INVOLUTIVE EQUIVALENCE BIMODULES AND INCLUSIONS OF C*-ALGEBRAS WITH WATATANI INDEX 2

KAZUNORI KODAKA and TAMOTSU TERUYA

Communicated by William B. Arveson

Abstract

Let A be a unital C^{*}-algebra. We shall introduce involutive A -A-equivalence bimodules and prove that any C^{*}-algebra containing A with Watatani index 2 is constructed by an involutive $A-A$-equivalence bimodule.

Keywords: Conditional expectations, equivalence bimodules, Goldman type theorem, unital C*-algebras, Watatani index.

MSC (2000): Primary 46L08; Secondary 46L40.

1. INTRODUCTION

V. Jones introduced an index theory for II_{1} factors in [6]. One of his motivations is Goldman's theorem, which says that if M is a type I_{1} factor and $N \subset M$ is a subfactor with the Jones index $[M: N]=2$, then there is a crossed product decomposition $M=N \rtimes_{\alpha} \mathbb{Z}_{2}$, where \mathbb{Z}_{2} is the group $\mathbb{Z} / 2 \mathbb{Z}$ of order two. Since Jones index theory is extended to C^{*}-algebras by Y. Watatani, it is worth to investigate Goldman type theorems for inclusions of simple C^{*}-algebras. In the present paper, we shall study the inclusion $A \subset B$ of C^{*}-algebras with a conditional expectation $E: B \rightarrow A$ of Index $E=2$. In Subsection 4.2, we shall show that a Goldman type theorem does not hold for inclusions of simple C^{*}-algebras in general by exhibiting examples of inclusions like a non-commutative sphere in an irrational rotation C^{*}-algebra A_{θ} and irrational rotation C^{*}-algebras $A_{2 \theta} \subset A_{\theta}$ with different angles. Therefore there occurs the following natural question: What kind of structures are there in the inclusion of C^{*}-algebras with index 2 ? We shall answer the question in the present paper: Any inclusion of C^{*}-algebras with index two gives an involutive equivalence bimodule.

Let us explain the notion of involutive equivalence bimodules. Consider a typical situation, that is, the inclusion $A \subset B$ is given by the crossed product $B=A \rtimes_{\alpha} \mathbb{Z}_{2}$ by some action $\alpha: \mathbb{Z}_{2} \rightarrow \operatorname{Aut}(A)$. Then the canonical conditional
expectation $E: B \rightarrow A$ has Index $E=2$. Moreover there exists the dual action $\widehat{\alpha}: \mathbb{Z}_{2} \rightarrow \operatorname{Aut}(B)$ such that

$$
\left(A \rtimes_{\alpha} \mathbb{Z}_{2}\right) \rtimes_{\widehat{\alpha}} \mathbb{Z}_{2} \cong A \otimes M_{2}(\mathbb{C})
$$

where $M_{2}(\mathbb{C})$ is the 2×2-matrix algebra over \mathbb{C}. It is well known that the C^{*}-basic construction $C^{*}\left\langle B, e_{A}\right\rangle$ is exactly $\left(A \rtimes_{\alpha} \mathbb{Z}_{2}\right) \rtimes_{\widehat{\alpha}} \mathbb{Z}_{2}$. Then the Jones projection e_{A} corresponds to the projection $e_{11}=\operatorname{diag}(1,0)$ and $1-e_{A}$ corresponds to $e_{22}=$ $\operatorname{diag}(0,1)$, where $\operatorname{diag}(\lambda, \mu)$ is a 2×2-diagonal matrix with diagonal elements λ, μ. Let $X=e_{11}\left(A \otimes M_{2}(\mathbb{C})\right) e_{22}$. Then X is an A - A-equivalence bimodule in the natural way. There exists a natural involution on X such that

$$
x^{\sharp}=\left(\begin{array}{cc}
0 & z^{*} \\
0 & 0
\end{array}\right) \quad \text { for } x=\left(\begin{array}{ll}
0 & z \\
0 & 0
\end{array}\right) .
$$

We pick up these properties to define the notion of involutive equivalence bimodules. In Theorem 3.3.1, we shall show that even if B is not a crossed product of A, the inclusion of C^{*}-algebras with index 2 gives an involutive $A-A$-equivalence bimodule. Moreover the set of inclusions of C^{*}-algebras with index 2 has a one to one correspondence with the set of involutive $A-A$-equivalence bimodules up to isomorphisms.

In Proposition 4.1.2, we shall characterize the subclass such that B is the twisted crossed product of A by a partially inner C^{*}-dynamical system studied by Green, Olsen and Pedersen. The characterization is given by the von Neumann equivalence of e_{A} and $1-e_{A}$ in $C^{*}\left\langle B, e_{A}\right\rangle$.

2. PRELIMINARIES

2.1. SOME RESULTS FOR INCLUSIONS WITH INDEX 2. Let B be a unital C^{*}-algebra and A a C^{*}-subalgebra of B with a common unit. Let E be a conditional expectation of B onto A with $1<\operatorname{Index} E<\infty$. Then by Watatani [12] we have the C^{*}-basic construction $C^{*}\left\langle B, e_{A}\right\rangle$ where e_{A} is the Jones projection induced by E. Let \widetilde{E} be the dual conditional expectation of $C^{*}\left\langle B, e_{A}\right\rangle$ onto B defined by

$$
\widetilde{E}\left(a e_{A} b\right)=\frac{1}{t} a b \quad \text { for any } a, b \in B
$$

where $t=\operatorname{Index} E$. Let F be a linear map of $\left(1-e_{A}\right) C^{*}\left\langle B, e_{A}\right\rangle\left(1-e_{A}\right)$ to $A\left(1-e_{A}\right)$ defined by

$$
F(a)=\frac{t}{t-1}(E \circ \widetilde{E})(a)\left(1-e_{A}\right)
$$

for any $a \in\left(1-e_{A}\right) C^{*}\left\langle B, e_{A}\right\rangle\left(1-e_{A}\right)$. By routine computations we can see that F is a conditional expectation of $\left(1-e_{A}\right) C^{*}\left\langle B, e_{A}\right\rangle\left(1-e_{A}\right)$ onto $A\left(1-e_{A}\right)$.

LEMMA 2.1. With the above notations, let $\left\{\left(x_{i}, x_{i}^{*}\right)\right\}_{i=1}^{n}$ be a quasi-basis for E. Then

$$
\left\{\sqrt{t-1}\left(1-e_{A}\right) x_{j} e_{A} x_{i}\left(1-e_{A}\right), \sqrt{t-1}\left(1-e_{A}\right) x_{i}^{*} e_{A} x_{j}^{*}\left(1-e_{A}\right)\right\}_{i, j=1}^{n}
$$

is a quasi-basis for F. Furthermore Index $F=(t-1)^{2}\left(1-e_{A}\right)$.
Proof. This is immediate by direct computations.
Corollary 2.2. We suppose that $\operatorname{Index} E=2$. Then

$$
\left(1-e_{A}\right) C^{*}\left\langle B, e_{A}\right\rangle\left(1-e_{A}\right)=A\left(1-e_{A}\right) \cong A
$$

Proof. By Lemma 2.1 there is a conditional expectation F of $\left(1-e_{A}\right) C^{*}\langle B$, $\left.e_{A}\right\rangle\left(1-e_{A}\right)$ onto $A\left(1-e_{A}\right)$ and

$$
\text { Index } F=(\operatorname{Index} E-1)^{2}\left(1-e_{A}\right)
$$

Since Index $E=2$, Index $F=1-e_{A}$. Hence by Watatani [12],

$$
\left(1-e_{A}\right) C^{*}\left\langle B, e_{A}\right\rangle\left(1-e_{A}\right)=A\left(1-e_{A}\right)
$$

If $a\left(1-e_{A}\right)=0$, for $a \in A$, then $a=2 \widetilde{E}\left(a\left(1-e_{A}\right)\right)=0$. Therefore the map $a \mapsto a\left(1-e_{A}\right)$ is injective. And hence $A\left(1-e_{A}\right) \cong A$ as desired.

