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ABSTRACT. Let β ≡ β(2n) be an N-dimensional real multi-sequence of de-
gree 2n, with associated moment matrix M(n) ≡ M(n)(β), and let r :=
rankM(n). We prove that ifM(n) is positive semidefinite and admits a rank-
preserving moment matrix extension M(n + 1), then M(n + 1) has a unique
representing measure µ, which is r-atomic, with supp µ equal to V(M(n + 1)),
the algebraic variety of M(n + 1). Further, β has an r-atomic (minimal) repre-
senting measure supported in a semi-algebraic set KQ subordinate to a family
Q ≡ {qi}m

i=1 ⊆ R[t1, . . . , tN ] if and only if M(n) is positive semidefinite and
admits a rank-preserving extensionM(n + 1) for which the associated localiz-
ing matrices Mqi

(
n +

[ 1+deg qi
2

])
are positive semidefinite, 1 6 i 6 m; in this

case, µ (as above) satisfies supp µ ⊆ KQ, and µ has precisely rankM(n) −
rankMqi

(
n +

[ 1+deg qi
2

])
atoms in Z(qi) ≡ {t ∈ RN : qi(t) = 0}, 1 6 i 6 m.
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1. INTRODUCTION

Given a finite real multisequence β ≡ β(2n) = {βi}i∈ZN
+ , |i|62n, and a closed

set K ⊆ RN , the truncated K-moment problem for β entails determining whether
there exists a positive Borel measure µ on RN such that

(1.1) βi =
∫

RN

ti dµ(t), i ∈ ZN
+ , |i| 6 2n,

and

(1.2) supp µ ⊆ K;
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a measure µ satisfying (1.1) is a representing measure for β; µ is a K-representing
measure if it satisfies (1.1) and (1.2).

In the sequel, we characterize the existence of a finitely atomic K-represen-
ting measure having the fewest possible atoms, in the case when K is semi-alge-
braic. This is the case whereQ ≡ {qi}m

i=1 ⊆ RN [t] ≡ R[t1, . . . , tN ] and K = KQ :=
{(t1, . . . , tN) ∈ RN : qi(t1, . . . , tN) > 0, 1 6 i 6 m}. Our existence condition (The-
orem 1.1 below) is expressed in terms of positivity and extension properties of the
moment matrix M(n) ≡ MN(n)(β) associated to β, and in terms of positivity of
the localizing matrixMqi corresponding to each qi (see below for terminology and
notation). In Theorem 1.2 we provide a procedure for computing the atoms and
densities of a minimal representing measure in any truncated moment problem
(independent of K).

If µ is a representing measure for β (or, as we often say, a representing
measure for M(n)), then card supp µ > rankM(n); moreover, there exists a
rankM(n)-atomic (minimal) representing measure for β if and only if M(n) is
positive semidefinite,M(n) > 0, andM(n) admits a rank-preserving (or flat) ex-
tension to a moment matrixM(n + 1); in this case, M(n + 1) admits unique suc-
cessive flat moment matrix extensions M(n + 2), M(n + 3), . . . (Theorem 2.19).
For 1 6 i 6 m, suppose deg qi = 2ki or 2ki − 1; relative to M(n + ki) we have the
localizing matrix Mqi (n + ki) (cf. Section 3).

Our two main results, which follow, characterize the existence of rank M(n)-
atomic (minimal) KQ-representing measures for β and show how to compute the
atoms and densities of such measures.

THEOREM 1.1. An N-dimensional real sequence β ≡ β(2n) has a rankM(n)-
atomic representing measure supported in KQ if and only if M(n) > 0 and M(n)
admits a flat extension M(n + 1) such that Mqi (n + ki) > 0, 1 6 i 6 m. In this case,
M(n + 1) admits a unique representing measure µ, which is a rankM(n)-atomic (min-
imal) KQ-representing measure for β, and µ has precisely rankM(n)− rankMqi (n +
ki) atoms in Z(qi) ≡ {t ∈ RN : qi(t) = 0}, 1 6 i 6 m.

The uniqueness statement in Theorem 1.1 actually depends on our next re-
sult, which provides a concrete procedure for computing the measure µ. As de-
scribed in Section 2, the rows and columns of M(n) are indexed by the lexico-
graphic ordering of the monomials ti, for i ∈ ZN

+ , |i| 6 n, and are denoted by
Ti, |i| 6 n; a dependence relation in the columns of M(n) may thus be expressed
as p(T) = 0 for a suitable p ∈ RN [t] with deg p 6 n. We define the variety of
M(n) by V(M(n)) :=

⋂
p∈RN [t],deg p6n

p(T)=0

Z(p), where Z(p) := {t ∈ RN : p(t) = 0}.

Let r := rankM(n) and let B ≡ {Tik}r
k=1 denote a maximal linearly independent

set of columns of M(n). For V ≡ {vj}r
j=1 ⊆ RN , let WB,V denote the r× r matrix

whose entry in row k, column j is vik
j , 1 6 k, j 6 r.
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THEOREM 1.2. IfM(n) ≡MN(n) > 0 admits a flat extensionM(n + 1), then
V := V(M(n + 1)) satisfies cardV = r (≡ rankM(n)), and V ≡ {vj}r

j=1 forms the

support of the unique representing measure µ for M(n + 1). If B ≡ {Tik}r
k=1 is a max-

imal linearly independent subset of columns of M(n), then WB,V is invertible, and µ =
r
∑

i=1
ρjδvj , where ρ ≡ (ρ1, . . . , ρr) is uniquely determined by ρt = W−1

B,V (βi1 , . . . , βir )
t.

Theorem 1.2 describes µ in terms of V(M(n + 1)). To compute the variety
of any moment matrixM(n), we may rely on the following general result. Given
n > 1, write J ≡ J(n) := {j ∈ ZN

+ : |j| 6 n}. Clearly, size M(n) = card J(n) =
(N+n

N ) = dim{p ∈ RN [t] : deg p 6 n}.

PROPOSITION 1.3. LetM(n) ≡MN(n) be a real moment matrix, with columns
T j indexed by j ∈ J, let r := rankM(n), and let B ≡ {Ti}i∈I be a maximal linearly
independent set of columns of M(n), where I ⊆ J satisfies card I = r. For each index
j ∈ J \ I, let qj denote the unique polynomial in lin.span{ti}i∈I such that T j = qj(T),
and let rj(t) := tj − qj(t). Then V(M(n)) is precisely the set of common zeros of
{rj}j∈J \ I .

Cases are known where β(2n) has no rankM(n)-atomic KQ-representing
measure, but does have a finitely atomic KQ-representing measure (cf. [12], [14],
[19]). It follows from Theorem 1.1 that β(2n) has a finitely atomic representing
measure supported in KQ if and only if M(n)(β) admits some positive moment
matrix extension M(n + j), which in turn admits a flat extension M(n + j + 1)
for which the unique successive flat extensions M(n + j + k) satisfy Mqi (n + j +
ki) > 0, 1 6 i 6 m. We may estimate the minimum size of j as follows.

COROLLARY 1.4. The N-dimensional real sequence β(2n) has a finitely atomic
representing measure supported in KQ if and only if M(n)(β) admits some positive
moment matrix extension M(n + j), with j 6 2(2n+N

N )− n, which in turn admits a flat
extension M(n + j + 1) for which Mqi (n + j + ki) > 0, 1 6 i 6 m.

If the conditions of Corollary 1.4 hold, then the atoms and densities of a
finitely atomic KQ-representing measure for β may be computed by applying
Theorem 1.2 and Proposition 1.3 to the flat extension M(n + j + 1). It is an open
problem whether the existence of a representing measure µ for β(2n) implies the
existence of a finitely atomic representing measure; such is the case, for example,
if µ has convergent moments of degree 2n + 1 (cf. Theorem 1.4 of [11] and [37],
[52]).

We view Theorem 1.1 as our main result concerning existence of minimal
KQ-representing measures, and Theorem 1.2 primarily as a tool for computing
such measures (cf. Example 1.5 below). Note that Theorem 1.2 applies to arbi-
trary moment problems, not just the K-moment problem. Although Theorem 1.2
can also be regarded as an existence result, it may be very difficult to utilize it
in this way in specific examples. To explain this viewpoint, we recall a result of
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[16]. Let ω denote the restriction of planar Lebesgue measure to the closed unit
disk D and consider β ≡ β(6)[ω] and M≡M(3)(β); then rankM = 10. Flat
extensions M(4) of M exist in abundance and correspond to 10-atomic (mini-
mal) cubature rules ν of degree 6 for ω. In [16] it is proved that no such rule
ν is “inside,” i.e., with supp ν ⊆ D. The proof in [16] first characterizes the flat
extensionsM(4) in terms of algebraic relations among the “new moments” of de-
gree 7 that appear in such extensions. These relations lead to inequalities which
ultimately imply that, in Theorem 1.1, Mp(4) cannot be positive semi-definite,
where p(x, y) := 1− x2 − y2. One could also try to establish the nonexistence
of 10-atomic inside rules directly from Theorem 1.2, without recourse to Theo-
rem 1.1. In this approach one would first compute general formulas for the new
moments of degree 7 in a flat extension M(4), use these moments to compute
the general form of V(M(4)), and then show that V(M(4)) cannot be contained
in D. As a practical matter, however, this plan cannot be carried out; the new
moments comprise the solution of a system of 6 quadratic equations in 8 real
variables, and at present a program such as Mathematica seems unable to solve
this system in a tractable form. For a problem such as this, Theorem 1.1 seems
indispensable. We illustrate the interplay between Theorem 1.1, Theorem 1.2 and
Proposition 1.3 in Example 1.5 below.

For measures in the plane (N = 2), Theorem 1.1 is equivalent to Theorem 1.6
of [10], which characterizes the existence of minimal K-representing measures in
the semi-algebraic case of the truncated complex K-moment problem (with moments
relative to monomials of the form zizj). In [10] we remarked that Theorem 1.6 of
[10] extended to truncated moment problems in any number of real or complex
variables. In [25], Lasserre developed applications of Theorem 1.6 in [10] to op-
timization problems in the plane. These applications also extend to RN , N > 2
(cf. [25], [27], [26]), but they require the above mentioned generalization of Theo-
rem 1.6 in [10] that we provide in Theorem 1.1. Lasserre’s work motivated us to
revisit our assertion in [10]; we then realized that there were unforeseen difficul-
ties with the generalization, particularly for the case when N is odd. The purpose
of Theorem 1.1 is to provide the desired generalization.

The proofs of Theorem 1.1 and Corollary 1.4 appear in Section 5. In Theo-
rem 5.1 we characterize the existence of minimal K-representing measures in the
semi-algebraic case of the truncated complex K-moment problem for measures on
Cm. The equivalence of this result to the “even” case of Theorem 1.1 (N = 2d) is
given in the first part of the proof of Theorem 5.2; this is based on the equivalence
of the truncated moment problem for Cd with the truncated real moment prob-
lem for R2d (cf. Propositions 2.15, 2.16, 2.17 and 2.18). The proof of Theorem 1.1
for N = 2d− 1, given in the second part of the proof of Theorem 5.2, requires an
additional argument, based on the equivalence of a truncated moment problem
for R2d−1 with an associated moment problem for R2d.
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We prove Theorem 1.2 and Proposition 1.3 in Section 2. Theorem 1.2 is new
even for N = 2. Previously, for N = 2 we knew that the measure µ of Theo-
rems 1.1 and 1.2 could be computed with supp µ = V(M(r)) ([6], p. 33), where
r := rankM(n) satisfies r 6 (n+1)(n+2)

2 ; but for r > n + 1 this entails iteratively
generating the extensions M(n + 2), . . . ,M(r). For N > 2, we previously had
no method for computing µ. In order to prove Theorem 1.2 we first obtain some
results concerning truncated complex moment problems on Cd. Let M(n) ≡
Md(n)(γ) denote the moment matrix for a d-dimensional complex multisequence
γ of degree 2n, and let V(M(n)) denote the corresponding algebraic variety. In
Theorem 2.4 we prove that if M(n) > 0 admits a flat extension M(n + 1), then
the unique successive flat moment matrix extensionsM(n + 2),M(n + 3), . . . (cf.
Theorem 2.2) satisfy V(M(n + 1)) = V(M(n + 2)) = · · · . This result is used to
prove Theorem 2.3, which is the analogue of Theorem 1.2 for the complex mo-
ment problem. The proof of Theorem 1.2 is then given in Theorem 2.21, using
Theorem 2.3 and the “equivalence” results cited above.

In Section 3 we study the localizing matrix Md
p(n) corresponding to a com-

plex moment matrix Md(n) and a polynomial p ∈ Cd
2n[z, z]; Theorem 3.2 pro-

vides a computational formula for Md
p(n) as a linear combination of certain com-

pressions of Md(n) corresponding to the monomial terms of p; an analogous for-
mula holds as well for real localizing matrices (cf. Theorem 3.6). In Section 4, we
show that a flat extension Md(n + 1) of Md(n) > 0 induces flat extensions of pos-
itive localizing matrices. Indeed, the flat extension Md(n + 1) has unique succes-
sive flat extensions Md(n + 2), Md(n + 3), . . ., and in Theorem 4.1, for p ∈ Cd[z, z],
deg p = 2k or 2k− 1, we prove that if Md

p(n + k) > 0, then Md
p(n + k + 1) is a flat,

positive extension of Md
p(n + k). In proving Theorem 4.1 we follow the same gen-

eral plan as in the proof of Theorem 1.6 in [10] (for moment problems on C), but
we have streamlined the argument somewhat, placing more emphasis on the ab-
stract properties of flat extensions and less emphasis on detailed calculations of
the extensions; such calculations unnecessarily complicated the argument given
in [10]. Theorem 4.1 is the main technical result that we need to prove Theo-
rem 1.1.

