INVOLUTIVE EQUIVALENCE BIMODULES AND INCLUSIONS OF C*-ALGEBRAS WITH WATATANI INDEX 2

KAZUNORI KODAKA and TAMOTSU TERUYA

Communicated by William B. Arveson

ABSTRACT. Let A be a unital C^* -algebra. We shall introduce involutive A-a-equivalence bimodules and prove that any C^* -algebra containing A with Watatani index 2 is constructed by an involutive A-A-equivalence bimodule.

KEYWORDS: Conditional expectations, equivalence bimodules, Goldman type theorem, unital C*-algebras, Watatani index.

MSC (2000): Primary 46L08; Secondary 46L40.

1. INTRODUCTION

V. Jones introduced an index theory for II_1 factors in [6]. One of his motivations is Goldman's theorem, which says that if M is a type II_1 factor and $N \subset M$ is a subfactor with the Jones index [M:N]=2, then there is a crossed product decomposition $M=N\rtimes_\alpha\mathbb{Z}_2$, where \mathbb{Z}_2 is the group $\mathbb{Z}/2\mathbb{Z}$ of order two. Since Jones index theory is extended to C^* -algebras by Y. Watatani, it is worth to investigate Goldman type theorems for inclusions of simple C^* -algebras. In the present paper, we shall study the inclusion $A\subset B$ of C^* -algebras with a conditional expectation $E:B\to A$ of Index E=2. In Subsection 4.2, we shall show that a Goldman type theorem does not hold for inclusions of simple C^* -algebras in general by exhibiting examples of inclusions like a non-commutative sphere in an irrational rotation C^* -algebras A_θ and irrational rotation C^* -algebras $A_{2\theta}\subset A_\theta$ with different angles. Therefore there occurs the following natural question: What kind of structures are there in the inclusion of C^* -algebras with index 2? We shall answer the question in the present paper: Any inclusion of C^* -algebras with index two gives an involutive equivalence bimodule.

Let us explain the notion of involutive equivalence bimodules. Consider a typical situation, that is, the inclusion $A \subset B$ is given by the crossed product $B = A \rtimes_{\alpha} \mathbb{Z}_2$ by some action $\alpha : \mathbb{Z}_2 \to \operatorname{Aut}(A)$. Then the canonical conditional

expectation $E: B \to A$ has Index E = 2. Moreover there exists the dual action $\widehat{\alpha}: \mathbb{Z}_2 \to \operatorname{Aut}(B)$ such that

$$(A \rtimes_{\alpha} \mathbb{Z}_2) \rtimes_{\widehat{\alpha}} \mathbb{Z}_2 \cong A \otimes M_2(\mathbb{C}),$$

where $M_2(\mathbb{C})$ is the 2×2 -matrix algebra over \mathbb{C} . It is well known that the C^* -basic construction $C^*\langle B, e_A\rangle$ is exactly $(A \rtimes_\alpha \mathbb{Z}_2) \rtimes_{\widehat{\alpha}} \mathbb{Z}_2$. Then the Jones projection e_A corresponds to the projection $e_{11} = \operatorname{diag}(1,0)$ and $1 - e_A$ corresponds to $e_{22} = \operatorname{diag}(0,1)$, where $\operatorname{diag}(\lambda,\mu)$ is a 2×2 -diagonal matrix with diagonal elements λ , μ . Let $X = e_{11}(A \otimes M_2(\mathbb{C}))e_{22}$. Then X is an A-A-equivalence bimodule in the natural way. There exists a natural involution on X such that

$$x^{\sharp} = \begin{pmatrix} 0 & z^* \\ 0 & 0 \end{pmatrix}$$
 for $x = \begin{pmatrix} 0 & z \\ 0 & 0 \end{pmatrix}$.

We pick up these properties to define the notion of involutive equivalence bimodules. In Theorem 3.3.1, we shall show that even if B is not a crossed product of A, the inclusion of C^* -algebras with index 2 gives an involutive A-A-equivalence bimodule. Moreover the set of inclusions of C^* -algebras with index 2 has a one to one correspondence with the set of involutive A-A-equivalence bimodules up to isomorphisms.

In Proposition 4.1.2, we shall characterize the subclass such that B is the twisted crossed product of A by a partially inner C^* -dynamical system studied by Green, Olsen and Pedersen. The characterization is given by the von Neumann equivalence of e_A and $1 - e_A$ in $C^*\langle B, e_A \rangle$.

2. PRELIMINARIES

2.1. SOME RESULTS FOR INCLUSIONS WITH INDEX 2. Let B be a unital C^* -algebra and A a C^* -subalgebra of B with a common unit. Let E be a conditional expectation of B onto A with $1 < \operatorname{Index} E < \infty$. Then by Watatani [12] we have the C^* -basic construction $C^*\langle B, e_A \rangle$ where e_A is the Jones projection induced by E. Let \widetilde{E} be the dual conditional expectation of $C^*\langle B, e_A \rangle$ onto B defined by

$$\widetilde{E}(ae_Ab) = \frac{1}{t}ab$$
 for any $a, b \in B$,

where t = IndexE. Let F be a linear map of $(1 - e_A)C^*\langle B, e_A\rangle(1 - e_A)$ to $A(1 - e_A)$ defined by

$$F(a) = \frac{t}{t-1} (E \circ \widetilde{E})(a)(1 - e_A)$$

for any $a \in (1 - e_A)C^*\langle B, e_A \rangle (1 - e_A)$. By routine computations we can see that F is a conditional expectation of $(1 - e_A)C^*\langle B, e_A \rangle (1 - e_A)$ onto $A(1 - e_A)$.

LEMMA 2.1. With the above notations, let $\{(x_i, x_i^*)\}_{i=1}^n$ be a quasi-basis for E. Then

$$\{\sqrt{t-1}(1-e_A)x_je_Ax_i(1-e_A), \sqrt{t-1}(1-e_A)x_i^*e_Ax_j^*(1-e_A)\}_{i,j=1}^n$$

is a quasi-basis for F. Furthermore $IndexF = (t-1)^2(1-e_A)$.

Proof. This is immediate by direct computations.

COROLLARY 2.2. We suppose that IndexE = 2. Then

$$(1 - e_A)C^*\langle B, e_A\rangle(1 - e_A) = A(1 - e_A) \cong A.$$

Proof. By Lemma 2.1 there is a conditional expectation F of $(1-e_A)C^*\langle B,e_A\rangle(1-e_A)$ onto $A(1-e_A)$ and

$$IndexF = (IndexE - 1)^2(1 - e_A).$$

Since IndexE = 2, Index $F = 1 - e_A$. Hence by Watatani [12],

$$(1 - e_A)C^*\langle B, e_A\rangle(1 - e_A) = A(1 - e_A).$$

If $a(1-e_A)=0$, for $a\in A$, then $a=2\widetilde{E}(a(1-e_A))=0$. Therefore the map $a\mapsto a(1-e_A)$ is injective. And hence $A(1-e_A)\cong A$ as desired.

LEMMA 2.3. With the same assumptions as in Lemma 2.1, we suppose that Index E = 2. Then for any $b \in B$,

$$(1 - e_A)b(1 - e_A) = E(b)(1 - e_A).$$

Proof. By Corollary 2.2 there exists $a \in A$ such that $(1-e_A)b(1-e_A) = a(1-e_A)$. Therefore $a=2\widetilde{E}(a(1-e_A))=2\widetilde{E}((1-e_A)b(1-e_A))=E(b)$. This completes the proof. \blacksquare

PROPOSITION 2.4. With the same assumptions as in Lemma 2.1, we suppose that Index E=2. Then there is a unitary element $U\in C^*\langle B,e_A\rangle$ satisfying the following conditions:

- (i) $U^2 = 1$;
- (ii) $UbU^* = 2E(b) b \text{ for } b \in B.$

Hence if we denote by β the restriction of Ad(U) to B, β is an automorphism of B with $\beta^2 = id$ and $B^{\beta} = A$.

