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ABSTRACT. We use the Bellman function technique to obtain new Littlewood-
Paley type estimates for classical as well as Gaussian spaces Lp(Rn). This is
our principal result. The rest of the paper is purely methodological: it contains
unified proofs of the known results. Namely, we present the uniform approach
to proofs of the existence of dimension free bounds for corresponding Riesz
transforms. Some of our results contain best to-date constants.
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INTRODUCTION

Recall that the Fourier transform of a function f ∈ L1(Rn) is given by

f̂ (x) = (2π)−n/2
∫
Rn

f (y) e−i〈x, y〉 dy .

We used the notation 〈x, y〉 = x1y1 + · · · + xnyn, where x = (x1, . . . , xn) and
y = (y1, . . . , yn) belong to Rn. For a test function f on Rn (say, belonging to C∞

c
or the Schwartz class S) we will denote by f̃ its harmonic extension to the upper
half-space Rn+1

+ := Rn × (0, ∞). Sometimes the "newly acquired" variable t will
be labeled as xn+1. We shall consider functions f = ( f1, . . . , fM) with values in
some CM, M ∈ N. Here f̃ = ( f̃1, . . . , f̃M). As usual, for 1 6 p < ∞ the Banach
space Lp(Rn → CM) is introduced, and the norm is given by

‖ f ‖p =
( ∫

Rn

| f |pdm
)1/p

=
( ∫

Rn

[ M

∑
i=1

| fi(x)|2
]p/2

dm(x)
)1/p

.

By J f̃ we shall mean the Jacobi matrix of f̃ , which is defined as

J f̃ =
[ ∂ f̃i

∂xj

]
i=1,...,M
j=1,...,n+1

.
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Furthermore, ‖ · ‖2 will stand for the Hilbert-Schmidt norm on the space of
matrices, unless specified otherwise.

Throughout the paper, p will be a number from (1, ∞), while q will stand
for its conjugate exponent. Let us denote p∗ = max{p, q}. We will most often
encounter the factor

p∗ − 1 =
{

p− 1 p > 2 ,
(p− 1)−1 1 < p 6 2 .

We are ready to state our first main result.

THEOREM 0.1. Let M, N, n be arbitrary natural numbers. Take test functions
f ∈ Lp(Rn → CM) and g ∈ Lq(Rn → CN). Then

2
∞∫

0

∫
Rn

‖J f̃ (x, t)‖2‖Jg̃(x, t)‖2 t dx dt 6 (p∗ − 1)‖ f ‖p‖g‖q .

The proof will be presented in Section 1.
We believe this theorem displays a useful and rather general example of an

inequality of the Littlewood-Paley type. In particular, its following corollary rep-
resents an inequality for the classical Riesz transforms that does not depend on
the dimension, in other words, it represents Stein’s theorem. First, we introduce
the Riesz transforms.

Choose k ∈ {1, . . . , n}. The scalar Riesz transform Rk is defined on a test
function f by

(Rk f )̂ (x) = i
xk
‖x‖ f̂ (x) .

For arbitrary functions f ∈ Lp = Lp(Rn) we extend this by density.
As mentioned above, Theorem 0.1 has an immediate corollary: these op-

erators are bounded on Lp(Rn) for p ∈ (1, ∞) with norms independent of the
dimension n.

COROLLARY 0.2. For every n ∈ N and every f ∈ Lp,∥∥∥( n

∑
i=1

|Ri f |2
)1/2∥∥∥

p
6 2(p∗ − 1)‖ f ‖p

and therefore also ‖Rk‖B(Lp) 6 2(p∗ − 1) for k = 1, . . . , n.

As an example of how our technique can deliver results in non-standard
settings, we treat in Section 3 spaces endowed with the Gaussian measure µ. We
are able to obtain the analogues to the above Littlewood-Paley type estimates,
which we formulated in Theorem 0.1. Here is our Littlewood-Paley dimension-
less estimate for Gaussian case.

THEOREM 0.3. For a function ϕ on Rn let the symbol ϕ̃ stand for its extension to
Rn

+, generated by the Ornstein-Uhlenbeck operator. There is an absolute constant C > 0
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such that for all test functions f , g and 1 < p < ∞,
∞∫

0

∫
Rn

‖J f̃ (x, t)‖2‖Jg̃(x, t)‖2 dµ(x) t dt 6 C (p∗ − 1)‖ f ‖p‖g‖q .

Consequently, we have the corollary, the famous result of Meyer-Pisier, rep-
resenting the same effect of dimension free estimates for Riesz transforms as
Stein’s theorem (see Corollary 0.2), only now for Riesz transforms with respect
to Gaussian measure. In the next corollary Ri are Gaussian Riesz transforms (see
precise definitions in Section 3).

COROLLARY 0.4. ∥∥∥( n

∑
i=1

|Ri f |2
)1/2∥∥∥

p
6 Cp‖ f ‖p

for some constants Cp > 0 that do not depend on the dimension n.

We will notice that Littlewood-Paley estimates in Theorems 0.1, 0.3 give
us estimates of Riesz transforms in Corollaries 0.2, 0.4 with "a big margin" (see
Remark 2.2). There will be a large extra positive term estimated at the same time.
But we do not know how this extra positivity can be used.

Our Littlewood-Paley dimension free theorems allow applications in cases
of other semigroup extensions. It is also demonstrated in Section 3 how closely
our original problem of estimating Riesz transforms relates to the boundedness
of particular spectral multipliers.

The result of Corollary 0.2 was also obtained by R. Bañuelos and G. Wang
[3]. T. Iwaniec and G. Martin proved ([12], Theorem 1.5) that

(0.1)
∥∥∥( n

∑
i=1

|Ri f |2
)1/2∥∥∥

p
6
√

2 Hp(1) ,

where Hp(1) = ‖R1 + iR2‖p and R1, R2 are planar Riesz transforms. As far as
we know, the factors Hp(1) have not yet been computed. However, as it was also
shown by [12],

(0.2) ‖Rk‖p = cot
( π

2p∗
)

,

which immediately gives

(0.3) Hp(1) 6 2 cot
( π

2p∗
)

.

From (0.1) we would then get the 2
√

2 cot
(

π
2p∗

)
estimate for the Riesz transforms

on Rn, which is worse than what we have in Corollary 0.2, provided that p∗ is not
large (it should, roughly, be smaller than 9.225). For other p’s this is not the case.
To summarize, these bounds, i.e. 2(p∗ − 1) for smaller p∗ and 2

√
2 cot

(
π

2p∗
)

for

larger p∗ constitute the best estimates for
∥∥∥( n

∑
i=1

|Ri f |2
)1/2∥∥∥

p
that we know of.
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Concerning the dimension free estimates of the Riesz transforms our paper
does not contain anything new, it is purely methodological. But the approach we
use can probably be extended to many other situations because its backbone, the
Bellman function technique, is essentially dimension free. So the reader should
consider the estimates of Stein and Meyer-Pisier type as the illustration of the
method. But our dimension free Littlewood-Paley type estimates seem to be new.
And, as we already mentioned, they contain a big positive extra term, which, if
tamed, can give the final sharp constants.

REMARK 0.5. When p = 1 the Riesz transforms are not bounded. Instead,
there are estimates of the weak type 1–1, but (so far) without dimension free con-
stants. The best result of this kind that we are aware of is P. Janakiraman’s [13].
He showed that the weak 1–1 constant is at most c log n.

S.K. Pichorides [25], found the exact norm of Riesz transforms on Lp in one-
dimensional case (Hilbert transform). This result was extended by T. Iwaniec and
G. Martin [12] who proved that the same statement (contained in the estimate
(0.2) above) holds for scalar Riesz transforms on arbitrary Rn.

The fact that the norms of vector Riesz transforms can be bounded with
estimates independent of the dimension n was first observed by E. Stein [29].
Probabilistic methods, applied by P.A. Meyer [20], were used to obtain the ini-
tial proof of this theorem in the Gaussian setting (the Ornstein-Uhlenbeck semi-
group), whereas in [26] G. Pisier found an analytic proof. Later on, N. Arcozzi
improved this result in his paper [1], where he also considered Riesz transforms
on more general structures.

The question of estimating Riesz transforms in various (and sometimes very
difficult) other situations has generated a lot of attention. We refer here to the ar-
ticles of T. Coulhon, D. Müller and J. Zienkiewicz [7] and F. Lust-Piquard [19] for
the results on Heisenberg groups, as well as to T. Coulhon and X.T. Duong [6],
where Riesz transforms on rather general manifolds are considered. The works
[18] and [17] of F. Lust-Piquard regard certain discrete analogues of Riesz trans-
forms and Riesz transforms on Fock spaces, respectively. In [19], the same author
also introduces Riesz transforms on Schatten classes and gives their dimension
free bounds.

Our approach is different than any previous in that it uses the technique of
Bellman functions.