In the following example, we show the interaction of Theorem 1.1, Theo-
rem 1.2 and Proposition 1.3 in a 3-dimensional cubature problem.

EXAMPLE 1.5. We consider the cubature problem of degree 2 for volume
measure µ ≡ µB3 on the closed unit ball B3 in R3 (cf. [49]). Thus β ≡ β(2) =
{β(i,j,k)}i,j,k>0, i+j+k62, where β(i,j,k) :=

∫
B3

xiyjzk dµ, i.e., β(0,0,0) = 4π
3 , β(1,0,0) =

β(0,1,0) = β(0,0,1) = 0, β(2,0,0) = β(0,2,0) = β(0,0,2) = 4π
15 , β(1,1,0) = β(1,0,1) =

β(0,1,1) = 0. The moment matrix M3(1)(β) has rows and columns indexed
by 1, X, Y, Z; for i ≡ (i1, i2, i3), j ≡ (j1, j2, j3) ∈ Z3

+ with |i|, |j| 6 1, the
entry in row Xi1Yi2 Zi3 , column X j1Y j2 Zj3 , is β(i1+j1, i2+j2, i3+j3). Thus we have
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M ≡ M3(1)(β) = diag
( 4π

3 , 4π
15 , 4π

15 , 4π
15

)
. We will use Theorem 1.1 to con-

struct a rankM-atomic representing measure for β supported in K = B3. A
moment matrix extension M(2) of M admits a block decomposition M(2) =( M B(2)
B(2)t C(2)

)
, where B(2) includes “new moments” of degree 3 and C(2) is

a moment matrix block of degree 4; the rows and columns of M(2) are indexed
by 1, X, Y, Z, X2, YX, ZX, Y2, ZY, Z2 (see Section 2 below). Clearly, M is posi-
tive definite and invertible, so a flat extension M(2) is determined by a choice of
moments of degree 3 such that B(2)tM−1B(2) has the form of a moment matrix
block C(2) (cf. the remarks following Theorem 2.3). Due to its complexity, we are
unable to compute the general solution B(2) to

(1.3) C(2) = B(2)tM−1B(2).

Instead, we specify certain moments of degree 3 as follows:

β(2,0,1) = β(2,1,0) = β(1,1,1) = β(0,2,1) = β(0,1,2) = 0,(1.4)

β(3,0,0) =
1125β2

(1,2,0) − 16π2

1125β(1,2,0)
, β(1,0,2) = − 16π2

1125β(1,2,0)
.

(Observe that we have left β(1,2,0), β(0,3,0) and β(0,0,3) free.) With these choices,
B(2)tM−1B(2) is a moment matrix block of degree 4, and

M(2) ≡M(2){β(1,2,0), β(0,3,0), β(0,0,3)}
(defined by (1.3)) is a flat extension of M. To show that β admits a 4-atomic K-
representing measure, we consider p(x, y, z) = 1− (x2 + y2 + z2), so that K = Kp
(where by Kp we mean KQ with Q ≡ {p}). Since deg p = 2, in Theorem 1.1
we have n = k = 1; it thus suffices to show that the flat extension M(2) cor-
responding to (1.4) satisfies Mp(2) > 0. As we describe in Section 3 below,
Mp(2) = M1(2)− (Mx2(2) +My2(2) +Mz2(2)), where M1(2) = M, Mx2(2)
is the compression of M(2) to rows and columns indexed by X, X2, YX, ZX,
My2(2) is the compression of M(2) to rows and columns indexed by Y, YX, Y2,
ZY, and Mz2(2) is the compression of M(2) to rows and columns indexed by Z,
ZX, ZY, Z2. From these observations, and using (1.3)–(1.4), it is straightforward
to verify that

Mp(2) =




8π
15 −2β(3,0,0) −β(0,3,0) −β(0,0,3)

−2β(3,0,0) f (β(1,2,0)) − 15β(1,2,0)β(0,3,0)
4π

4πβ(0,0,3)
75β(1,2,0)

−β(0,3,0) − 15β(1,2,0)β(0,3,0)
4π g(β(1,2,0), β(0,3,0)) 0

−β(0,0,3)
4πβ(0,0,3)
75β(1,2,0)

0 h(β(1,2,0), β(0,0,3))




,
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where

f (r) := − (1125r2 − 300πr + 16π2)(1125r2 + 300πr + 16π2)
168750πr2 ,

g(r, s) := −2250r2 + 1125s2 − 64π2

300π
,

h(r, t) := −−72000π2r2 + 512π4 + 1265625r2t2

337500πr2 ,

and that Mp(2) is positive semi-definite if β(0,3,0) = β(0,0,3) = 0 and 2
15

√
2
5 π 6

β(1,2,0) 6 4
15

√
2
5 π. Under these conditions, Theorem 1.1 now implies the exis-

tence of a unique 4-atomic (minimal) representing measure ζ for M(2), each of
whose atoms lies in the closed unit ball. Theorem 1.2 implies that supp ζ = V :=
V(M(2)). To compute the atoms of ζ via Proposition 1.3, observe that in the col-
umn space of M(2) we have the following linear dependence relations: X2 =
1
5 1 +

1125β2
(1,2,0)−16π2

300πβ(1,2,0)
X, XY =

15β(1,2,0)
4π Y, XZ = − 4π

75β(1,2,0)
Z, Y2 = 1

5 1 +
15β(1,2,0)

4π X,

YZ = 0, and Z2 = 1
5 1 − 4π

75β(1,2,0)
X; thus, V is determined by the polynomials

corresponding to these relations. A calculation shows that V = {Pi}3
i=0, where

Pi ≡ (xi, yi, zi) satisfies

P0 =
(15β(1,2,0)

4π
,− s

4
√

5π
, 0

)
, P1 =

(15β(1,2,0)

4π
,

s
4
√

5π
, 0

)
,

P2 =
(
− 4π

75β(1,2,0)
, 0,− s

75β(1,2,0)

)
, P3 =

(
− 4π

75β(1,2,0)
, 0,

s
75β(1,2,0)

)
,

with s :=
√

1125β2
(1,2,0) + 16π2. The measure ζ is thus of the form ζ =

3
∑

i=0
ρi δPi

. To

compute the densities ρi using Theorem 1.2, consider the basis B := {1, X, Y, Z}
for CM(1) and let

W =




1 1 1 1
x0 x1 x2 x3
y0 y1 y2 y3
z0 z1 z2 z3


 .

Following Theorem 1.2, ρ ≡ (ρ0, ρ1, ρ2, ρ3) is uniquely determined by

ρt = W−1(β(0,0,0), β(1,0,0), β(0,1,0), β(0,0,1))t = W−1
(

4π
3 , 0, 0, 0

)t
, and thus

ρ0 = ρ1 =
32π3

3(1125β2
(1,2,0) + 16π2)

, ρ2 = ρ3 =
750β2

(1,2,0)π

1125β2
(1,2,0) + 16π2

.

For a concrete numerical example, we can take β(1,2,0) = 4
15

√
2
5 π, and obtain

ρ0 = ρ1 = 2
9 π, ρ2 = ρ3 = 4

9 π, and P0 =
(√

2
5 ,−

√
3
5 , 0

)
, P1 =

(√
2
5 ,

√
3
5 , 0

)
,
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P2 =
(
−

√
1
10 , 0,−

√
3
10

)
, and P3 =

(
−

√
1
10 , 0,

√
3
10

)
. Note that

Mp(2) =




8π
15 − 4

15

√
2
5 π

− 4
15

√
2
5 π 4π

75


⊕(0)⊕

(4π

25

)
,

so rankM(1) − rankMp(2) = 2, and (as Theorem 1.1 predicts) there are two
points, P0 and P1, that lie on the unit sphere.

We pause to locate Theorem 1.1 within the extensive literature on the K-
moment problem (cf. [1], [3], [4], [21], [23], [39], [43], [48]). A classical theorem of
M. Riesz ([40], Section 5) provides a solution to the full K-moment problem on R,
as follows. Given a real sequence β ≡ {βi}∞

i=0 and a closed set K ⊆ R, there exists
a positive Borel measure µ on R such that βi =

∫
ti dµ, i > 0 and supp µ ⊆ K

if and only if each polynomial p ∈ C[t], p(t) =
N
∑

i=0
aiti, with p|K > 0, satisfies

N
∑

i=0
aiβi > 0. For a general closed set K ⊆ R there is no concrete description of

the case p|K > 0, so it may be very difficult to verify the Riesz hypothesis for a
particular β.

In [22], Haviland extended Riesz’s theorem to RN , N > 1, and also showed
that for several semi-algebraic sets K, the Riesz hypothesis can be checked by
concrete positivity tests. Indeed, by combining the generalized Riesz hypothesis
with concrete descriptions of non-negative polynomials on R, [0, +∞], [a, b], or
the unit circle, Haviland recovered classical solutions to the full moment prob-
lems of Hamburger, Stieltjes, Hausdorff, and Herglotz [22]. More recently, for
the case of the closed unit disk, Atzmon [2] found a concrete solution to the full
K-moment problem using subnormal operator theory, and Putinar [35] subse-
quently presented an alternate solution using hyponormal operator theory.

In [50] and [51], Szafraniec found necessary and sufficient conditions for the
moment problem on more general compact sets. In [5], Cassier developed an al-
ternate approach to the K-moment problem for K a compact subset of RN with
nonempty interior, using Hahn-Banach techniques. For the case when K is com-
pact and semi-algebraic, Schmüdgen [42] used real algebraic geometry to solve
the full K-moment problem in terms of concrete positivity tests. Using infinite
moment matrices, we may paraphrase Schmüdgen’s theorem as follows: a full
multi-sequence β ≡ β(∞) = {βi}i∈ZN

+
has a representing measure supported in a

compact semi-algebraic set KQ if and only ifMN(∞)(β) > 0 andMN
q (∞)(β) > 0

for every polynomial q that is a product of distinct qi. Schmüdgen’s approach, us-
ing real algebra, is to concretely describe the polynomials nonnegative on KQ (as
above) and to then apply the Riesz-Haviland criterion. Putinar and Vasilescu [38]
subsequently provided a reduced set of testing polynomials q (see also [15]). Re-
cently, Powers and Scheiderer [33] characterized the non-compact semi-algebraic
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sets KQ for which a generalized Schmüdgen-type theorem is valid. Indeed, recent
advances in real algebra make it possible to concretely describe the polynomials
nonnegative on certain noncompact semi-algebraic sets [24], [31], [32], [33], [34],
[36], [41], so as to establish moment theorems via the previously intractable Riesz-
Haviland approach.

There is at present no viable analogue of the Riesz-Haviland criterion for
truncated moment problems. Theorem 1.1 is motivated by the above results for
the full K-moment problem and also by a recent result of J. Stochel [46] which
shows that the truncated K-moment problem is actually more general than the
full K-moment problem. Stochel’s result in [46] is stated for the complex mul-
tidimensional moment problem, but we may paraphrase it for the real moment
problem as follows.

THEOREM 1.6 (cf. [46]). Let K be a closed subset of RN , N > 1. A real multi-
sequence β ≡ β(∞) = {βi}i∈ZN

+
has a K-representing measure if, and only if, for each

n > 0, β(2n) ≡ {βi}i∈ZN
+ , |i|62n has a K-representing measure.

For the semi-algebraic case (K = KQ), Theorem 1.1 addresses the existence
of finitely atomic K-representing measures for β(2n) with the fewest atoms pos-
sible. Concerning the existence of a flat extension MN(n + 1) in Theorem 1.1,
there is at present no satisfactory general test available, so in this sense Theo-
rem 1.1 is “abstract.” However, in certain special cases, concrete solutions to the
flat extension problem have been found [7], [8]. For example, consider the case
of the parabolic moment problem, where q(x, y) = 0 represents a parabola in R2.
Theorem 1.1 implies that β(2n) has a rankM2(n)-atomic representing measure
supported in Z(q) if and only if M2(n)(β) is positive and admits a flat extension
M2(n + 1) for which M2

q(n + 1) = 0. In [13] we obtained the following concrete
characterization of this case.

THEOREM 1.7 ([13], Theorem 2.2). Let q(x, y) = 0 denote a parabola inR2. The
following statements are equivalent for β ≡ β(2n):

(i) β has a representing measure supported in Z(q);
(ii) β has a (minimal) rankM2(n)(β)-atomic representing measure supported in

Z(q) (cf. Theorem 1.1);
(iii) M2(n)(β) is positive and recursively generated (cf. Section 2), there is a column

dependence relation q(X, Y) = 0, and cardV(M2(n)(β)) > rankM2(n)(β).