LEMMA 2.3. With the same assumptions as in Lemma 2.1, we suppose that IndexE $=2$. Then for any $b \in B$,

$$
\left(1-e_{A}\right) b\left(1-e_{A}\right)=E(b)\left(1-e_{A}\right)
$$

Proof. By Corollary 2.2 there exists $a \in A$ such that $\left(1-e_{A}\right) b\left(1-e_{A}\right)=$ $a\left(1-e_{A}\right)$. Therefore $a=2 \widetilde{E}\left(a\left(1-e_{A}\right)\right)=2 \widetilde{E}\left(\left(1-e_{A}\right) b\left(1-e_{A}\right)\right)=E(b)$. This completes the proof.

Proposition 2.4. With the same assumptions as in Lemma 2.1, we suppose that Index $E=2$. Then there is a unitary element $U \in C^{*}\left\langle B, e_{A}\right\rangle$ satisfying the following conditions:
(i) $U^{2}=1$;
(ii) $U b U^{*}=2 E(b)-b$ for $b \in B$.

Hence if we denote by β the restriction of $\operatorname{Ad}(U)$ to B, β is an automorphism of B with $\beta^{2}=\mathrm{id}$ and $B^{\beta}=A$.

Proof. By Lemma 2.3, for any $b \in B$

$$
\left(1-e_{A}\right) b\left(1-e_{A}\right)=E(b)\left(1-e_{A}\right)=E(b)-E(b) e_{A} .
$$

On the other hand

$$
\left(1-e_{A}\right) b\left(1-e_{A}\right)=b-e_{A} b-b e_{A}+E(b) e_{A} .
$$

Therefore

$$
E(b)=b-e_{A} b-b e_{A}+2 E(b) e_{A} .
$$

Let U be a unitary element defined by $U=2 e_{A}-1$. Then by the above equation for any $b \in B$

$$
U b U^{*}=2\left(b-e_{A} b-b e_{A}+2 E(b) e_{A}\right)-b=2 E(b)-b
$$

REMARK 2.5. By the above proposition, $E(b)=\frac{1}{2}(b+\beta(b))$.
Lemma 2.6. Let B be a unital C^{*}-algebra and A a C^{*}-subalgebra of B with a common unit. Let E be a conditional expectation of B onto A with $\operatorname{Index} E=2$. Then we have

$$
C^{*}\left\langle B, e_{A}\right\rangle \cong B \rtimes_{\beta} \mathbb{Z}_{2}
$$

Proof. We may assume that $B \rtimes_{\beta} \mathbb{Z}_{2}$ acts on the Hilbert space $l^{2}\left(\mathbb{Z}_{2}, H\right)$ faithfully, where H is some Hilbert space on which B acts faithfully. Let W be a unitary element in $B \rtimes_{\beta} \mathbb{Z}_{2}$ with $\beta=\operatorname{Ad}(W), W^{2}=1$. Let $e=\frac{1}{2}(W+1)$. Then e is a projection in $B \rtimes_{\beta} \mathbb{Z}_{2}$ and ebe $=E(b) e$ for any $b \in B$. In fact,

$$
e b e=\frac{1}{4}(W b W+b W+W b+b)
$$

On the other hand by Remark 2.5,

$$
E(b) e=\frac{1}{2}(b+\beta(b)) \frac{1}{2}(W+1)=\frac{1}{4}(W b W+b W+W b+b)
$$

Hence $e b e=E(b) e$ for $b \in B$. Also $A \ni a \mapsto a e \in B \rtimes_{\beta} \mathbb{Z}_{2}$ is injective. In fact, if $a e=0, a W+a=0$. Let $\widehat{\beta}$ be the dual action of β. Then $0=\widehat{\beta}(a W+a)=$ $-a W+a$. Thus $2 a=0$, i.e., $a=0$. Hence by Watatani ([12], Proposition 2.2.11) $C^{*}\left\langle B, e_{A}\right\rangle \cong B \rtimes_{\beta} \mathbb{Z}_{2}$.

REMARK 2.7. (i) By the proofs of Propositions 2.2.7 and 2.2.11 in [12] we see that $\kappa(b)=b$ for any $b \in B$, where κ is the isomorphism of $C^{*}\left\langle B, e_{A}\right\rangle$ onto $B \rtimes_{\beta} \mathbb{Z}_{2}$ in Lemma 2.6.
(ii) The above lemma is obtained in Kajiwara and Watatani ([7], Theorem 5.13).

By Lemma 2.6 and Remark 2.7, we regard $\widehat{\beta}$ as an automorphism of $C^{*}\left\langle B, e_{A}\right\rangle$ with $\widehat{\beta}(b)=b$ for any $b \in B, \widehat{\beta}^{2}=\mathrm{id}$ and $\widehat{\beta}\left(e_{A}\right)=1-e_{A}$.

LEMMA 2.8. With the same assumptions as in Lemma 2.6,

$$
C^{*}\left\langle B, e_{A}\right\rangle^{\widehat{\beta}}=B
$$

Proof. By Lemma 2.6 for any $x \in C^{*}\left\langle B, e_{A}\right\rangle$, we can write $x=b_{1}+b_{2} U$, where $b_{1}, b_{2} \in B$. We suppose that $\widehat{\beta}(x)=x$. Then $b_{1}-b_{2} U=b_{1}+b_{2} U$. Thus $b_{2}=0$. Hence $x=b_{1} \in B$. Since it is clear that $B \subset C^{*}\left\langle B, e_{A}\right\rangle^{\widehat{\beta}}$, the lemma is proved.
2.2. Involutive equivalence bimodules. Let A be a unital C^{*}-algebra and $X\left(={ }_{A} X_{A}\right)$ an A - A-equivalence bimodule. X is involutive if there exists a conjugate linear map $x \mapsto x^{\sharp}$ on X, such that:
(1) $\left(x^{\sharp}\right)^{\sharp}=x, x \in X ;$
(2) $(a \cdot x \cdot b)^{\sharp}=b^{*} \cdot x^{\sharp} \cdot a^{*}, x \in X, a, b \in A$;
(3) ${ }_{A}\left\langle x, y^{\sharp}\right\rangle=\left\langle x^{\sharp}, y\right\rangle_{A}, x, y \in X$;
where ${ }_{A}\langle\cdot, \cdot\rangle$ and $\langle\cdot, \cdot\rangle_{A}$ are the left and the right A-valued inner products on X, respectively. We call the above conjugate linear map an involution on X.

For an A - A-equivalence bimodule X, we define its dual bimodule. Let \widetilde{X} be X itself when it is considered as a set. We write \widetilde{x} when x is considered in \widetilde{X}. \widetilde{X} is made into an equivalence A - A-bimodule as follows:
(1) $\tilde{x}+\widetilde{y}=\widetilde{x+y} \lambda \widetilde{x}=\widetilde{\bar{\lambda} x}$ for any $x, y \in X$ and $\lambda \in \mathbb{C}$;
(2) $b \cdot \tilde{x} \cdot a=a^{*} \cdot x \cdot b^{*}$ for any $a, b \in A$ and $x \in X$;
(3) ${ }_{A}\langle\widetilde{x}, \tilde{y}\rangle=\langle x, y\rangle_{A},\langle\widetilde{x}, \widetilde{y}\rangle_{A}={ }_{A}\langle x, y\rangle$ for any $x, y \in X$.

Lemma 2.9. Let V be a map of an involutive A - A-equivalence bimodule X onto its dual bimodule \widetilde{X} defined by $V(x)=\widetilde{x^{\sharp}}$, where \widetilde{x} means x as viewed as an element in \widetilde{X}. Then V is an $A-A$-equivalence bimodule isomorphism of X onto \widetilde{X}.

Proof. This is immediate by routine computations.