The Bellman function approach can be viewed as an application of certain
ideas from Bellman PDE in stochastic optimal control to harmonic analysis. By its
nature it is very well suited to give dimension free estimates. It also usually gives
estimates close to the sharp ones. However, in our application to Riesz transforms
one uses the Bellman function in a new way, which allows self-improvement of
the estimates.

The reader will observe that our approach in more general cases reduces
the proof to the question of boundedness of certain spectral multipliers on Lp.
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However, this appears to be the only true obstacle that we are to encounter. For
this reason we believe that our technique is transformable within several other
settings. The scope of generality will be the subject of further consideration.

We hope that the properties of the Bellman function could also be utilized
in a way to obtain dimension free estimates of the weak type 1-1. So far this has
eluded us.

Although dimensionless boundedness of Riesz transforms has been proven
several times by now, the following results give, besides a new proof, in some
cases also the best known estimates of their Lp-norms.

NEW FINDINGS. (i) We prove some Littlewood-Paley type estimates which imply
dimensionless boundedness of Riesz transforms. These estimates seem to be new
both in classical as well as Gaussian setting.

(ii) We show how the boundedness of Riesz transforms can be reduced to the
boundedness of a certain spectral multiplier.

(ii) The Bellman function can provide a unified approach to many various
Riesz transforms (provided that the corresponding spectral multiplier theorem
is available). It tends to give quite good estimates in p (depending on how well
the Bellman function is found).

(iii) There is a proof, due to D. Burkholder, of a weak type inequality for the
martingale transform which contains a sort of a "Bellman function". This gives
rise to the hope that our approach could also be useful for dimensionless weak
type estimates.

0.1. FURTHER NOTATION AND PRELIMINARIES. There is another way to describe
Riesz transforms. Let

∆ =
n

∑
i=1

∂2

∂x2
i

be the classical Laplace operator on Rn. For any test function ϕ we have

〈∆ϕ, ϕ〉 =
∫
Rn

n

∑
i=1

∂2 ϕ

∂x2
i

ϕ dx = −
∫
Rn

‖∇ϕ‖2 dx ,

where ∇ denotes the gradient

∇ =
( ∂

∂x1
, . . . ,

∂

∂xn

)
.

Thus ∆ is an unbounded symmetric operator, whose domain can be taken
to be the Schwartz class S. One can show that ∆ is closable and that its closure ∆
is a selfadjoint extension of ∆ (it therefore being unique).

Since ∆ was a negative operator, so is ∆. So there is a unique positive self-
adjoint operator A with the property A2 = −∆. Symbolically, on S we have the
formula

A =
√
−∆ .
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Then one can verify that

Ri =
∂

∂xi
◦ A−1 .

Note that one can define Riesz transforms Ri in many other situations when
we have an abstract Laplacian operator. For example, in this article we also
define the Ornstein-Uhlenbeck Riesz transforms with the help of the Ornstein-
Uhlenbeck second-order differential operator.

We will also use the operator of Poisson extension P to the upper half-plane
Rn × (0, ∞). By Pt f (x) we mean the value of the harmonic extension of f at the
point (x, t) ∈ Rn × (0, ∞). In short, Pt f (x) = f̃ (x, t), where f̃ is defined on
page 167. It is well known that

Pt = e−tA.

1. BILINEAR DIMENSIONLESS LITTLEWOOD-PALEY TYPE ESTIMATE

This section is devoted to proving the fundamental result of the paper, The-
orem 0.1. We will need a few auxiliary results, which we will explain en route, as
the need for them arises.

1.1. THE BELLMAN FUNCTION APPEARS. Take p ∈ (1, ∞) and assume that M
and N are natural numbers. Define

Ω = {(ζ, η, Z, H) ∈ CM ×CN ×R×R : |ζ|p < Z, |η|q < H} .

This is a convex domain in CM ×CN ×R×R ≡ Rd, d = 2(M + N + 1).

THEOREM 1.1. There is a function B : Ω → R, such that:
(i) 0 6 B(ζ, η, Z, H) 6 (p∗ − 1)Z1/p H1/q everywhere on its domain;

(ii)

B
( a+ + a−

2

)
− B(a+) + B(a−)

2
>

∣∣∣ ζ+ − ζ−
2

∣∣∣∣∣∣η+ − η−
2

∣∣∣
for any a± = (ζ±, η±, Z±, H±) ∈ Ω.

We can add smoothness to B by paying only a small price for it.

LEMMA 1.2. If K is a compact subset of Ω and κ is a positive number, smaller
than min{1, d(K, ∂Ω)}, then there exists a smooth function BK,κ on the neighbourhood
Ωκ := {x ∈ Ω : d(x, ∂Ω) > κ} of K, such that the second estimate above still holds. In
that case, it takes the form

(ii)’ −d2BK,κ(ζ, η, Z, H) > 2|dζ||dη| .
The first estimate is perturbed only by the factor 1 + κ.

We will deliver the proof of this theorem in Section 4.
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This is our Bellman function. By the second property we mean that for any choice
of (ζ, η, Z, H) ∈ Ω and (α, β, γ, δ) ∈ CM ×CN ×R×R we have

(1.1) 〈−d2B(ζ, η, Z, H) [α, β, γ, δ]t, [α, β, γ, δ]t〉 > 2|α||β| .

Naturally, the Hessian d2B can be thought of as a real d× d matrix, whose upper
left 2× 2 submatrix, for instance, equals[ ∂2B

∂ζ
(1)
i ∂ζ

(1)
j

]
i,j=1,2

,

where ζ = (ζ(1), . . . , ζ(M)) and ζ(1) = ζ
(1)
1 + i ζ

(1)
2 .

In general we do not know of a formula, i.e. an algebraic expression, which
would possess the properties of a Bellman function. The only exception is de-
scribed in the next lemma.

LEMMA 1.3. In case when p = 2 one possible choice for B is

B(ζ, η, Z, H) =
√

(Z − |ζ|2)(H − |η|2) .

Proof. The proof is given for the case M = N = 1. The function obviously
satisfies the first requirement. For the second one, take ζ = ζ1 + iζ2, η = η1 + iη2,
Z, H so that (ζ, η, Z, H) ∈ Ω. Write

B = B(ζ, η, Z, H) =
√

(Z − ζ2
1 − ζ2

2)(H − η2
1 − η2

2) .

Then

∇B =
( ∂B

∂ζ1
,

∂B
∂ζ2

,
∂B
∂η1

,
∂B
∂η2

,
∂B
∂Z

,
∂B
∂H

)
=

(
− ζ1√

W
, − ζ2√

W
, −η1

√
W , −η2

√
W ,

1
2
√

W
,

√
W
2

)
,

where

W =
Z − |ζ|2
H − |η|2 .

This gives rise to the equalities:

∂2B
∂ζ2

i
= −(Z − ζ2

j )
1

BW
{i, j} = {1, 2} ;

∂2B
∂ζ1∂ζ2

= −ζ1ζ2
1

BW
;

∂2B
∂η2

j
= −(H − η2

i )
W
B

{i, j} = {1, 2} ;
∂2B

∂η1∂η2
= −η1η2

W
B

;

∂2B
∂ζi∂ηj

=
ζiηj

B
i, j ∈ {1, 2} ;
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∂2B
∂ζi∂Z

=
ζi

2BW
,

∂2B
∂ζi∂H

= − ζi
2B

i ∈ {1, 2} ;

∂2B
∂ηj∂Z

= −
ηj

2B
,

∂2B
∂ηj∂H

=
ηjW
2B

j ∈ {1, 2} ;

and
∂2B
∂Z2 = − 1

4BW
∂2B
∂H2 = −W

4B
∂2B

∂Z∂H
=

1
4B

.

The expressions above enable us to form the Hessian d2B = d2B(ζ, η, Z, H). Note
that every denominator contains B as a factor, therefore it is convenient to con-
sider B · d2B.

Take (α1, α2, β1, β2, γ, δ) ∈ R6. Denote v = [α1, α2, β1, β2, γ, δ]t . We can write

〈−B · (d2B)v, v〉 = aδ2 + bδ + c ,

where a, b, c are appropriate functions of variables other than δ. Here a > 0,
therefore

〈−B · (d2B)v, v〉 > c− b2

4a
.

But it turns out that

c− b2

4a
= |α|2(H − |η|2) + |β|2(Z − |ζ|2) ,

hence obviously
〈−B · (d2B)v, v〉 > 2|α||β|B .

Proof of Theorem 0.1. Choose test functions f : Rn → CM and g : Rn → CN .
Let us introduce the notation xt for the element (x, t) ∈ Rn+1

+ = Rn × (0, ∞).
Define

v : Rn+1
+ −→ Ω ⊂ CM ×CN ×R×R

(x, t) 7−→ (Pt f (x), Ptg(x), Pt| f |p(x), Pt|g|q(x)) .
Since the Poisson extension can be expressed as an integral against the Poisson
kernel ([2], p. 6), applying Jensen’s inequality shows that v is well defined, i.e.
that it indeed maps into Ω.

