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ABSTRACT. To every infinite lower Hessenberg matrix D is associated a linear
operator on l2. In this paper we prove the similarity of the operator D − ∆,
where ∆ belongs to a certain class of compact operators, to the operator D−∆′,
where ∆′ is of rank one. We first consider the case when ∆ is lower triangular
and has finite rank; then we extend this to ∆ of infinite rank assuming that D is
bounded. In Section 3 we examine the cases when D = St and D = (S + St)/2,
where S denotes the unilateral shift.
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1. INTRODUCTION

A lower infinite Hessenberg matrix is a matrix D = {di,j}∞
i,j=0 with complex

entries and such that di,j = 0 for j > i + 1. In this paper, when we refer to a
Hessenberg matrix, we will additionally assume that it satisfies di,i+1 6= 0 for all
i > 0.

Let us denote by l2 the space of square summable sequences and by {ei}∞
i=0

its canonical basis.
Let A be an infinite matrix such that there is k ∈ Z such that Ai,j = 0 for

j > i + k (e.g., A is Hessenberg). Then for every x ∈ l2, Ax is well defined. Thus
we can associate a linear operator to A, which we also denote by A, with domain

domain(A) = {x ∈ l2 : Ax ∈ l2}.

The operator A is a closed operator defined on its maximal domain of defi-
nition. Moreover, A is the adjoint of the densely defined operator At with domain
C0, the linear span of the canonical basis {ei}∞

i=0 ([7], Theorem 1). All the opera-
tors that we consider here act on the space l2.
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In Section 2 we study the similarity of the operator D−∆ to an operator of
the form D − ∆′, where ∆′ has rank one. The main theorems of this section are
Theorems 2.2 and 2.5. Theorem 2.2 assumes that ∆ is lower triangular and of finite
rank. Theorem 2.5 extends Theorem 2.2 to ∆ not necessarily lower triangular or
of finite rank, but assumes that D is bounded. In Section 3 we apply these results
to D = St and D = S+St

2 , where S is the unilateral shift.
In the sequel we will work mostly in the context of infinite matrices and

vectors with complex entries. Bounded operators acting on l2 are identified with
matrices through their matrix representation with respect to the canonical basis
of l2. It is with this identification in mind, that sometimes we will refer to a matrix
as being “bounded" or “compact".

2. PERTURBATIONS OF HESSENBERG MATRICES

2.1. THE FRIEDRICHS’S METHOD. Here we describe a method that has been fre-
quently used to prove similarity between operators ([3], [2], [1]). Our exposition
follows Freeman [2] and Chan [1].

Given D and ∆ we want to find U such that U(D−∆)U−1 = D. This equa-
tion implies that

(2.1) [U, D] = UD− DU = U∆.

We notice that [·, D] is a derivation. Thus equation (2.1) is analogous to the
differential equation

d
dt

X(t) = X(t)P(t)

in a Banach algebra.
Keeping in mind this analogy, we first try to integrate the equation [X, D] =

∆; that is, find Σ(∆) such that [Σ(∆), D] = ∆. Then a solution of (2.1) is given by
the Peano series

(2.2) U(∆) = I + Σ(∆) + Σ(Σ(∆)∆) + Σ(Σ(Σ(∆)∆)∆)) + · · · .

In this paper we will use the following modification of this method. Sup-
pose that instead we have Σ(∆), matrix valued, and ψ(∆), vector valued, such
that

(2.3) [Σ(∆), D] = ∆− ψ(∆)et
0.

Then U = U(∆) defined by (2.2) satisfies

(2.4) [U, D] = U∆− ψ(U∆)et
0.

From this equation, and assuming that U is invertible, we get that

U(D−∆)U−1 = D− ψ(U∆)(U−1e0)t.

That is, D−∆ is similar to a rank one perturbation of D.
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But how does one make sense of these formulas as formulas in the bounded
operators, or even as formulas in the matrices?

In order to do this, we try to find a left ideal F ⊂ B(l2) and a norm | · |F ,
such that:

(i) ‖Σ(A)‖ 6 |A|F ;
(ii) |BA|F 6 ‖B‖|A|F .

Then, for |∆|F < 1, equation (2.2) gives U bounded, and if one takes |∆|F < 1
2 ,

then U is invertible.
It is this general strategy what we will use to prove the Theorems 2.2 and

2.5 of this section.