3. CORRESPONDENCE BETWEEN INVOLUTIVE EQUIVALENCE BIMODULES AND INCLUSIONS OF C^{*}-ALGEBRAS WITH INDEX 2

Let A be a unital C^{*}-algebra and we denote by (B, E) a pair of a unital C^{*} algebra B including A as a C^{*}-subalgebra of B with a common unit and conditional expectation E of B onto A with Index $E=2$. Let \mathcal{L} be the set of all such pairs (B, E) as above. We define an equivalence relation \sim in \mathcal{L} as follows: for $(B, E),\left(B_{1}, E_{1}\right) \in \mathcal{L},(B, E) \sim\left(B_{1}, E_{1}\right)$ if and only if there is an isomorphism π of B onto B_{1} such that $\pi(a)=a$ for any $a \in A$ and $E_{1} \circ \pi=E$. We denote by $[B, E]$ the equivalence class of (B, E).

Let \mathcal{M} be the set of all involutive A - A-equivalence bimodules. We define an equivalence relation \sim in \mathcal{M} as follows: for $X, Y \in \mathcal{M}, X \sim Y$ if and only if there is an A - A-equivalence bimodule isomorphism ρ of X onto Y with $\rho\left(x^{\sharp}\right)=\rho(x)^{\sharp}$. We call ρ an involutive $A-A$-equivalence bimodule isomorphism of X onto Y. We denote by $[X]$ the equivalence class of X.
3.1. CONSTRUCTION OF A MAP FROM \mathcal{L} / \sim TO \mathcal{M} / \sim. We shall use the same notations as in Section 2.

Let B be a unital C^{*}-algebra and A a C^{*}-subalgebra of B with a common unit. Let E be a conditional expectation of B onto A with Index $E=2$. Then, by Watatani [12] and Corollary 2.2, we have:
(1) $e_{A} C^{*}\left\langle B, e_{A}\right\rangle e_{A}=A e_{A} \cong A$;
(2) $\left(1-e_{A}\right) C^{*}\left\langle B, e_{A}\right\rangle\left(1-e_{A}\right)=A\left(1-e_{A}\right) \cong A$.

Let ψ be an isomorphism of A onto $A e_{A}$ defined by $\psi(a)=a e_{A}$ for any $a \in A$ and ϕ an isomorphism of A onto $A\left(1-e_{A}\right)$ defined by $\phi=\widehat{\beta} \circ \psi$. Let $X_{(B, E)}=X_{B}=$ $e_{A} C^{*}\left\langle B, e_{A}\right\rangle\left(1-e_{A}\right)$. We regard X_{B} as a Hilbert A - A-bimodule in the following way: for any $a, b \in A$ and $x \in X_{B}, a \cdot x \cdot b=\psi(a) x \phi(b)=a x b$. For any $x, y \in X_{B}$, ${ }_{A}\langle x, y\rangle=\psi^{-1}\left(x y^{*}\right),\langle x, y\rangle_{A}=\phi^{-1}\left(x^{*} y\right)$.

Lemma 3.1. With the above notations, X_{B} is an $A-A$-equivalence bimodule.
Proof. This is immediate by routine computations.
Let $x \mapsto x^{\sharp}$ be a conjugate linear map on X_{B} defined by $x^{\sharp}=\widehat{\beta}\left(x^{*}\right)$ for any $x \in X_{B}$. Since $\widehat{\beta}^{2}=\operatorname{id},\left(x^{\sharp}\right)^{\sharp}=x$. Since $\widehat{\beta}(a)=a$ for any $a \in A,(a \cdot x$. $b)^{\sharp}=\widehat{\beta}\left(b^{*} x^{*} a^{*}\right)=b^{*} \cdot x^{\sharp} \cdot a^{*}$ for $x \in X, a, b \in A$. Furthermore, for $x, y \in X_{B}$ ${ }_{A}\left\langle x, y^{\sharp}\right\rangle=\left\langle x^{\sharp}, y\right\rangle_{A}$ by an easy calculation. Therefore X_{B} is an element in \mathcal{M}.

REMARK 3.2. \widetilde{X}_{B} is isomorphic to $\left(1-e_{A}\right) C^{*}\left\langle B, e_{A}\right\rangle e_{A}$ as A - A-equivalence bimodules. Indeed, the map $\left(1-e_{A}\right) C^{*}\left\langle B, e_{A}\right\rangle e_{A} \ni\left(1-e_{A}\right) x e_{A} \mapsto e_{A} \widetilde{x^{*}\left(1-e_{A}\right)}$, $x \in C^{*}\left\langle B, e_{A}\right\rangle$ gives an A-A-equivalence bimodule isomorphism of $\left(1-e_{A}\right) C^{*}$ $\left\langle B, e_{A}\right\rangle e_{A}$ onto \widetilde{X}_{B}, where \widetilde{y} means y viewed as an element in \widetilde{X}_{B} for any $y \in X_{B}$. Sometimes, we identify \widetilde{X}_{B} with $\left(1-e_{A}\right) C^{*}\left\langle B, e_{A}\right\rangle e_{A}$.

Let \mathcal{F} be a map from \mathcal{L} / \sim to \mathcal{M} / \sim defined by $\mathcal{F}([B, E])=\left[X_{B}\right]$ for any $[B, E] \in \mathcal{L} / \sim$.

Lemma 3.3. With the above notations, \mathcal{F} is well-defined.
Proof. Let $(B, E),\left(B_{1}, E_{1}\right) \in \mathcal{L}$ with $(B, E) \sim\left(B_{1}, E_{1}\right)$. Let X_{B} and $X_{B_{1}}$ be elements in \mathcal{M} defined by (B, E) and $\left(B_{1}, E_{1}\right)$, respectively. Since $(B, E) \sim\left(B_{1}, E_{1}\right)$, there is an isomorphism π of B onto B_{1} such that $\pi(a)=a$ for any $a \in A$ and $E_{1} \circ \pi=E$. Let $\tilde{\pi}$ be a homomorphism of the linear span of $\left\{b e_{A} c: b, c \in B\right\}$ to $C^{*}\left\langle B_{1}, e_{A, 1}\right\rangle$ defined by $\tilde{\pi}\left(b e_{A} c\right)=\pi(b) e_{A, 1} \pi(c)$ for any $b, c \in B$. Then, for $b_{i}, c_{i} \in B(i=1,2, \ldots, n)$ and $a \in B$, we have:

$$
\begin{aligned}
\left\|\widetilde{\pi}\left(\sum_{i=1}^{n} b_{i} e_{A} c_{i}\right) \pi(a)\right\|^{2} & =\left\|\sum_{i=1}^{n} \pi\left(b_{i}\right) E_{1}\left(\pi\left(c_{i} a\right)\right)\right\|^{2} \\
& =\left\|\sum_{i, j=1}^{n} E_{1}\left(\pi\left(a^{*} c_{i}^{*}\right)\right) E_{1}\left(\pi\left(b_{i}^{*} b_{j}\right)\right) E_{1}\left(\pi\left(c_{j} a\right)\right)\right\| \\
& =\left\|\sum_{i, j=1}^{n} E\left(a^{*} c_{i}^{*}\right) E\left(b_{i}^{*} b_{j}\right) E\left(c_{j} a\right)\right\|
\end{aligned}
$$

On the other hand

$$
\left\|\sum_{i=1}^{n} b_{i} e_{A} c_{i} a\right\|^{2}=\left\|\sum_{i=1}^{n} b_{i} E\left(c_{i} a\right)\right\|^{2}=\left\|\sum_{i, j=1}^{n} E\left(a^{*} c_{i}^{*}\right) E\left(b_{i}^{*} b_{j}\right) E\left(c_{j} a\right)\right\|
$$

Hence

$$
\begin{aligned}
\left\|\tilde{\pi}\left(\sum_{i=1}^{n} b_{i} e_{A} c_{i}\right)\right\| & =\sup \left\{\left\|\tilde{\pi}\left(\sum_{i=1}^{n} b_{i} e_{A} c_{i}\right) \pi(a)\right\|:\left\|E_{1}\left(\pi(a)^{*} \pi(a)\right)\right\|=1, a \in B\right\} \\
& =\sup \left\{\left\|\sum_{i=1}^{n} b_{i} e_{A} c_{i} a\right\|:\left\|E\left(a^{*} a\right)\right\|=1, a \in B\right\}=\left\|\sum_{i=1}^{n} b_{i} e_{A} c_{i}\right\|
\end{aligned}
$$