Proof. By Lemma 2.3, for any $b \in B$

$$(1 - e_A)b(1 - e_A) = E(b)(1 - e_A) = E(b) - E(b)e_A.$$

On the other hand

$$(1 - e_A)b(1 - e_A) = b - e_Ab - be_A + E(b)e_A.$$

Therefore

$$E(b) = b - e_A b - b e_A + 2E(b)e_A.$$

Let *U* be a unitary element defined by $U = 2e_A - 1$. Then by the above equation for any $b \in B$

$$UbU^* = 2(b - e_Ab - be_A + 2E(b)e_A) - b = 2E(b) - b.$$

REMARK 2.5. By the above proposition, $E(b) = \frac{1}{2}(b + \beta(b))$.

LEMMA 2.6. Let B be a unital C^* -algebra and A a C^* -subalgebra of B with a common unit. Let E be a conditional expectation of B onto A with IndexE = 2. Then we have

$$C^*\langle B, e_A \rangle \cong B \rtimes_{\beta} \mathbb{Z}_2.$$

Proof. We may assume that $B \rtimes_{\beta} \mathbb{Z}_2$ acts on the Hilbert space $l^2(\mathbb{Z}_2, H)$ faithfully, where H is some Hilbert space on which B acts faithfully. Let W be a unitary element in $B \rtimes_{\beta} \mathbb{Z}_2$ with $\beta = \mathrm{Ad}(W)$, $W^2 = 1$. Let $e = \frac{1}{2}(W+1)$. Then e is a projection in $B \rtimes_{\beta} \mathbb{Z}_2$ and ebe = E(b)e for any $b \in B$. In fact,

$$ebe = \frac{1}{4}(WbW + bW + Wb + b).$$

On the other hand by Remark 2.5,

$$E(b)e = \frac{1}{2}(b+\beta(b))\frac{1}{2}(W+1) = \frac{1}{4}(WbW + bW + Wb + b).$$

Hence ebe = E(b)e for $b \in B$. Also $A \ni a \mapsto ae \in B \rtimes_{\beta} \mathbb{Z}_2$ is injective. In fact, if ae = 0, aW + a = 0. Let $\widehat{\beta}$ be the dual action of β . Then $0 = \widehat{\beta}(aW + a) = -aW + a$. Thus 2a = 0, i.e., a = 0. Hence by Watatani ([12], Proposition 2.2.11) $C^*\langle B, e_A \rangle \cong B \rtimes_{\beta} \mathbb{Z}_2$.

REMARK 2.7. (i) By the proofs of Propositions 2.2.7 and 2.2.11 in [12] we see that $\kappa(b)=b$ for any $b\in B$, where κ is the isomorphism of $C^*\langle B,e_A\rangle$ onto $B\rtimes_\beta\mathbb{Z}_2$ in Lemma 2.6.

(ii) The above lemma is obtained in Kajiwara and Watatani ([7], Theorem 5.13).

By Lemma 2.6 and Remark 2.7, we regard $\widehat{\beta}$ as an automorphism of $C^*\langle B, e_A \rangle$ with $\widehat{\beta}(b) = b$ for any $b \in B$, $\widehat{\beta}^2 = \operatorname{id}$ and $\widehat{\beta}(e_A) = 1 - e_A$.

LEMMA 2.8. With the same assumptions as in Lemma 2.6,

$$C^*\langle B, e_A\rangle^{\widehat{\beta}} = B.$$

Proof. By Lemma 2.6 for any $x \in C^*\langle B, e_A \rangle$, we can write $x = b_1 + b_2 U$, where $b_1, b_2 \in B$. We suppose that $\widehat{\beta}(x) = x$. Then $b_1 - b_2 U = b_1 + b_2 U$. Thus $b_2 = 0$. Hence $x = b_1 \in B$. Since it is clear that $B \subset C^*\langle B, e_A \rangle^{\widehat{\beta}}$, the lemma is proved.

- 2.2. INVOLUTIVE EQUIVALENCE BIMODULES. Let A be a unital C^* -algebra and $X(={}_AX_A)$ an A-A-equivalence bimodule. X is *involutive* if there exists a conjugate linear map $x \mapsto x^\sharp$ on X, such that:
 - (1) $(x^{\sharp})^{\sharp} = x, x \in X;$
 - (2) $(a \cdot x \cdot b)^{\sharp} = b^* \cdot x^{\sharp} \cdot a^*, x \in X, a, b \in A;$
 - (3) $_{A}\langle x,y^{\sharp}\rangle = \langle x^{\sharp},y\rangle_{A}, x,y\in X;$

where $_A\langle\cdot,\cdot\rangle$ and $\langle\cdot,\cdot\rangle_A$ are the left and the right A-valued inner products on X, respectively. We call the above conjugate linear map an involution on X.

For an A-A-equivalence bimodule X, we define its dual bimodule. Let \widetilde{X} be X itself when it is considered as a set. We write \widetilde{x} when x is considered in \widetilde{X} . \widetilde{X} is made into an equivalence A-A-bimodule as follows:

- (1) $\widetilde{x} + \widetilde{y} = \widetilde{x + y} \lambda \widetilde{x} = \widetilde{\lambda x}$ for any $x, y \in X$ and $\lambda \in \mathbb{C}$;
- (2) $b \cdot \widetilde{x} \cdot a = a^* \cdot x \cdot b^*$ for any $a, b \in A$ and $x \in X$;
- (3) $_A\langle \widetilde{x}, \widetilde{y} \rangle = \langle x, y \rangle_A, \langle \widetilde{x}, \widetilde{y} \rangle_A = _A\langle x, y \rangle$ for any $x, y \in X$.

LEMMA 2.9. Let V be a map of an involutive A-A-equivalence bimodule X onto its dual bimodule \widetilde{X} defined by $V(x) = \widetilde{x}^{\sharp}$, where \widetilde{x} means x as viewed as an element in \widetilde{X} . Then V is an A-A-equivalence bimodule isomorphism of X onto \widetilde{X} .

Proof. This is immediate by routine computations.

3. CORRESPONDENCE BETWEEN INVOLUTIVE EQUIVALENCE BIMODULES AND INCLUSIONS OF C*-ALGEBRAS WITH INDEX 2

Let A be a unital C^* -algebra and we denote by (B, E) a pair of a unital C^* -algebra B including A as a C^* -subalgebra of B with a common unit and a conditional expectation E of B onto A with IndexE=2. Let E be the set of all such pairs (B, E) as above. We define an equivalence relation \sim in E as follows: for (B, E), $(B_1, E_1) \in E$, $(B, E) \sim (B_1, E_1)$ if and only if there is an isomorphism E of E onto E onto E onto E and E onto E onto E be denote by E the equivalence class of E.

Let $\mathcal M$ be the set of all involutive A-A-equivalence bimodules. We define an equivalence relation \sim in $\mathcal M$ as follows: for $X,Y\in \mathcal M$, $X\sim Y$ if and only if there is an A-A-equivalence bimodule isomorphism ρ of X onto Y with $\rho(x^\sharp)=\rho(x)^\sharp$. We call ρ an involutive A-A-equivalence bimodule isomorphism of X onto Y. We denote by [X] the equivalence class of X.