2.2. FINITE RANK PERTURBATIONS. Let us denote by Ck the subspace of CN of
infinite column vectors with the first k− 1 components equal to zero and let Fk
denote the space of matrices of finite rank such that Xei = 0 for i > k. Notice
that if X ∈ Fk and A is an infinite matrix such that AX is well defined (e.g. A is
Hessenberg), then AX ∈ Fk.

LEMMA 2.1. Let D be a Hessenberg matrix and φ an infinite column vector. There
are Xφ

n ∈ Fn−1 and a vector ψ
φ
n such that

(2.5) [Xφ
n , D] = φet

n − ψ
φ
n et

0.

If φ ∈ Cn, then Xφ
n is strictly lower triangular (i.e., Xφ

n is lower triangular with
zeroes in the main diagonal).

The vector ψ
φ
n and the columns of Xφ

n belong to the subspace

span{Diφ : i > 0}.

Proof. Let us define Xφ
i and ψ

φ
i by Xφ

0 = 0, ψ
φ
0 = φ and the recurrences (here

dn+1,n 6= 0 gets used)

n+1

∑
i=0

dn,iX
φ
i = DXφ

n + φet
n,(2.6)

n+1

∑
i=0

dn,iψ
φ
i = Dψ

φ
n .(2.7)

It is not difficult to prove by induction that Xφ
n and ψ

φ
n satisfy the conditions

of the lemma.

Let us define Σ(·) and ψ(·) by

(2.8) Σ(φet
n) = Xφ

n , ψ(φet
n) = ψ

φ
n ,

and extend them by linearity to
∞⋃

n=0
Fn. The following properties are readily ver-

ified:
(i) Σ(·) and ψ(·) satisfy (2.3);
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(ii) Σ(Fn) ⊂ Fn−1;
(iii) if ∆ is lower triangular, then Σ(∆) is strictly lower triangular;
(iv) Col(Σ(∆)) ⊂ ∑

n>0
Col(Dn∆) and ψ(∆) ∈ ∑

n>0
Col(Dn∆); here Col(A) de-

notes the space spanned by the columns of A.

THEOREM 2.2. Let D be a Hessenberg matrix and ∆ a lower triangular matrix of
finite rank. Suppose that ∆ ∈ Fk for some k. Then there exist unique ψ and U = I + X
such that X is strictly lower triangular, X ∈ Fk−1 and

U(D−∆)U−1 = D− ψet
0.

Suppose additionally that Col(Dn∆) ⊂ domain(D) for all n > 0. Then ψ ∈ l2
and U is bounded with bounded inverse.

Note: For every lower triangular matrix of finite rank there exists k such
that ∆ ∈ Fk.

Proof. Let us prove uniqueness first. Suppose that (U1, ψ1) and (U2, ψ2)
satisfy the conditions of the theorem and X1 − X2 6= 0. Let us write U1 = I + X1
and U2 = I + X2. Equation (2.4) implies that

(2.9) [X1 − X2, D] = (X1 − X2)∆− (ψ1 − ψ2)et
0.

Let i be such that 0 6 i 6 k− 1 and X1 − X2 ∈ Fi\Fi−1.
We notice that:
1. If A ∈ Fi\Fi−1 then [A, D] ∈ Fi+1\Fi (this is because [A, D]ei+1 =

dn−1,n Aei 6= 0).
2. If A and B are lower triangular and A ∈ Fi, B ∈ Fn with i < n, then

AB ∈ Fi (this is not difficult to verify).
Applying 1 and 2 in equation (2.9) we get that the right side is in Fi\Fi−1,

while the left side is in Fi+1\Fi. This is a contradiction. Therefore U1 = U2, and
this implies that ψ1 = ψ2.

Since ∆ ∈ Fk, Σ(∆) ∈ Fk−1 and ∆ is lower triangular, property 2 above
implies that Σ(∆)∆ ∈ Fk−1. In the same way, we see that Σ(Σ(∆)∆)∆ ∈ Fk−2
and so on. Thus, the right side of (2.2) is a finite sum. Let us take U = U(∆) and
ψ = ψ(U∆). Since U is of the form I + X with X strictly lower triangular, U is an
invertible matrix. This proves the first part of the theorem.