Thus $\tilde{\pi}$ can be extended to an isomorphism of $C^{*}\left\langle B, e_{A}\right\rangle$ onto $C^{*}\left\langle B_{1}, e_{A, 1}\right\rangle$. Hence $\tilde{\pi}$ is an involutive $A-A$-equivalence bimodule isomorphism of X_{B} onto $X_{B_{1}}$ since $\tilde{\pi}\left(e_{A}\right)=e_{A, 1}$. In fact, for $a \in A$ and $x \in C^{*}\left\langle B, e_{A}\right\rangle$

$$
\tilde{\pi}\left(a \cdot e_{A} x\left(1-e_{A}\right)\right)=e_{A, 1} a \cdot \pi(x)\left(1-e_{A, 1}\right)=a \cdot \tilde{\pi}\left(e_{A} x\left(1-e_{A}\right)\right) .
$$

Similarly

$$
\tilde{\pi}\left(e_{A} x\left(1-e_{A}\right) \cdot a\right)=\tilde{\pi}\left(e_{A} x\left(1-e_{A}\right)\right) \cdot a .
$$

Also, for $x, y \in C^{*}\left\langle B, e_{A}\right\rangle$, we have:

$$
\begin{aligned}
{ }_{A}\left\langle\tilde{\pi}\left(e_{A} x\left(1-e_{A}\right)\right), \tilde{\pi}\left(e_{A} y\left(1-e_{A}\right)\right)\right\rangle & =\left(\psi_{1}^{-1} \circ \tilde{\pi}\right)\left(e_{A} x\left(1-e_{A}\right) y^{*} e_{A}\right) \\
& ={ }_{A}\left\langle e_{A} x\left(1-e_{A}\right), e_{A} y\left(1-e_{A}\right)\right\rangle \\
\left\langle\widetilde{\pi}\left(e_{A} x\left(1-e_{A}\right)\right), \widetilde{\pi}\left(e_{A} y\left(1-e_{A}\right)\right)\right\rangle_{A} & =\phi^{-1}\left(\left(1-e_{A}\right) x^{*} e_{A} y\left(1-e_{A}\right)\right) \\
& =\left\langle e_{A} x\left(1-e_{A}\right), e_{A} y\left(1-e_{A}\right)\right\rangle_{A},
\end{aligned}
$$

since $\psi_{1}^{-1}=\widetilde{\pi} \circ \psi$ and $\tilde{\pi} \circ \widehat{\beta}=\widehat{\beta}_{1} \circ \tilde{\pi}$. Furthermore, for any $x \in C^{*}\left\langle B, e_{A}\right\rangle$

$$
\begin{aligned}
\widetilde{\pi}\left(\left(e_{A} x\left(1-e_{A}\right)\right)^{\sharp}\right) & =\widetilde{\pi}\left(e_{A} \widehat{\beta}(x)^{*}\left(1-e_{A}\right)\right) \\
& =\left(e_{A, 1} \widetilde{\pi}(x)\left(1-e_{A, 1}\right)\right)^{\sharp}=\widetilde{\pi}\left(e_{A} x\left(1-e_{A}\right)\right)^{\sharp} .
\end{aligned}
$$

Therefore $X_{B} \sim X_{B_{1}}$ in \mathcal{M}.
3.2. CONSTRUCTION OF A map from $\mathcal{M} / \sim \operatorname{TO} \mathcal{L} / \sim$. Let $X \in \mathcal{M}$. Following Brown, Green and Rieffel [2], we can define the linking algebra L for an $A-A$ equivalence bimodule X. Let

$$
L_{0}=\left\{\left[\begin{array}{ll}
a & x \\
\widetilde{y} & b
\end{array}\right]: a, b \in A, x, y \in X\right\}
$$

where \widetilde{y} means y viewed as an element in the dual bimodule \widetilde{X} of X. In the same way as in Brown, Green and Rieffel [2] we can see that L_{0} is a $*$-algebra. Also we regard L_{0} as a $*$-subalgebra acting on the right Hilbert A-module $X \oplus A$. Hence we can define an operator norm in L_{0} acting on $X \oplus A$. We define L as the above operator norm closure of L_{0}. But, since X is complete, in this case $L=L_{0}^{-}=L_{0}$. Let B_{X} be a subset of L defined by

$$
B_{X}=\left\{\left[\begin{array}{cc}
a & x \\
\widetilde{x}^{\sharp} & a
\end{array}\right]: a \in A, x \in X\right\}
$$

By direct computations, we can see that B_{X} is a $*$-subalgebra of L and since X is complete, B_{X} is closed in L, that is, B_{X} is a C^{*}-subalgebra of L. We regard A
as a C^{*}-subalgebra $\left\{\left[\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right]: a \in A\right\}$ of B_{X}. Let E_{X} be a linear map of B_{X} onto A defined by $E_{X}\left(\left[\begin{array}{cc}a & x \\ \widetilde{x}^{\sharp} & a\end{array}\right]\right)=\left[\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right]$ for any $\left[\begin{array}{cc}a & x \\ \widetilde{x}^{\sharp} & a\end{array}\right] \in B_{X}$. Then by easy computations E_{X} is a conditional expectation of B_{X} onto A.

Lemma 3.4. With the above notations, Index $E_{X}=2$.
Proof. There are elements $z_{1}, \ldots, z_{n}, y_{1}, \ldots, y_{n} \in X$ such that $\sum_{i=1}^{n}\left\langle z_{i}, y_{i}\right\rangle_{A}=$ 1 by Rieffel ([11], the proof of Proposition 2.1) since X is an $A-A$-equivalence bimodule. For $i=1,2, \ldots, n$ let w_{i} be an element in X with $w_{i}=z_{i}^{\sharp}$. Then

$$
\left\{\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\right\} \cup\left\{\left(\left[\begin{array}{cc}
0 & w_{i} \\
\widetilde{w}_{i}^{\sharp} & 0
\end{array}\right],\left[\begin{array}{cc}
0 & y_{i} \\
\widetilde{y}_{i}^{\sharp} & 0
\end{array}\right]\right): i=1,2, \ldots, n\right\}
$$

is a quasi-basis for E_{X} by direct computations. In fact, for $\left[\begin{array}{cc}a & x \\ \widetilde{x}^{\sharp} & a\end{array}\right] \in B_{X}$

$$
\begin{aligned}
& E_{X}\left(\left[\begin{array}{cc}
a & x \\
\tilde{x}^{\sharp} & a
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right], \\
& E_{X}\left(\left[\begin{array}{cc}
a & x \\
\widetilde{x}^{\sharp} & a
\end{array}\right]\left[\begin{array}{cc}
0 & w_{i} \\
\widetilde{w}_{i}^{\sharp} & 0
\end{array}\right]\right)\left[\begin{array}{cc}
0 & y_{i} \\
\tilde{y}_{i}^{\sharp} & 0
\end{array}\right]=\left[\begin{array}{cc}
0 & A\left\langle x, w_{i}^{\sharp}\right\rangle y_{i} \\
\left\langle x^{\sharp}, w_{i}\right\rangle_{A} \tilde{y}_{i}^{\sharp} & 0
\end{array}\right] .
\end{aligned}
$$

Also,

$$
\begin{aligned}
& \left.\sum_{i=1}^{n}{ }_{A}\left\langle x, w_{i}^{\sharp}\right\rangle y_{i}=\sum_{i=1}^{n} x\left\langle w_{i}^{\sharp}, y_{i}\right\rangle\right\rangle_{A}=x, \\
& \sum_{i=1}^{n}\left\langle x^{\sharp}, w_{i}\right\rangle_{A} \widetilde{y}_{i}^{\sharp}=\sum_{i=1}^{n}{ }_{A}\left\langle x, w_{i}^{\sharp}\right\rangle \widetilde{y}_{i}^{\sharp}=\sum_{i=1}^{n} V\left({ }_{A}\left\langle x, w_{i}^{\sharp}\right\rangle y_{i}\right)=\widetilde{x}^{\sharp},
\end{aligned}
$$

where V is an $A-A$-equivalence bimodule isomorphism defined in Lemma 2.9. Hence
$E_{X}\left(\left[\begin{array}{cc}a & x \\ \widetilde{x}^{\sharp} & a\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\right)\left[\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right]+\sum_{i=1}^{n} E\left(\left[\begin{array}{cc}a & x \\ \widetilde{x}^{\sharp} & a\end{array}\right]\left[\begin{array}{cc}0 & w_{i} \\ \widetilde{w}_{i}^{\sharp} & 0\end{array}\right]\right)\left[\begin{array}{cc}0 & y_{i} \\ \widetilde{y}_{i}^{\sharp} & 0\end{array}\right]=\left[\begin{array}{cc}a & x \\ \widetilde{x}^{\sharp} & a\end{array}\right]$.
Similarly