Furthermore, let

∆t := ∆ +
∂2

∂t2 .

We are ready to get to the core of the proof.
Fix 0 < δ < 1 and an arbitrary compact set M ⊂ Rn × (δ, ∞). For R >

1
2 define QR = (−R, R)n × (δ, 2R + δ). Note that each QR contains the point
01 = {0}n ⊕ {1} ∈ Rn × (0, ∞). Choose such R for which M ⊂ QR. The
set K := v(QR) is compact and contained in Ω. Furthermore, take 0 < κ <
min{1, R−1, d(K, ∂Ω)} and let B = BK,κ be associated to K and κ as in Lemma 1.2.
If U := v−1(Ωκ), then the function b := BK,κ ◦ v maps U → [0, ∞). In particular,
it is defined on QR.
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Let GQR be the Green function of the region QR. The Green formula says
that∫

QR

b ∆tGQR(·, 01)−
∫

QR

∆tb GQR(·, 01) =
∫

∂QR

b
∂GQR(·, 01)

∂n
−

∫
∂QR

GQR(·, 01)
∂b
∂n

.

Since GQR(·, 01) ≡ 0 on ∂QR and since its Laplacian, multiplied by −1, acts like
the Dirac function of 01 ([8], 2.2), this implies

−
∫

QR

∆tb GQR(·, 01) = b(01) +
∫

∂QR

b
∂GQR(·, 01)

∂n
.

Note that the normal derivative of GQR on the boundary equals the Poisson kernel
([8], 2.2), again multiplied by −1, so it is negative. Since b is always positive,
we get −

∫
QR

∆tb GQR(·, 01) 6 b(01) . The first property of B leads to the estimate

b(01) 6 (1 + κ)(p∗ − 1)(P1| f |p(0))1/p(P1|g|q(0))1/q and so

−
∫

QR

∆tb(xt) GQR(xt, 01) dxt 6 cn(1 + κ)(p∗ − 1)(1.2)

·
( ∫

Rn

| f (y)|p 1
(1 + |y|2)(n+1)/2

dy
)1/p

(· · · |g(y)|q · · · )1/q .

Here cn is the normalizing factor for the Poisson kernel, like in p. 6 of [2].
One can show that

GQR(xt, ys) =
1

Rn−1 GQ1

( xt−δ

R
,

ys−δ

R

)
,

where Q1 = (−1, 1)n × (0, 2). We can also write Q1 = QR−0δ
R .

Since the vector 0R+δ is the center of the square QR and thus its image under
v lies in Ωκ , we can repeat the preceding calculation with 0R+δ in place of 01. In
that case, (1.2) takes the form

−
∫

QR

∆tb(xt) GQ1

( xt−δ

R
, 01

)
dxt

6 b(0R+δ)

6 cn(1 + κ)(p∗ − 1)

·
( ∫

Rn

| f (y)|p Rn−1(R + δ)
[(R + δ)2 + |y|2](n+1)/2

dy
)1/p

(· · · |g(y)|q · · · )1/q .
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Apply the Lagrange theorem for GQ1(·, 01) along the normal vector. Use again
that this function is 0 on the boundary. We get that

GQ1

( xt−δ

R
, 01

)
= GQ1

( xt−δ

R
, 01

)
− GQ1

( x0

R
, 01

)
=

∂GQ1

(
·, 01

)
∂n

( xϑ

R

) t− δ

R
.

Here ϑ is some value from the interval (0, t− δ). Moreover, since the integrand is
positive and M ⊂ QR, we can estimate the integral on the left from below by the
same integral, just over M instead of QR. Thus

−
∫
M

∆tb(xt)
∂GQ1(·, 01)

∂n

( xϑ

R

)
(t− δ) dxt

6 cn(1 + κ)(p∗ − 1)

·
( ∫

Rn

| f (y)|p Rn(R + δ)
[(R + δ)2 + |y|2](n+1)/2

dy
)1/p

(· · · |g(y)|q · · · )1/q .

Note that

Rn(R + δ)
[(R + δ)2 + |y|2](n+1)/2

6
Rn(R + δ)

[(R + δ)2](n+1)/2
=

( R
R + δ

)n
< 1

for every y ∈ Rn, therefore

−
∫
M

∆tb(xt)
∂GQ1(·, 01)

∂n

( xϑ

R

)
(t− δ) dxt 6 cn(1 + κ)(p∗ − 1)‖ f ‖p‖g‖q .

In order to proceed we need the following easy calculation. For the sake of
simplifying the formulæ let us temporarily write xn+1 instead of the variable t.

LEMMA 1.4. For every xt = (x, t) ∈ U and arbitrary smooth B, harmonic u, and
b = B ◦ u,

∆tb(xt) =
n+1

∑
i=1

〈
d2B(u)

∂u
∂xi

(xt),
∂u
∂xi

(xt)
〉

.

Proof. Denote u0 = u(xt). The chain rule gives

∂b
∂xi

(xt) =
〈
∇B(u0),

∂u
∂xi

(xt)
〉

Rd
i = 1, . . . , n + 1 ;

∆tb(xt) = 〈∇B(u0), ∆tu(xt)〉+
n+1

∑
i=1

〈
d2B(u0)

∂u
∂xi

(xt),
∂u
∂xi

(xt)
〉

.

So far the formulæ are true for arbitrary B, u, b = B ◦ u, xt, u0 = u(xt).
Now we use that u is composed of harmonic functions, which forces the

first term on the right to be zero.
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This links us to the Bellman function property (1.1). Namely,

−
n+1

∑
i=1

〈
d2B(v)

∂v
∂xi

,
∂v
∂xi

〉
> 2

n+1

∑
i=1

∣∣∣ ∂

∂xi
Ptg(x)

∣∣∣∣∣∣ ∂

∂xi
Pt f (x)

∣∣∣ .

However, this inequality can be strengthened, i.e. it actually self-improves,
thanks to the next useful result which will be proven in the Addendum.

LEMMA 1.5. Suppose H is a finite-dimensional real Euclidean space, Hi, i = 1, 2,
are two mutually orthogonal subspaces of H and Pi are the corresponding orthogonal
projections. Let T be a selfadjoint operator such that

(1.3) 〈Th, h〉 > 2‖P1h‖‖P2h‖

for all h ∈ H. Then there exists τ > 0, satisfying

〈Th, h〉 > τ‖P1h‖2 +
1
τ
‖P2h‖2

again for all h ∈ H.

This lemma quickly implies the following corollary.

COROLLARY 1.6. Under the above assumptions, for any Hilbert-Schmidt operator
L, acting from any space (not necessarily finite-dimensional) into H, we have

tr(L∗TL) > 2‖P1L‖2‖P2L‖2 ,

where ‖ · ‖2 stands for the Hilbert-Schmidt norm, as usual.

By applying this corollary to T = −d2B(v) and L = ∇v(xt), the latter un-
derstood as an operator Rn+1 → Rd, we find such τ = τ(x, t) that we even have

n+1

∑
i=1

〈
− d2B(v)

∂v
∂xi

(xt),
∂v
∂xi

(xt)
〉

> 2‖J f̃ (xt)‖2‖Jg̃(xt)‖2 .

To summarize, we proved that for fixed δ ∈ (0, 1), fixed compact set M in
Rn × (δ, ∞) and any R > 1

2 such that M ⊂ QR, we have

2
∫
M

‖J f̃ (xt)‖2‖Jg̃(xt)‖2
∂GQ1(·, 01)

∂n

( xϑ

R

)
(t− δ) dxt 6 cn(1 + κ)(p∗− 1)‖ f ‖p‖g‖q .

It is only at this point we can send R to infinity. What remains is to persuade
∂GQ1 (·,01)

∂n ·( xϑ
R ) to approach cn in some sense while R grows. Since κ was chosen to

be dominated by R−1, the factor 1 + κ disappears. The term xϑ
R will uniformly go

to 0, because M was bounded. But 0 lies on the boundary of Q1, where
∂GQ1 (·,01)

∂n
equals the Poisson kernel. So when R → ∞, it approaches the value of the Poisson
kernel for the upper half-space Rn+1

+ , i.e. p(0, 01), which is exactly equal to cn.
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Since the resulting inequality is true for arbitrary M, we can have it with
Rn × (δ, ∞) as the domain of integration. By dilating the variable t we get

2
∞∫

0

∫
Rn

‖J f̃ (x, t + δ)‖2‖Jg̃(x, t + δ)‖2 t dx dt 6 (p∗ − 1)‖ f ‖p‖g‖q .

Because δ can be arbitrarily small, this proves Theorem 0.1.

REMARK 1.7. The fact that B is, in general, not smooth everywhere on Ω
caused some technical difficulties in the preceding proof and called for additional
care and few steps, such as mollification, passing to limits a few times etc., that
would otherwise not be needed.