Suppose that Col(Dn∆) ⊂ domain(D) for all n > 0. By property (iv) of Σ(·)
listed before, we have

Col(Σ(∆)) ⊂ ∑
n>0

Col(Dn∆) ⊂ domain(D),

Col(Σ(Σ(∆)∆)) ⊂ ∑
n>0

Col(DnΣ(∆)) ⊂ ∑
n>0

Col(Dn∆) ⊂ domain(D),

. . . . . . . . . . . .
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This implies that Col(X) ⊂ domain(D). Hence the columns of X are in
l2. Since only a finite number of the columns of X are nonzero, X and U repre-
sent bounded operators. Also, X is strictly lower triangular of finite rank. So U
is injective and a compact perturbation of the identity. Hence, U has bounded
inverse.

Let D1 = (d1
i,j) and D2 = (d2

i,j) be two Hessenberg matrices. Denote by Υ

the diagonal matrix such that Υi,j = 0 if i 6= j, Υ0,0 = 1 and Υi,i =
i−1
∏

k=0

d2
k,k+1

d1
k,k+1

for

i > 0. Then ΥD2Υ−1 − D1 is lower triangular, and if we assume that

(2.10)
∞

∏
k=0

∣∣∣
d2

k,k+1

d1
k,k+1

∣∣∣ < ∞,

then Υ is bounded.
Taking into account this remark, the hypothesis in last theorem that ∆ is

lower triangular can be relaxed to ∆ such that D−∆ is still a Hessenberg matrix.
In order to see this we take D1 = D, D2 = D−∆ and Υ as before. Since ∆ ∈ Fk
for some k, the condition (2.10) clearly holds, so D2 is similar to a perturbation of
D1 by a lower triangular matrix ∆′ of finite rank. Now we can apply Theorem 2.2.

In the same way, some of the results that follow, even though they are stated
for perturbations by a lower triangular matrix, can be extended to ∆ such that D
and D−∆ are both Hessenberg matrices.

Next we will extend Theorem 2.2 to include perturbations by a ∆ of infinite
rank.

2.3. THE ASSOCIATED POLYNOMIALS OF k-TH KIND. A Hessenberg matrix D can
always be written as D = StV, where V is a lower triangular matrix such that
V0,0 = 1 and S = (δi+1,j)i,j is the unilateral shift. The matrix V has nonzero
elements on the main diagonal; thus it is an invertible matrix. Let us define
D̃(0) = V−1 and

(2.11) D̃(z) = (I + (D̃(0)S)z + (D̃(0)S)2z2 + · · · )D̃(0).

Notice that, since the first n rows of (D̃(0)S)n are zero, the entries of D̃(z)
are well defined. The matrix D̃(z) plays an important role in several questions
related to D; we refer to [7] for a more thorough treatment of the properties of
this matrix. We have

(D− zI)D̃(z) = St, D̃(z)S(D− zI) = I − p(z)et
0,

where p(z) is the first column of D̃(z).
We denote the entries of D̃(z) by (D̃(z))n,k = pk

n−k(z). These are the so
called associated polynomials of k-th kind in the theory of orthogonal polynomials.
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They satisfy the recurrence relations, pk
0(z) = 1

dk−1,k
,

(2.12) zpk
n−k(z) =

n+1

∑
i=0

dn,i pk
i−k(z).

The next lemma shows the relationship between the polynomials pk
n−k(z)

and the functions Σ(·) and ψ(·) that were constructed in Subsection 2.2.

LEMMA 2.3. We have

Σ(φet
n) = (p1

n−1(D)φ, . . . , pn
0 (D)φ, 0, 0, . . . ),(2.13)

ψ(φet
n) = pn(D)φ.(2.14)

Notice that (pn(z), p1
n−1(z), . . . , pn

0 (z), 0, 0, . . . ) is the n-th row of D̃(z).

Proof. Recall from (2.8) that Σ(φet
n) = Xφ

n and ψ(φet
n) = ψ

φ
n . It is enough to

check that the right sides of (2.13) and (2.14) satisfy the recurrence relations used
in Lemma 2.1 to define Xφ

n and ψ
φ
n . This follows from the recurrence relation

(2.12).