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] E_{X}\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
a & x \\
\widetilde{x}^{\sharp} & a
\end{array}\right]\right)+\sum_{i=1}^{n}\left[\begin{array}{cc}
0 & w_{i} \\
\widetilde{w}_{i}^{\sharp} & 0
\end{array}\right] E\left(\left[\begin{array}{cc}
0 & y_{i} \\
\widetilde{y}_{i}^{\sharp} & 0
\end{array}\right]\left[\begin{array}{cc}
a & x \\
\widetilde{x}^{\sharp} & a
\end{array}\right]\right)=\left[\begin{array}{cc}
a & x \\
\widetilde{x}^{\sharp} & a
\end{array}\right] .
$$

Thus

$$
\text { Index } E_{X}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\sum_{i=1}^{n}\left[\begin{array}{cc}
0 & w_{i} \\
\widetilde{w}_{i}^{\sharp} & 0
\end{array}\right]\left[\begin{array}{cc}
0 & y_{i} \\
\widetilde{y}_{i}^{\sharp} & 0
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right] .
$$

REMARK 3.5. Let e be an element in $L\left(=L_{0}\right)$ defined by $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$. Then it is obvious that for any $b \in B_{X}, e b e=E_{X}(b) e$. Furthermore the map $\left[\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right] \mapsto$ $e\left[\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right]=\left[\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right]$ for $a \in A$ is injective. And hence L is the C^{*}-basic construction of $A \subset B$ by Watatani [12].

Let \mathcal{G} be a map from \mathcal{M} / \sim to \mathcal{L} / \sim defined by $\mathcal{G}([X])=\left[B_{X}, E_{X}\right]$ for any $[X] \in \mathcal{M} / \sim$.

Lemma 3.6. \mathcal{G} is well-defined.
Proof. Let $X, X_{1} \in \mathcal{M}$ with $X \sim X_{1}$. Let $\left(B_{X}, E_{X}\right)$ and $\left(B_{X_{1}}, E_{X_{1}}\right)$ be elements in \mathcal{L} induced by X and X_{1}, respectively. Since $X \sim X_{1}$, there is an involutive A -A-equivalence bimodule isomorphism ρ of X onto X_{1}. Let π be a map of B_{X} to $B_{X_{1}}$ defined by for any $\left[\begin{array}{cc}a & x \\ \widetilde{x}^{\sharp} & a\end{array}\right] \in B_{X}, \pi\left(\left[\begin{array}{cc}a & x \\ \widetilde{x}^{\sharp} & a\end{array}\right]\right)=\left[\begin{array}{cc}\frac{a}{\rho(x) \sharp} & \rho(x) \\ \rho\end{array}\right]$. Then it is clear that π is linear. For $\left[\begin{array}{cc}a & x \\ \widetilde{x}^{\sharp} & a\end{array}\right] \in B_{X}$,

$$
\pi\left(\left[\begin{array}{cc}
a & x \\
\widetilde{x}^{\sharp} & a
\end{array}\right]\right)^{*}=\left[\begin{array}{cc}
\frac{a}{\rho(x)} & \rho(x) \\
\sharp
\end{array}\right]^{*}=\left[\begin{array}{cc}
\frac{a^{*}}{\rho(x)} & \rho\left(x^{\sharp}\right) \\
a^{*}
\end{array}\right]=\pi\left(\left[\begin{array}{cc}
a & x \\
\widetilde{x}^{\sharp} & a
\end{array}\right]^{*}\right) .
$$

Also for $\left[\begin{array}{cc}a & x \\ \widetilde{x}^{\sharp} & a\end{array}\right]$ and $\left[\begin{array}{cc}b & y \\ \widetilde{y}^{\sharp} & b\end{array}\right] \in B_{X}$,

$$
\pi\left(\left[\begin{array}{cc}
a & x \\
\widetilde{x}^{\sharp} & a
\end{array}\right]\left[\begin{array}{cc}
b & y \\
\widetilde{y}^{\sharp} & b
\end{array}\right]\right)=\left[\begin{array}{cc}
a b+{ }_{A}\left\langle x, y^{\sharp}\right\rangle & \rho(a y+x b) \\
\rho(\widehat{x b+a y})^{\#} & \left\langle x^{\sharp}, y\right\rangle_{A}+a b
\end{array}\right],
$$

and

$$
\begin{aligned}
\pi\left(\left[\begin{array}{cc}
a & x \\
\widetilde{x}^{\sharp} & a
\end{array}\right]\right) \pi\left(\left[\begin{array}{cc}
b & y \\
\widetilde{y}^{\sharp} & b
\end{array}\right]\right) & =\left[\begin{array}{cc}
a b+{ }_{A}\left\langle\rho(x), \rho\left(y^{\sharp}\right)\right\rangle & \rho(a y+x b) \\
\rho(x b+a y)^{\sharp} & \left\langle\rho\left(x^{\sharp}\right), \rho(y)\right\rangle_{A}+a b
\end{array}\right] \\
& =\left[\begin{array}{cc}
a b+{ }_{A}\left\langle x, y^{\sharp}\right\rangle & \rho(a y+x b) \\
\rho(x b+a y)^{\sharp} & \left\langle x^{\sharp}, y\right\rangle_{A}+a b
\end{array}\right] \\
& =\pi\left(\left[\begin{array}{cc}
a & x \\
\widetilde{x}^{\sharp} & a
\end{array}\right]\left[\begin{array}{cc}
b & y \\
\widetilde{y}^{\sharp} & b
\end{array}\right]\right) .
\end{aligned}
$$

Hence π is a homomorphism of B_{X} to $B_{X_{1}}$. Furthermore, by the definition of π, π is a bijection and $\pi\left(\left[\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right]\right)=\left[\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right]$ for any $a \in A$. And for $\left[\begin{array}{cc}a & x \\ \widetilde{x}^{\sharp} & a\end{array}\right] \in B_{X}$

$$
\left(E_{1} \circ \pi\right)\left(\left[\begin{array}{cc}
a & x \\
\widetilde{x}^{\sharp} & a
\end{array}\right]\right)=E_{1}\left(\left[\begin{array}{cc}
\frac{a}{\rho(x)^{\sharp}} & \rho(x) \\
\hline
\end{array}\right]\right)=\left[\begin{array}{cc}
a & 0 \\
0 & a
\end{array}\right]=E\left(\left[\begin{array}{cc}
a & x \\
\widetilde{x}^{\sharp} & a
\end{array}\right]\right) .
$$

3.3. BiJection between \mathcal{L} / \sim and \mathcal{M} / \sim. In this subsection, we shall show that $\mathcal{F} \circ \mathcal{G}=\operatorname{id}_{\mathcal{M} / \sim}$ and $\mathcal{G} \circ \mathcal{F}=\mathrm{id}_{\mathcal{L} / \sim}$.

LEMMA 3.7. Let (B, E) be an element in \mathcal{L} and $C^{*}\left\langle B, e_{A}\right\rangle$ the basic construction for (B, E). Then for each $x \in C^{*}\left\langle B, e_{A}\right\rangle$, there uniquely exists $b \in B$ such that $e_{A} x=$ $e_{A} b$.