3.1. Construction of a Map from \mathcal{L}/\sim to \mathcal{M}/\sim . We shall use the same notations as in Section 2.

Let B be a unital C^* -algebra and A a C^* -subalgebra of B with a common unit. Let E be a conditional expectation of B onto A with IndexE=2. Then, by Watatani [12] and Corollary 2.2, we have:

(1)
$$e_A C^* \langle B, e_A \rangle e_A = A e_A \cong A$$
;

(2)
$$(1 - e_A)C^*\langle B, e_A \rangle (1 - e_A) = A(1 - e_A) \cong A$$
.

Let ψ be an isomorphism of A onto Ae_A defined by $\psi(a) = ae_A$ for any $a \in A$ and ϕ an isomorphism of A onto $A(1-e_A)$ defined by $\phi = \widehat{\beta} \circ \psi$. Let $X_{(B,E)} = X_B = e_A C^* \langle B, e_A \rangle (1-e_A)$. We regard X_B as a Hilbert A-A-bimodule in the following way: for any $a, b \in A$ and $x \in X_B$, $a \cdot x \cdot b = \psi(a)x\phi(b) = axb$. For any $x, y \in X_B$, $A\langle x, y \rangle = \psi^{-1}(xy^*)$, $\langle x, y \rangle_A = \phi^{-1}(x^*y)$.

LEMMA 3.1. With the above notations, X_B is an A-A-equivalence bimodule.

Proof. This is immediate by routine computations.

Let $x \mapsto x^{\sharp}$ be a conjugate linear map on X_B defined by $x^{\sharp} = \widehat{\beta}(x^*)$ for any $x \in X_B$. Since $\widehat{\beta}^2 = \mathrm{id}$, $(x^{\sharp})^{\sharp} = x$. Since $\widehat{\beta}(a) = a$ for any $a \in A$, $(a \cdot x \cdot b)^{\sharp} = \widehat{\beta}(b^*x^*a^*) = b^* \cdot x^{\sharp} \cdot a^*$ for $x \in X$, $a,b \in A$. Furthermore, for $x,y \in X_B$ $A(x,y^{\sharp}) = \langle x^{\sharp},y \rangle_A$ by an easy calculation. Therefore X_B is an element in \mathcal{M} .

REMARK 3.2. \widetilde{X}_B is isomorphic to $(1-e_A)C^*\langle B, e_A\rangle e_A$ as A-A-equivalence bimodules. Indeed, the map $(1-e_A)C^*\langle B, e_A\rangle e_A \ni (1-e_A)xe_A\mapsto e_Ax^*(1-e_A),$ $x\in C^*\langle B, e_A\rangle$ gives an A-A-equivalence bimodule isomorphism of $(1-e_A)C^*\langle B, e_A\rangle e_A$ onto \widetilde{X}_B , where \widetilde{y} means y viewed as an element in \widetilde{X}_B for any $y\in X_B$. Sometimes, we identify \widetilde{X}_B with $(1-e_A)C^*\langle B, e_A\rangle e_A$.

Let \mathcal{F} be a map from \mathcal{L}/\sim to \mathcal{M}/\sim defined by $\mathcal{F}([B,E])=[X_B]$ for any $[B,E]\in\mathcal{L}/\sim$.

LEMMA 3.3. With the above notations, \mathcal{F} is well-defined.

Proof. Let (B, E), $(B_1, E_1) \in \mathcal{L}$ with $(B, E) \sim (B_1, E_1)$. Let X_B and X_{B_1} be elements in \mathcal{M} defined by (B, E) and (B_1, E_1) , respectively. Since $(B, E) \sim (B_1, E_1)$, there is an isomorphism π of B onto B_1 such that $\pi(a) = a$ for any $a \in A$ and $E_1 \circ \pi = E$. Let $\widetilde{\pi}$ be a homomorphism of the linear span of $\{be_Ac : b, c \in B\}$ to $C^*\langle B_1, e_{A,1} \rangle$ defined by $\widetilde{\pi}(be_Ac) = \pi(b)e_{A,1}\pi(c)$ for any $b, c \in B$. Then, for $b_i, c_i \in B$ $(i = 1, 2, \ldots, n)$ and $a \in B$, we have:

$$\begin{split} \left\| \widetilde{\pi} \Big(\sum_{i=1}^{n} b_{i} e_{A} c_{i} \Big) \pi(a) \right\|^{2} &= \left\| \sum_{i=1}^{n} \pi(b_{i}) E_{1}(\pi(c_{i}a)) \right\|^{2} \\ &= \left\| \sum_{i,j=1}^{n} E_{1}(\pi(a^{*}c_{i}^{*})) E_{1}(\pi(b_{i}^{*}b_{j})) E_{1}(\pi(c_{j}a)) \right\| \\ &= \left\| \sum_{i,j=1}^{n} E(a^{*}c_{i}^{*}) E(b_{i}^{*}b_{j}) E(c_{j}a) \right\|. \end{split}$$

On the other hand

$$\left\| \sum_{i=1}^{n} b_{i} e_{A} c_{i} a \right\|^{2} = \left\| \sum_{i=1}^{n} b_{i} E(c_{i} a) \right\|^{2} = \left\| \sum_{i,j=1}^{n} E(a^{*} c_{i}^{*}) E(b_{i}^{*} b_{j}) E(c_{j} a) \right\|.$$

Hence

$$\left\| \widetilde{\pi} \left(\sum_{i=1}^{n} b_{i} e_{A} c_{i} \right) \right\| = \sup \left\{ \left\| \widetilde{\pi} \left(\sum_{i=1}^{n} b_{i} e_{A} c_{i} \right) \pi(a) \right\| : \left\| E_{1}(\pi(a)^{*} \pi(a)) \right\| = 1, a \in B \right\}$$

$$= \sup \left\{ \left\| \sum_{i=1}^{n} b_{i} e_{A} c_{i} a \right\| : \left\| E(a^{*} a) \right\| = 1, a \in B \right\} = \left\| \sum_{i=1}^{n} b_{i} e_{A} c_{i} \right\|.$$

Thus $\widetilde{\pi}$ can be extended to an isomorphism of $C^*\langle B, e_A \rangle$ onto $C^*\langle B_1, e_{A,1} \rangle$. Hence $\widetilde{\pi}$ is an involutive A-A-equivalence bimodule isomorphism of X_B onto X_{B_1} since $\widetilde{\pi}(e_A) = e_{A,1}$. In fact, for $a \in A$ and $x \in C^*\langle B, e_A \rangle$

$$\widetilde{\pi}(a \cdot e_A x(1 - e_A)) = e_{A,1} a \cdot \pi(x)(1 - e_{A,1}) = a \cdot \widetilde{\pi}(e_A x(1 - e_A)).$$

Similarly

$$\widetilde{\pi}(e_A x(1-e_A) \cdot a) = \widetilde{\pi}(e_A x(1-e_A)) \cdot a.$$

Also, for $x, y \in C^* \langle B, e_A \rangle$, we have:

$$A \langle \widetilde{\pi}(e_{A}x(1-e_{A})), \widetilde{\pi}(e_{A}y(1-e_{A})) \rangle = (\psi_{1}^{-1} \circ \widetilde{\pi}) (e_{A}x(1-e_{A})y^{*}e_{A})$$

$$= A \langle e_{A}x(1-e_{A}), e_{A}y(1-e_{A}) \rangle,$$

$$\langle \widetilde{\pi}(e_{A}x(1-e_{A})), \widetilde{\pi}(e_{A}y(1-e_{A})) \rangle_{A} = \phi^{-1}((1-e_{A})x^{*}e_{A}y(1-e_{A}))$$

$$= \langle e_{A}x(1-e_{A}), e_{A}y(1-e_{A}) \rangle_{A},$$

since $\psi_1^{-1} = \widetilde{\pi} \circ \psi$ and $\widetilde{\pi} \circ \widehat{\beta} = \widehat{\beta}_1 \circ \widetilde{\pi}$. Furthermore, for any $x \in C^* \langle B, e_A \rangle$

$$\begin{split} \widetilde{\pi}((e_{A}x(1-e_{A}))^{\sharp}) &= \widetilde{\pi}(e_{A}\widehat{\beta}(x)^{*}(1-e_{A})) \\ &= (e_{A,1}\widetilde{\pi}(x)(1-e_{A,1}))^{\sharp} = \widetilde{\pi}(e_{A}x(1-e_{A}))^{\sharp}. \end{split}$$

Therefore $X_B \sim X_{B_1}$ in \mathcal{M} .

