CORRECTION TO THE PAPER "REAL STRUCTURE IN PURELY INFINITE C*-ALGEBRAS"

JEFFREY L. BOERSEMA and PETER J. STACEY

Communicated by Kenneth R. Davidson

ABSTRACT. In order to correct an error in the paper: P.J. Stacey, Real structure in purely infinite C*-algebras, *J. Operator Theory* **49**(2003), 77–84, a Kishimoto type result for involutory antiautomorphisms is proved.

KEYWORDS: C*-algebra, purely infinite, involutory *-antiautomorphism.

MSC (2000): Primary 46L05; Secondary 46L35.

The first author has discovered an error in Lemma 3.1 of [5]. A counterexample to that claim is obtained by taking *A* to be commutative and Φ to be the identity. The error arises by not using the correct relationship $(Vk, h) = \overline{(k, V^*h)}$ between an antilinear map on a Hilbert space and its adjoint.

The following proposition can be substituted for the incorrect lemma to leave the remaining results of the paper intact. A similar result has been obtained in [2].

PROPOSITION 1. Let A be a non-commutative C*-algebra and let Φ be an involutory *-antiautomorphism of A. Then there exists a non-zero positive element $x \in A$ with $x\Phi(x) = 0$.

Proof. Assume firstly that *A* contains a non-zero element *b* with $\Phi(b) = b^*$ and $b^2 = 0$. Then let $y = ib - ib^* + (bb^*)^{1/2} + (b^*b)^{1/2}$. If y = 0 then, premultiplying and postmultiplying by *b* and noting that $b(bb^*)^{1/2} = 0$ and $(b^*b)^{1/2}b = 0$, it follows that $bb^*b = 0$ and thus that b = 0. Therefore $y \neq 0$. For each polynomial *p* on the spectrum of bb^* with p(0) = 0, $b^*p(bb^*) = p(b^*b)b^*$ and therefore $b^*(bb^*)^{1/2} = (b^*b)^{1/2}b^*$ and $b(b^*b)^{1/2} = (bb^*)^{1/2}b$. It follows that the self-adjoint element *y* satisfies $y\Phi(y) = 0$ and then that $x = y^2$ has the required properties.

If the real algebra $R = \{a \in A : \Phi(a) = a^*\}$ does not contain a non-zero element *b* with $b^2 = 0$, then neither does the algebra \widetilde{R} obtained by adjoining a unit. It will be shown that every irreducible representation of \widetilde{R} (and hence of *R*) has image \mathbb{R} , \mathbb{C} or \mathbb{H} , the algebra of quaternions. Note firstly that the argument in Exercise 4.6.30 of [3] applies directly to real algebras to show that every closed left ideal of *R* is 2-sided. For any pure real state *k* of \widetilde{R} , it is shown in Proposition

5.3.8 of [4] that $I_k = \{a \in \tilde{R} : k(a^*a) = 0\}$ is a maximal left ideal of \tilde{R} and is closed. It is therefore 2-sided, from which it follows that the kernel of the associated irreducible representation π_k of \tilde{R} is equal to $\{b \in \tilde{R} : ba \in I_k \text{ for all } a \in \tilde{R}\} = I_k$. If y is a non-invertible, non-zero element of $\pi_k(\tilde{R})$, then it generates either a proper left ideal or a proper right ideal of \tilde{R} strictly containing I_k , which yields a contradiction. Thus $\pi_k(\tilde{R})$ is a real Banach division algebra and therefore is isomorphic to \mathbb{R} , \mathbb{C} or \mathbb{H} .

If π is an irreducible representation of A then, since every irreducible representation of R has image \mathbb{R} , \mathbb{C} or \mathbb{H} , a standard argument shows that $\pi(A)$ is either isomorphic to \mathbb{C} or $M_2(\mathbb{C})$. If the image is $M_2(\mathbb{C})$ then, because $\pi(R)$ is isomorphic to \mathbb{H} rather than $M_2(\mathbb{C})$, the kernel of π is fixed by Φ . The intersection J of the kernels of all 1-dimensional representations is also invariant under Φ and is a 2-homogeneous algebra which is non-zero by the hypothesis that A is non-commutative. From Theorem 3.2 of [1], J has a non-zero subalgebra of the form $C_0(Y, M_2(\mathbb{C}))$ for some locally compact Hausdorff subspace Y of Prim(A). Φ acts trivially on Y and therefore, for each $f \in C_0(Y, M_2(\mathbb{C}))$ and each $y \in Y$, $(\Phi f)(y) = \Phi_y(f(y))$ for some involutory antiautomorphism Φ_y of $M_2(\mathbb{C})$ with associated real algebra isomorphic to \mathbb{H} . There is a unique such involutory antiautomorphism, given by $\Phi_y \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$. The element $x = \begin{pmatrix} f & 0 \\ 0 & 0 \end{pmatrix}$, where f is a non-zero positive function, therefore has the required properties.

REFERENCES

- J.M.G. FELL, The structure of algebras of operator fields, *Acta Math.* 106(1961), 233–280.
- [2] T. HAYASHI, A Kishimoto type theorem for antiautomorphisms with some applications, *Internat. J. Math.* 15(2004), 487–499.
- [3] R.V. KADISON, J.R. RINGROSE, Fundamentals of the Theory of Operator Algebras, Vol. 1, Grad. Stud. Math., vol. 15, Amer. Math. Soc., Providence, R.I. 1997.
- [4] B. LI, *Real Operator Algebras*, World Scientific, New Jersey-London-Singapore-Hong Kong 2003.
- [5] P.J. STACEY, Real structure in purely infinite C*-algebras, J. Operator Theory 49(2003), 77–84.

J.L. BOERSEMA, DEPARTMENT OF MATHEMATICS, SEATTLE UNIVERSITY, SEATTLE, WA 98133, USA

E-mail address: boersema@seattleu.edu

P.J. STACEY, DEPARTMENT OF MATHEMATICAL AND STATISTICAL SCIENCES, LA TROBE UNIVERSITY, VICTORIA 3086, AUSTRALIA

E-mail address: P.Stacey@latrobe.edu.au

Received February 28, 2005.