Analogues of Theorem 1.7 for all other curves of degree 2 appear in [9], [12],
[14], [19]. The full moment problem on a curve of degree 2 had previously been
concretely solved in [45] (cf. [47]); an alternate solution appears in [33]. In [47] the
authors solve the full moment problem for certain families of curves of arbitrary
degree (e.g., curves with a dominating coefficient).
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2. MOMENT MATRICES

LetCd
r [z, z] denote the space of polynomials with complex coefficients in the

indeterminates z ≡ (z1, . . . , zd) and z ≡ (z1, . . . , zd), with total degree at most r;
thus dimCd

r [z, z] = η(d, r) := (r+2d
2d ). For i ≡ (i1, . . . , id) ∈ Zd

+, let |i| := i1 + · · ·+
id and let zi := zi1

1 · · · zid
d . Given a complex sequence γ ≡ γ(s) = {γij}i,j∈Zd

+
, |i|+

|j| 6 s, the truncated complex moment problem for γ entails determining necessary
and sufficient conditions for the existence of a positive Borel measure ν on Cd

such that

(2.1) γij =
∫

zizj dν
(≡

∫
zi1

1 · · · zid
d zj1

1 · · · z
jd
d dν(z1, . . . , zd, z1, . . . , zd)

)
,

for |i|+ |j| 6 s. A measure ν as in (2.1) is a representing measure for γ(s); if K ⊆ Cd

is a closed set and supp ν ⊆ K, then ν is a K-representing measure for γ(s).
In the sequel we focus on the case when s is even, say s = 2n. In this case, the

moment data γ(2n) determine the moment matrix M(n) ≡ Md(n)(γ) that we next
describe. The size of M(n) is η(d, n), with rows and columns {ZiZj}i,j∈Zd

+ ,|i|+|j|6n,

indexed by the lexicographic ordering of the monomials inCd
n[z, z]; for d = 2, n =

2, this ordering is 1, Z1, Z2, Z1, Z2, Z2
1 , Z1Z2, Z1Z1, Z2Z1, Z2

2 , Z1Z2, Z2Z2, Z2
1, Z1Z2,

Z2
2. The entry of M(n) in row ZiZj, column ZkZ` is γi+`,k+j, for |i|+ |j|, |k|+ |`| 6

n). By a representing measure for M(n) we mean a representing measure for γ.
For p ∈ Cd

n[z, z], p(z, z) ≡ ∑
r,s∈Zd

+,|r|+|s|6n
arszrzs, we set p̂ := (ars); p̂ is the

coefficient vector of p relative to the basis forCd
n[z, z] consisting of the monomials

{zizj}i,j∈Zd
+ ,|i|+|j|6n in lexicographic order. We recall the Riesz functional Λ ≡ Λγ :

Cd
2n[z, z] → C, defined by Λ

(
∑

r,s∈Zd
+,|r|+|s|62n

brszrzs
)

:= ∑
r,s∈Zd

+,|r|+|s|62n
brsγrs. The

matrix Md(n)(γ) is uniquely determined by

(2.2) 〈Md(n)(γ) f̂ , ĝ〉 := Λγ( f g), f , g ∈ Cd
n[z, z].

If γ has a representing measure ν, then Λγ( f g) =
∫

f g dν; in particular,

〈Md(n)(γ) f̂ , f̂ 〉 =
∫
| f |2 dν > 0,

so Md(n)(γ) is positive semidefinite in this case.
Corresponding to p ∈ Cd

n[z, z], p(z, z) ≡ ∑ arszrzs (as above), we may define
an element in CM(n), the column space of M(n), by p(Z, Z) := ∑ arsZrZs; the
following result will be used in the sequel to locate the support of a representing
measure.
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PROPOSITION 2.1 ([6], (7.4)). Suppose ν is a representing measure for γ(2n), let
p ∈ Cd

n[z, z], and let Z(p) := {z ∈ Cd : p(z, z) = 0}. Then supp ν ⊆ Z(p) if and
only if p(Z, Z) = 0.

It follows from Proposition 2.1 that if γ(2n) has a representing measure, then
Md(n)(γ) is recursively generated in the following sense:

(2.3) p, q, pq ∈ Cd
n[z, z], p(Z, Z) = 0 ⇒ (pq)(Z, Z) = 0.

We define the variety of M(n) by V(M(n)) :=
⋂

p∈Cd
n [z,z],p(Z,Z)=0

Z(p); we

sometimes refer to V(M(n)) as V(γ). Proposition 2.1 implies that if ν is a repre-
senting measure for γ(2n), then supp ν ⊆ V(γ) and, moreover, that

(2.4) cardV(γ) > card supp ν > rank Md(n)(γ) (cf. (7.6) of [6]).

The following result characterizes the existence of “minimal”, that is,
rank M(n)-atomic, representing measures.

THEOREM 2.2 ([6], Corollary 7.9, Theorem 7.10). γ(2n) has a rank Md(n)(γ)-
atomic representing measure if and only if M(n) ≡ Md(n)(γ) is positive semidefinite
and M(n) admits an extension to a moment matrix M(n + 1) ≡ Md(n + 1)(γ̃) satis-
fying rank M(n + 1) = rank M(n). In this case, M(n + 1) admits unique successive
rank-preserving positive moment matrix extensions M(n + 2), M(n + 3), . . ., and there
exists a rank M(n)-atomic representing measure for M(∞).

Various concrete sufficient conditions are known for the existence of the
rank-preserving extension M(n + 1) described in Theorem 2.2, particularly when
d = 1 (moment problems in the plane) [6], [7], [8], [9], [12], [13], [14]; for general
d, an important sufficient condition is that Md(n)(γ) is positive semidefinite and
flat, i.e., rank Md(n)(γ) = rank Md(n− 1)(γ) ([6], Theorem 7.8).

We now present the complex version of Theorem 1.2.

THEOREM 2.3. If M(n) ≡ Md(n) > 0 admits a rank-preserving extension
M(n + 1), then V := V(M(n + 1)) satisfies cardV = r (≡ rank M(n)), and V ≡
{ωj}r

j=1 forms the support of the unique representing measure ν for M(n + 1). If

B ≡ {Zik Zjk}r
k=1 is a maximal linearly independent subset of columns of M(n), then

the r× r matrix WB,V (whose entry in row m, column k is ωim
k ω

jm
k ) is invertible, and ν =

r
∑

j=1
ρjδωj , where ρ ≡ (ρ1, . . . , ρr) is uniquely determined by ρt = W−1

B,V (γi1,j1 , . . . , γir ,jr )
t.

Toward the proof of Theorem 2.3, we begin with some remarks concerning

positive matrix extensions. Let Ã ≡
(

A B
B∗ C

)
be a block matrix. A result of

Smul’jan [44] shows that Ã > 0 if and only if A > 0 and there exists a matrix W
such that B = AW and C > W∗AW. In this case, W∗AW is independent of W
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satisfying B = AW, and the matrix [A; B] :=
(

A B
B∗ W∗AW

)
is positive and

satisfies rank[A; B] = rank A; conversely, any rank-preserving positive extension
Ã of A is of this form. We refer to such a rank-preserving extension as a flat
extension of A. Now, a moment matrix Md(n + 1) admits a block decomposition

M(n + 1) =
(

M(n) B(n + 1)
B(n + 1)∗ C(n + 1)

)
; thus a positive moment matrix M(n)

admits a flat (positive) moment matrix extension M(n + 1) if and only if there
is a choice of moments of degree 2n + 1 and a matrix W such that B(n + 1) =
M(n)W and W∗M(n)W has the form of a moment matrix block C(n + 1), i.e.,
[M(n); B(n + 1)] is a moment matrix.

Consider again a positive extension Ã of A (as above). The Extension Princi-
ple ([6], Proposition 3.9, [17], Proposition 2.4) implies that each linear dependence

relation in the columns of A extends to the columns of
(

A
B∗

)
in Ã. In the case

when M(n + 1) is a positive extension of M(n), it follows that V(M(n + 1)) ⊆
V(M(n)); we will use this relation frequently in the sequel, without further refer-
ence.

Now recall from Theorem 2.2 that if M(n) > 0 admits a flat extension
M(n + 1), then M(n + 1) admits a unique flat extension M(n + 2). Indeed, ev-
ery column of M(n + 1) of total degree n + 1 is a linear combination of columns
corresponding to monomials of total degree at most n; we can write this as

(2.5) ZiZj = pi,j(Z, Z) pi,j ∈ Cd
n[z, z]; |i|+ |j| = n + 1.

Then the unique flat extension M(n + 2) is given by

(2.6) ZiZj =

{
(z`pi,j−ε(`))(Z, Z) if j` > 1 for some ` = 1, . . . , d,
(zk pi−ε(k),0)(Z, Z) if j = 0 and ik > 1 for some k = 1, . . . , d,

(|i|+ |j| = n + 2), where ε(`) := (0, . . . , 0,
`
1, 0, . . . , 0). (ZiZj is independent of the

choice of j` or ik; cf. Theorem 7.8 of [6].)
Suppose M(n) > 0 admits a flat extension M(n + 1); the following result

implies that the unique rank-preserving extensions M(n + 2), M(n + 3), . . . , are
also variety-preserving; this is a key ingredient in the proof of Theorem 1.2 and
may be of independent interest.

THEOREM 2.4. Assume that M(n) ≡ Md(n) > 0 admits a flat extension M(n +
1). Then V(M(n + 2)) = V(M(n + 1)).

Proof. Recall that V(M(n + 2)) ⊆ V(M(n + 1)); to prove the reverse inclu-
sion, it suffices to show that if ω ∈ V(M(n + 1)), and f ∈ Cd

n+2[z, z] satisfies
f (Z, Z) = 0 in CM(n+2), then f (ω, ω) = 0. As discussed above, the flat extension
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M(n + 2) admits a decomposition

M(n + 2) =
(

M(n + 1) M(n + 1)W
W∗M(n + 1) W∗M(n + 1)W

)
.

Write f = g + h, where g ∈ Cd
n+1[z, z], and h(z, z) ≡ ∑

|i|+|j|=n+2
hi,jzizj. Recall that

f̂ ∈ Cη(d,n+2) and ĝ ∈ Cη(d,n+1) denote the coefficient vectors of f and g rela-
tive to the bases of monomials in lexicographic order. Let h̃ ∈ Cη(d,n+2)−η(d,n+1)

denote the coefficient vector of h relative to the monomials of degree n + 2 in

lexicographic order; thus f̂ =
(

ĝ
h̃

)
. Now,

f (Z, Z) = M(n + 2) f̂ =

(
M(n + 1)ĝ + M(n + 1)Wh̃

W∗M(n + 1)ĝ + W∗M(n + 1)Wh̃

)
,

so f (Z, Z) = 0 implies

(2.7) M(n + 1)(ĝ + Wh̃) = 0.

We seek to associate ĝ + Wh̃ with the coefficient vector q̂ of some polynomial
q ∈ Cd

n+1[z, z], and to this end we first describe an explicit formula for W.
Recall that M(n + 1)W = B(n + 2), and that the columns of B(n + 2) are

associated with the monomials zizj, |i|+ |j| = n + 2. For (i, j) ∈ Zd
+ × Zd

+ with

|i|+ |j| = n + 2, the (i, j)-th column of B(n + 2) is, on one hand M(n + 1)Wz̃izj,
while it equals [(z`pi,j−ε(`))(Z, Z)]η(d,n+1) or [(zk pi−ε(k),0)(Z, Z)]η(d,n+1), by (2.6),
on the other hand. Since the polynomials z`pi,j−ε(`) and zk pi−ε(k),0 belong to
Cd

n+1[z, z], we can write

[(z`pi,j−ε(`))(Z, Z)]η(d,n+1) = M(n + 1)(z`pi,j−ε(`))ˆ

and
[(zk pi−ε(k),0)(Z, Z)]η(d,n+1) = M(n + 1)(zk pi−ε(k),0)ˆ.

It follows at once that W can be given by

Wz̃izj =

{
(z`pi,j−ε(`))ˆ if j` > 1 for some ` = 1, . . . , d,
(zk pi−ε(k),0)ˆ if j = 0 and ik > 1 for some k = 1, . . . , d,

(2.8)

(|i|+ |j| = n + 2). We now consider Wh̃. Since h̃ ≡ ∑
|i|+|j|=n+2

hi,j z̃izj, it follows

from (2.8) that

Wh̃ = ∑
|i|+|j|=n+2,j 6=0

hi,j(z`pi,j−ε(`))ˆ + ∑
|i|=n+2

hi,0(zk pi−ε(k),0)ˆ

=
[

∑
|i|+|j|=n+2,j 6=0

hi,jz`pi,j−ε(`) + ∑
|i|=n+2

hi,0zk pi−ε(k),0

]
ˆ.
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Now we set

q(z, z) := g(z, z) + ∑
|i|+|j|=n+2,j 6=0

hi,j(z`pi,j−ε(`))(z, z)

+ ∑
|i|=n+2

hi,0(zk pi−ε(k),0)(z, z) ∈ Cd
n+1[z, z].

Observe that in CM(n+1),

q(Z, Z)

= M(n + 1)q̂

= M(n + 1)ĝ + M(n + 1)
[

∑
|i|+|j|=n+2,j 6=0

hi,jz`pi,j−ε(`) + ∑
|i|=n+2

hi,0zk pi−ε(k),0

]
ˆ

= M(n + 1)ĝ + M(n + 1)Wh̃ = M(n + 1)(ĝ + Wh̃) = 0 (by (2.7)).

Thus, q ∈ Cd
n+1[z, z] and q(Z, Z) = 0. Since ω ∈ V(M(n + 1)), we must have

q(ω, ω) = 0. Therefore,

0 = g(ω, ω) + ∑
|i|+|j|=n+2,j 6=0

hi,jω`pi,j−ε(`)(ω, ω)

+ ∑
|i|=n+2

hi,0ωk pi−ε(k),0(ω, ω).(2.9)

Let ri,j(z, z) := zizj − pi,j(z, z), |i|+ |j| = n + 1. Clearly each ri,j ∈ Cd
n+1[z, z] and

ri,j(Z, Z) = 0 by (2.5), so ri,j(ω, ω) = 0, |i|+ |j| = n + 1. Multiplying ri,j(ω, ω) =
0 by either ω` or ωk, it follows that
{

ωiω j = (z`pi,j−ε(`))(ω, ω) |i|+ |j| = n + 2, j` > 1 for some ` = 1, . . . , d,
ωi = (zk pi−ε(k),0)(ω, ω) |i| = n + 2, j = 0, ik > 1 for some k = 1, . . . , d.