2. CLASSICAL RIESZ TRANSFORMS. PROOF OF COROLLARY 0.2

First, let us prove the following lemma.

LEMMA 2.1. Let f and g be two test functions and let Rk, 1 6 k 6 n, be any
Riesz transform. Then

〈g, Rk f 〉 = 4
∞∫

0

〈APtg, ∂kPt f 〉 t dt ,

where ∂k = ∂
∂xk

.

Proof. Introduce

ϕ(t) = 〈Ptg, PtRk f 〉 .

Integration by parts gives

ϕ(0) =
∞∫

0

ϕ′′(t) t dt or 〈g, Rk f 〉 =
∞∫

0

d2

dt2 〈Ptg, PtRk f 〉 t dt .

The right side is equal to

∞∫
0

〈P′′t g, PtRk f 〉 t dt + 2
∞∫

0

〈P′t g, P′t Rk f 〉 t dt +
∞∫

0

〈Ptg, P′′t Rk f 〉 t dt.

By P′t we mean dPt
dt , of course. But then P′t = −APt and so P′′t = A2Pt. Thus we

can continue the line above by

∞∫
0

(〈A2Ptg, PtRk f 〉+ 2〈APtg, APtRk f 〉+ 〈Ptg, A2PtRk f 〉) t dt.
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The operator A is symmetric with respect to the pairing 〈·, ·〉, hence we get

4
∞∫

0

〈APtg, APtRk f 〉 t dt .

Since A commutes with Pt and ∂k, we see that APtRk = APt∂k A−1 = ∂kPt , which
yields the desired equality.

Now∥∥∥( n

∑
i=1

|Ri f |2
)1/2∥∥∥

p
=

[ ∫
Rn

( n

∑
i=1

|Ri f |2
)p/2

dm
]1/p

=
[ ∫
Rn

|(R1 f , . . . , Rn f )(x)|pdm(x)
]1/p

= ‖R f ‖Lp(Rn→Cn) ,

where R f = (R1 f , . . . , Rn f ). By using duality, this is the same as sup{|〈R f , g〉| :
g ∈ Lq(Rn → Cn), ‖g‖q = 1} . It follows from Lemma 2.1 that

|〈R f , g〉| =
∣∣∣ n

∑
i=1
〈Ri f , gi〉

∣∣∣
=

∣∣∣4 ∞∫
0

∫
Rn

n

∑
i=1

∂iPt f (x) APtgi(x) dx t dt
∣∣∣

6 4
∞∫

0

∫
Rn

( n

∑
i=1

∣∣∣∂iPt f
∣∣∣2)1/2( n

∑
i=1

∣∣∣ ∂

∂t
Ptgi

∣∣∣2)1/2
dx t dt .

Finally, we use Theorem 0.1 for M = 1 and N = n.

REMARK 2.2. At this point we can explain precisely what we meant by the
"big margin" and "positive extra term" that were mentioned in the Introduction.

Note that the inequalities we use in the very last step of the proof above, i.e.

(2.1)
( n

∑
i=1

∣∣∣∂iPt f (x)
∣∣∣2)1/2

6 ‖J f̃ (x, t)‖2

and

(2.2)
( n

∑
i=1

∣∣∣ ∂

∂t
Ptgi(x)

∣∣∣2)1/2
6 ‖Jg̃(x, t)‖2 ,

are very rough. Namely, in the sums on the left-hand sides of (2.1) and (2.2)
there are many terms "missing" in comparison to what we have on the right-
hand sides. Explicitly, it is the ∂t derivative of Pt f (x) in (2.1) and for {Ptgi(x) :
i = 1, . . . , n} in (2.2) all their partial derivatives but ∂t. It might well be that
this "loss of information" accounts for the fact that the constant we get is not the
optimal one. On the other hand, it suggests that if one could handle these extra
terms more efficiently that would result in better norm estimates.
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3. ESTIMATES FOR THE ORNSTEIN-UHLENBECK SEMIGROUP (GAUSSIAN CASE)

In this section we turn Rn into a probability space by endowing it with the
canonical Gaussian measure

dµ(x) = (2π)−n/2 e−‖x‖2/2 dx .

It is well known that the polynomials form a dense subspace of any Lp(Rn, µ),
1 < p < ∞. For reasons which will became apparent further on in this section,
this (and not C∞

c as before) is going to be our family of test functions on the
Gaussian space.

Since the formal adjoint of ∂i now equals ∂∗i g = xig− ∂ig, the Laplacian ∆ is
not symmetric anymore. Instead, its symmetric analogue on Gaussian spaces is
called Ornstein-Uhlenbeck differential operator, and is defined on polynomials as

∆OU := ∆−
n

∑
i=1

xi
∂

∂xi
.

By the same symbol we will denote its selfadjoint extension, whose domain
Dom ∆OU is the Gaussian Sobolev space D2,2 (see [14]). Since −∆OU is also a
positive operator, we can define its positive square root A, which has the space
D1,2 as its domain. By definition constant functions lie in the kernel of A. Smooth
functions with compact support belong to D1,2, see [14] again. The selfadjoint
operator A generates an operator semigroup, denoted by

Pt = e−tA .

The main goal of this section is a new inequality of the Littlewood-Paley
type. It is formulated in Theorem 0.3 and is analogous to the one that we have
already demonstrated in the standard setting (Theorem 0.1). This time F̃ shall
mean the ∆OU-generated extension of function F into the upper half-space Rn

+,
i.e. F̃(x, t) = (PtF)(x).

As a consequence of this inequality we will deliver Corollary 0.4, which
brings forward a new solution of the well-known problem about dimension free
bounds of Riesz transforms associated to the Ornstein-Uhlenbeck operator ∆OU.

Previously, Riesz transforms Ri were defined by Ri := ∂
∂xi

◦ A−1. In order
to define A−1 in the Gaussian setting properly, we restrict ourselves to the or-
thogonal complement of the kernel of ∆OU. This is a subspace of L2(Rn, µ) of
co-dimension 1. It consists of functions f which are orthogonal to the constants
on Rn and are thus of mean zero, i.e.

∫
Rn

f dµ = 0. We denote by π0 the orthogonal

projection onto this subspace and define

Ri :=
∂

∂xi
◦ A−1 π0 .
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Our objective will be to estimate the vector-valued Riesz transforms, in other
words, we will try to give Lp-estimates of the function

R f =
( n

∑
i=1

|Ri f |2
)1/2

.

Thus Corollary 0.4 can be stated in more detail as follows:

If 1 < p < ∞ and f ∈ Lp(Rn, dµ), then

‖R f ‖p 6 Cp‖ f ‖p ,

for some constants Cp > 0 that do not depend on the dimension n. One can take Cp =
cp + C(p∗ − 1)‖O‖Lp(µ)→Lp(µ), where the constant C = 8e1/e(1 + e−2) is the same as
in Theorem 0.3, O is a spectral multiplier associated with ∆OU, and

cp =
{

1 p > 2 ,
O((p− 1)−1/2) p → 1 .

It was first proved by P.A. Meyer [20] that for some Cp > 0 the inequality
above holds. This was done by applying probabilistic methods. As mentioned
in the introduction, G. Pisier [26] found an analytic proof of the same result,
while subsequently several other results and improvements followed. N. Ar-
cozzi [1] proved the inequality with Cp = 2(p∗ − 1), whereas L. Larsson-Cohn
[16] showed that p∗ − 1 is also the lower bound for the magnitude of the con-
stants when p∗ → 1.

It is again our aim to use the Bellman function as in the previous section.
However, there are difficulties which prevent us from reaching exactly the same
result. The first of them is the non-commutativity of ∂i and ∆OU. Namely, one
easily verifies that

(3.1) [∆OU, ∂i] = ∆OU∂i − ∂i∆OU = ∂i .

This obstruction defies our efforts to restore a satisfactory version of Lemma 2.1,
for we are not able to mimic the last step in its proof.

One way around this is to introduce a certain auxiliary operator O.
In the classical case, Lemma 2.1 gave us

〈g, Rk f 〉 = 4
∞∫

0

〈APtg, ∂kPt f 〉 t dt .

This time we are aiming for a more general formula, namely

(3.2) 〈g, Rk f 〉 =
∞∫

0

〈APtg, ∂kPtO f 〉ψ(t) dt ,

where the operator O and the function ψ are yet to be determined.
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SPECTRAL MULTIPLIERS. The eigenvalues of−∆OU are precisely all natural num-
bers. The eigenvectors, corresponding to the eigenvalue m ∈ N, are the Hermite
polynomials hα, where α = (α1, . . . , αn) ∈ Nn is a multiindex of length m, which
means |α| := α1 + · · ·+ αn = m. If n = 1, then

hm(x) = (−1)me x2/2 dm

dxm [e− x2/2] m ∈ N∪ {0} .

One can easily see that

(3.3) h′m = mhm−1 .