Proof. Let $x=\sum_{i} b_{i} e_{A} c_{i}$, where $b_{i}, c_{i} \in B$. Then $e_{A} x=\sum_{i} e_{A} b_{i} e_{A} c_{i}=\sum_{i} e_{A} E\left(b_{i}\right) c_{i}$ $=e_{A} \sum_{i} E\left(b_{i}\right) c_{i}$. And hence $b=\sum_{i} E\left(b_{i}\right) c_{i}$. If $e_{A} b=e_{A} b^{\prime}$, where $b, b^{\prime} \in B$, then

$$
b=\frac{1}{2} \widetilde{E}\left(e_{A} b\right)=\frac{1}{2} \widetilde{E}\left(e_{A} b^{\prime}\right)=b^{\prime}
$$

where \widetilde{E} is the dual conditional expectation of $C^{*}\left\langle B, e_{A}\right\rangle$ onto B. Thus we obtain the conclusion.

Let (B, E) be an element in \mathcal{L}. Let B_{-}be a linear subspace of B defined by

$$
B_{-}=\{b \in B: E(b)=0\}=\{b \in B: \beta(b)=-b\},
$$

where β is an automorphism of B defined in Proposition 2.4. By a routine computation we can see that B_{-}is an element in \mathcal{M} with the involution $x^{\sharp}=x^{*}$ and the left and the right A-valued inner products defined by

$$
{ }_{A}\langle x, y\rangle=E\left(x y^{*}\right), \quad\langle x, y\rangle_{A}=E\left(x^{*} y\right) \quad \text { for } x, y \in B_{-} .
$$

LEMMA 3.8. With the above notations, $B_{-} \sim X_{B}$ i.e., $\left[B_{-}\right]=\left[X_{B}\right]$ in \mathcal{M} / \sim.
Proof. By Lemma 3.7, we can define a map φ from $C^{*}\left\langle B, e_{A}\right\rangle$ to B by $e_{A} x=$ $e_{A} \varphi(x)$. For $e_{A} x\left(1-e_{A}\right) \in X_{B}$, we have

$$
e_{A} x\left(1-e_{A}\right)=e_{A} \varphi(x)-e_{A} E(\varphi(x))=e_{A}(\varphi(x)-E(\varphi(x))) .
$$

And hence $\varphi\left(e_{A} x\left(1-e_{A}\right)\right)=\varphi(x)-E(\varphi(x)) \in B_{-}$. It is easy to see that $\left.\varphi\right|_{X_{B}}$ is an A - A-bimodule isomorphism of X_{B} onto B_{-}. Furthermore for $e_{A} x\left(1-e_{A}\right), e_{A} y(1-$ $\left.e_{A}\right) \in X_{B}$,

$$
\begin{aligned}
{ }_{A}\left\langle e_{A} x\left(1-e_{A}\right), e_{A} y\left(1-e_{A}\right)\right\rangle & =\psi^{-1}\left(E\left((\varphi(x)-E(\varphi(x)))(\varphi(y)-E(\varphi(y)))^{*}\right) e_{A}\right) \\
& =E\left((\varphi(x)-E(\varphi(x)))(\varphi(y)-E(\varphi(y)))^{*}\right) \\
& ={ }_{A}\langle\varphi(x)-E(\varphi(x)), \varphi(y)-E(\varphi(y))\rangle .
\end{aligned}
$$

Similarly, $\left\langle e_{A} x\left(1-e_{A}\right), e_{A} y\left(1-e_{A}\right)\right\rangle_{A}=\langle\varphi(x)-E(\varphi(x)), \varphi(y)-E(\varphi(y))\rangle_{A}$. And

$$
\begin{aligned}
\varphi\left(\left(e_{A} x\left(1-e_{A}\right)\right)^{\sharp}\right) & =\varphi\left(\widehat{\beta}\left(e_{A} x\left(1-e_{A}\right)\right)^{*}\right)=\varphi\left(\widehat{\beta}\left(\left(1-e_{A}\right) \varphi(x)^{*} e_{A}\right)\right) \\
& =\varphi\left(e_{A} \varphi(x)^{*}\left(1-e_{A}\right)\right)=\varphi(x)^{*}-E\left(\varphi(x)^{*}\right) \\
& =(\varphi(x)-E(\varphi(x)))^{*}=\varphi\left(e_{A} x\left(1-e_{A}\right)\right)^{*} .
\end{aligned}
$$

Hence $X_{B} \sim B_{-}$in \mathcal{M}.
Lemma 3.9. $\mathcal{G} \circ \mathcal{F}=\mathrm{id}_{\mathcal{L} / \sim}$.

Proof. For $(B, E) \in \mathcal{L}$, it is easy to see that $\mathcal{G}\left(\left[B_{-}\right]\right)=[B, E]$. Since $\left[X_{B}\right]=$ $\left[B_{-}\right]$by the previous lemma, $\mathcal{G} \circ \mathcal{F}([B, E])=\mathcal{G}\left(\left[X_{B}\right]\right)=[B, E]$. Thus the lemma is proved.

Lemma 3.10. $\mathcal{F} \circ \mathcal{G}=\mathrm{id}_{\mathcal{M} / \sim}$.
Proof. For $X \in \mathcal{M}$,

$$
\left(B_{X}\right)_{-}=\left\{x \in B_{X}: E_{X}(x)=0\right\}=\left\{\left[\begin{array}{cc}
0 & x \\
\widetilde{x}^{\sharp} & 0
\end{array}\right]: x \in X\right\}
$$

So it is easy to see that $\left[\left(B_{X}\right)_{-}\right]=[X]$. And hence by Lemma 3.8

$$
\mathcal{F} \circ \mathcal{G}([X])=\mathcal{F}\left(\left[B_{X}, E_{X}\right]\right)=\left[\left(B_{X}\right)_{-}\right]=[X]
$$

THEOREM 3.11. There is a 1-1 correspondence between \mathcal{L} / \sim and \mathcal{M} / \sim.
Proof. This is immediate by Lemmas 3.9 and 3.10.

4. APPLICATIONS

4.1. CONSTRUCTION OF INVOLUTIVE EQUIVALENCE BIMODULES BY $2 \mathbb{Z}$-INNER C^{*}-DYNAMICAL SYSTEMS. Let A be a unital C^{*}-algebra and (A, \mathbb{Z}, α) a $2 \mathbb{Z}$-inner C^{*}-dynamical system which means that (A, \mathbb{Z}, α) is a C^{*}-dynamical system and that there is a unitary element $z \in A$ with $\alpha(z)=z$ and $\alpha^{2}=\operatorname{Ad}(z)$. In this case, we can form the restricted crossed product $A \rtimes_{\alpha / 2 \mathbb{Z}} \mathbb{Z}$ in the sense of P. Green [4]. Let X_{α} be the vector space A with the obvious left action of A on X_{α} and the obvious left A-valued inner product, but we define the right action of A on X_{α} by $x \cdot a=x \alpha(a)$ for any $x \in X_{\alpha}$ and $a \in A$, and the right A-valued inner product by $\langle x, y\rangle_{A}=\alpha^{-1}\left(x^{*} y\right)$ for any $x, y \in X_{\alpha}$.

Lemma 4.1. We can define an involution $x \mapsto x^{\sharp}$ on X_{α} by

$$
x^{\sharp}=\alpha\left(x^{*}\right) z,
$$

where z is a unitary element of A with $\alpha(z)=z$ and $\alpha^{2}=\operatorname{Ad}(z)$.
Proof. Since $\alpha(z)=z$ and $\alpha^{2}=\operatorname{Ad}(z)$, by routine computations, we can see that the map $x \mapsto x^{\sharp}$ defined by $x^{\sharp}=\alpha\left(x^{*}\right) z$ is an involution on X_{α}.

Proposition 4.2. With the above notations, we suppose that A is simple. Let $B_{X_{\alpha}}$ be a C^{*}-algebra defined by X_{α} and L the linking algebra for X_{α} defined in Section 2. Then the following conditions are equivalent:
(i) $B_{X_{\alpha}}$ is simple;
(ii) $A^{\prime} \cap B_{X_{\alpha}}=\mathbb{C} \cdot 1$;
(iii) $B_{X_{\alpha}}^{\prime} \cap L=\mathbb{C} \cdot 1$;
(iv) α is an outer automorphism of A.