2.4. EXTENSION OF THEOREM 2.2. From this point on we assume that D repre-
sents a bounded operator on l2.

Let {ai}∞
i=0 be a sequence of positive numbers. For X ∈ B(l2) define

|X|F =
( ∞

∑
i=0

ai‖Xei‖2
)1/2

, F = {X ∈ B(l2) : |X|F < ∞}.

LEMMA 2.4. F is a left ideal of B(l2) and |BX|F 6 ‖B‖|X|F .

Proof. |BX|2F = ∑ ai‖BXei‖2 6 ‖B‖2(∑ ai‖Xei‖2).

Let us take an =
n
∑

i=0
‖pi

n−i(D)‖2 and define | · |F and F accordingly. We

have the estimate

‖ψ(φet
n)‖2 + ‖Σ(φet

n)‖2
2 6 ‖φ‖2

n

∑
i=0
‖pi

n−i(D)‖2 6 an‖φ‖2.(2.15)

Here ‖ · ‖2 is the Hilbert-Schmidt norm (the sum of the squares of the abso-
lute values of the entries). This estimate shows that we can extend Σ(·) and ψ(·)
by continuity to F (recall that they were originally defined in

∞⋃
n=0

Fn). We have

‖ψ(A)‖2 + ‖Σ(A)‖2
2 6 |A|2F

for all A ∈ F .
For the functions Σ(·) and ψ(·) defined on F we have:
(i) Σ(·) and ψ(·) satisfy (2.3);

(ii) Σ(F ) ⊂ B2(l2) (B2(l2) denotes the space of Hilbert-Schmidt operators);
(iii) if A is lower triangular, then Σ(A) is strictly lower triangular.
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Let us write | f |∞,M = sup
|x|6M

| f (x)|. Taking into account that one has the

inequality ‖p(D)‖ 6 |p|∞,‖D‖, the coefficients an in the definition of | · |F can
be replaced by the more computable numbers bn = ∑

i
|pi

n−i|2∞,‖D‖. However, in

many cases bn has geometric growth, while an has polynomial growth (e.g., the
Chebyshev matrix).

Now we are ready to state the extension of Theorem 2.2.

THEOREM 2.5. Let D be a bounded Hessenberg matrix and ∆ be a member of F
that satisfies one of the following two conditions:

(i) |∆|F < 1
2 ;

(ii) ∆ is lower triangular.
Then there are ψ, v ∈ l2 and U = I + X with X of Hilbert-Schmidt class such that
U(D−∆)U−1 = D− ψvt. In case (ii) we can take X to be strictly lower triangular and
v = et

0.

Proof. (i) Take U = U(∆) as in (2.2). Notice that if ∆ is lower triangular then
U(∆) is lower triangular too.

(ii) Let us write ∆ = ∆1 + ∆2, with ∆2 lower triangular of finite rank and
|∆1|F < 1

2 . By (i) there is U1 lower triangular such that

U1(D−∆1 −∆2)U−1
1 = D− ψet

0 −U1∆2U−1
1 .

The right side is a finite rank perturbation of D. Thus, an application of
Theorem 2.2 completes the proof.

We can improve (ii) of the previous theorem. Let T F denote the subspace
of the lower triangular elements of F . For every n we write T F = T Fn ⊕ T Fn,
where T Fn = {X ∈ T F : Xei = 0, i > n} and T Fn = {X ∈ T F : Xei = 0, i 6
n}.

PROPOSITION 2.6. Formula (2.2) is well defined for every ∆ ∈ T F and

U(·) : T F , | · |F → B(l2), ‖ · ‖
is a continuous map.

Proof. For A ∈ T F we define the linear map TA : B(l2) → B(l2) by TA(X) =

Σ(XA). Notice that formula (2.2) can be written as U(∆) =
∞
∑

i=0
Ti

∆(1).

First we prove that U(·) is continuous on the unit ball of T F . Take A, B ∈
T F such that |A|F = a < 1, |B|F = b < 1 and |A− B|F < ε. We have,

Tk
A(1)− Tk

B(1) = Σ((Tk−1
A (1)− Tk−1

B (1))A) + Σ(Tk−1
B (1)(A− B)).