For arbitrary n, we define hα :=
n⊗

i=1
hαi . That is, for x = (x1, . . . , xn) ∈ Rn we put

hα(x) := hα1(x1) · · · hαn(xn) =
n

∏
i=1

hαi (xi) .

We shall denote by Pm the orthogonal projection of L2(Rn, dµ) onto the
eigenspaces Hm := Lin{hα : |α| = m}.

The fact that −∆OU is a self–adjoint operator implies that the polynomials
hα are mutually orthogonal, but it actually turns out that they form a complete
orthogonal system in L2(Rn, dµ).

Since ∆OUhα = −|α| hα, it follows that:

(i) Ahα =
√
|α| hα,

(ii) Pthα = e−
√
|α|t hα, and

(iii) ∂ihα = αi hα1 ⊗ · · · ⊗ hαi−1 ⊗ · · · ⊗ hαn , thus

∂i : Hm → Hm−1 .

For the last equality we used (3.3).
This implies that if we test formula (3.2) for f = hα, we see that O must be a

multiplier, more precisely, of the form

O = ∑
m∈N

om Pm

for a certain collection of scalars om, m ∈ N.
Suppose om = 1 for all m ∈ N (i.e. O = I). One can verify, after the same

procedure of testing the formula on hα, that ψ in this case must equal ψ(t) =
2(sin t + sinh t) . This function again does not enable us to continue the proof
with the Bellman function, which once more explains why in the Gaussian setting
(contrary to the classical one) there is no "suitable" formula of the form

〈g, Rk f 〉 =
∞∫

0

〈APtg, ∂kPt f 〉ψ(t) dt

and similarly with the roles of f and g exchanged in the integral on the right. This
hints that the generalization (3.2) might indeed be necessary.
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It turns out that functions ψ(t) = t e−at, where a > 0 is arbitrary, suit our
purpose. In this case computation returns

om =
(
√

m +
√

m− 1 + a)2
√

m
√

m− 1
.

Of course, this is only true if m > 2. For m = 1 we define o1 := 0, which leads to
a slight modification of formula (3.2) into

(3.4) 〈g, Rk f 〉 = 〈g, RkP1 f 〉+
∞∫

0

〈APtg, ∂kPtO f 〉ψ(t) dt .

3.1. PROOF OF COROLLARY 0.4 BY THE USE OF THE LITTLEWOOD-PALEY ESTI-
MATE IN THEOREM 0.3. We are going to utilize (3.4). First we estimate the linear
part of the polynomial f . Write

P1 f =
n

∑
j=1

cjhej ,

where
ej = (0, . . . , 0, 1, 0, . . . , 0)

↑
j-th place

.

Since h1(s) = s for s ∈ R, observe that hj(x) = xj. Therefore RjP1 f (x) ≡ cj,
which means that ‖RP1 f ‖2

p = ∑
j
|cj|2. But this equals ‖P1 f ‖2

2, since {hα : |α| = 1}

are mutually orthogonal in L2(µ).
Denote, as in [26],

γ(p) :=
( ∫

R

|t|p dµ(t)
)1/p

.

Then

(3.5) ‖RP1 f ‖p = ‖P1 f ‖2 =
‖P1 f ‖p

γ(p)
6

γ(p∗)
γ(p)

‖ f ‖p .

Note that, by the Stirling formula, cp := γ(p∗)
γ(p) = O((p− 1)−1/2) as p → 1 . The

coefficients γ(p) appear in a similar role also in G. Pisier’s article [26].
The more difficult part of the proof is to estimate the integral in the formula

(3.4). We would like to show that
∞∫

0

|〈APtg, ∇PtO f 〉|ψ(t) dt 6 Cp‖ f ‖p

for some dimensionless constant Cp. Here g is any function from the unit sphere
in Lq(Rn → Cn, dµ). This follows from Theorem 0.3, that is, our Littlewood-
Paley-type inequality for the Gaussian setting. For that purpose apply it with O f
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in place of f (we can do that, since O clearly maps polynomials into polynomi-
als). From here, from (3.4) and from (3.5) it follows, identically as in the classical
setting (page 179), that

‖R f ‖p 6 cp‖ f ‖p + C(p∗ − 1)‖O f ‖p .

The coefficients om of our multiplier O can be written as F(m−1/2) if m > 2, where
F is a certain function, analytic in the neighborhood of the origin. This implies
([20], Theorem 3) dimensionless boundedness of O on Lp(Rn, dµ). Hereby the
proof is wound up.

For further results and a detailed discussion of spectral multipliers and
Riesz transforms in the setting of Ornstein-Uhlenbeck semigroup we refer to the
series of articles by J. García-Cuerva, G. Mauceri, S. Meda, P. Sjögren and J.-L.
Torrea [9], [10], [11].

3.2. PROOF OF THE ORNSTEIN-UHLENBECK-GENERATED LITTLEWOOD-PALEY

ESTIMATE (THEOREM 0.3). Having prepared the ingredients, we can apply the
same Bellman function technique as in the previous section. That is, we deal with
the function

v : Rn × (0, ∞) → Ω

defined by

v(x, t) = (Pt f (x), Ptg(x), Pt| f |p(x), Pt|g|q(x))

and compose it with a Bellman function B (see Theorem 1.1) for

b = B ◦ v .

REMARK 3.1. Henceforth we will assume that B is smooth everywhere on
Ω. This will save us some technical complications and add clarity without chang-
ing the final outcome, for we already demonstrated how to treat the general (non-
smooth) case in the proof of Theorem 0.1.

However, in our attempt of repeating the proof we encounter a few problems:

1. We need to explain why the function v is well defined, i.e. why it really
maps into Ω. For that purpose, apply Jensen’s inequality to the Mehler formula
(see [28], for instance) for the ∆OU-generated heat extension Ht f = e∆OUt f of f :

Ht f (x) =
∫
Rn

f (e−tx + y
√

1− e−2t) dµ(y) .

We see that |Ht f |p 6 Ht| f |p for any p > 1. By p. 180 of [20], with every t > 0 there

is associated a probability measure µt on (0, ∞), such that Pt f =
∞∫
0

Hs f dµt(s).

Now Hölder’s inequality implies that v ∈ Ω, as desired.
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In addition to that, one can show by direct calculation that

‖Ht f ‖p 6
( ∫

Rn

Ht| f |p(x) dµ(x)
)1/p

6 ‖ f ‖p .

Moreover, by applying Ht to a constant function we actually see that ‖Ht‖B(Lp(µ))
= 1. Consequently, if p > 1 then

(3.6) ‖Pt f ‖p 6

∞∫
0

‖Hs f ‖p dµt(s) 6

∞∫
0

‖ f ‖p dµt(s) = ‖ f ‖p .

2. In the classical case, it were the expressions of the form〈
d2B(v)

∂v
∂xi

,
∂v
∂xi

〉
that linked the Jacobians of Pt f and Ptg with ‖ f ‖p and ‖g‖q. In the proof of
Lemma 1.4 we used that the components of v were harmonic functions, i.e. that
they were in the kernel of the Laplacian on the upper half-space in Rn+1. In order
to mimic this reasoning in the Gaussian setting, we have to come up with an
appropriate differential operator. Since Pt = e−At, it is obvious that

∂2

∂t2 Pt = A2Pt

in the strong sense, which implies( ∂2

∂t2 + ∆OU

)
Pt =

( ∂2

∂t2 − A2
)

Pt = 0 ,

hence the proper choice is given by

∆′OU =
∂2

∂t2 + ∆OU .

By "proper" we of course mean what has just been explained, i.e. that now we
have the analogue of Lemma 1.4:

(3.7) ∆′OUb(x, t) =
n+1

∑
i=1

〈
d2B(v)

∂v
∂xi

,
∂v
∂xi

〉
.

The point here is that now we can repeat the reasoning from the classical
setting without any modifications and obtain that

(3.8) −∆′OUb(x, t) > 2‖J f̃ ‖2‖Jg̃‖2 .

The only property we used for this, apart from the equality (3.7), was the charac-
teristic estimate involving the Hessian of B.

3. The next step is to estimate the integral

(3.9) −
∫

Rn+1
+

∆′OUb(x, t) ψ(t) dµ(x) dt
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from above by C(p)‖ f ‖p‖g‖q, where C(p) is some positive number. Recall that
ψ(t) was defined as t e−at for some positive a. Eventually we want to take the
limit a → 0, which will obviously not affect the upper bound.

For b ∈ Dom ∆OU we have∫
Rn

∆OUb dµ = 〈∆OUb, 1〉 = 〈b, ∆OU1〉 = 0 ,

therefore the integral (3.9) reduces to

−
∫
Rn

∞∫
0

∂2b
∂t2 (x, t) ψ(t) dt dµ(x) .