Proof. (i) \Rightarrow (ii): By Proposition $2.4, B_{X_{\alpha}}^{\beta}=A$. Since A is simple, by Pedersen ([10], Proposition 8.10.12) β is outer. Hence by Pedersen ([10], Proposition 8.10.13) $A^{\prime} \cap B_{X_{\alpha}}=\mathbb{C} \cdot 1$.
(ii) \Leftrightarrow (iii): By Watatani ([12], Proposition 2.7.3) $A^{\prime} \cap B_{X_{\alpha}}$ is anti-isomorphic to $B_{X_{\alpha}}^{\prime} \cap C^{*}\left\langle B_{X_{\alpha}}, e_{A}\right\rangle$. This implies the conclusion.
(ii) \Rightarrow (iv): We suppose that there is a unitary element $w \in A$ such that $\alpha=\operatorname{Ad}(w)$ Then for any $a \in A$

$$
w \cdot a=w \alpha(a)=a w=a \cdot w
$$

So it is easy to see that

$$
\left[\begin{array}{cc}
0 & w \\
\widetilde{w}^{\sharp} & 0
\end{array}\right] \in A^{\prime} \cap B_{X_{\alpha}} .
$$

This is a contradiction. Thus α is outer.
(iv) \Rightarrow (i): We can identify L with the C^{*}-basic constraction of $A \subset B_{X_{\alpha}}$ by Remark 3.5. Let β be an automorphism of $B_{X_{\alpha}}$ defined in the same way as in Proposition 2.4 and let $\widehat{\beta}$ be its dual automorphism. Then $L^{\widehat{\beta}}=B_{X_{\alpha}}$ by Lemma 2.8. We suppose that $\widehat{\beta}$ is inner. Then there is a unitary element $w=$ $\left[\begin{array}{ll}a & x \\ \widetilde{y} & b\end{array}\right] \in L$ such that $\widehat{\beta}=\operatorname{Ad}(w)$. Hence for any $c \in A$

$$
\widehat{\beta}\left(\left[\begin{array}{ll}
c & 0 \\
0 & 0
\end{array}\right]\right)=\left[\begin{array}{ll}
a & x \\
\widetilde{y} & b
\end{array}\right]\left[\begin{array}{ll}
c & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
a & x \\
\widetilde{y} & b
\end{array}\right]^{*} .
$$

Hence we obtain that

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & c
\end{array}\right]=\left[\begin{array}{cc}
\frac{a c a^{*}}{a c^{*} \cdot y} & \left\langle c^{*} \cdot y, y\right\rangle_{A}
\end{array}\right]
$$

for any $c \in A$. Put $c=1$. Then $a=0$ and $\langle y, y\rangle_{A}=1$. Since w is a unitary element, by a routine computation we can see that $b=0$ and ${ }_{A}\langle y, y\rangle=1$. This implies that y is a unitary element in A. Since $c=\left\langle c^{*} \cdot y, y\right\rangle_{A}=\alpha\left(y^{*} c y\right)=\alpha(y)^{*} \alpha(c) \alpha(y)$ for any $c \in A, \alpha$ is inner. This is a contradiction. Hence $\widehat{\beta}$ is outer. Since L and A are stably isomorphic by Brown, Green and Rieffel [2], L is simple. By Pedersen ([10], Theorem 8.10.12) $B_{X_{\alpha}}=L^{\widehat{\beta}}$ is simple.

LEMMA 4.3. Let (A, \mathbb{Z}, α) be a $2 \mathbb{Z}$-inner dynamical system with $\alpha(z)=z$ and $\alpha^{2}=\operatorname{Ad}(z)$, where z is a unitary element in A. Let B be the restricted crossed product $A \rtimes_{\alpha / 2 \mathbb{Z}} \mathbb{Z}$ associated with (A, \mathbb{Z}, α) and E the canonical conditional expectation of B onto A. Then $X_{B} \cong X_{\alpha}$ as involutive A-A-equivalence bimodules, where X_{B} is an involutive A - A-equivalence bimodule induced by (B, E).

Proof. We may assume that A acts on a Hilbert space H. By Olesen and Pedersen ([9], Proposition 3.2) we also assume that B acts on the induced Hilbert
space $\operatorname{Ind}_{2 \mathbb{Z}}^{\mathbb{Z}}(H)$. Let

$$
C=\left\{\left[\begin{array}{cc}
a & x \\
\alpha(x z) & \alpha(a)
\end{array}\right] \in M_{2}(A): a, x \in A\right\} .
$$

Since A acts on H, we can put C as a C^{*}-algebra acting on $H \oplus H$. We claim that $B \cong C$. Indeed, let ρ be a map from $K(\mathbb{Z}, A, z)$ to C defined by for any $f \in K(\mathbb{Z}, A, z)$

$$
\rho(f)=\left[\begin{array}{cc}
f(0) & f(1) \\
\alpha(f(1) z) & \alpha(f(0))
\end{array}\right]
$$

where $K(\mathbb{Z}, A, z)$ is a $*$-algebra of all functions $f: \mathbb{Z} \longrightarrow A$ satisfying that $f(n-$ $2 m)=f(n) z^{m}$ for any $m, n \in \mathbb{Z}$ (see [9]). Then by routine computations ρ is a homomorphism of $K(\mathbb{Z}, A, z)$ to C. Let U be a map from $\operatorname{Ind}_{2 \mathbb{Z}}^{\mathbb{Z}}(H)$ to $H \oplus H$ defined by $U \xi=\xi(0) \oplus \xi(1)$ for any $\xi \in K(\mathbb{Z}, A, z)$. Then by an easy computaion U is a unitary operator of $\operatorname{Ind}_{2 \mathbb{Z}}^{\mathbb{Z}}(H)$ onto $H \oplus H$. Moreover, for any $f \in K(\mathbb{Z}, A, z)$, $\rho(f)=U f U^{*}$. Hence ρ is an isometry of $K(\mathbb{Z}, A, z)$ to C and we can extend ρ to an isomorphism of B onto C since $K(\mathbb{Z}, A, z)$ is dense in B. Thus $B \cong C$. Let F be a linear map of C onto A defined by $F\left(\left[\begin{array}{cc}a & x \\ \alpha(x z) & \alpha(a)\end{array}\right]\right)=\left[\begin{array}{cc}a & 0 \\ 0 & \alpha(a)\end{array}\right]$ for any $\left[\begin{array}{cc}a & x \\ \alpha(x z) & \alpha(a)\end{array}\right] \in C$, where we identify A with a C^{*}-algebra $\left\{\left[\begin{array}{cc}a & 0 \\ 0 & \alpha(a)\end{array}\right]: a \in A\right\}$. Then by an easy computation $(B, E) \sim(C, F)$ in \mathcal{L}. Let $\left(B_{X_{\alpha}}, E_{X_{\alpha}}\right)$ be an element in \mathcal{L} induced by the involutive $A-A$-equivalence bimodule X_{α}. Let Φ be a map from C to $B_{X_{\alpha}}$ defined by

$$
\Phi\left(\left[\begin{array}{cc}
a & x \\
\alpha(x z) & \alpha(a)
\end{array}\right]\right)=\left[\begin{array}{cc}
a & x \\
\widetilde{x}^{\sharp} & a
\end{array}\right]
$$

for any $\left[\begin{array}{cc}a & x \\ \alpha(x z) & \alpha(a)\end{array}\right] \in C$. Then by routine computations Φ is an isomorphism of C onto $B_{X_{\alpha}}$ with $F=E_{X_{\alpha}} \circ \Phi$. Thus $(B, E) \sim\left(B_{X_{\alpha}}, E_{X_{\alpha}}\right)$. By Theorem 3.11, $X_{B} \sim X_{\alpha}$ in \mathcal{M}.

