar{w})^{2}} \mathrm{~d} A(w)=g(z)
$$

maps L_{a}^{2} into itself. To this end let $z \in \mathbb{D}$, let f be a polynomial with $\|f\|_{2} \leqslant 1$ and compute

$$
\int_{\mathbb{D}}\left|\left(T_{h} f\right)(z)\right|^{2} \mathrm{~d} A(z)=\int_{\mathbb{D}}|g(z)|^{2} \mathrm{~d} A(z)
$$

First we do an estimate on $|g(z)|$, showing that g is a bounded (holomorphic) function on \mathbb{D}. Since f is in L_{a}^{2}, the pointwise estimate

$$
|f(z)| \leqslant \frac{\|f\|}{1-|z|}
$$

holds for all z in the unit disk. Hence,

$$
\begin{aligned}
|g(z)| & \leqslant\|f\| \int_{\mathbb{D}} \frac{|h(w)|}{|1-z \bar{w}|^{2}(1-|w|)} \mathrm{d} A(w) \\
& \leqslant \sum_{k=1}^{\infty} \int_{D_{k}^{*}} \frac{n(k)+1}{(1-|z||w|)^{2}(1-|w|)} \mathrm{d} A(w)
\end{aligned}
$$

For $w \in D_{k}^{*}$ we have that

$$
|1-z \bar{w}| \geqslant 1-|z||w| \geqslant 1-\left(\left|P_{n(k)}\right|+r_{n(k)}\right)
$$

and hence,

$$
|g(z)| \leqslant \sum_{k=1}^{\infty} \int_{D_{k}^{*}} \frac{n(k)+1}{\left(1-\left|P_{n(k)}\right|-r_{n(k)}\right)^{3}} \mathrm{~d} A(w) .
$$

The last sum is smaller than

$$
C \sum_{k=1}^{\infty} \frac{(n(k)+1) r_{n(k)}^{2}}{\left(1-\left|P_{n(k)}\right|\right)^{3}}
$$

We make the final choice of $r_{n(k)}^{2} \leqslant \frac{\left(1-\left|P_{n(k)}\right|\right)^{3}}{n(k)^{2}(n(k)+1)}$. (This is consistent with our earlier requirements on $\left.r_{n(k)}\right)$. Since $n(k) \geqslant k$, we have

$$
|g(z)| \leqslant C \sum_{k=1}^{\infty} \frac{1}{k^{2}} \equiv M
$$

and this is independent of z in \mathbb{D}.
We have

$$
\int_{\mathbb{D}}|g(z)|^{2} \mathrm{~d} A(z) \leqslant M^{2}
$$

so T_{h} is densely defined with uniform estimates on L_{a}^{2} and so is continuous there. Using the argument similar to the one in the proof of Theorem 1.2, we can show that T_{h} defined above is in fact compact.

We hope these examples will shed more light on this problem of characterizing compact or Schatten class Toeplitz operators with unbounded symbols. There are other related questions involving our operators. For example, it would be interesting to study the spectrum of these operators. We may return to this problem in the future.

REFERENCES

[1] S. AxLER, D. Zheng, Compact operators via the Berezin transform, Indiana Univ. Math. J. 47(1998), 387-400.
[2] S. Grudsky, N. VASILEVSKI, Bergman-Toeplitz operators: Radial component influence, Integral Equations Operator Theory 40(2001), 16-33.
[3] D. LuECKING, Trace ideal criteria for Toeplitz operators, J. Funct. Anal. 73(1987), 345368.
[4] J. MIAO, D. Zheng, Compact operators on Bergman spaces, Integral Equations Operator Theory 48(2004), 61-79.
[5] K. Stroethoff, Compact Toeplitz operators on Bergman spaces, Math. Proc. Cambridge Philos. Soc. 124(1998), 151-160.
[6] K. ZHU, Operator Theory in Function Spaces, Marcel Dekker, New York 1990.
[7] N. Zorboska, The Berezin transform and radial operators, Proc. Amer. Math. Soc. 131(2003), 793-800.
[8] N. Zorboska, Toeplitz operators with BMO symbols and the Berezin transform, Int. J. Math. Math. Sci. 46(2003), 2929-2945.

JOSEPH A. CIMA, DEpartment of Mathematics, University of North Carolina, CHApEl Hill, NC 27599-3250, USA

E-mail address: cima@email.unc.edu
ŽELJKO ČUČKOVIĆ, Department of Mathematics, The University of Toledo, Toledo, OH 43606-3390, USA

E-mail address: zcuckovi@math.utoledo.edu