Fix x ∈ Rn and write bx(t) = b(x, t). We regard bx as a function of one variable.
Now, symbolically,

∞∫
0

∂2b
∂t2 (x, t) ψ(t) dt =

∞∫
0

b′′x (t) ψ(t) dt

= b′x(∞)ψ(∞)︸ ︷︷ ︸
I

− b′x(0)ψ(0)︸ ︷︷ ︸
II

− bx(∞)ψ′(∞)︸ ︷︷ ︸
III

+ bx(0)ψ′(0)︸ ︷︷ ︸
IV

(3.10)

+
∞∫

0

bx(t) ψ′′(t) dt

︸ ︷︷ ︸
V

.

We will in turn estimate the integrals
∫

Rn
dµ of each of the terms I–V.

We are going to borrow the function introduced by F. Nazarov and S. Treil
in [21]. It is an intermediate but crucial step in building an explicit example of a
Bellman function which satisfies all the properties of the function from the begin-
ning of Subsection 1.1. Actually, not all the properties are attained, because their
function gives a different (bigger) constant in the estimate for the upper bound.
However, this does not seem to discomfort us too much, because we lose the
2(p∗ − 1) estimate in the continuation of the proof anyway. This loss happens
when we come up with the estimate for our spectral multipliers.

Let us bring up the expression. It is defined in the domain Ω from page
172 by

(3.11) Q(ζ, η, Z, H) = 2(Z + H)− |ζ|p − |η|q − δQ̃(ζ, η) ,

where

Q̃(ζ, η) =


2
p
|ζ|p +

(2
q
− 1

)
|η|q when |ζ|p > |η|q ,

|ζ|2|η|2−q when |ζ|p 6 |η|q .

If δ is small enough, this function satisfies:
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(i) 0 6 Q(ζ, η, Z, H) 6 2(Z + H),
(ii) −d2Q(ζ, η, Z, H) > q(q−1)

2 |dζ||dη| ,
everywhere in its domain. The first property is obvious, whereas the proof of the
second one is presented in [21].

We want the constant appearing in the bound for the Hessian to be exactly
2, therefore we decide to introduce

B :=
4

q(q− 1)
Q =

4(p− 1)2

p
Q .

Furthermore, in order to obtain a function of ζ, η, Z, H, which is bounded
from above by a constant multiple of Z1/pH1/q rather than Z + H, we will later
have to consider

inf
λ>0

Bλ(ζ, η, Z, H) ,

where
Bλ(ζ, η, Z, H) = B(λζ, λ−1η, λpZ, λ−qH) .

This Bλ will be our main tool for the time being. It will temporarily occupy the
place of the "true" Bellman function. Accordingly, we denote

bλ = Bλ ◦ v .

The idea is to work with the concrete bλ and then minimize the estimates over all
λ > 0.

The reason for dealing with these special functions is that they seem to sup-
ply us with more information about the behaviour of their gradients than just the
abstract functions, provided by the existence theorem (Theorem 1.1). We are go-
ing to need this information in order to justify some of our calculations of terms
I–IV.

But let us begin with the term V. Fix λ > 0.∣∣∣ ∫
Rn

V dµ(x)
∣∣∣ =

∣∣∣ ∞∫
0

∫
Rn

bλ(x, t) dµ(x)ψ′′(t) dt
∣∣∣ 6

∞∫
0

∫
Rn

bλ(x, t) dµ(x)|ψ′′(t)|dt .

By the first property of the function B we have∫
Rn

bλ(x, t) dµ(x) 6
8(p− 1)2

p

[
λp

∫
Rn

Pt| f |p(x) dµ(x) + λ−q
∫
Rn

Pt|g|q(x) dµ(x)
]

.

The line (3.6) allows us to continue with

6
8(p− 1)2

p
(λp‖ f ‖p

p + λ−q‖g‖q
q) .

Consequently,∣∣∣ ∫
Rn

V dµ(x)
∣∣∣ 6

8(p− 1)2

p
(λp‖ f ‖p

p + λ−q‖g‖q
q)

∞∫
0

|ψ′′(t)|dt .
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Recall that ψ was defined by ψ(t) = te−at for some a > 0. Hence, the integral on
the right converges and is equal (independently of a) to

∞∫
0

|s− 2| e−s ds = 2e−2 + 1 .

In order to estimate IV and III, we have to consider the integral∫
Rn

lim
t→ω

bλ(x, t)ψ′(t) dµ(x)

for ω = 0 and ω = ∞. We have just proven that∫
Rn

bλ(x, t) dµ(x) 6
8(p− 1)2

p
(λp‖ f ‖p

p + λ−q‖g‖q
q) .

The expression on the right is also the bound of our integral when ω = 0 (case IV).
However, in the special case when we actually know a formula for the Bellman
function (Lemma 1.3) we have b(x, 0) = 0. Thus the term IV is not the essential
part of the estimate of the integral in (3.9).

On the other hand, lim
t→∞

ψ′(t) = 0, therefore∫
Rn

III dµ(x) = 0 .

Cases II and I are about estimating integrals

(3.12)
∫
Rn

lim
t→ω

∂bλ

∂t
(x, t)ψ(t)dµ(x)

where ω = 0 and ω = ∞, respectively. Since ψ(ω) = 0 we suspect that these
integrals might vanish as well. In order to conclude that, it suffices to know that
∂bλ
∂t is not behaving too strangely.

The proof of Lemma 1.4 gave us

−∂bλ

∂t
(x0) = −

〈
∇Bλ(v0),

∂v
∂t

(x0)
〉

Rd

=
〈∂Bλ

∂ζ
(v0), Pt A f (x)

〉
R2M

+
〈∂Bλ

∂η
(v0), Pt Ag(x)

〉
R2N

(3.13)

+
∂Bλ

∂Z
(v0)Pt A| f |p(x) +

∂Bλ

∂H
(v0)Pt A|g|q(x) ,

for x0 = (x, t) and v0 = v(x0).
Observe that, since f is a polynomial, the generalized derivatives ∂i| f |p exist

and are equal to p| f |p−2<( f ∂i f ), from where it follows that | f |p belongs to D1,2 =
Dom A. In other words, A| f |p and A|g|q are well defined.
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For the sake of simplicity we will omit writing

∂B
∂η

=
( ∂B

∂η1
, . . . ,

∂B
∂ηM

)
.

Also note that ∂Bλ
∂Z and ∂Bλ

∂H are constant functions, by the formula (3.11).
Thus the part of the integral (3.12), corresponding to the last term in (3.13), is, up
to a multiplicative constant, bounded by

lim sup
t→ω

ψ(t)
∫
Rn

Pt A|g|q(x) dµ(x) .

Now, ∫
Rn

Pt A|g|q(x) dµ(x) = 〈Pt A|g|q, 1〉 = 〈Pt|g|q, A1〉 = 0

for 1 ∈ Ker A. Of course, the same is true with | f |p in place of |g|q.
What about the other terms? The part of (3.13), corresponding to η, gives

(3.14) lim sup
t→ω

ψ(t)
∫
Rn

∂B
∂η

(v(x, t)) Pt Ag(x) dµ(x) .

We again use (3.11) to compute partial derivatives. In this case

∂Q
∂η

= −qη|η|q−2 − δ
∂Q̃
∂η

,

where

∂Q̃
∂η

=


(2

q
− 1

)
qη|η|q−2 when |ζ|p > |η|q ,

|ζ|2(2− q)η|η|−q when |ζ|p 6 |η|q .

If |ζ|p 6 |η|q, then∣∣∣∂Q̃
∂η

∣∣∣ 6 (2− q)|η|2(q/p)+1−q = (2− q)|η|q−1 .

Thus there is a constant M > 0, such that∣∣∣∂B
∂η

∣∣∣ 6 M|η|q−1

everywhere in Ω. Therefore the absolute value of the integral in (3.14) is bounded
from above by

M
∫
Rn

|Ptg(x)|q−1|Pt Ag(x)|dµ(x) ,

which in turn admits estimate from the Hölder’s inequality, i.e.

6 M‖Ptg‖q−1
2(q−1)‖Pt Ag‖2 6 M‖g‖q−1

2(q−1)‖Ag‖2 < ∞ .

Here we used (3.6). Consequently, the term (3.14) equals zero.
A similar proof works for the terms with the only remaining variable, ζ.
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We conclude that ∫
Rn

I dµ(x) =
∫
Rn

II dµ(x) = 0 .

SUMMARY OF THE PROOF. Combining all our estimates, starting with (3.8), (3.10)
and using the ones for the integrals I−V, we find that

2
∫

Rn+1
+

‖J f̃ (x, t)‖2‖Jg̃(x, t)‖2 ψ(t) dµ(x) dt 6 −
∫

Rn+1
+

∆′OUbλ(x, t) ψ(t) dµ(x) dt

6 C′ (p− 1)2

p
(λp‖ f ‖p

p + λ−q‖g‖q
q)

for all λ > 0, where C′ = 16(1 + e−2). Taking the minimum in λ, using that
(p− 1)1/p 6 e1/e and finally sending a → 0 completes the proof of Theorem 0.3.