From this we get by induction that ‖Tk
A(1)− Tk

B(1)‖ < ε ak−bk

a−b . This implies that
‖U(A)−U(B)‖ < ε 1

(1−a)(1−b) . Hence U(·) is continuous on the unit ball of T F .
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Next we prove that the sum on the right side of (2.2) is well defined for all
∆ ∈ T F . Let ∆ = ∆1 + ∆2 with ∆1 ∈ T Fn, |∆1|F < 1 and ∆2 ∈ T Fn. We
notice that if A and X are lower triangular, then by property 2 in the proof of
Theorem 2.2 we get TA(X∆2) ∈ T Fn−1. Hence we have Tn

A(X∆2) = 0.
Let us prove by induction that Tk

∆(1) = Tn
∆Tk−n

∆1
(1), for k > n. This is clearly

true for k = n. Assuming it is true for k, we get

Tk+1
∆ (1) = Tn+1

∆ Tk−n
∆1

(1) = Tn
∆T∆(Tk−n

∆1
(1)) = Tn

∆(Σ(Tk−n
∆1

(1)(∆1 + ∆2)))

= Tn
∆Tk+1−n

∆1
(1) + Tn

∆(Σ(Tk−n
∆1

(1)∆2)) = Tn
∆Tk+1−n

∆1
(1).

This completes the induction.

Adding Tk
∆(1) = Tn

∆Tk−n
∆1

(1) for all k we get U(∆) =
n−1
∑

i=0
Ti

∆(1) + Tn
∆(U(∆1)).

Hence U(∆) is well defined.
Finally we prove the continuity of U(·) on all ∆ ∈ T F . Let ∆ ∈ T F and

take δ = δ(∆, n) > 0 with the property that for every ∆′ such that |∆−∆′|F < δ,
it is true that if ∆′ = ∆′1 + ∆′2 with ∆′1 ∈ T Fn and ∆′2 ∈ T Fn, then |∆′1|F < 1.
That this is always possible follows from the continuity of the projection of T F
onto T Fn. Then

U(∆′) =
n−1

∑
i=0

Ti
∆′(1) + Tn

∆(U(∆′1))

for all ∆′ in the neighborhood of ∆ of radius δ. The right side is continuous on a
neighborhood of ∆, hence U(∆) is continuous.

3. PERTURBATIONS OF THE SHIFT AND THE CHEBYSHEV MATRIX

In this section we study perturbations of St and the Chebyshev matrix J =
1
2 (S + St), where S = (δi,j+1)i,j denotes the unilateral shift. In some cases the
perturbing matrix ∆ is assumed to be lower triangular, but taking into account the
remark at the end of Subsection 2.2, these results can be extended to perturbations
by a matrix ∆ of Hessenberg form.

3.1. THEOREM 2.5 APPLIED TO St AND J. The shift. The similarity of perturba-
tions of the shift to the shift itself has been considered in papers [2], [5], [8] and
[1]. In [2] J.S. Freeman proved that if ∆ is a strictly lower triangular matrix satis-
fying ∑

i,j
|∆ i,j| < ∞ and ∆ i+1,i 6= −1, then the S + ∆ is similar to S. O.I. Soibelman

and B. Chan proved independently that S + ∆ is similar to S when ∆ is an infinite
matrix that satisfies ∑

i,j
|∆ i,j| < 1.

The matrix St is Hessenberg, so the results of the previous section apply to
it. Using (2.12) we compute the associated polynomials of k-th kind. We obtain
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pk
n−k(z) = zn−k, and from this we get an = n for the coefficients in the definition

of | · |F . Hence, by Theorem 2.5, we get that if ∆ satisfies one of the two conditions:

(I) ∑
j

j‖∆ej‖2 < 1
4 ;

(II) ∆ is lower triangular and ∑
j

j‖∆ej‖2 < ∞;

then St −∆ is similar to St − φvt for some φ, v ∈ l2. In case (II) we can take v = e0.
The following theorem is proven in [1]:

Let ∆ be such that ∑
i,j
|∆ i,j| < 1. Then there is a bounded operator U bounded such

that U(St −∆)U−1 = St. Moreover, if ∆ is lower triangular then U can be taken to be
lower triangular too.

Combining Theorem 2.2 with this assertion we get that if:

(III) ∆ is lower triangular and
∞
∑

j=N

∞
∑

i=0
|∆ i,j| < ∞ for some N > 0,

then St −∆ is similar to St − φet
0 for some φ ∈ l2.