Now (2.9) becomes

0 = g(ω, ω) + ∑
|i|+|j|=n+2,j 6=0

hi,jω
iω j + ∑

|i|=n+2
hi,0ωi

= g(ω, ω) + h(ω, ω) = f (ω, ω).

Thus, f (ω, ω) = 0, as desired.

LEMMA 2.5. Assume that M(n) ≡ Md(n) > 0 admits an r-atomic representing
measure ν, where r := rank M(n), and let V := supp ν. If B ≡ {Zik Zjk}r

k=1 is a
maximal linearly independent subset of columns of M(n), then WB,V is invertible (cf.
Theorem 2.3).

Proof. Let R1, . . . , Rr denote the rows of WB,V , and assume that WB,V is sin-
gular. Then there exists scalars c1, . . . , cr ∈ C, not all zero, such that c1R1 + · · ·+
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crRr = 0. Let p(z, z) := c1zi1 zj1 + · · ·+ crzir zjr . Clearly, p|supp ν ≡ 0, so Propo-

sition 2.1 implies that p(Z, Z) = 0. Then c1Zi1 Zj1 + · · · + cZir Zjr = 0 in CM(n),
contradicting the fact that B is linearly independent.

Proof of Theorem 2.3. Let r := rank M(n); we first show that V ≡ V(M(n +
1)) satisfies cardV = r. Theorem 2.2 implies that M(n + 1) admits a unique
flat extension M(∞) and that M(∞) admits an r-atomic representing measure

ζ. Write supp ζ ≡ {ω1, . . . , ωr}, and define p ∈ Cd
2r[z, z] by p(z, z) :=

r
∏
i=1
‖z −

ωi‖2 (where, for z ≡ (z1, . . . , zd), ‖z‖2 :=
d
∑

j=1
zjzj ∈ Cd

2[z, z]). Clearly, Z(p) =

supp ζ, and since ζ is a representing measure for M(2r), Proposition 2.1 im-
plies p(Z, Z) = 0 in CM(2r). Thus V(M(2r)) ⊆ Z(p) and cardV(M(2r)) 6
cardZ(p) = r. To show that cardV = r, we consider two cases. If 2r 6 n,
then, since ζ is a representing measure for M(n + 1), supp ζ ⊆ V(M(n + 1)) ⊆
V(M(n)) ⊆ V(M(2r)) ⊆ Z(p) = supp ζ, whence supp ζ = V and cardV = r. If
2r > n + 1, repeated application of Theorem 2.4 implies that V ≡ V(M(n + 1)) =
V(M(n + 2)) = · · · = V(M(2r)), and since ζ is a representing measure for
M(n + 1), (2.4) implies

(2.10) r = rank M(n + 1) 6 cardV(M(n + 1)) = · · · = cardV(M(2r)).

Now, from above, cardV(M(2r)) 6 r, so (2.10) implies that cardV = r in this
case too.

Now let ν be a representing measure for M(n + 1). Then r = rank M(n +
1) 6 card supp ν 6 cardV = r, and since supp ν ⊆ V , it follows that supp ν =

V , whence ν =
r
∑

i=1
ρiδωi , for some densities ρ1, . . . , ρr. Since ν is a representing

measure for M(n), ρ ≡ (ρ1, . . . , ρr) satisfies WB,Vρt = (γi1,j1 , . . . , γir ,jr )
t, and since

WB,V is invertible by Lemma 2.5, ρ is uniquely determined. Thus ν is the unique
representing measure for M(n + 1).

In Theorem 7.7 of [6] we proved that a finite rank positive infinite moment
matrix M ≡ Md(∞) has a rank M-atomic representing measure; for d = 1 we
established uniqueness in Theorem 4.7 of [6]. We can now establish uniqueness
for arbitrary d.

COROLLARY 2.6. A finite rank positive moment matrix M ≡ Md(∞) has a
unique representing measure ν, and card supp ν = rank M.

Proof. Following Theorem 7.7 of [6], let ζ be a rank M-atomic representing
measure for M. Let j be the smallest integer such that rank M(j) = rank M(j + 1).
Theorem 2.3 implies that M(j + 1) has a unique representing measure ν, whence
ζ = ν and card supp ν = rank M.



204 RAÚL E. CURTO AND LAWRENCE A. FIALKOW

REMARK 2.7. The measure ν in Corollary 2.6 may be computed using The-
orem 2.3; indeed, supp ν = V(M(j + 1)).

In order to study moment problems on RN , we next introduce real moment
matrices. Let CN [t] ≡ C[t1, . . . , tN ] denote the space of complex polynomials in
N real variables, and let CN

s [t] denote the polynomials of degree at most s; then
dimCN

s [t] = (N+s
s ). For t ≡ (t1, . . . , tN) ∈ RN and i ≡ (i1, . . . , iN) ∈ ZN

+ , we set
ti := ti1

1 · · · tiN
N . Given a real sequence β ≡ β(r) = {βi}i∈ZN

+ ,|i|6r, the truncated
moment problem for β concerns conditions for the existence of a positive Borel
measure µ on RN satisfying

(2.11) βi =
∫

ti dµ(t) (≡
∫

ti1
1 · · · tiN

N dµ(t1, . . . , tN)), |i| 6 r.

A measure µ satisfying (2.11) is a representing measure for β; if, in addition, K ⊆
RN is closed and supp µ ⊆ K, then µ is a K-representing measure for β.

Let r = 2n; in this case β(2n) corresponds to a real moment matrix M(n) ≡
MN(n)(β), defined as follows. Let B ≡ {ti}i∈ZN

+ ,|i|6n denote the basis of mono-

mials in CN [t], ordered lexicographically; e.g., for N = 3, n = 2, this ordering is
1, t1, t2, t3, t2

1, t1t2, t1t3, t2
2, t2t3, t2

3. The size of M(n) is dimCN
n [t] (= (N+n

n )), with
rows and columns indexed as {Ti}i∈ZN

+ ,|i|6n, following the same lexicographic or-

der as above. The entry of M(n) in row Ti, column T j is βi+j, i, j ∈ ZN
+ , |i|+ |j| 6

2n. Note that for N = 1, MN(n)(β) is the Hankel matrix (βi+j) associated with
the classical Hamburger moment problem (K = R) (cf. [1]).

For p ∈ CN
n [t], p(t) ≡ ∑

i∈ZN
+ ,|i|6n

aiti, we let p̃ := (ai) denote the coefficient

vector of p relative to B. The Riesz functional Λβ : CN
2n[t] → C is defined by

Λβ(∑ brtr) := ∑ brβr. Thus, MN(n)(β) is uniquely determined by

(2.12) 〈MN(n)(β) f̃ , g̃〉 := Λβ( f g) f , g ∈ CN
n [t].

If β(2n) has a representing measure µ, then Λβ( f g) =
∫

f g dµ, so MN(n)(β) is
positive semidefinite.

For p ≡ ∑
r∈ZN

+ ,|r|6n
artr, we define an element in CM(n) (the column space of

M(n)) by p(T) := ∑
r∈ZN

+ ,|r|6n
arTr. Let V(M(n)) :=

⋂
p∈CN

n [t],p(T)=0
Z(p) denote

the variety of M(n); we also denote this variety by V(β). Let J ≡ J(n) := {j ∈
ZN

+ : |j| 6 n}; thus card J(n) = size M(n). Let s := size M(n)− rankM(n); the
following result, which proves Proposition 1.3, identifies s polynomials in RN

n [t]
whose common zeros comprise V(M(n)).

PROPOSITION 2.8. Let M(n) be a real moment matrix, with columns T j indexed
by j ∈ J, let r := rankM(n), and let B ≡ {Ti}i∈I be a maximal linearly independent
set of columns of M(n), where I ⊆ J satisfies card I = r. For each index j ∈ J \ I,
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let qj denote the unique polynomial in lin.span{ti}i∈I such that T j = qj(T), and let
rj(t) := tj − qj(t). Then V(M(n)) is precisely the set of common zeros of {rj}j∈J \ I .

Proof. Clearly V ≡ V(M(n)) ⊆ ⋂
j∈J
Z(rj). For the reverse inclusion, set

RN
n [t] := {p ∈ RN [t] : deg p 6 n} and let Φ : RN

n [t] → CM(n) denote the map
p 7→ p(Z, Z). Φ is linear and surjective, so dim ker Φ = dimRN

n [t]−dim CM(n) =
card J − card I. Observe now that for j ∈ J \ I, since T j = qj(T) we have
rj ∈ ker Φ. Moreover, for j ∈ J \ I, the monomial tj only appears in rj, so
it is straightforward to verify that {rj}j∈J \ I is a linearly independent subset of
RN

n [t]. It follows at once that {rj}j∈J \ I is a basis for ker Φ, whence
⋂
j∈J
Z(rj) ⊆

⋂
p∈ker Φ

Z(p) = V .

REMARK 2.9. Proposition 2.8 admits an exact analogue for complex mo-
ment matrices.

We omit the proofs of the following results, which are analogous to the cor-
responding proofs for Md(n)(γ).

PROPOSITION 2.10. Suppose µ is a representing measure for β(2n). For p ∈
CN

n [t], supp µ ⊆ Z(p) := {t ∈ RN : p(t) = 0} if and only if p(T) = 0.

COROLLARY 2.11. If β(2n) has a representing measure, thenMN(n)(β) is recur-
sively generated, i.e., if p, q, pq ∈ CN

n [t] and p(T) = 0, then (pq)(T) = 0.

COROLLARY 2.12. If µ is a representing measure for β(2n), then supp µ ⊆ V(β)
and cardV(β) > card supp µ > rankMN(n)(β).

We devote the remainder of this section to describing an equivalence be-
tween truncated moment problems on R2d and Cd. In the sequel, C(n) denotes
the ordered basis for Cd

n[z, z] consisting of the monomials, ordered lexicograph-
ically by degree. We denote the coefficient vector of p ∈ Cd

n[z, z] relative to C(n)

by p̂; thus K(n) := { p̂ : p ∈ Cd
n[z, z]} ∼= Cη ∼= Cd

n[z, z]. For 0 6 j 6 n, let Kj

denote the subspace of K(n) spanned by elements ẑrzs with |r| + |s| = j; thus
K(n) = K(n−1) ⊕Kn ≡ K0 ⊕ . . .⊕Kn, and dimKj = (j−1+2d

2d−1 ), 0 6 j 6 n.
Next, let C2d

n [t] ≡ Cn[t1, . . . , t2d] denote the vector space over C of poly-
nomials in real indeterminates t1, . . . , t2d with total degree at most n. For i ≡
(i1, . . . , i2d) ∈ Z2d

+ , |i| 6 n, let ti := ti1
1 · · · ti2d

2d ; thus q ∈ C2d
n [t] may be expressed

as q(t) ≡ ∑
|i|6n

biti. Note that dimC2d
n [t] = η(d, n). In the sequel, B(n) denotes the

ordered basis forC2d
n [t] consisting of the monomials, ordered lexicographically by

degree; for d = n = 2, this ordering is 1, t1, t2, t3, t4, t2
1, t1t2, t1t3, t1t4, t2

2, t2t3, t2t4, t2
3,

t3t4, t2
4. Now we set xi := ti, 1 6 i 6 d, and yi := ti+d, 1 6 i 6 d, so that C2d

n [t] =
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Cd
n[x, y] := Cn[x1, . . . , xd; y1, . . . , yd]; with this notation, for d = n = 2 the basis

B(2) assumes the form 1, x1, x2, y1, y2, x2
1, x1x2, y1x1, y2x1, x2

2, y1x2, y2x2, y2
1, y1y2, y2

2.
We denote the coefficient vector of q ∈ Cd

n[x, y] relative to B(n) by q̃; thus H(n) :=
{q̃ : q ∈ Cd

n[x, y]} ∼= Cη ∼= C2d
n [t]. For 0 6 j 6 n, let Hj denote the subspace of

H(n) spanned by elements ỹrxs with |r| + |s| = j; thus H(n) = H(n−1) ⊕Hn ≡
H0 ⊕ · · · ⊕Hn, and dimHj = (j−1+2d

2d−1 ), 0 6 j 6 n.

For 0 6 j 6 n, we define a linear map Lj : Kj → Hj by Lj(ẑkz`) :=
[(x− iy)k(x + iy)`]˜, |k|+ |`| = j. Since (x− iy)k(x + iy)` ≡ (x1 − iy1)k1 · · · (xd −
iyd)kd(x1 + iy1)`1 · · · (xd + iyd)`d , the Binomial Theorem shows that Lj(ẑkz`) is in-

deed an element of Hj. We now define L ≡ L(n) : K(n) → H(n) by L :=
n⊕

k=0
Lk (=

L(n−1) ⊕ Ln). For d = n = 2, we have

L0 = (1), L1 =




1 0 1 0
0 1 0 1
i 0 −i 0
0 i 0 −i


 ,

L2 =




1 0 1 0 0 0 0 1 0 0
0 1 0 1 0 1 0 0 1 0
2i 0 0 0 0 0 0 −2i 0 0
0 i 0 −i 0 i 0 0 −i 0
0 0 0 0 1 0 1 0 0 1
0 i 0 i 0 −i 0 0 −i 0
0 0 0 0 2i 0 0 0 0 −2i
−1 0 1 0 0 0 0 −1 0 0
0 −1 0 1 0 1 0 0 −1 0
0 0 0 0 −1 0 1 0 0 −1




,

and L(2) = L0 ⊕ L1 ⊕ L2 = L(1) ⊕ L2. To clarify the properties of L we introduce
the map ψ : Rd ×Rd → Cd ×Cd defined by ψ(x, y) := (z, z), where z ≡ x + iy,
z ≡ x − iy ∈ Cd. Clearly ψ is injective, and we let τ : Ran ψ → Rd ×Rd denote
the inverse map, τ(z, z) :=

( z+z
2 , z−z

2i
)
.