REMARK 3.2. Instead of ∆OU we could run our proof on some other opera-
tors and still obtain dimensionless boundedness. From the considerations above
it emerged that the properties we require are that these operators be positive (or
negative) and of discrete spectrum {λm : m ∈ N}. If the growth λm, m → ∞, is
of "proper" pace, then Meyer’s theorem will probably work on multipliers of the
form

O = ∑
m∈N

om Pm, om =
(
√

λm +
√

λm−1 + a)2
√

λm
√

λm−1
.

Namely, already the Lp-boundedness of such multipliers will be sufficient to run
our Bellman function procedure.

4. THE EXISTENCE OF BELLMAN FUNCTION. PROOF OF THEOREM 1.1

First note that it suffices to consider the case when M = N. For in general,
the Bellman function on Ω ⊂ CM ×CN ×R×R can be defined as the restriction
of the Bellman function on the domain in Cmax{M,N} ×Cmax{M,N} ×R×R.

Each interval I ⊂ R gives rise to its Haar function hI , defined by

hI :=
χI+ − χI−
|I|1/2 ,

where I− and I+ denote the left and the right half of the interval I respectively,
and χE stands for the characteristic function of the set E, as usual. Let D de-
note the standard family of dyadic intervals on the line. It is a well-known fact
that the set {hI : I ∈ D} forms an orthonormal basis of the space L2(R). Every
complex-valued function with zero average, continuous and supported on one
of the dyadic intervals, say on J, can be written as the sum of its Haar series:
f = ∑

I
〈 f , hI〉hI . The summation goes over DJ := {I ∈ D : I ⊆ J}. Consider
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the operator Tσ f = ∑
I

σI〈 f , hI〉hI , where σ = {σI : I ∈ DJ} is any sequence of

unimodular complex numbers.
We can extend this notions to CM. Define, for j ∈ {1, . . . , M} and any inter-

val I ⊂ R, functions hj
I : R −→ CM by

hj
I = (0, . . . , 0, hI , 0, . . . , 0)

↑
j-th place

.

The set {hj
I : I ∈ DJ , 1 6 j 6 M} is an orthonormal basis for the space L2(J →

CM).
Take an arbitrary collection σ = {σ

j
I ∈ S1 : I ∈ DJ , 1 6 j 6 M}. For

f ∈ L2(J → CM) define

Tσ f = ∑
I∈DJ ,16j6M

σ
j
I〈 f , hj

I〉h
j
I .

The operators Tσ will be called martingale transforms. Note that 〈 f , hj
I〉 = 〈 f j, hI〉,

where f = ( f1, . . . , fM). Finally, denote

〈 f , hI〉hI :=
M

∑
j=1
〈 f , hj

I〉h
j
I =

 〈 f1, hI〉hI
...

〈 fM, hI〉hI

 .

We aim to utilize our "model" operator Tσ. The logic will be the following.
First, let us find the sharp estimate of ‖Tσ‖Lp(C)→Lp(C), i.e. the martingale trans-
form for M = 1, in terms of p. This problem was solved by Burkholder. He found
out in [5] that

(4.1) sup
σ
‖Tσ‖p = p∗ − 1 .

He proved (4.1) by constructing a function of two real variables (actually another
Bellman function) with certain convexity and size properties. The reader is re-
ferred to the papers of Burkholder [5], [4] or the book of D. Stroock [30] to study
his approach. In particular, on page 344 of [30] it is written about (4.1): "Quite
recently Burkholder has discovered the right argument: (...) it is completely ele-
mentary. Unfortunately, it is also completely opaque. Indeed, his new argument
is nothing but an elementary verification that he has got the right answer; it gives
no hint about how he came to that answer". Further on: "for those who want to
know the secret behind his proof, Burkholder has written an explanation in his
article" [5]. Here is the Burkholder’s function:

b(x, y) = p
(

1− 1
p∗

)p−1
(|x|+ |y|)p−1(|y| − (p∗ − 1)|x|) .

Actually stochastic Bellman PDE explains readily the way to write this function,
and this is made, for example, in [31].
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We want to use this Bellman function of Burkholder in solving our prob-
lem, but we are unable to do that. The reason is simple. The variables of the
Burkholder’s function stand for certain martingales, which are in his case related:
one is subordinate to the other. And subordination exists in a sense a differential
relation "of the first order". In our case we replace these variables not by martin-
gales but by functions: the first is Rj f , the second is f . There is no subordination
here. The only differential relationship between these two functions is

∂

∂t
R̃j f = − ∂ f

∂xj
.

This is not a dominance relation, it does not say, for instance, that |∇Rk f | 6 |∇ f |.
That is exactly the obstacle to use Burkholder’s function.

Of course, maybe there is a way around this. But we prefer another ap-
proach. It follows the approach in [24].

Idea: we formulate Burkholder’s inequality in an equivalent (dual) form.
The resulting inequality generates another Bellman function. This will be our B
from Theorem 1.1.

We will use the following lemma due to Burkholder.

LEMMA 4.1. Let (W, F, P) be a probability space, {Fn : n ∈ N} a filtration in
F, and H a separable Hilbert space. Furthermore, let (Xn, Fn, P) and (Yn, Fn, P) be
H-valued martingales satisfying

‖Yn(ω)−Yn−1(ω)‖H 6 ‖Xn(ω)− Xn−1(ω)‖H

for all n ∈ N and almost every ω ∈W. Then for any p ∈ (1, ∞)

‖Yn‖Lp(P,H) 6 (p∗ − 1)‖Xn‖Lp(P,H) .

The constant p∗ − 1 is sharp.

From the lemma we can easily obtain our next theorem. We will use 〈 f 〉I to
denote 1

|I|
∫
I

f (x)dx.

THEOREM 4.2. Choose J ∈ D and M ∈ N. Then, for any functions f ∈ Lp(J →
CM) and g ∈ Lq(J → CM),

1
4|J| ∑

I∈D,I⊆J
|〈 f 〉I+ − 〈 f 〉I− | |〈g〉I+ − 〈g〉I− | |I| 6 (p∗ − 1)〈| f |p〉1/p

J 〈|g|q〉1/q
J .

Proof. Take H = CM and let Fn be the σ-algebra generated by dyadic subin-
tervals of J with length 2−n. For ω ∈ J define

Xn(ω) := ∑
I∈DJ ,|I|>2−n |J|

〈 f , hI〉hI(ω) .
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Choose a sequence of numbers σ
j
I ∈ S1 and consider

Yn(ω) := ∑
I∈DJ ,|I|>2−n |J|

σI〈 f , hI〉hI(ω) .

Here σI should be thought of as a vector (σ1
I , . . . , σM

I ). It follows immediately
from the construction that both (Xn, Fn, dx) and (Yn, Fn, dx) are martingales. We
have

Xn+1 − Xn = ∑
I⊂J,|I|=2−n |J|

〈 f , hI〉hI , Yn+1 −Yn = ∑
I⊂J,|I|=2−n |J|

σI〈 f , hI〉hI .

Since the sums above contain functions whose supports have disjoint interiors,
and |σj

I | = 1, these martingales satisfy the assumptions of Burkholder’s lemma.
Now ‖ f ‖Lp = lim

n→∞
‖Xn‖Lp and ‖Tσ f ‖Lp = lim

n→∞
‖Yn‖Lp . Burkholder’s lemma

implies

(4.2) ‖Tσ f ‖Lp 6 (p∗ − 1)‖ f ‖Lp

for any sequence σ as above.
Let us reformulate (4.2) as |〈Tσ f , g〉| 6 (p∗ − 1)‖ f ‖Lp‖g‖Lq , where g =

(g1, . . . , gM) ∈ Lq(J → CM). Definition of Tσ now implies

1
|J|

∣∣∣ ∑
I∈DJ

σI〈 f , hI〉〈g, hI〉
∣∣∣ 6 (p∗ − 1)〈| f |p〉1/p

J 〈|g|q〉1/q
J .

The expression under the summation sign actually means〈 σ1
I 〈 f1, hI〉

...
σM

I 〈 fM, hI〉

 ,

 〈g1, hI〉
...

〈gM, hI〉

〉
CM

.

By the Cauchy-Schwartz inequality, it can be estimated as

6 ‖〈 f , hI〉‖CM‖〈g, hI〉‖CM .

Moreover, we can choose the coefficients σ
j
I so that we actually get equality. Fi-

nally notice that

〈 f , hI〉 =
√
|I|
2

(〈 f 〉I+ − 〈 f 〉I−)

and the theorem follows.