REMARKS. (i) Taking adjoints, these results can be restated for perturba-
tions of S.

(ii) There are rank one perturbations of St of arbitrarily small norm that are
not similar to St.

The Chebyshev matrix. Now we consider perturbations of J = S+St

2 . A
computation shows that the associated polynomials of k-th kind are pk

n−k(z) =
Tn−k(z), where {Tn}∞

n=0 are the Chebyshev polynomials. The Chebyshev poly-
nomials are defined by T0 = 1 and the recurrence

2zTn(z) = Tn−1(z) + Tn+1(z).

We have ([6])
‖Tn(J)‖ = sup

x∈[−1,1]
|Tn(x)| = 1.

Thus, we can take an = n in the definition of | · |F . Hence, by Theorem 2.5,
we see that if ∆ satisfies conditions (I) or (II) stated above, then J −∆ is similar to
J − φvt for some φ, v ∈ l2. In case (II) we can take v = e0.

3.2. PERTURBATION DETERMINANTS. Let us denote by R(z, A) = (zI− A)−1 the
resolvent function of the bounded operator A. If A′ is a bounded operator such
that A− A′ is of trace class, then the analytic function

det(I + (A− A′)R(z, A))

is called a perturbation determinant. A reference for several properties of perturba-
tion determinants is [4].

In this subsection we discuss the link between perturbation determinants
and the similarity of perturbations of St and J.
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We start with the shift. Let ∆ be lower triangular and of trace class (hence
bounded). Let us write D = St −∆. Let us define the function

ψ−1(z) = det(I + ∆R(z−1, St)).

This function is analytic in the interior of the unit circle. It is known as
Szego’s function in the theory of orthogonal polynomials. (One has to allow that
∆ be Hessenberg, and not just lower triangular, to make St − ∆ the Hessenberg
matrix of orthogonal polynomials in the unit circle. See [7].)

Next we define the operator-valued function

Ψ(z) = ψ−1(z)R(z−1, D).

An application of Carleman’s inequality shows that this function is analytic
in the interior of the unit circle (see [7]). Let us denote by ψn(z) = (Ψ(z))0,n, for
n = 0, 1 . . . , the entries of the first row of Ψ(z). The following formula is proven
in Theorem 8 of [7]:

(3.1) ψn(z) = zn+1 +
∞

∑
j=0

( ∞

∑
i=j

∆ i,jzi+1
)

pn+1
j−n−1(z),

for n = −1, 0, 1, . . . . The right side of (3.1) is a series converging uniformly in
compact sets of the open unit disk. From this formula we see that ψn(z) = zn+1 +
O(zn+2) for n > −1. Moreover, ψn(z) should be close to zn+1 if we make the
perturbation small in a suitable sense.

Let us write ψj(z) =
∞
∑
i=j

ψi,jzi+1 for j = −1, 0, 1, . . . . Let H2 denote the Hardy

space of the unit circle. The following theorem establishes a simple relationship
between the functions U(·) and ψ(·) constructed in Section 2 and the coefficients
ψi,j of the functions ψj(z).

THEOREM 3.1. If ∆ is lower triangular of trace class satisfying condition (II), then
U(∆) = (ψi,j)∞

i,j=0 and ψ(U(∆)∆) = (ψi,−1)∞
i=0.

Notice that by Theorem 2.5 and Proposition 2.6 one has U = U(∆) and ψ =
ψ(U(∆)∆) are precisely the matrix and the vector implementing the similarity
between St −∆ and St − ψet

0.

Proof. Let us write Ũ = (ψi,j)∞
i,j=0 and ψ̃ = (ψi,−1)∞

i=−1 (ψ̃ is a column vec-
tor).