3.2. Construction of a MAP from \mathcal{M}/\sim to \mathcal{L}/\sim . Let $X\in\mathcal{M}$. Following Brown, Green and Rieffel [2], we can define the linking algebra L for an A-A-equivalence bimodule X. Let

$$L_0 = \left\{ \begin{bmatrix} a & x \\ \widetilde{y} & b \end{bmatrix} : a, b \in A, x, y \in X \right\},\,$$

where \widetilde{y} means y viewed as an element in the dual bimodule \widetilde{X} of X. In the same way as in Brown, Green and Rieffel [2] we can see that L_0 is a *-algebra. Also we regard L_0 as a *-subalgebra acting on the right Hilbert A-module $X \oplus A$. Hence we can define an operator norm in L_0 acting on $X \oplus A$. We define L as the above operator norm closure of L_0 . But, since X is complete, in this case $L = L_0^- = L_0$. Let B_X be a subset of L defined by

$$B_X = \left\{ \begin{bmatrix} a & x \\ \widehat{x}^{\sharp} & a \end{bmatrix} : a \in A, x \in X \right\}.$$

By direct computations, we can see that B_X is a *-subalgebra of L and since X is complete, B_X is closed in L, that is, B_X is a C^* -subalgebra of L. We regard A

as a C^* -subalgebra $\left\{ \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} : a \in A \right\}$ of B_X . Let E_X be a linear map of B_X onto A defined by $E_X \left(\begin{bmatrix} a & x \\ \widetilde{x}^{\sharp} & a \end{bmatrix} \right) = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$ for any $\begin{bmatrix} a & x \\ \widetilde{x}^{\sharp} & a \end{bmatrix} \in B_X$. Then by easy computations E_X is a conditional expectation of B_X onto A.

LEMMA 3.4. With the above notations, Index $E_X = 2$.

Proof. There are elements $z_1, \ldots, z_n, y_1, \ldots, y_n \in X$ such that $\sum_{i=1}^n \langle z_i, y_i \rangle_A = 1$ by Rieffel ([11], the proof of Proposition 2.1) since X is an A-A-equivalence bimodule. For $i = 1, 2, \ldots, n$ let w_i be an element in X with $w_i = z_i^{\sharp}$. Then

$$\left\{ \left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) \right\} \cup \left\{ \left(\begin{bmatrix} 0 & w_i \\ \widetilde{w}_i^\sharp & 0 \end{bmatrix}, \begin{bmatrix} 0 & y_i \\ \widetilde{y}_i^\sharp & 0 \end{bmatrix} \right) : i = 1, 2, \ldots, n \right\}$$

is a quasi-basis for E_X by direct computations. In fact, for $\begin{bmatrix} a & x \\ \widetilde{x}^{\sharp} & a \end{bmatrix} \in B_X$

$$\begin{split} E_X \left(\begin{bmatrix} a & x \\ \widetilde{x}^{\sharp} & a \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}, \\ E_X \left(\begin{bmatrix} a & x \\ \widetilde{x}^{\sharp} & a \end{bmatrix} \begin{bmatrix} 0 & w_i \\ \widetilde{w}_i^{\sharp} & 0 \end{bmatrix} \right) \begin{bmatrix} 0 & y_i \\ \widetilde{y}_i^{\sharp} & 0 \end{bmatrix} = \begin{bmatrix} 0 & {}_A \langle x, w_i^{\sharp} \rangle y_i \\ \langle x^{\sharp}, w_i \rangle_A \widetilde{y}_i^{\sharp} & 0 \end{bmatrix}. \end{split}$$

Also,

$$\begin{split} &\sum_{i=1}^{n} {}_{A}\langle x, w_{i}^{\sharp} \rangle y_{i} = \sum_{i=1}^{n} x \langle w_{i}^{\sharp}, y_{i} \rangle_{A} = x, \\ &\sum_{i=1}^{n} \langle x^{\sharp}, w_{i} \rangle_{A} \widetilde{y}_{i}^{\sharp} = \sum_{i=1}^{n} {}_{A}\langle x, w_{i}^{\sharp} \rangle \widetilde{y}_{i}^{\sharp} = \sum_{i=1}^{n} V({}_{A}\langle x, w_{i}^{\sharp} \rangle y_{i}) = \widetilde{x}^{\sharp}, \end{split}$$

where V is an A-A-equivalence bimodule isomorphism defined in Lemma 2.9. Hence

$$E_X\left(\begin{bmatrix} a & x \\ \widehat{x}^{\sharp} & a \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right)\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \sum_{i=1}^n E\left(\begin{bmatrix} a & x \\ \widehat{x}^{\sharp} & a \end{bmatrix}\begin{bmatrix} 0 & w_i \\ \widehat{w}_i^{\sharp} & 0 \end{bmatrix}\right)\begin{bmatrix} 0 & y_i \\ \widehat{y}_i^{\sharp} & 0 \end{bmatrix} = \begin{bmatrix} a & x \\ \widehat{x}^{\sharp} & a \end{bmatrix}.$$

Similarly

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} E_X \left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a & x \\ \widetilde{x}^{\sharp} & a \end{bmatrix} \right) + \sum_{i=1}^n \begin{bmatrix} 0 & w_i \\ \widetilde{w}_i^{\sharp} & 0 \end{bmatrix} E \left(\begin{bmatrix} 0 & y_i \\ \widetilde{y}_i^{\sharp} & 0 \end{bmatrix} \begin{bmatrix} a & x \\ \widetilde{x}^{\sharp} & a \end{bmatrix} \right) = \begin{bmatrix} a & x \\ \widetilde{x}^{\sharp} & a \end{bmatrix}.$$

Thus

$$Index E_X = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \sum_{i=1}^n \begin{bmatrix} 0 & w_i \\ \widetilde{w}_i^{\sharp} & 0 \end{bmatrix} \begin{bmatrix} 0 & y_i \\ \widetilde{y}_i^{\sharp} & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}. \quad \blacksquare$$

REMARK 3.5. Let e be an element in $L(=L_0)$ defined by $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. Then it is obvious that for any $b \in B_X, ebe = E_X(b)e$. Furthermore the map $\begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} \mapsto e \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$ for $a \in A$ is injective. And hence L is the C^* -basic construction of $A \subset B$ by Watatani [12].

Let $\mathcal G$ be a map from $\mathcal M/\sim$ to $\mathcal L/\sim$ defined by $\mathcal G([X])=[B_X,E_X]$ for any $[X]\in\mathcal M/\sim$.

LEMMA 3.6. G is well-defined.