LEMMA 2.13. (i) Lp̂ := p̃ ◦ ψ, p ∈ Cd
n[z, z].

(ii) L is invertible, with L−1(q̃) = (q ◦ τ)ˆ.

Proof. (i) For p ∈ Cd
n[z, z], write p(z, z) ≡ ∑

|k|+|`|6n
ak`zkz`. Then

L( p̂) = ∑
|k|+|`|6n

ak`L(ẑkz`) = ∑
|k|+|`|6n

ak`[(x− iy)k(x + iy)`]˜

= ∑
|k|+|`|6n

ak`[zkz` ◦ ψ]˜ =
[(

∑
|k|+|`|6n

ak`zkz`
)
◦ ψ

]˜
= p̃ ◦ ψ.
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(ii) A calculation shows that Rj := L−1
j : Hj → Kj is given by Rj(ỹrxs) :=

[( z−z
2i )r( z+z

2 )s]ˆ ≡ [( z1−z1
2i )r1 · · · ( zd−zd

2i )rd( z1+z1
2 )s1 · · · ( zd+zd

2 )sd ]ˆ; thus L−1 : H(n)

→ K(n) satisfies L−1(q̃) = (q ◦ τ)ˆ.

Our next goal is to associate to a complex sequence

γ ≡ γ(2n) = {γrs}r,s∈Zd
+ ,|r|+|s|62n,

with γ00 > 0 and γrs = γsr, an “equivalent” real sequence

β ≡ β(2n) = {β j}j∈Z2d
+ ,|j|62n,

with β0 = γ00. We require the following lemma.

LEMMA 2.14. Let p ≡ ∑ arszrzs ∈ Cd
2n[z, z] and assume that p is real-valued.

Then Λγ(p) is real.

Proof. Recall that Λγ(p) = ∑ arsγrs. Then Λγ(p) = ∑ arsγrs = ∑ arsγsr =
Λγ(p) = Λγ(p), so Λγ(p) is real.

For j ∈ Z2d
+ , |j| 6 2n, set πx(j) := (j1, . . . , jd) and πy(j) := (jd+1, . . . , j2d).

For γ as above, we now set β j := Λγ(yπy(j)xπx(j)), where, for z ∈ Cd, x := z+z
2

and y := z−z
2i . Since the operand of Λγ is real-valued (as an element of Cd

2n[z, z]),
Lemma 2.14 implies β j ∈ R. We now set R(γ) := β; note that

(2.13) β j = Λβ(tj) = Λβ(yπy(j)xπx(j)) = Λγ

(( z− z
2i

)πy(j)( z + z
2

)πx(j))
.

PROPOSITION 2.15. M(n)(R(γ)) = L∗−1M(n)(γ)L−1.

Proof. It suffices to show that for k, `, r, s ∈ Zd
+, with |k|+ |`|, |r|+ |s| 6 n,

and for β = R(γ), we have 〈M(n)(β)ỹkx`, ỹrxs〉 = 〈L∗−1M(n)(γ)L−1ỹkx`, ỹrxs〉.
Now,

〈L∗−1M(n)(γ)L−1ỹkx`, ỹrxs〉
= 〈M(n)(γ)L−1ỹkx`, L−1ỹrxs〉

=
〈

M(n)(γ)
[( z− z

2i

)k( z + z
2

)`]
ˆ,

[( z− z
2i

)r( z + z
2

)s]
ˆ
〉

(2.14)

(by Lemma 2.13)

= Λγ

(( z− z
2i

)k+r( z + z
2

)`+s)
.

Choosing j ∈ Z2d
+ so that πx(j) = ` + s and πy(j) = k + r, we have |j| = (|k|+

|`|) + (|r| + |s|) 6 2n, so (2.13) shows that the expression in (2.14) is equal to
Λβ(yk+rx`+s) = 〈M(n)(β)ỹkx`, ỹrxs〉, as desired.
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Next, we define an inverse to R. Given a real sequence β ≡ β(2n) =
{β j}j∈Z2d

+ ,|j|62n, with β0 > 0, we will associate to β a complex sequence γ ≡ γ(2n).

For k, ` ∈ Zd
+, |k|+ |`| 6 2n, let

γk` := Λβ((x− iy)k(x + iy)`)

= Λβ((t1 − itd+1)k1 · · · (td − it2d)kd(t1 + itd+1)`1 · · · (td + it2d)`d).

Clearly, γ00 = Λβ(1) = β0 > 0, and γ`k = γk`. We set S(β) := γ; we omit the
proof of the following result, which is dual to that in Proposition 2.15.

PROPOSITION 2.16. M(n)(S(β)) = L∗M(n)(β)L.

Taken together, Propositions 2.15 and 2.16 show that (R ◦ S)(β) = β and
(S ◦ R)(γ) = γ. We are now in position to formulate the equivalence between
the real and complex truncated moment problems, as expressed in the following
two results.

PROPOSITION 2.17. Given γ ≡ γ(2n), let β ≡ β(2n) := R(γ).
(i) M(n)(β) = L∗−1M(n)(γ)L−1.

(ii) M(n)(β) > 0 ⇔ M(n)(γ) > 0.
(iii) rankM(n)(β) = rank M(n)(γ).
(iv)M(n)(β) is positive and admits a flat extensionM(n + 1) if and only if M(n)(γ)

is positive and admits a flat extension M(n + 1).
(v) For q ∈ Cn[x, y], q(X, Y) = L∗−1((q ◦ τ)(Z, Z)).

(vi) For q ∈ Cn[x, y], Λβ(q) = Λγ(q ◦ τ).
(vii) If ν is a representing measure for γ, then µ := ν ◦ ψ is a representing measure for

β, of the same measure class and cardinality of support; moreover, supp µ = τ(supp ν).

Proof. (i) This is Proposition 2.15.
(ii) This follows from (i) and the invertibility of L (Lemma 2.13).

(iii) This also follows from (i) and the invertibility of L.
(iv) Suppose M(n)(γ) is positive and admits a flat extension

M(n + 1)(γ̃) ≡
(

M(n)(γ) B(n + 1)
B(n + 1)∗ C(n + 1)

)
.

Proposition 2.15 (for n + 1) implies thatM :=(L(n+1)∗)−1M(n + 1)(γ̃)(L(n+1))−1

is of the form M(n + 1)(R(γ̃)), while (i) and the direct sum structure of (L(n+1))−1

show that

M =
(

(L(n)∗)−1M(n)(γ)(L(n))−1 ∗
∗ ∗

)
=

( M(n)(R(γ)) ∗
∗ ∗

)
.

Since rankM = rank M(n + 1)(γ̃) = rank M(n)(γ) = rankM(n)(β), it follows
that M is a flat extension of M(n)(β) (> 0). The converse is proved similarly,
using Proposition 2.16; we omit the details.
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(v) We have

q(X, Y) ≡M(n)(β)q̃ = L∗−1M(n)(γ)L−1q̃ (by (i))

= L∗−1M(n)(γ)q̂ ◦ τ (by Lemma 2.13)

= L∗−1(q ◦ τ)(Z, Z).

(vi) Straightforward from (2.13).
(vii) For j ∈ Z2d

+ , |j| 6 2n,
∫

tj dµ =
∫

yπy(j)xπx(j) d(ν ◦ ψ)(x, y)

=
∫ ( z− z

2i

)πy(j)( z + z
2

)πx(j)
dν(z, z)

= Λγ

(( z− z
2i

)πy(j)( z + z
2

)πx(j))

= β j (by (2.13));

thus, µ is a representing measure for β, and the other properties of µ are clear.

We omit the proof of the following result, which is dual to Proposition 2.17.

PROPOSITION 2.18. Given β ≡ β(2n), let γ ≡ γ(2n) := S(β).
(i) M(n)(γ) = L∗M(n)(β)L.

(ii) M(n)(γ) > 0 ⇔M(n)(β) > 0.
(iii) rank M(n)(γ) = rankM(n)(β).
(iv) M(n)(γ) is positive and admits a flat extension M(n + 1) if and only ifM(n)(β)

is positive and admits a flat extension M(n + 1).
(v) For p ∈ Cn[z, z], p(Z, Z) = L∗((p ◦ ψ)(X, Y)).

(vi) For p ∈ Cn[z, z], Λγ(p) = Λβ(p ◦ ψ).
(vii) If µ is a representing measure for β, then ν := µ ◦ τ is a representing measure for

γ, of the same measure class and cardinality of support; moreover, supp ν = ψ(supp µ).

Throughout the sequel, whenever we have equivalent sequences γ and β
(as described by the preceding results), the context always indicates whether we
have β = R(γ) or γ = S(β), so we do not explicitly refer to R or S .

We next present an analogue of Theorem 2.2 for truncated moment prob-
lems on RN .

THEOREM 2.19. Let β ≡ β(2n) and let r := rankMN(n)(β). If µ is an r–
atomic representing measure for β, then MN(n + 1)[µ] is a flat (positive) extension of
M(n) ≡ MN(n)(β). Conversely, if M(n) is positive semidefinite and admits a flat
extension M(n + 1) ≡ MN(n + 1)(β̃), then M(n + 1) admits unique flat positive
moment matrix extensions MN(n + 2)(β̃), MN(n + 3)(β̃),. . . , and there exists an r-
atomic representing measure for MN(∞)(β̃) (i.e., a representing measure for β̃(∞)).
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Proof. Suppose µ is an r-atomic representing measure for β, i.e., MN(n)(β)
= MN(n)[µ]. Since µ is also a representing measure for MN(n + 1)[µ], Corol-
lary 2.12 implies that r = card supp µ > rankMN(n + 1)[µ] > rankMN(n)[µ] =
r, so MN(n + 1)[µ] is a flat (positive) extension of M(n).

For the converse, we assume that MN(n)(β) is positive and admits a flat
extension MN(n + 1)(β̃). We consider first the case when N is even, say N = 2d.
In this case, let γ ≡ γ(2n) = S(β). Proposition 2.18 implies that Md(n)(γ) is
positive and admits a flat extension Md(n + 1)(γ̃). Theorem 2.2 now implies
that Md(n + 1)(γ̃) admits unique successive flat (positive) extensions Md(n +
2)(γ̃), Md(n + 3)(γ̃), . . . , and that γ̃(∞) admits an r-atomic representing measure
ν. Proposition 2.17 (and the direct sum structure of L(n+j), j > 0) now imply that
M2d(n + 1)(β̃) admits unique successive flat extensions {M2d(n + j)(β̃)}j>2, de-
fined by M2d(n + j)(β̃) := (L(n+j)∗)−1Md(n + j)(γ̃)(L(n+j))−1. Proposition 2.17
further implies that ν corresponds to an r-atomic representing measure µ for β̃(∞).

We now consider the case N = 2d− 1. For x ∈ R2d−1, t ∈ R, i ∈ Z2d−1
+ , j ∈

Z+, we set x̆ := (x, t) ∈ R2d and ı̆ := (i, j) ∈ Z2d
+ , so that x̆ı̆ = xitj. Corresponding

to β ≡ β(2n) = {βi}i∈Z2d−1
+

, |i| 6 2n, define a sequence β̆ ≡ β̆(2n) = {β̆ ı̆}ı̆∈Z2d
+ ,|ı̆|62n

as follows:

(2.15) β̆ ı̆ :=
{

βi if j = 0,
0 if j > 0.

ForM≡M2d−1(n)(β) we define the moment matrix M̆ ≡ M2d(n)(β̆). Since M̆
is unitarily equivalent to a matrix of the formM⊕ 0, we have rankM̆ = rankM,
and M̆ > 0 if and only if M > 0. Suppose M ≡M2d−1(n)(β) > 0 and suppose
M(n + 1) ≡ M2d−1(n + 1)(β̃) is a flat extension of M. We claim that M̆(n +
1) ≡ [M(n + 1)]ˆ is a flat extension of M̆. Since M(n + 1) > 0, then M̆(n + 1) >
0, and rankM̆(n + 1) = rankM(n + 1) = rankM(n) = rankM̆(n). Let us
denote M̆(n + 1) asM2d(n + 1)(λ), for some sequence λ. To show that M̆(n + 1)
is an extension of M̆(n), it suffices to show that if ı̆ satisfies |ı̆| 6 2n, then λı̆ = β̆ ı̆.
Indeed, if ı̆ = (i, j) and j = 0, then λı̆ = β̃i = βi = β̆ ı̆, while if j > 0, then
λı̆ = 0 = β̆ ı̆. Thus M̆(n + 1) is a flat (positive) extension of M̆(n).

Since M̆(n + 1) = M2d(n + 1)(λ), the “even” case (above) implies that
M̆(n + 1) has unique successive flat moment matrix extensions M2d(n + j)(λ̃),
j > 2, and that λ̃(∞) admits a rankM̆-atomic representing measure ν. For
j > 2 and i ∈ Z2d−1

+ with |i| 6 2(n + j), we set β̃i := λ̃(i,0). Then M2d−1(n +
2)(β̃),M2d−1(n + 3)(β̃), . . ., define the unique successive flat moment matrix ex-
tensions of M2d−1(n + 1)(β̃) (indeed, [M2d−1(n + 1)(β̃)]` = Md(n + j)(λ̃), j >
1). Finally, if ν ≡

r
∑

s=1
ρsδ(xs ,ts) (with xs ∈ R2d−1, ts ∈ R, ρs > 0), then µ :=

r
∑

s=1
ρsδxs

is an r-atomic representing measure for β̃(∞).
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REMARK 2.20. We note the following for future reference. In M̆(n + 1) ≡
M2d(n + 1)(λ), since λı̆ = 0 whenever |ı̆| 6 2(n + 1) and j > 0, each column that
is indexed by a multiple of t is identically 0. Further, since λ̃(∞) has a representing
measure, each of the successive flat extensionsM2d(n + j)(λ̃, j > 2, is recursively
generated; hence, in M2d(n + j)(λ̃), each column indexed by a multiple of t is
identically 0, whence λ̃(i,j) = 0 whenever j > 0.