REMARK 4.3. When M = 1, the equality (4.2) is exactly equal to (4.1). But
the point of the preceding theorem is that we need (4.2) for arbitrary M in or-
der to prove Theorem 1.1, as we will see next. This stronger statement was not
provided by nor does it seem to follow from (4.1), so the previous theorem was
indeed necessary. However, it is also possible to derive (4.2) as a consequence of
Theorem 3.2 in [5], but this theorem is in itself a corollary of Lemma 4.1.
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Proof of Theorem 1.1. Fix (ζ, η, Z, H) ∈ Ω. Consider all integrable functions
f , g : J → CM such that ζ = 〈 f 〉J , η = 〈g〉J , Z = 〈| f |p〉J and H = 〈|g|q〉J (it is not
difficult to construct such functions). Let

B(ζ, η, Z, H) :=
1

4|J| sup ∑
I∈D,I⊆J

|〈 f 〉I+ − 〈 f 〉I− | |〈g〉I+ − 〈g〉I− | |I| ,

where the supremum is taken over all such f , g.
The supremum above clearly does not depend on the interval J. This obser-

vation helps to prove the property (ii) in Theorem 1.1.
Indeed, take f± : J± → CM such that 〈 f±〉J± = ζ± and 〈| f±|p〉J± = Z±.

Define f : J → CM by f (x) := f±(x) if x ∈ J±. In an analogous way we come up
with g. Write a = (ζ, η, Z, H) := a++a−

2 ∈ Ω.
Note that:

(i) 〈 f 〉I = 〈 f±〉I if I ⊆ J±,
(ii) 〈 f 〉J = ζ and 〈| f |p〉J = Z,

and similarly for g.
Now we can write

B(a) >
1

4|J| ∑
I∈D,I⊆J

|〈 f 〉I+ − 〈 f 〉I− | |〈g〉I+ − 〈g〉I− | |I|

=
1

4|J|

(
∑

I∈D,I⊆J+

+ ∑
I∈D,I⊆J−

)
+

1
4|J| |〈 f 〉J+ − 〈 f 〉J− | |〈g〉J+ − 〈g〉J− | |J|

=
1

4|J| ∑
I∈D,I⊆J+

|〈 f+〉I+ − 〈 f+〉I− | |〈g+〉I+ − 〈g+〉I− | |I|

+
1

4|J| ∑
I∈D,I⊆J−

|〈 f−〉I+ − 〈 f−〉I− | |〈g−〉I+ − 〈g−〉I− | |I|

+
1
4
|〈 f+〉J+ − 〈 f−〉J− | |〈g+〉J+ − 〈g−〉J− | .

At this point we exploit the fact that the definition of B does not depend on
the choice of the interval, as mentioned before. In particular, we can replace J by
J+ or J−. Having done that, take the supremum of the expressions in the last line
over all f+ and f− as above. This process clearly does not affect the free term,
which can be rewritten using the definition of f+ and f−. We get exactly

B(a+) + B(a−)
2

+
1
4
|ζ+ − ζ−| |η+ − η−|

which proves (1.1).
This establishes the second inequality of Theorem 1.1, whereas the first one,

i.e. 0 6 B(ζ, η, Z, H) 6 (p∗ − 1)Z1/pH1/q, was proved in Theorem 4.2.

Proof of Lemma 1.2. Finally, fix a compact K and 0 < ε < 1 small enough for
d(K, ∂Ω) >

√
ε. Let S be the standard mollifier ([8], C. 4) on Rd ≡ CM ×CM ×
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R× R. Set Sε(x) = 1
εd S( x

ε ) and consider Bε = B ∗ Sε. This function is smooth
on Ωε := {a ∈ Ω : d(a, ∂Ω) > ε}. The size inequality can deteriorate on Ω√

ε

(and thus on K) at most by factor 1 +
√

ε, whereas the concavity inequality (1.1)
does not change on Ωε, since

∫
Rd

Sε(x) dx = 1. Moreover, we can use the Taylor

formula to see that (1.1) is equivalent to the inequality (ii) from the theorem.

5. ADDENDUM

Here we demonstrate Lemma 1.5.
For suitable d, m, n ∈ N we will identify H, H1 and H2 with Rd, Rm and Rn,

respectively. Then we can think of T as of a matrix from Rd,d. For h ∈ Rd denote
R = ‖P1h‖, r = ‖P2h‖. We emphasize that R and r are not constants but will
depend on h appearing in the context.

Since the assumption and the conclusion of the Lemma are homogenous
inequalities with respect to h, it is equivalent to prove:

If E ⊂ H, then there is τ > 0 so that E ⊂ Eτ ,
where

E = ET = {h ∈ Rd : 〈Th, h〉 6 2} ,

H = {h ∈ Rd : Rr 6 1} ,

Eτ =
{

h ∈ Rd : τR2 +
1
τ

r2 6 2
}

.

Note that Eτ ⊂ H for every τ > 0. Since A is a positive matrix, E (more precisely,
its boundary) is an ellipsoid. The geometrical shape of other two sets is also clear.

Denote k := d − (m + n). Suppose that we have the proof in case when
k = 0. Now take arbitrary natural numbers m, n, k. If E ⊂ H, then E′ ⊂ H′, where
E′ and H′ are images of E and H, respectively, under the orthogonal projection
Rd → Rm+n × {0}k. Since E′ is again an ellipsoid, by assumption there is τ > 0
such that E′ ⊂ E′τ :=

{
h ∈ Rm+n × {0}k : τR2 + 1

τ r2 6 2
}

. It is clear that this τ
also satisfies E ⊂ Eτ . Hence it is enough to prove the lemma for k = 0.

We may also assume that at some point equality is attained in (1.3). This
implies there is h ∈ Rd for which Rr = 1 and 〈Th, h〉 = 2. In other words, h ∈
∂E ∩ ∂H. For λ =

√
R−1r we have λR = λ−1r = 1. The operator λIRm ⊗ λ−1 IRn

leaves H unchanged, whereas it maps E into some other ellipsoid, whose bound-
ary intersects that of H in a point with R = r = 1. Finally, there are rotations
Um ∈ SO(m) and Un ∈ SO(n), such that Um ⊗Un maps this point of intersection
into h0 := (1, 0, . . . , 0︸ ︷︷ ︸

m−1

)⊕ (1, 0, . . . , 0︸ ︷︷ ︸
n−1

) ∈ Rm ⊕Rn = Rd.

To summarize, it suffices to solve the case when k = 0 and ∂E intersects ∂H
at h0. Since in this case it is obvious that the only admissible τ is 1, our task is
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reduced to proving that E is contained in E1 =
√

2 Bd =: B, i.e. in the closed ball
in Rd, centered at 0 and with radius

√
2.

The intersection ∂H ∩ ∂B is the "torus" T = {h ∈ Rd : R = r = 1} =
Sm−1 × Sn−1. Let P be the family of all 2-dimensional planes in Rd which pass
through 0 and h0. We would like to find a subfamily P′ of planes that intersect
with T in more than the obvious two points. Take P ∈ P. There is u ∈ h⊥0
such that ‖u‖2 = 2 and P = Lin{h0, u}. Roughly speaking, this establishes a
correspondence between P and a portion of the sphere ∂B =

√
2Sd−1. We can

write u = {a} ⊕ b ⊕ {−a} ⊕ c for some a ∈ R, b ∈ Rm−1 and c ∈ Rn−1. If
p = λh0 + µu ∈ P is to intersect T in a point, different than ±h0, then we must
have

(λ + µa)2 + ‖µb‖2 = (λ− µa)2 + ‖µc‖2 = 1

for some λ, µ ∈ R, µ 6= 0 (otherwise p = ±h0). After adding and subtracting
equations and using that 2a2 + ‖b‖2 + ‖c‖2 = ‖u‖2 = 2, one can see that this set
of equations is equivalent to

λ2 + µ2 = 1 ,

4λa + µ(‖b‖2 − ‖c‖2) = 0 .

If a = 0 then we must have ‖b‖ = ‖c‖. For a 6= 0 the system admits solutions

λ2 =
(1− a2)2 − ‖b‖2‖c‖2

(1 + a2)2 − ‖b‖2‖c‖2 , µ2 =
4a2

(1 + a2)2 − ‖b‖2‖c‖2 .

Note that

‖b‖ ‖c‖ 6
‖b‖2 + ‖c‖2

2
= 1− a2 < 1 + a2 ,

thus the denominators are always positive. Hence the solution does not exist (i.e.
P does not belong to P′) if and only if

a = 0 ∧ ‖b‖ 6= ‖c‖ .

This justifies employing identifications

P ≡ {u = u(a, b, c) ∈ ∂B : u⊥h0} and P′ ≡ {u ∈ P : a 6= 0 ∨ ‖b‖ = ‖c‖} ,

which in principle imply that the set P′ is "dense" in P.
We would like to show that E ∩ P ⊂ B ∩ P or, equivalently, ∂E ∩ P ⊂ B ∩ P

for all P ∈ P′. Since ∂E ∩ P is an ellipse, this simply follows from the fact that
E ⊂ H and that T ∩ P contains at least four different points, as has just been
shown.

Finally we note that the collection P′ is sufficiently large to conclude that
E ⊂ B, which had to be proven.
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