Proof. Let $X, X_1 \in \mathcal{M}$ with $X \sim X_1$. Let (B_X, E_X) and (B_{X_1}, E_{X_1}) be elements in \mathcal{L} induced by X and X_1 , respectively. Since $X \sim X_1$, there is an involutive A-equivalence bimodule isomorphism ρ of X onto X_1 . Let π be a map of B_X to B_{X_1} defined by for any $\begin{bmatrix} a & x \\ \widetilde{x}^{\sharp} & a \end{bmatrix} \in B_X$, $\pi \left(\begin{bmatrix} a & x \\ \widetilde{x}^{\sharp} & a \end{bmatrix} \right) = \begin{bmatrix} a & \rho(x) \\ \rho(x)^{\sharp} & a \end{bmatrix}$. Then it is clear that π is linear. For $\begin{bmatrix} a & x \\ \widetilde{x}^{\sharp} & a \end{bmatrix} \in B_X$,

$$\pi \left(\begin{bmatrix} a & x \\ \widetilde{\chi}^{\sharp} & a \end{bmatrix} \right)^* = \begin{bmatrix} a & \rho(x) \\ \widetilde{\rho(x)}^{\sharp} & a \end{bmatrix}^* = \begin{bmatrix} a^* & \rho(x^{\sharp}) \\ \widetilde{\rho(x)} & a^* \end{bmatrix} = \pi \left(\begin{bmatrix} a & x \\ \widetilde{\chi}^{\sharp} & a \end{bmatrix}^* \right).$$

Also for $\begin{bmatrix} a & x \\ \widetilde{x}^{\sharp} & a \end{bmatrix}$ and $\begin{bmatrix} b & y \\ \widetilde{y}^{\sharp} & b \end{bmatrix} \in B_X$,

$$\pi\left(\begin{bmatrix} a & x \\ \widehat{x}^{\sharp} & a \end{bmatrix} \begin{bmatrix} b & y \\ \widehat{y}^{\sharp} & b \end{bmatrix}\right) = \begin{bmatrix} ab + {}_{A}\langle x, y^{\sharp} \rangle & \rho(ay + xb) \\ \overbrace{\rho(xb + ay)}^{\sharp} & \langle x^{\sharp}, y \rangle_{A} + ab \end{bmatrix},$$

and

$$\begin{split} \pi\left(\begin{bmatrix} a & x \\ \widehat{x}^{\sharp} & a \end{bmatrix}\right)\pi\left(\begin{bmatrix} b & y \\ \widehat{y}^{\sharp} & b \end{bmatrix}\right) &= \begin{bmatrix} ab + {}_{A}\langle\rho(x),\rho(y^{\sharp})\rangle & \rho(ay+xb) \\ \rho(xb+ay)^{\sharp} & \langle\rho(x^{\sharp}),\rho(y)\rangle_{A} + ab \end{bmatrix} \\ &= \begin{bmatrix} ab + {}_{A}\langle x,y^{\sharp}\rangle & \rho(ay+xb) \\ \rho(xb+ay)^{\sharp} & \langle x^{\sharp},y\rangle_{A} + ab \end{bmatrix} \\ &= \pi\left(\begin{bmatrix} a & x \\ \widehat{x}^{\sharp} & a \end{bmatrix}\begin{bmatrix} b & y \\ \widehat{y}^{\sharp} & b \end{bmatrix}\right). \end{split}$$

Hence π is a homomorphism of B_X to B_{X_1} . Furthermore, by the definition of π , π is a bijection and $\pi \begin{pmatrix} \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} \end{pmatrix} = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$ for any $a \in A$. And for $\begin{bmatrix} a & x \\ \widetilde{x}^{\sharp} & a \end{bmatrix} \in B_X$

$$(E_1 \circ \pi) \left(\begin{bmatrix} a & x \\ \widetilde{x}^{\sharp} & a \end{bmatrix} \right) = E_1 \left(\begin{bmatrix} a & \rho(x) \\ \widetilde{\rho(x)}^{\sharp} & a \end{bmatrix} \right) = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} = E \left(\begin{bmatrix} a & x \\ \widetilde{x}^{\sharp} & a \end{bmatrix} \right). \quad \blacksquare$$

3.3. BIJECTION BETWEEN \mathcal{L}/\sim AND \mathcal{M}/\sim . In this subsection, we shall show that $\mathcal{F}\circ\mathcal{G}=\operatorname{id}_{\mathcal{M}/\sim}$ and $\mathcal{G}\circ\mathcal{F}=\operatorname{id}_{\mathcal{L}/\sim}$.

LEMMA 3.7. Let (B, E) be an element in \mathcal{L} and $C^*\langle B, e_A \rangle$ the basic construction for (B, E). Then for each $x \in C^*\langle B, e_A \rangle$, there uniquely exists $b \in B$ such that $e_A x = e_A b$.

Proof. Let $x = \sum_i b_i e_A c_i$, where $b_i, c_i \in B$. Then $e_A x = \sum_i e_A b_i e_A c_i = \sum_i e_A E(b_i) c_i$ $= e_A \sum_i E(b_i) c_i$. And hence $b = \sum_i E(b_i) c_i$. If $e_A b = e_A b'$, where $b, b' \in B$, then

$$b = \frac{1}{2}\widetilde{E}(e_A b) = \frac{1}{2}\widetilde{E}(e_A b') = b',$$

where \widetilde{E} is the dual conditional expectation of $C^*\langle B, e_A \rangle$ onto B. Thus we obtain the conclusion.

Let (B, E) be an element in \mathcal{L} . Let B_- be a linear subspace of B defined by

$$B_{-} = \{b \in B : E(b) = 0\} = \{b \in B : \beta(b) = -b\},\$$

where β is an automorphism of B defined in Proposition 2.4. By a routine computation we can see that B_- is an element in \mathcal{M} with the involution $x^{\sharp} = x^*$ and the left and the right A-valued inner products defined by

$$A\langle x,y\rangle = E(xy^*), \quad \langle x,y\rangle_A = E(x^*y) \quad \text{for } x,y \in B_-.$$

LEMMA 3.8. With the above notations, $B_- \sim X_B$ i.e., $[B_-] = [X_B]$ in \mathcal{M}/\sim .

Proof. By Lemma 3.7, we can define a map φ from $C^*\langle B, e_A \rangle$ to B by $e_A x = e_A \varphi(x)$. For $e_A x (1 - e_A) \in X_B$, we have

$$e_A x(1 - e_A) = e_A \varphi(x) - e_A E(\varphi(x)) = e_A(\varphi(x) - E(\varphi(x))).$$

And hence $\varphi(e_Ax(1-e_A))=\varphi(x)-E(\varphi(x))\in B_-$. It is easy to see that $\varphi|_{X_B}$ is an A-A-bimodule isomorphism of X_B onto B_- . Furthermore for $e_Ax(1-e_A)$, $e_Ay(1-e_A)\in X_B$,

$$A\langle e_{A}x(1-e_{A}), e_{A}y(1-e_{A})\rangle = \psi^{-1}(E((\varphi(x)-E(\varphi(x)))(\varphi(y)-E(\varphi(y)))^{*})e_{A})$$

$$= E((\varphi(x)-E(\varphi(x)))(\varphi(y)-E(\varphi(y)))^{*})$$

$$= A\langle \varphi(x)-E(\varphi(x)), \varphi(y)-E(\varphi(y))\rangle.$$

Similarly, $\langle e_A x(1-e_A), e_A y(1-e_A) \rangle_A = \langle \varphi(x) - E(\varphi(x)), \varphi(y) - E(\varphi(y)) \rangle_A$. And

$$\varphi((e_A x (1 - e_A))^{\sharp}) = \varphi(\widehat{\beta}(e_A x (1 - e_A))^*) = \varphi(\widehat{\beta}((1 - e_A)\varphi(x)^* e_A))
= \varphi(e_A \varphi(x)^* (1 - e_A)) = \varphi(x)^* - E(\varphi(x)^*)
= (\varphi(x) - E(\varphi(x)))^* = \varphi(e_A x (1 - e_A))^*.$$

Hence $X_B \sim B_-$ in \mathcal{M} .