We can now give a proof of Theorem 1.2, which we restate here for the
reader’s convenience.

THEOREM 2.21. If M(n) ≡MN(n)(β) > 0 admits a flat extension M(n + 1),
then V := V(M(n + 1)) satisfies cardV = r (≡ rankM(n)), and V ≡ {tj}r

j=1 ⊆
RN forms the support of the unique representing measure µ for M(n + 1). If B ≡
{Tik}r

k=1 is a maximal linearly independent subset of columns of M(n), then WB,V is

invertible, and µ =
r
∑

i=1
ρjδtj , where ρ ≡ (ρ1, . . . , ρr) is uniquely determined by ρt =

W−1
B,V (βi1 , . . . , βir )

t.

Proof. We first consider the support of a representing measure µ for M(n +
1) (cf. Theorem 2.19). For N = 2d, let γ be the equivalent complex sequence
associated to β via Proposition 2.18; Propositions 2.17(v) and 2.18(v) imply that
V(M(n + 1)(β)) and V(M(n + 1)(γ)) are identical when regarded as subsets
of R2d. The conclusion that cardV = r and supp µ = V thus follows by a
straightforward application of Theorem 2.3 and Propositions 2.17 and 2.18. For
N = 2d − 1, one needs to argue as in the proof of Theorem 2.19, to convert
the initial moment problem for β into an equivalent one for β̂ in R2d (using
(2.15)), and to then appeal to the result for N = 2d. We omit the details of
this argument, except to note that in the notation of the proof of Theorem 2.19,
V(M(n + 1)(β))× {0} = V(M(n + 1)(λ)). As for the uniqueness of µ and the
calculation of the densities using WB,V , the proof is very similar to the argument
establishing the uniqueness of ν in Theorem 2.3; for this we use an analogue of
Lemma 2.5 for the invertibility of WB,V in the case of real moment matrices.

REMARK 2.22. Theorem 2.4 and Corollary 2.6 admit exact analogues for real
moment matrices.

3. LOCALIZING MATRICES

Let 1 6 k 6 n and let p ≡ p(z, z) ∈ Cd[z, z], deg p = 2k or 2k − 1. We
next define the localizing matrix Md

p(n) ≡ Md
p(n)(γ) whose positivity is directly

related to the existence of a representing measure for γ ≡ γ(2n) with support in
Kp ≡ {z ∈ Cd : p(z, z) > 0}. Note that dimCd

n−k[z, z] = η ≡ η(d, n − k) =
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(n−k+2d
2d ); thus Cη = { f̂ : f ∈ Cd

n−k[z, z]}. We define the η × η matrix Md
p(n) by

(3.1) 〈Md
p(n) f̂ , ĝ〉 = Λγ(p f g) f , g ∈ Cd

n−k[z, z].

If γ has a representing measure ν supported in Kp, then

〈Mp(n) f̂ , f̂ 〉 = Λγ(p| f |2) =
∫

p| f |2 dν > 0,

whence Md
p(n) > 0. Note also the following consequences of (3.1):

(3.2) Md
p(n)∗ = Md

p(n);

if p = p1 + p2 with deg pi 6 deg p, i = 1, 2, then

(3.3) Md
p(n) = [Md

p1
(n)]η + [Md

p2
(n)]η .

The main result of this section (Theorem 3.2 below) provides a concrete de-
scription of Md

p(n) as a linear combination of certain compressions of Md(n) cor-
responding to the monomial terms of p. In order to state this result, we require a
preliminary lemma and some additional notation.

LEMMA 3.1. For r, s ∈ Zd
+ with |r|+ |s| 6 2k, there exist i, j ∈ Zd

+ such that

zrzs = zizjzr−izs−j and |i|+ |j|, |r− i|+ |s− j| 6 k.

Proof. Case (i): |r|, |s| 6 k; let i = r, j = 0. Case (ii): k < |r|. We have
r = (r1, . . . , rd) with |r| = r1 + · · ·+ rd > k. Choose r′ ≡ (r′i , . . . , r′d) ∈ Zd

+ so that
0 6 r′i 6 ri (1 6 i 6 d) and |r′| = r′1 + · · ·+ r′d = k. With i = r′, j = 0, we have
|r− i|+ |s− j| = |r− r′|+ |s| = (r1− r′1) + · · ·+ (rd − r′d) + |s| = |r|+ |s| − |r′| 6
2k− k = k. Case (iii): k < |s|; similar to Case (ii).

For p(z, z) as above (with δ ≡ deg p = 2k or 2k − 1), we write p(z, z) ≡
∑

r,s∈Zd
+ , |r|+|s|6δ

arszrzs. Lemma 3.1 shows that for each r, s ∈ Zd
+ with |r|+ |s| 6 δ,

there are tuples i ≡ i(r, s, k), j ≡ j(r, s, k), t ≡ t(r, s, k), u ≡ u(r, s, k) in Zd
+, such

that i + t = r, j + u = s, |i|+ |j|, |t|+ |u| 6 k. In the sequel, [ZuZt ;1,η]M
d(n)

[ZiZj ;1,η]

denotes the compression of Md(n) to the first η rows that are indexed by multi-
ples of ZuZt and to the first η columns that are indexed by multiples of ZiZj.

THEOREM 3.2. Md
p(n) = ∑

r,s∈Zd
+ , |r|+|s|6δ

ars[ZuZt ;1,η]M
d(n)

[ZiZj ;1,η]
.

For the proof of Theorem 3.2, we require several preliminary results. Let
0 6 k 6 n and let r, s ∈ Zd

+, with |r| + |s| 6 2k. From Lemma 3.1, we have
i, j ∈ Zd

+ with |i|+ |j|, |r− i|+ |s− j| 6 k.

LEMMA 3.3. For f , g ∈ Cd
n−k[z, z],

〈Md
zrzs(n) f̂ , ĝ〉 = 〈Md(n)(zizj f )ˆ, (zr−izs−jg)ˆ 〉.
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Proof. Let |r|+ |s| = 2l or 2l− 1; if l < k, Md
zrzs(n) has size η(d, n− l); in this

case we regard Cd
n−k[z, z] as embedded in Cd

n−l [z, z] and take coefficient vectors
f̂ , ĝ relative to Cd

n−l [z, z]; in any case, zizj f and zr−izs−jg are elements of Cn[z, z],
so (zizj f )ˆ and (zr−izs−jg)ˆ are computed relative to Cn[z, z]. We have

〈Md
zrzs(n) f̂ , ĝ〉 = Λ(zrzs f g)

= Λ(zizj f · (zr−izs−jg)−)

= 〈Md(n)(zizj f )ˆ, (zs−jzr−ig)ˆ 〉.
PROPOSITION 3.4. Let 0 6 k 6 n. Let r, s, t, u, q, v ∈ Zd

+ satisfy |r|+ |s| 6 2k,
|t|+ |u|, |q|+ |v| 6 n− k. Then

〈Md
zrzs(n)ẑqzv, ẑtzu〉 = γr+q+u,s+v+t.

Proof. From Lemma 3.1, we have i, j ∈ Zd
+ such that |i|+ |j|, |r− i|+ |s− j| 6

k. Lemma 3.3 implies that

〈Md
zrzs(n)ẑqzv, ẑtzu〉 = 〈Md(n)(zizjzqzv)ˆ, (zr−izs−jztzu)ˆ 〉

= 〈Md(n)(zi+qzj+v)ˆ, (zs+t−jzr+u−i)ˆ 〉
= γ(i+q)+(r+u−i),(j+v)+(s+t−j) = γq+r+u,s+v+t.

LEMMA 3.5. Let 0 6 k 6 n and let η = η(d, n− k). Suppose p, q, l, m ∈ Zd
+

satisfy |p|+ |q|, |l|+ |m| 6 k and set

M :=[ZmZl ;1,η] Md(n)[ZpZq ;1,η].

Then M = [Md
zpzq ·zl zm(n)]η , the compression of Md

zpzq ·zl zm to its first η rows and
columns.

Proof. The columns of M are indexed by Zp+iZq+j, i, j ∈ Zd
+, |i|+ |j| 6 n− k,

and the rows are indexed by Zm+aZl+b, a, b ∈ Zd
+, |a|+ |b| 6 n− k. The entry in

row Zm+aZl+b, column Zp+iZq+j of M is thus

〈Md(n)(zp+izq+j)ˆ, (zm+azl+b)ˆ 〉 = γp+i+l+b,q+j+m+a.

The corresponding entry of Md
zpzq ·zl zm(n), in row ZaZb, column ZiZj, has value

〈Md
zpzq ·zl zm(n)ẑizj, ẑazb〉, which equals γp+i+l+b,q+j+m+a, by Proposition 3.4.

Proof of Theorem 3.2. We have 1 6 k 6 n and

p ≡ p(z, z) = ∑
r,s∈Zd

+, |r|+|s|6δ

arszrzs,
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with δ ≡ deg p (= 2k or 2k − 1). The size of Md
p(n) is thus η × η, where η =

η(d, n− k). By (3.3) and the uniqueness of Md
p(n), we have

(3.4) Md
p(n) = ∑

r,s∈Zd
+, |r|+|s|6δ

ars[Md
zrzs(n)]η .

From Lemma 3.1, for each r, s ∈ Zd
+ with |r|+ |s| 6 δ, we have i ≡ i(r, s, k), j ≡

j(r, s, k), t ≡ t(r, s, k), u ≡ u(r, s, k) ∈ Zd
+ with i + t = r, j + u = s, |i|+ |j|, |t|+

|u| 6 k. Lemma 3.5 implies that for each r, s,

[Md
zrzs(n)]η = [Md

zizj ·ztzu(n)]η

=[ZuZt ;1,η] Md(n)
[ZiZj ;1,η]

,

so the result follows from (3.4).

We conclude this section with an analogue of Theorem 3.2 for real moment
matrices. Given a real moment matrix MN(n) ≡ MN(n)(β), let k 6 n, and let
p ∈ C[t1, . . . , tN ], with deg p = 2k or 2k− 1. The localizing matrix MN

p (n) has size

τ ≡ τ(N, n− k) := (n−k+N
N ) and is uniquely determined by

(3.5) 〈MN
p (n) f̂ , ĝ〉 = Λβ(p f g) f , g ∈ CN

n−k[t];

if β has a representing measure supported in Kp := {t ∈ RN : p(t) > 0}, then
clearly MN

p (n) > 0. Write p(t) ≡ ∑
i∈Zn

+,|i|6deg p
aiti. For each i, there exist (non-

unique) r ≡ r(i), s ≡ s(i) in Zn
+ such that r + s = i and |r|, |s| 6 k; thus p(t) =

∑
i∈Zn

+,|i|6deg p
aitr(i)ts(i). Let [Tr ;1,τ]MN(n)[Ts ;1,τ] denote the compression of MN(n)

to the first τ rows that are indexed by multiples of Tr and to the first τ columns
that are indexed by multiples of Ts.

THEOREM 3.6. MN
p (n) = ∑

i∈Zn
+ ,|i|6deg p

ai [Tr ;1,τ]MN(n)[Ts ;1,τ].

The proof of Theorem 3.6 follows by formal repetition of the proof of Theo-
rem 3.2; we omit the details. Example 1.5 illustrates Theorem 3.6 with N = 3, n =
1, deg p = 2.

4. FLAT EXTENSIONS OF POSITIVE LOCALIZING MATRICES

In this section we present a flat extension theorem for positive localizing ma-
trices, which provides the main tool for proving Theorem 1.1. Suppose Md(n)(γ)
is positive and admits a flat extension Md(n + 1); thus, there is a matrix W such
that Md(n + 1) admits a block decomposition of the form

(4.1) Md(n + 1) =
(

Md(n) Bd(n + 1)
Bd(n + 1)∗ Cd(n + 1)

)
,
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where Bd(n + 1) = Md(n)W and Cd(n + 1) = W∗Md(n)W. It follows from The-
orem 2.2 that Md(n + 1) admits a unique positive flat extension Md(∞) and that
Md(∞) admits a representing measure ν. In particular, Md(n + 1) ≡ Md(n + 1)[ν]
is positive and recursively generated, and Md(n + 1) admits unique successive
positive, flat moment matrix extensions Md(n + 2) ≡ Md(n + 2)[ν], Md(n + 3) ≡
Md(n + 3)[ν], . . . . Thus, if p ∈ Cd[z, z] and k :=

[ 1+deg p
2

]
6 n, we may consider

Md
p(n + k) and Md

p(n + k + 1).

THEOREM 4.1. Suppose Md(n)(γ) > 0 admits a flat extension

Md(n + 1) =
(

Md(n) Md(n)W
W∗Md(n) W∗Md(n)W

)
.

Let p ∈ Cd[z, z], with deg p = 2k or 2k− 1. If Md
p(n + k) > 0, then

(4.2) Md
p(n + k + 1) =

(
Md

p(n + k) Md
p(n + k)W

W∗Md
p(n + k) W∗Md

p(n + k)W

)
;

in particular, Md
p(n + k + 1) is a flat, positive extension of Mp(n + k).