First we assume that ∆ ∈ T F k for some k. Let Ũ = I + X̃. Using (3.1) we
can prove that:

1. X̃ is strictly lower triangular (because ψn(z) = zn+1 + O(zn+2)).
2. X̃ ∈ T F k−1 (because ψn(z) = zn+1 for n > k).
3. The columns of X̃ are in l2 (because ∑

i
∆ i,jzi+1 ∈ H2 and pn+1

j−n−1(z) is a

polynomial. Hence ψn(z) ∈ H2 for n > −1).
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The definition of Ψ(z) implies that (ψ0(z), ψ1(z), . . . )(z−1 I−D) = ψ−1(z)et
0,

which can be written as (z, z2, . . . )Ũ(z−1 I − D) = (1, z, . . . )ψ̃et
0, and then we get

(1, z, . . . )(Ũ − SŨD) = (1, z, . . . )ψ̃et
0. Thus Ũ − SŨD = ψ̃et

0. Multiplying by St

on the left and by Ũ−1 on the right we get

(3.2) ŨDŨ−1 = St − (Stψ̃)et
0.

Now recall that, by Theorem 2.2, there are unique U and ψ satisfying (3.2)
and properties 1 and 2 listed above. This proves the theorem when ∆ ∈ T F k.

Next we assume that ∆ ∈ T F . Take ∆(n) ∈ T Fn such that |∆−∆(n)|F → 0.
We know by Proposition 2.6 that U(∆(n)) and ψ(U(∆(n))∆(n)) converge in the
norm topology to U(∆) and ψ(U(∆)∆) respectively. On the other hand, by the
definition of ψ−1(z) and Ψ(z), and the continuity of the determinant and the
resolvent function, we have ψ

(n)
−1 (z) → ψ−1(z) and Ψ(n)(z) → Ψ(z) uniformly

on compact sets of the unit circle. So ψn
i,j → ψi,j for i = 0, 1, . . . , j = −1, 0, 1, . . . .

Therefore Ũ = U(∆) and Stψ̃ = ψ(U(∆)∆) for every ∆ ∈ T F of trace class.

The arguments in the case of the Chebyshev matrix are analogous to the
case of the shift, so we will just give a succinct presentation. Let J = S+St

2 , ∆
be a lower triangular matrix of trace class and D = J − ∆. Define the function
(sometimes called Jost function)

ψ−1(z) = det
(

I + ∆R
( z + z−1

2
, J

))
,

and the operator valued function

Ψ(z) = ψ−1(z)R
( z + z−1

2
, D

)
.

The functions ψ−1(z) and Ψ(z) are analytic in the interior of the unit circle. If
ψn(z), n = 0, 1, . . . denotes the elements in the first row of Ψ(z), then (Theorem 8
of [7])

(3.3) ψn(z) = zn+1 +
∞

∑
j=0

( ∞

∑
i=j

∆ i,jzi+1
)

pn+1
j−n−1

( z + z−1

2

)
,

for n = −1, 0, 1, . . . . Again let us ψj(z) =
∞
∑
i=j

ψi,jzi+1 for j = −1, 0, 1, . . . .

THEOREM 3.2. If ∆ is lower triangular of trace class satisfying condition (II), then
U(∆) = (ψi,j)∞

i,j=0 and ψ(U(∆)∆) = (ψi,−1)∞
i=0.

Proof. Suppose that ∆ ∈ T F k for some k. Define Ũ and ψ̃ as in the proof
of Theorem 3.1. Using (3.3), again we see that Ũ satisfies properties 1, 2 and 3
listed in the proof of Theorem 3.1 (the computation must be more careful now,
since pn+1

j−n−1

( z+z−1

2
)

is not a polynomial. Nevertheless, zj−n−1 pn+1
j−n−1

( z+z−1

2
)

is a
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polynomial). The definition of Ψ(z) implies that

(ψ0(z), ψ1(z), . . . )
( z + z−1

2
I − D

)
= ψ−1(z)et

0

(z, z2, . . . )Ũ
( z + z−1

2
I − D

)
= (1, z, . . . )ψ̃et

0

(1, z, . . . )
( I + S2

2
Ũ − SŨD

)
= (1, z, . . . )ψ̃et

0.

Thus I+S2

2 Ũ − SŨD = ψ̃et
0. Multiplying by St on the left and by Ũ−1 on the right

we get

(3.4) ŨDŨ−1 = J − (Stψ̃)et
0.

Now we invoke the uniqueness of U and ψ satisfying (3.4) and the prop-
erties 1 and 2 listed in the proof of Theorem 3.1. This proves the theorem when
∆ ∈ T F k.

In order to finish the proof, we use the same continuity argument that was
used in Theorem 3.1.
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