Lemma 3.9. $\mathcal{G} \circ \mathcal{F} = id_{\mathcal{L}/\sim}$.

Proof. For $(B, E) \in \mathcal{L}$, it is easy to see that $\mathcal{G}([B_-]) = [B, E]$. Since $[X_B] = [B_-]$ by the previous lemma, $\mathcal{G} \circ \mathcal{F}([B, E]) = \mathcal{G}([X_B]) = [B, E]$. Thus the lemma is proved. \blacksquare

Lemma 3.10. $\mathcal{F} \circ \mathcal{G} = \mathrm{id}_{\mathcal{M}/\sim}$.

Proof. For $X \in \mathcal{M}$,

$$(B_X)_- = \{x \in B_X : E_X(x) = 0\} = \left\{ \begin{bmatrix} 0 & x \\ \widetilde{x}^{\sharp} & 0 \end{bmatrix} : x \in X \right\}.$$

So it is easy to see that $[(B_X)_-] = [X]$. And hence by Lemma 3.8

$$\mathcal{F} \circ \mathcal{G}([X]) = \mathcal{F}([B_X, E_X]) = [(B_X)_-] = [X].$$

THEOREM 3.11. There is a 1-1 correspondence between \mathcal{L}/\sim and \mathcal{M}/\sim .

Proof. This is immediate by Lemmas 3.9 and 3.10.

4. APPLICATIONS

4.1. Construction of involutive equivalence bimodules by $2\mathbb{Z}$ -inner C^* -dynamical system which means that (A, \mathbb{Z}, α) is a C^* -dynamical system and that there is a unitary element $z \in A$ with $\alpha(z) = z$ and $\alpha^2 = \mathrm{Ad}(z)$. In this case, we can form the restricted crossed product $A \rtimes_{\alpha/2\mathbb{Z}} \mathbb{Z}$ in the sense of P. Green [4]. Let X_α be the vector space A with the obvious left action of A on X_α and the obvious left A-valued inner product, but we define the right action of A on X_α by $x \cdot a = x\alpha(a)$ for any $x \in X_\alpha$ and $a \in A$, and the right A-valued inner product by $\langle x, y \rangle_A = \alpha^{-1}(x^*y)$ for any $x, y \in X_\alpha$.

LEMMA 4.1. We can define an involution $x \mapsto x^{\sharp}$ on X_{α} by

$$x^{\sharp} = \alpha(x^*)z,$$

where z is a unitary element of A with $\alpha(z) = z$ and $\alpha^2 = Ad(z)$.

Proof. Since $\alpha(z)=z$ and $\alpha^2=\mathrm{Ad}(z)$, by routine computations, we can see that the map $x\mapsto x^\sharp$ defined by $x^\sharp=\alpha(x^*)z$ is an involution on X_α .

PROPOSITION 4.2. With the above notations, we suppose that A is simple. Let $B_{X_{\alpha}}$ be a C^* -algebra defined by X_{α} and L the linking algebra for X_{α} defined in Section 2. Then the following conditions are equivalent:

- (i) $B_{X_{\alpha}}$ is simple;
- (ii) $A' \cap B_{X_{\alpha}} = \mathbb{C} \cdot 1$;
- (iii) $B'_{X_{\alpha}} \cap L = \mathbb{C} \cdot 1$;
- (iv) α is an outer automorphism of A.

Proof. (i) \Rightarrow (ii): By Proposition 2.4, $B_{X_\alpha}^\beta = A$. Since A is simple, by Pedersen ([10], Proposition 8.10.12) β is outer. Hence by Pedersen ([10], Proposition 8.10.13) $A' \cap B_{X_\alpha} = \mathbb{C} \cdot 1$.

(ii) \Leftrightarrow (iii): By Watatani ([12], Proposition 2.7.3) $A' \cap B_{X_{\alpha}}$ is anti-isomorphic to $B'_{X_{\alpha}} \cap C^* \langle B_{X_{\alpha}}, e_A \rangle$. This implies the conclusion.

(ii) \Rightarrow (iv): We suppose that there is a unitary element $w \in A$ such that $\alpha = \operatorname{Ad}(w)$ Then for any $a \in A$

$$w \cdot a = w\alpha(a) = aw = a \cdot w.$$

So it is easy to see that

$$\begin{bmatrix} 0 & w \\ \widetilde{w}^{\sharp} & 0 \end{bmatrix} \in A' \cap B_{X_{\alpha}}.$$

This is a contradiction. Thus α is outer.

(iv) \Rightarrow (i): We can identify L with the C^* -basic constraction of $A \subset B_{X_\alpha}$ by Remark 3.5. Let β be an automorphism of B_{X_α} defined in the same way as in Proposition 2.4 and let $\widehat{\beta}$ be its dual automorphism. Then $L^{\widehat{\beta}} = B_{X_\alpha}$ by Lemma 2.8. We suppose that $\widehat{\beta}$ is inner. Then there is a unitary element $w = \begin{bmatrix} a & x \\ \widehat{y} & b \end{bmatrix} \in L$ such that $\widehat{\beta} = \operatorname{Ad}(w)$. Hence for any $c \in A$

$$\widehat{\beta} \left(\begin{bmatrix} c & 0 \\ 0 & 0 \end{bmatrix} \right) = \begin{bmatrix} a & x \\ \widetilde{y} & b \end{bmatrix} \begin{bmatrix} c & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a & x \\ \widetilde{y} & b \end{bmatrix}^*.$$

Hence we obtain that

$$\begin{bmatrix} 0 & 0 \\ 0 & c \end{bmatrix} = \begin{bmatrix} aca^* & ac \cdot y \\ ac^* \cdot y & \langle c^* \cdot y, y \rangle_A \end{bmatrix}$$

for any $c \in A$. Put c = 1. Then a = 0 and $\langle y,y \rangle_A = 1$. Since w is a unitary element, by a routine computation we can see that b = 0 and $A \langle y,y \rangle = 1$. This implies that y is a unitary element in A. Since $c = \langle c^* \cdot y,y \rangle_A = \alpha(y^*cy) = \alpha(y)^*\alpha(c)\alpha(y)$ for any $c \in A$, α is inner. This is a contradiction. Hence $\widehat{\beta}$ is outer. Since A are stably isomorphic by Brown, Green and Rieffel [2], A is simple. By Pedersen ([10], Theorem 8.10.12) A0 is simple.

LEMMA 4.3. Let (A, \mathbb{Z}, α) be a $2\mathbb{Z}$ -inner dynamical system with $\alpha(z) = z$ and $\alpha^2 = \operatorname{Ad}(z)$, where z is a unitary element in A. Let B be the restricted crossed product $A \rtimes_{\alpha/2\mathbb{Z}} \mathbb{Z}$ associated with (A, \mathbb{Z}, α) and E the canonical conditional expectation of B onto A. Then $X_B \cong X_\alpha$ as involutive A-A-equivalence bimodules, where X_B is an involutive A-A-equivalence bimodule induced by (B, E).