REMARK 4.2. In Theorem 4.1, we are not assuming that Md
p(n + k) is a mo-

ment matrix; rather, in Section 5 we will prove that under the hypotheses of The-
orem 4.1, both Md

p(n + k) and Md
p(n + k + 1) are indeed moment matrices.

The proof of Theorem 4.1 is essentially based on a computational descrip-
tion of Md

p(n + k + 1), and to derive this we require some additional notation.
For m > 0, let A be a matrix of size η(d, m) with rows and columns given
by {ZaZb}a,b∈Zd

+ , |a|+|b|6m, ordered lexicographically. Suppose i, j ∈ Zd
+, with

|i|+ |j| 6 m, and suppose there are at least β columns of A that are indexed by
multiples of ZiZj. Suppose u, t ∈ Zd

+, with |u| + |t| 6 m, and suppose there
are at least υ rows of A that are indexed by multiples of ZuZt. For α 6 β and
ρ 6 υ, let [ZuZt ,ρ,υ]A[ZiZj ,α,β]

denote the compression of A to the α-th through β-th

consecutive columns indexed by multiples of ZiZj and to the ρ-th through υ-th
consecutive rows indexed by multiples of ZuZt. We omit the proof of the follow-
ing elementary result.

LEMMA 4.3. ([ZuZt ;ρ,υ]A[ZiZj;α,β]
)∗ =

[ZiZj;α,β]
(A∗)[ZuZt ;ρ,υ].

(Here, the convention is that rows and columns of A∗ are indexed in the
same way as the rows and columns of A, as {ZaZb}a,b∈Zd

+, |a|+|b|6m.)
To prove Theorem 4.1, we will first obtain analogues of (4.2) for each mono-

mial term of p. To this end, let δ = deg p (= 2k or 2k − 1); write p as p(z, z) ≡
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∑
r,s∈Zd

+ , |r|+|s|6δ

arszrzs. Recall from Section 3 that

η2 ≡ size Md
p(n + k + 1) = η(d, (n + k + 1)− k) = η(d, n + 1) = size Md(n + 1)

and

η1 ≡ size Md
p(n + k) = η(d, (n + k)− k) = η(d, n) = size Md(n).

Let prs = zrzs; from Lemma 3.1, we have zrzs = zi(r,s,k)zj(r,s,k) · zt(r,s,k)zu(r,s,k),
where i ≡ i(r, s, k), j ≡ j(r, s, k), t ≡ t(r, s, k), and u ≡ u(r, s, k) ∈ Zd

+ satisfy
r = i + t, s = j + u, |i|+ |j|, |t|+ |u| 6 k. Lemma 3.5 (applied with n replaced by
n + k + 1) shows that

(4.3) [Md
prs(n + k + 1)]η2 =[ZuZt ;1,η2]

Md(n + k + 1)
[ZiZj;1,η2]

;

similarly,

(4.4) [Md
prs(n + k)]η1 =[ZuZt ;1,η1]

Md(n + k)
[ZiZj;1,η1]

.

We next use (4.3) and (4.4) to relate [Md
prs(n + k + 1)]η2 to [Md

prs(n + k)]η1 via
a block decomposition of [Md

prs(n + k + 1)]η2 . From (4.3) note that the columns
of [Md

prs(n + k + 1)]η2 are compressions of the first η2 columns of Md(n + k + 1)

that are indexed by multiples of ZiZj; note that these monomials are ordered
as {Zi+iq Zj+jq}η2

q=1, where {Ziq Zjq}η2
q=1 is the lexicographic ordering of the first

η2 monomials in Cd[z, z]. In particular, from (4.4) we see that the first η1 of
these monomials also index the columns of [Md

prs(n + k)]η1 . Similarly, the rows
of [Md

prs(n + k + 1)]η2 are compressions of rows of Md(n + k + 1) that are in-

dexed by the sequence {Zu+iq Zt+jq}η2
q=1, and the first η1 of these also index the

rows of [Md
prs(n + k)]η1 . Further, from (4.1) and the above remarks, it is clear that

[Md
prs(n + k + 1)]η1 = [Md

prs(n + k)]η1 . It now follows from the preceding obser-
vations that [Md

prs(n + k + 1)]η2 admits a block decomposition of the form

(4.5) Md
prs(n + k + 1)η2 =

(
[Md

prs(n + k)]η1 Bd
prs(n + k + 1)

Dd
prs(n + k + 1) Cd

prs(n + k + 1)

)
,

where

[Md
prs(n + k)]η1 =[ZuZt ;1,η1]

Md(n + k)
[ZiZj;1,η1]

,(4.6)

Bd
prs(n + k + 1) =[ZuZt ;1,η1]

Md(n + k + 1)
[ZiZj;1+η1,η2]

,(4.7)

Dd
prs(n + k + 1) =[ZuZt ;η1+1,η2]

Md(n + k + 1)
[ZiZj ;1,η1]

,(4.8)

Cd
prs(n + k + 1) =[ZuZt ;η1+1,η2]

Md(n + k + 1)
[ZiZj ;η1+1,η2]

.(4.9)
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The following lemma is the first step toward proving an analogue of Theo-
rem 4.1 for prs.

LEMMA 4.4. For each r, s ∈ Zd
+ with |r|+ |s| 6 δ,

(
[Md

prs(n + k)]η1

Dd
prs(n + k + 1)

)
W =

(
Bd

prs(n + k + 1)
Cd

prs(n + k + 1)

)
.

Proof. For 1 6 m 6 η2 − η1, the m-th column of
(

Bd(n + 1)
Cd(n + 1)

)
is the (η1 +

m)-th column of M(n + 1), and is thus of the form ZeZ f ∈ CM(n+1), with |e| +
| f | = n + 1. If (α

(m)
a,b )a,b∈Zd

+, |a|+|b|6n denotes the m-th column of W, then we have

(4.10) ZeZ f = ∑
|a|+|b|6n

α
(m)
a,b ZaZb.

Let {Va,b(r, s)}|a|+|b|6n denote the lexicographic ordering of the columns of
(

[Md
prs(n + k)]η1

Dd
prs(n + k + 1)

)

and let Um(r, s) denote the m-th column of
(

Bd
prs(n + k + 1)

Cd
prs(n + k + 1)

)
.

It suffices to show that

(4.11) Um(r, s) = ∑
|a|+|b|6n

α
(m)
a,b Va,b(r, s).

Since Md(n + k + 1) is a flat, hence positive, extension of Md(n + 1), (4.10) also
holds in CMd(n+k+1). Now Um(r, s) is the (η1 + m)-th column of [Md

prs(n + k + 1)]η2 ,

and is thus indexed by the (η1 + m)-th multiple of Zi(r,s,k)Zj(r,s,k); thus Um(r, s)
is indexed by Ze+i(r,s,k)Z f +j(r,s,k). Since Md(n + k + 1) is recursively generated,
(4.10) implies that in CMd(n+k+1) we have

(4.12) Ze+i(r,s,k)Z f +j(r,s,k) = ∑
|a|+|b|6n

α
(m)
a,b Za+i(r,s,k)Zb+j(r,s,k);

thus, via compression of these columns to rows indexed by the first η2 multiples
of ZuZt, it follows that the relation in (4.12) holds as well in the column space of

[Md
prs(n + k + 1)]η2 . Since the compression of Ze+i(r,s,k)Z f +j(r,s,k) is Um(r, s) and

the compression of Za+i(r,s,k)Zb+j(r,s,k) is Va,b(r, s), we obtain (4.11), so the result
follows.
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LEMMA 4.5. For each r, s ∈ Zd
+ with |r|+ |s| 6 δ,

Dd
prs(n + k + 1) = Bd

prs
(n + k + 1)∗ = W∗[Md

prs(n + k)]η1 .

Proof. Applying Lemma 4.4 to prs (≡ ZsZr), we have

Bd
prs

(n + k + 1) = [Md
prs

(n + k)]η1W

= [Md
prs(n + k)∗]η1W (by (3.2))

= [Md
prs(n + k)]∗η1

W,

whence Bd
prs

(n + k + 1)∗ = W∗[Md
prs(n + k)]η1 . Now

Dd
prs(n + k + 1)∗

=
[ZiZj;1,η1]

Md(n + k + 1)∗
[ZuZt ;η1+1,η2]

(Lemma 4.3)

=
[ZiZj;1,η1]

Md(n + k + 1)[ZuZt ;η1+1,η2]
(since Md(n + k + 1) > 0)

= Bd
ZuZt ·ZiZj(n + k + 1) (by (4.7) applied to ZsZr)

= Bd
prs

(n + k + 1);

thus Dd
prs(n + k + 1) = Bd

prs
(n + k + 1)∗ and the proof is complete.

Proof of Theorem 4.1. By the uniqueness of Md
p(n + k) and of Md

p(n + k + 1),
it follows from (4.5)–(4.9) that Md

p(n + k + 1) admits a block decomposition of the
form

Md
p(n + k + 1) =

(
Md

p(n + k) Bd
p(n + k + 1)

Dd
p(n + k + 1) Cd

p(n + k + 1)

)
,

where

Md
p(n + k) = ∑

|r|+|s|6δ

αrs[Md
prs(n + k)]η1 ,

Bd
p(n + k + 1) = ∑

|r|+|s|6δ

αrsBd
prs(n + k + 1),

Dd
p(n + k + 1) = ∑

|r|+|s|6δ

αrsDd
prs(n + k + 1),

Cd
p(n + k + 1) = ∑

|r|+|s|6δ

αrsCd
prs(n + k + 1).

Lemma 4.4 implies Bd
p(n + k + 1) = Md

p(n + k)W, and similarly Lemma 4.5 im-
plies Dd

p(n + k + 1) = W∗Md
p(n + k). Now Lemma 4.4 and Lemma 4.5 imply

that Cd
p(n + k + 1) = Dd

p(n + k + 1)W = W∗Md
p(n + k)W, whence (4.2) holds.

Since Md
p(n + k) is positive, (4.2) implies that Md

p(n + k + 1) is positive and that
rank Md

p(n + k + 1) = rank Md
p(n + k) (cf. [10]).
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5. EXISTENCE OF MINIMAL REPRESENTING MEASURES SUPPORTED IN
SEMI-ALGEBRAIC SETS

We begin with the analogue of Theorem 1.1 for the truncated complex mul-
tivariable K-moment problem. Recall that if Md(n)(γ) (> 0) has a flat exten-
sion Md(n + 1), then Md(n + 1) admits unique recursive flat (positive) extensions
Md(n + 2), Md(n + 3), . . . (Theorem 2.2).

THEOREM 5.1. Let γ ≡ γ(2n) = {γi}i∈Zd
+, |i|62n be a complex sequence and let

P ≡ {pi}m
i=1 ⊆ Cd[z, z] with deg pi = 2ki or 2ki − 1, 1 6 i 6 m. Let M ≡ Md(n)(γ)

and let r := rank M. There exists a (minimal) r-atomic representing measure for γ

supported in KP if and only if M > 0 and M admits a flat extension Md(n + 1) for which
Md

pi
(n + ki) > 0, 1 6 i 6 m. In this case, Md(n + 1) admits a unique representing

measure ν, which is an r-atomic (minimal) KP -representing measure for γ; moreover, ν

has precisely r− rank Md
pi
(n + ki) atoms in Z(pi), 1 6 i 6 m.

Proof. Suppose Md(n)(γ) is positive and admits a flat extension Md(n + 1)
for which Md

pi
(n + ki) > 0, 1 6 i 6 m. Corollary 7.9 of [6] and Theorem 7.7 of

[6] imply that Md(n + 1) admits a unique flat (positive) extension Md(∞), and

that Md(∞) admits an r-atomic representing measure ν ≡
r
∑

j=1
ρjδωj , with ρj > 0

and ωj ∈ Cd, 1 6 j 6 r. Theorem 1.2 implies that ν is the unique representing
measure for Md(n + 1). We will show that supp ν ⊆ KP . Fix i, 1 6 i 6 m. Since
Md

pi
(n + ki) > 0, repeated application of Theorem 4.1 shows that Md

pi
(∞) is a flat,

positive extension of Md
pi
(n + ki); moreover,

(5.1) 〈Md
pi
(∞) f̂ , ĝ〉 =

∫
pi f g dν, f , g ∈ Cd[z, z].

Fix j, 1 6 j 6 r, and let

f j(z, z) =
‖z−ω1‖2 · · · ‖z−ωj−1‖2‖z−ωj+1‖2 · · · ‖z−ωr‖2

‖ωj −ω1‖2 · · · ‖ωj −ωj−1‖2‖ωj −ωj+1‖2 · · · ‖ωj −ωr‖2

(where, for z ≡ (z1, . . . , zd), ‖z‖2 := ∑ zizi ∈ Cd[z, z]). Now f j ∈ Cd[z, z], so by
(5.1),

0 6 〈Md
pi
(∞) f̂ j, f̂ j) =

∫
pi| f j|2 dν

=
r

∑
k=1

ρk pi(ωk, ωk)| f j(ωk, ωk)|2

= ρj pi(ωj, ω j).

Since ρj > 0, then pi(ωj, ω j) > 0. Repeating the preceding argument for 1 6 i 6
m and 1 6 j 6 r, we conclude that supp ν ⊆ KP .
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We now count the atoms of ν that lie in Z(pi). Equations (5.1) and (2.2)
show that Md

pi
(∞) is the moment matrix corresponding to the measure pi dν, i.e.,

Md
pi
(∞) = Md(∞)[pi dν]. Thus, Proposition 7.6 of [6] implies that

card supp(pidν) = rank Md
pi
(∞) = rank Md

pi
(n + ki).