Proof. We may assume that A acts on a Hilbert space H. By Olesen and Pedersen ([9], Proposition 3.2) we also assume that B acts on the induced Hilbert

space $\operatorname{Ind}_{2\mathbb{Z}}^{\mathbb{Z}}(H)$. Let

from C to B_{X_α} defined by

$$C = \left\{ \begin{bmatrix} a & x \\ \alpha(xz) & \alpha(a) \end{bmatrix} \in M_2(A) : a, x \in A \right\}.$$

Since A acts on H, we can put C as a C^* -algebra acting on $H \oplus H$. We claim that $B \cong C$. Indeed, let ρ be a map from $K(\mathbb{Z}, A, z)$ to C defined by for any $f \in K(\mathbb{Z}, A, z)$

$$\rho(f) = \begin{bmatrix} f(0) & f(1) \\ \alpha(f(1)z) & \alpha(f(0)) \end{bmatrix},$$

where $K(\mathbb{Z},A,z)$ is a *-algebra of all functions $f:\mathbb{Z}\longrightarrow A$ satisfying that $f(n-2m)=f(n)z^m$ for any $m,n\in\mathbb{Z}$ (see [9]). Then by routine computations ρ is a homomorphism of $K(\mathbb{Z},A,z)$ to C. Let U be a map from $\mathrm{Ind}_{2\mathbb{Z}}^{\mathbb{Z}}(H)$ to $H\oplus H$ defined by $U\xi=\xi(0)\oplus\xi(1)$ for any $\xi\in K(\mathbb{Z},A,z)$. Then by an easy computation U is a unitary operator of $\mathrm{Ind}_{2\mathbb{Z}}^{\mathbb{Z}}(H)$ onto $H\oplus H$. Moreover, for any $f\in K(\mathbb{Z},A,z)$, $\rho(f)=UfU^*$. Hence ρ is an isometry of $K(\mathbb{Z},A,z)$ to C and we can extend ρ to an isomorphism of B onto C since $K(\mathbb{Z},A,z)$ is dense in B. Thus $B\cong C$. Let F be a linear map of C onto A defined by $F\left(\begin{bmatrix} a & x \\ \alpha(xz) & \alpha(a) \end{bmatrix}\right)=\begin{bmatrix} a & 0 \\ 0 & \alpha(a) \end{bmatrix}$ for any $\begin{bmatrix} a & x \\ \alpha(xz) & \alpha(a) \end{bmatrix}\in C$, where we identify A with a C^* -algebra $\{\begin{bmatrix} a & 0 \\ 0 & \alpha(a) \end{bmatrix}: a\in A\}$. Then by an easy computation $(B,E)\sim(C,F)$ in \mathcal{L} . Let $(B_{X_\alpha},E_{X_\alpha})$ be an element in \mathcal{L} induced by the involutive A-A-equivalence bimodule X_α . Let Φ be a map

$$\Phi\left(\begin{bmatrix} a & x \\ \alpha(xz) & \alpha(a) \end{bmatrix}\right) = \begin{bmatrix} a & x \\ \widetilde{x}^{\sharp} & a \end{bmatrix}$$

for any $\begin{bmatrix} a & x \\ \alpha(xz) & \alpha(a) \end{bmatrix} \in C$. Then by routine computations Φ is an isomorphism of C onto $B_{X_{\alpha}}$ with $F = E_{X_{\alpha}} \circ \Phi$. Thus $(B, E) \sim (B_{X_{\alpha}}, E_{X_{\alpha}})$. By Theorem 3.11, $X_B \sim X_{\alpha}$ in \mathcal{M} .

Let B be a unital C^* -algebra and A a C^* -subalgebra of B with a common unit. Let E be a conditional expectation of B onto A with IndexE=2. For any $n\in\mathbb{N}$ let M_n be the $n\times n$ -matrix algebra over \mathbb{C} and $M_n(A)$ the $n\times n$ -matrix algebra over A. Let $\{(x_i,x_i^*)\}_{i=1}^n$ be a quasi-basis for E. We define $q=[q_{ij}]\in M_n(A)$ by $q_{ij}=E(x_i^*x_j)$. Then by Watatani [12], q is a projection and $C^*\langle B,e_A\rangle\simeq qM_n(A)q$. Let π be an isomorphism of $C^*\langle B,e_A\rangle$ onto $qM_n(A)q$ defined by

$$\pi(ae_Ab) = [E(x_i^*a)E(bx_i)] \in M_n(A)$$

for any $a, b \in B$. Especially for any $b \in B$, $\pi(b) = [E(x_i^*bx_j)]$ since $\sum_{i=1}^n x_i e_A x_i^* = 1$.

PROPOSITION 4.4. With the above notations, the following conditions are equivalent:

- (i) e_A and $1 e_A$ are equivalent in $C^*\langle B, e_A \rangle$;
- (ii) there exists a unitary element $u \in B$ such that $\{(1,1), (u,u^*)\}$ is a quasi-basis for E;
 - (iii) there exists a $2\mathbb{Z}$ -inner C^* -dynamical system (A, \mathbb{Z}, α) such that $X_{\alpha} \sim X_B$.

Proof. (i) \Rightarrow (ii): We suppose that there is a partial isometry $v \in C^*\langle B, e_A \rangle$ such that $v^*v = e_A$, $vv^* = 1 - e_A$. Then $ve_Av^* = 1 - e_A$. By Lemma 3.7, there exists an element u in B such that $ve_A = ue_A$ and hence $ue_Au^* = 1 - e_A$. Let \widetilde{E} be the dual conditional expectation for E. Then

$$uu^* = 2\widetilde{E}(ue_Au^*) = 2\widetilde{E}(1 - e_A) = 1.$$

Therefore u is a co-isometry element in B. Since $e_A u^* u e_A = e_A v^* v e_A = e_A$, we have $E(u^*u) = 1$ and $E(1 - u^*u) = 0$. And hence $u^*u = 1$ i.e., u is a unitary element in B. For any $x \in B$

$$xe_A = (e_A + ue_A u^*)xe_A = E(x)e_A + uE(u^*x)e_A = (E(x) + uE(u^*x))e_A.$$

Thus $x = E(x) + uE(u^*x)$ by Lemma 3.7. Similarly, $x = E(x) + E(xu)u^*$. This implies that $\{(1,1),(u,u^*)\}$ is a quasi-basis for E.

(ii) \Rightarrow (i): We suppose that $\{(1,1),(u,u^*)\}$ is a quasi-basis for E and that u is a unitary element in B. Then

$$u = E(u) + uE(u^*u) = E(u) + u.$$

This implies that E(u) = 0. Hence

$$q = \begin{bmatrix} E(1 \cdot 1) & E(u) \\ E(u^*) & E(u^*u) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Therefore $C^*\langle B, e_A \rangle \simeq M_2(A)$. Furthermore

$$\pi(e_A) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad \pi(1 - e_A) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

And hence $e_A \sim (1 - e_A)$ in $C^* \langle B, e_A \rangle$.

(ii) \Rightarrow (iii): We suppose that $\{(1,1),(u,u^*)\}$ is a quasi-basis for E and that u is a unitary element in B. Then in the same way as above E(u)=0. For any $a\in A$

$$uau^* = E(uau^*) + E(uau^*u)u^* = E(uau^*) + E(u)au^* = E(uau^*).$$

Therefore $uAu^* = A$. Let α be an automorphism of A defined by $\alpha(a) = uau^*$ for any $a \in A$. Since $u^2 = E(u^2) + uE(u^*u^2) = E(u^2)$, u^2 is an element in A. Therefore (A, \mathbb{Z}, α) is a $2\mathbb{Z}$ -inner C^* -dynamical system. It is easy to see that

$$X_{\alpha} \sim Au = B_{-} = \{b \in B : E(b) = 0\}.$$

By Lemma 3.8, $X_{\alpha} \sim X_{B}$.

(iii) \Rightarrow (ii) : We suppose that there exists a $2\mathbb{Z}$ -inner C^* -dynamical system (A, \mathbb{Z}, α) such that $X_{\alpha} \sim X_B$. By the previous lemma, we may suppose that $B = A \rtimes_{\alpha/2\mathbb{Z}} \mathbb{Z}$. Then there exists a unitary element $u \in B$ such that $Ad(u) = \alpha$,

 $u^2 \in A$ and E(u) = 0. By a routine computation we can see that $\{(1,1), (u,u^*)\}$ is a quasi-basis for E.

COROLLARY 4.5. Let θ be an irrational number in (0,1) and A_{θ} the corresponding irrational rotation C^* -algebra. Let B be a unital C^* -algebra including A_{θ} as a C^* -subalgebra of B with a common unit. We suppose that there is a conditional expectation E of B onto A_{θ} with IndexE=2. Then there is a $2\mathbb{Z}$ -inner C^* -dynamical system $(A_{\theta},\mathbb{Z},\alpha)$ such that $(B,E)\sim (A_{\theta}\rtimes_{\alpha/2\mathbb{Z}}\mathbb{Z},F)$, where F is the canonical conditional expectation of $A_{\theta}\rtimes_{\alpha/2\mathbb{Z}}\mathbb{Z}$ onto A_{θ} .

Proof. Let e be the Jones projection induced by E. We can identify the basic construction $C^*\langle B, e \rangle$ with $qM_n(A_\theta)q$ in the same way as in the previous argument. Hence $C^*\langle B, e \rangle$ has the unique normalized trace τ and $\tau(e) = \tau(1-e) = \frac{1}{2}$. So it is easy to see that $e \sim 1-e$ in $C^*\langle B, e \rangle$ since A_θ has cancellation. Therefore we obtain the conclusion by the previous proposition.

4.2. EXAMPLES. In this subsection, let A_{θ} be as in Corollary 4.5 and let u, v be two unitary generators satisfying the commutation relation:

$$uv = e^{2\pi i\theta}vu$$
.

EXAMPLE 4.6. Let $A_{2\theta}$ be the C^* -subalgebra of A_{θ} generated by u^2 and v. Then we can denote $A_{\theta} = \{x + yu : x, y \in A_{2\theta}\}$. Let E be a map of A_{θ} onto $A_{2\theta}$ defined by E(x + yu) = x. It is easy to see that E is a conditional expectation of A_{θ} onto $A_{2\theta}$ with IndexE = 2 and a quasi-basis $\{(1,1), (u,u^*)\}$. Hence by Corollary 4.5, A_{θ} can be represented as the restricted crossed product $A_{2\theta} \rtimes_{\alpha/2\mathbb{Z}} \mathbb{Z}$, where α is an automorphism on $A_{2\theta}$ defined by $\alpha = \mathrm{Ad}(u)$.

Suppose that A_{θ} can be represented as a crossed product $A_{2\theta} \rtimes_{\beta} \mathbb{Z}_2$ for some \mathbb{Z}_2 -action β on $A_{2\theta}$. Then there exists a self-adjoint unitary element w in A_{θ} satisfying that $\beta = \operatorname{Ad}(w)$ and $A_{\theta} = \{x + yw : x, y \in A_{2\theta}\}$. Let τ be the unique tracial state on A_{θ} . By the uniqueness of τ , we can see that $\tau(x + yw) = \tau(x)$. Let e be a projection in A_{θ} defined by $e = \frac{1}{2}(1 + w)$. Then $\tau(e) = \frac{1}{2}$. This contradicts that $\tau(A_{\theta}) = (\mathbb{Z} \cap \theta\mathbb{Z}) \cap (0,1)$. Therefore A_{θ} can not be represented as a crossed product $A_{2\theta} \rtimes_{\beta} \mathbb{Z}_2$ for any \mathbb{Z}_2 -action β on $A_{2\theta}$.

EXAMPLE 4.7. Let σ be the involutive automorphism of A_{θ} determined by $\sigma(u)=u^*$ and $\sigma(v)=v^*$. Let C_{θ} denote the fixed point algebra $A_{\theta}^{\sigma}=\{x\in A_{\theta}:\sigma(x)=x\}$ and B_{θ} the crossed product $A_{\theta}\rtimes_{\sigma}\mathbb{Z}_2$. Then B_{θ} is the basic construction of $C_{\theta}\subset A_{\theta}$. By Kumjian [8], K_0 -group of B_{θ} , $K_0(B_{\theta})$ is isomorphic to \mathbb{Z}^6 . By routine computations, we can see $[e]\neq [1-e]$ in $K_0(B_{\theta})$, where e is the Jones projection for the inclusion $C_{\theta}\subset A_{\theta}$. Hence $e\not\sim 1-e$ in B_{θ} . Therefore the inclusion $C_{\theta}\subset A_{\theta}$ can not be represented as the restricted crossed product $C_{\theta}\subset C_{\theta}\rtimes_{\alpha/2\mathbb{Z}}\mathbb{Z}$ for any automorphism α on C_{θ} by Proposition 4.4.

Acknowledgements. The authors wish to thank the referee for some valuable suggestions for improvement of the manuscript, especially for improvement of the Introduction.

REFERENCES

- [1] O. Bratteli, G.A. Elliott, D.E. Evans, A. Kishimoto, Non-commutative spheres. I, *Internat. J. Math.* **2**(1991), 139–166.
- [2] L.G. Brown, P. Green, M.A. RIEFFEL, Stable isomorphism and strong Morita equivalence of *C**-algebra, *Pacific J. Math.* **71**(1977), 349–368.
- [3] G.A. Elliott, M. Rørdam, The automorphism group of the irrational rotation algebra, *Comm. Math. Phys.* **155**(1993), 3–26.
- [4] P. GREEN, The local structure of twisted covariance algebras, Acta Math. 140(1978), 191–250.
- [5] M. IZUMI, Inclusions of simple C*-algebras, J. Reine Angew. Math. 547(2002), 97–138.
- [6] V. JONES, Index for subfactors, Invent. Math. 72(1983), 1–25.
- [7] T. KAJIWARA, Y. WATATANI, Jones index theory by Hilbert *C**-bimodules and *K*-theory, *Trans. Amer. Math. Soc.* **352**(2000), 3429–3472.
- [8] A. KUMJIAN, On the K-theory of the symmetrized non-commutative torus, *C. R. Math. Rep. Acad. Sci. Canada* **12**(1990), 87–89.
- [9] D. OLESEN, G.K. PEDERSEN, Partially inner C*-dynamical systems, J. Funct. Anal. **66**(1986), 262–281.
- [10] G.K. Pedersen, C*-Algebras and their Automorphism Groups, Academic Press, London-New York 1979.
- [11] M.A. RIEFFEL, C*-algebra associated with irrational rotations, *Pacific J. Math.* **93**(1981), 415–429.
- [12] Y. WATATANI, Index for C*-subalgebras, Mem. Amer. Math. Soc. **424**(1990).

KAZUNORI KODAKA, DEPARTMENT OF MATHEMATICAL SCIENCES, FACULTY OF SCIENCE, RYUKYU UNIVERSITY, NISHIHARA-CHO, OKINAWA 903-0213, JAPAN *E-mail address*: kodaka@math.u-ryukyu.ac.jp

TAMOTSU TERUYA, DEPARTMENT OF MATHEMATICAL SCIENCES, RITSUMEIKAN UNIVERSITY, KUSATSU, SHIGA 525-8577, JAPAN

E-mail address: teruya@se.ritsumei.ac.jp

Received January 10, 2004; revised June 1, 2005 and June 10, 2005.