We have

∆ i := rank Md(n)(γ)− rank Md
pi
(n + ki)

= card supp ν− card supp(pidν)

= card(supp ν ∩ Z(pi)),

whence ν has precisely ∆ i atoms in Z(pi), 1 6 i 6 m.
For the converse direction, suppose ν is an r-atomic representing measure

for γ with supp ν ⊆ KP . Since ν is a representing measure for M(∞) ≡ Md(∞)[ν],
Proposition 7.6 of [6] implies that

r = card supp ν = rank M(∞)

> rank M(n + 1)[ν] > rank M(n)[ν] = rank M(n)(γ) = r.

In particular, Md(n + 1)[ν] is a flat extension of Md(n)(γ), as is Md(n + ki)[ν], 1 6
i 6 m; since ν is also a representing measure for Md(n + ki)[ν] and supp ν ⊆ Kpi ,
then (3.1) implies Md

pi
(n + ki)[ν] > 0, 1 6 i 6 m.

We next prove Theorem 1.1, the analogue of Theorem 5.1 for moment prob-
lems on RN . We consider a real N-dimensional sequence of degree 2n, β ≡
β(2n) = {βi}i∈ZN

+ ,|i|62n, and its moment matrix M ≡ MN(n)(β). Recall from
Theorem 2.19 that β admits a rankM-atomic (minimal) representing measure if
and only if M > 0 and M admits a flat moment matrix extension MN(n + 1),
which in turn admits unique successive flat extensions MN(n + 2), MN(n +
3),. . . . For the reader’s convenience, we restate Theorem 1.1, as follows.

THEOREM 5.2. Let β ≡ β(2n) = {βi}i∈ZN
+ ,|i|62n be an N-dimensional real se-

quence, and let Q ≡ {qi}m
i=1 ⊆ CN [t], with deg qi = 2ki or 2ki − 1, 1 6 i 6 m.

Let M := MN(n)(β) and let r := rankM. There exists a (minimal) r-atomic
representing measure for M supported in KQ if and only if M > 0 and M admits
a flat extension M(n + 1) such that Mqi (n + ki) > 0, 1 6 i 6 m. In this case,
M(n + 1) admits a unique representing measure µ, which is an r-atomic (minimal) KQ-
representing measure for β; moreover, µ has precisely r − rankMqi (n + ki) atoms in
Z(qi) ≡ {t ∈ RN : qi(t) = 0}, 1 6 i 6 m.

Proof. Suppose µ is a rankM-atomic representing measure for β with supp µ
⊆ KQ. Exactly as in the proof of Theorem 2.19 (or of Theorem 5.1),M(n + 1)[µ] is
a flat extension of M (= MN(n)[µ] > 0), with unique successive flat extensions
MN(n + 2)[µ],MN(n + 3)[µ], . . . Since supp µ ⊆ KQ, for each f ∈ CN

n [t], we
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have 〈MN
qi

(n + ki)[µ] f̂ , f̂ 〉 =
∫

qi| f |2 dµ > 0, whence MN
qi

(n + ki)[µ] > 0, 1 6
i 6 m.

For the converse and the location of the atoms, we first consider the case
when N is even, say N = 2d. Suppose M ≡ M2d(n)(β) is positive and has
a flat extension M2d(n + 1)(β̃) for which M2d

qi
(n + ki)(β̃) > 0, 1 6 i 6 m (cf.

Theorem 2.19). Using Proposition 2.18 (and as in the proof of the “even” case
of Theorem 2.19), M corresponds to a complex moment matrix Md(n)(γ) (=
L(n)∗ML(n)), and the successive flat extensions M2d(n + j)(β̃) of M correspond
to successive flat moment matrix extensions of Md(n)(γ) defined by Md(n +
j)(γ̃) := L(n+j)∗M2d(n + j)(β̃)L(n+j), j > 1, (cf. Proposition 2.18).

We will show that Md
pi
(n + ki)(γ̃) > 0, where pi := qi ◦ τ ∈ Cd

2ki
[z, z], 1 6

i 6 m. To this end, recall from Lemma 2.13 that τ(z, z) = (x, y), so that qi =
pi ◦ ψ, 1 6 i 6 m; further Proposition 2.18(vi) implies that

(5.2) Λγ̃(p) = Λ
β̃
(p ◦ ψ), p ∈ Cd[z, z].

We assert that

(5.3) Md
pi
(n + ki)(γ̃) = L(n)∗M2d

qi
(n + ki)(β̃)L(n) 1 6 i 6 m.

Indeed, for f , g ∈ Cd
n[z, z] and 1 6 i 6 m, we have

〈Md
pi
(n + ki)(γ̃) f̂ , ĝ〉 = Λγ̃(pi f g)

= Λ
β̃
((pi f g) ◦ ψ) (by (5.2))

= 〈M2d
qi

(n + ki)(β̃) f̃ ◦ ψ, g̃ ◦ ψ〉
= 〈M2d

qi
(n + ki)(β̃)L(n) f̂ , L(n) ĝ〉 (by Lemma 2.13)

= 〈L(n)∗M2d
qi

(n + ki)(β̃)L(n) f̂ , ĝ〉,

whence (5.3) follows. Since M2d
qi

(n + ki)(β̃) > 0, (5.3) implies Md
pi
(n + ki)(γ̃) >

0, 1 6 i 6 m.
Theorem 5.1 now implies that γ has a rank Md(n)(γ)-atomic representing

measure ω, supported in KP , and Proposition 2.17 shows that ω corresponds
to a rankM-atomic representing measure for β supported in KQ. Theorem 5.1
also implies that Md(n + 1)(γ̃) admits a unique representing measure ν, which
is a rank Md(n)-atomic KP -representing measure for γ having rank Md(n)(γ)−
rank Md

pi
(n + ki)(γ̃) atoms in Z(pi), 1 6 i 6 m. From Proposition 2.17, ν corre-

sponds to a unique representing measure µ := ν ◦ ψ for M2d(n + 1)(β̃). Since,
from Proposition 2.17, supp ν = ψ(supp µ),Z(pi) = ψ ◦Z(qi), and rank Md(n)(γ)
= rankM, and since (5.3) implies rank Md

pi
(n + ki)(γ̃) = rankM2d

qi
(n + ki)(β̃),

we get that supp µ ⊆ KQ and that µ has precisely rankM− rankMN
qi

(n + ki)(β̃)
atoms in Z(qi), 1 6 i 6 m. The proof of the “even” case is now complete.
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We now consider the case N = 2d− 1. Suppose M≡M2d−1(n)(β) is posi-
tive and has a flat extension M2d−1(n + 1)(β̃), with unique successive flat exten-
sions M2d−1(n + j)(β̃), j > 2, (cf. Theorem 2.19); we are assuming M2d−1

qi
(n +

ki)(β̃) > 0, 1 6 i 6 m. As in the proof of the “odd” case of Theorem 2.19, M
corresponds to the positive moment matrix M^ ≡ M2d(n)(β̆), which has a se-
quence of successive flat extensions M2d(n + j)(λ̃) satisfying M2d(n + j)(λ̃) =
M̆2d−1(n + j)(β̃), j > 1; the moments of β̃ are related to those of λ̃ as in (2.15).

Fix `, 1 6 ` 6 m; for q` ≡ ∑ b`,sts ∈ CN [t] we let q̆` ∈ CN+1[t, u] be given
by q̆`(t, u) := q`(t) with t ∈ R2d−1, u ∈ R. We claim that M2d

q̆`
(n + k`)(λ̃) > 0.

To this end, for i ∈ Z2d−1
+ , j ∈ Z+, recall that ı̆ := (i, j) ∈ Z2d

+ , and for t ∈ R2d−1,
u ∈ R, t̆ := (t, u) ∈ R2d, so t̆ı̆ = tiuj. We denote f ∈ Cn[t, u] by f (t̆) = ∑

|ı̆|6n
aı̆ t̆ı̆,

and we define [ f ] ∈ Cn[t] by [ f ](t) := ∑
|ı̆|6n,j=0

aı̆ti. Now, for f ∈ Cn[t, u],

〈M2d
q̆`

(n + k`)(λ̃) f̂ , f̂ 〉 = Λ
λ̃
(q̆`| f |2)

= ∑
|s|6deg q`,|ı̆|,|ı̆′ |6n

b`,saı̆aı̆′ λ̃(s+i+i′ ,j+j′)

= ∑
|s|6deg q`,|ı̆|,|ı̆′ |6n,j=j′=0

b`,saı̆aı̆′ β̃s+i+i′ (by Remark 2.20)

= Λ
β̃
(q`|[ f ]|2) = 〈M2d−1

q`
(n + k`)(β̃)[ f̂ ], [ f̂ ]〉 > 0.

Since M2d
q̆`

(n + k`)(λ̃) > 0, 1 6 ` 6 m, by the “even” case (and its proof, above),

M2d(n + 1)(λ̃) admits a unique representing measure µ̃, which is a rankM^-
atomic KQ^ -representing measure for M^ (where Q` := {q̆1, . . . , q̆m}), with
precisely rankM^ − rankM2d

q̆i
(n + ki)(λ̃) atoms in Z(q̆i), 1 6 i 6 m. Write µ̃ ≡

r
∑

s=1
ρsδ(ts ,us); it follows that µ :=

r
∑

s=1
ρsδts is a representing measure forM2d−1(n +

1)(β̃), with supp µ ⊆ KQ and card(supp µ
⋂Z(qi)) = rankM− rank M2d

qi
(n +

ki)(β̃), 1 6 i 6 m. That µ is the unique representing measure for M2d−1(n + 1)(β̃)
follows from Theorem 2.21.

Proof of Corollary 1.4. Suppose M(n) admits a positive extension M(n + j)
which in turn has a flat extension M(n + j + 1) satisfying Mqi (n + j + ki) >
0, 1 6 i 6 m. We can apply Theorem 1.1 to M(n + j) to obtain a finitely atomic
KQ-representing measure for M(n + j), and hence for M(n). For the converse,
suppose M(n) has a finitely atomic representing measure µ with supp µ ⊆ KQ.
We will estimate the minimum value of j necessary to obtain a positive exten-
sion M(n + j) having a flat extension M(n + j + 1) (with a corresponding KQ-
representing measure). Since µ is finitely atomic, it has convergent moments of
degree 2n + 1. Thus, Theorem 1.4 of [11] implies that µ has an inside cubature rule
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ζ of degree 2n, with s := card supp ζ 6 1 + dimRN
2n[t] = 1 + (2n+N

N ); in partic-
ular, ζ is a representing measure for M(n) and V := supp ζ ⊆ supp µ (⊆ KQ).
Since card V = s, Lagrange interpolation implies that every real-valued function
on V agrees on V with a polynomial in RN

2(s−1)[t]. (Indeed, if V ≡ {v1, . . . , vs}, let

f`(t) :=
∏

i=1,...,s;i 6=`
‖t−vi‖2

∏
i=1,...,s;i 6=`

‖tj−vi‖2 ∈ RN
2(s−1)[t] for 1 6 ` 6 s. Then any function f : V → R

satisfies f =
s
∑

`=1
f (v`) f`.) In particular, if i ∈ ZN

+ with |i| = 2s − 1, there ex-

ists pi ∈ RN
2(s−1)[t] such that ti − pi(t)|V ≡ 0. By Proposition 2.1, Ti = pi(T) in

CM(2s−1)[ζ], and since deg pi < |i|, it follows that M(2s− 1)[ζ] is a flat extension
of M(2s − 2)[ζ]. Theorem 2.19 implies that M(2s − 1)[ζ] has unique succes-
sive flat moment matrix extensions, and it is clear from the preceding argument
that these extensions are M(2s)[ζ],M(2s + 1)[ζ], . . . . Since V ⊆ KQ, it follows
immediately that Mqi (2s − 2 + ki)[ζ] > 0, 1 6 i 6 m. If n 6 2(s − 1), then
j := 2(s− 1)− n satisfies our requirements, and j 6 2(2n+N

N )− n. If n > 2(s− 1),
then M(n) = M(2s − 1)[ζ] or M(n) is one of the successive extensions of
M(2s− 1)[ζ] listed above, and in this case we can take j := 0.

REMARK 5.3. (i) In the case N = 2, n > 2, the estimate for j with j 6
4n2 + 5n + 2, can be improved to j 6 2n2 + 6n + 6 (cf. Theorem 1.5 of [8]). We
also note that in several examples that we have studied which require j > 0, the
flat extension M(n + j + 1) can be realized with j = 1, cf. [13], [14], [18], [20].
In particular, if KQ is a degenerate hyperbola and M(n) has a KQ-representing
measure, M(n) might not have a flat extension, but in this case there is always a
positive extension M(n + 1) that has a flat extension M(n + 2) [14].

(ii) Corollary 1.4 implies an exact analogue for complex moment sequences.
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ADDED IN PROOFS. After completing this paper we learned of recent related pa-
pers of Professor Monique Laurent [29], [28], [30]. In Theorem 1.2 of [30], Laurent gives an
alternate proof of Corollary 2.6, using algebraic techniques (e.g., Nullstellensatz) to prove
the existence of a unique, r-atomic, representing measure corresponding to a rank r posi-
tive infinite moment matrix. Using this result and Theorem 2.19, Laurent then provides a
short proof of Theorem 1.1 ([30], Theorem 1.6). This proof is based on general properties of
localizing matrices, and circumvents our explicit calculations of localizing matrices in Sec-
tion 4. For applications, to explicitly compute representing measures, it is still necessary
to use the computational formula of Theorem 3.2.