Let B be a unital C^{*}-algebra and A a C^{*}-subalgebra of B with a common unit. Let E be a conditional expectation of B onto A with Index $E=2$. For any $n \in \mathbb{N}$ let M_{n} be the $n \times n$-matrix algebra over \mathbb{C} and $M_{n}(A)$ the $n \times n$-matrix algebra over A. Let $\left\{\left(x_{i}, x_{i}^{*}\right)\right\}_{i=1}^{n}$ be a quasi-basis for E. We define $q=\left[q_{i j}\right] \in M_{n}(A)$ by $q_{i j}=E\left(x_{i}^{*} x_{j}\right)$. Then by Watatani [12], q is a projection and $C^{*}\left\langle B, e_{A}\right\rangle \simeq q M_{n}(A) q$. Let π be an isomorphism of $C^{*}\left\langle B, e_{A}\right\rangle$ onto $q M_{n}(A) q$ defined by

$$
\pi\left(a e_{A} b\right)=\left[E\left(x_{i}^{*} a\right) E\left(b x_{j}\right)\right] \in M_{n}(A)
$$

for any $a, b \in B$. Especially for any $b \in B, \pi(b)=\left[E\left(x_{i}^{*} b x_{j}\right)\right]$ since $\sum_{i=1}^{n} x_{i} e_{A} x_{i}^{*}=1$.
Proposition 4.4. With the above notations, the following conditions are equivalent:
(i) e_{A} and $1-e_{A}$ are equivalent in $C^{*}\left\langle B, e_{A}\right\rangle$;
(ii) there exists a unitary element $u \in B$ such that $\left\{(1,1),\left(u, u^{*}\right)\right\}$ is a quasi-basis for E;
(iii) there exists a $2 \mathbb{Z}$-inner C^{*}-dynamical system (A, \mathbb{Z}, α) such that $X_{\alpha} \sim X_{B}$.

Proof. (i) \Rightarrow (ii): We suppose that there is a partial isometry $v \in C^{*}\left\langle B, e_{A}\right\rangle$ such that $v^{*} v=e_{A}, v v^{*}=1-e_{A}$. Then $v e_{A} v^{*}=1-e_{A}$. By Lemma 3.7, there exists an element u in B such that $v e_{A}=u e_{A}$ and hence $u e_{A} u^{*}=1-e_{A}$. Let \widetilde{E} be the dual conditional expectation for E. Then

$$
u u^{*}=2 \widetilde{E}\left(u e_{A} u^{*}\right)=2 \widetilde{E}\left(1-e_{A}\right)=1
$$

Therefore u is a co-isometry element in B. Since $e_{A} u^{*} u e_{A}=e_{A} v^{*} v e_{A}=e_{A}$, we have $E\left(u^{*} u\right)=1$ and $E\left(1-u^{*} u\right)=0$. And hence $u^{*} u=1$ i.e., u is a unitary element in B. For any $x \in B$

$$
x e_{A}=\left(e_{A}+u e_{A} u^{*}\right) x e_{A}=E(x) e_{A}+u E\left(u^{*} x\right) e_{A}=\left(E(x)+u E\left(u^{*} x\right)\right) e_{A}
$$

Thus $x=E(x)+u E\left(u^{*} x\right)$ by Lemma 3.7. Similarly, $x=E(x)+E(x u) u^{*}$. This implies that $\left\{(1,1),\left(u, u^{*}\right)\right\}$ is a quasi-basis for E.
(ii) \Rightarrow (i): We suppose that $\left\{(1,1),\left(u, u^{*}\right)\right\}$ is a quasi-basis for E and that u is a unitary element in B. Then

$$
u=E(u)+u E\left(u^{*} u\right)=E(u)+u
$$

This implies that $E(u)=0$. Hence

$$
q=\left[\begin{array}{cc}
E(1 \cdot 1) & E(u) \\
E\left(u^{*}\right) & E\left(u^{*} u\right)
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

Therefore $C^{*}\left\langle B, e_{A}\right\rangle \simeq M_{2}(A)$. Furthermore

$$
\pi\left(e_{A}\right)=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \quad \pi\left(1-e_{A}\right)=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

And hence $e_{A} \sim\left(1-e_{A}\right)$ in $C^{*}\left\langle B, e_{A}\right\rangle$.
(ii) \Rightarrow (iii): We suppose that $\left\{(1,1),\left(u, u^{*}\right)\right\}$ is a quasi-basis for E and that u is a unitary element in B. Then in the same way as above $E(u)=0$. For any $a \in A$

$$
u a u^{*}=E\left(\text { uau }^{*}\right)+E\left(\text { uau }^{*} u\right) u^{*}=E\left(u^{*} u^{*}\right)+E(u) a u^{*}=E\left(u^{*} u^{*}\right)
$$

Therefore $u A u^{*}=A$. Let α be an automorphism of A defined by $\alpha(a)=u a u^{*}$ for any $a \in A$. Since $u^{2}=E\left(u^{2}\right)+u E\left(u^{*} u^{2}\right)=E\left(u^{2}\right), u^{2}$ is an element in A. Therefore (A, \mathbb{Z}, α) is a $2 \mathbb{Z}$-inner C^{*}-dynamical system. It is easy to see that

$$
X_{\alpha} \sim A u=B_{-}=\{b \in B: E(b)=0\}
$$

By Lemma 3.8, $X_{\alpha} \sim X_{B}$.
(iii) \Rightarrow (ii) : We suppose that there exists a $2 \mathbb{Z}$-inner C^{*}-dynamical system (A, \mathbb{Z}, α) such that $X_{\alpha} \sim X_{B}$. By the previous lemma, we may suppose that $B=$ $A \rtimes_{\alpha / 2 \mathbb{Z}} \mathbb{Z}$. Then there exists a unitary element $u \in B$ such that $\operatorname{Ad}(u)=\alpha$,
$u^{2} \in A$ and $E(u)=0$. By a routine computation we can see that $\left\{(1,1),\left(u, u^{*}\right)\right\}$ is a quasi-basis for E.

Corollary 4.5. Let θ be an irrational number in $(0,1)$ and A_{θ} the corresponding irrational rotation C^{*}-algebra. Let B be a unital C^{*}-algebra including A_{θ} as a C^{*} subalgebra of B with a common unit. We suppose that there is a conditional expectation E of B onto A_{θ} with $\operatorname{Index} E=2$. Then there is a $2 \mathbb{Z}$-inner C^{*}-dynamical system $\left(A_{\theta}, \mathbb{Z}, \alpha\right)$ such that $(B, E) \sim\left(A_{\theta} \rtimes_{\alpha / 2 \mathbb{Z}} \mathbb{Z}, F\right)$, where F is the canonical conditional expectation of $A_{\theta} \rtimes_{\alpha / 2 \mathbb{Z}} \mathbb{Z}$ onto A_{θ}.

Proof. Let e be the Jones projection induced by E. We can identify the basic construction $C^{*}\langle B, e\rangle$ with $q M_{n}\left(A_{\theta}\right) q$ in the same way as in the previous argument. Hence $C^{*}\langle B, e\rangle$ has the unique normalized trace τ and $\tau(e)=\tau(1-e)=\frac{1}{2}$. So it is easy to see that $e \sim 1-e$ in $C^{*}\langle B, e\rangle$ since A_{θ} has cancellation. Therefore we obtain the conclusion by the previous proposition.
4.2. ExAmples. In this subsection, let A_{θ} be as in Corollary 4.5 and let u, v be two unitary generators satisfying the commutation relation:

$$
u v=\mathrm{e}^{2 \pi \mathrm{i} \theta} v u
$$

EXAMPLE 4.6. Let $A_{2 \theta}$ be the C^{*}-subalgebra of A_{θ} generated by u^{2} and v. Then we can denote $A_{\theta}=\left\{x+y u: x, y \in A_{2 \theta}\right\}$. Let E be a map of A_{θ} onto $A_{2 \theta}$ defined by $E(x+y u)=x$. It is easy to see that E is a conditional expectation of A_{θ} onto $A_{2 \theta}$ with Index $E=2$ and a quasi-basis $\left\{(1,1),\left(u, u^{*}\right)\right\}$. Hence by Corollary 4.5, A_{θ} can be represented as the restricted crossed product $A_{2 \theta} \rtimes_{\alpha / 2 \mathbb{Z}}$ \mathbb{Z}, where α is an automorphism on $A_{2 \theta}$ defined by $\alpha=\operatorname{Ad}(u)$.

Suppose that A_{θ} can be represented as a crossed product $A_{2 \theta} \rtimes_{\beta} \mathbb{Z}_{2}$ for some \mathbb{Z}_{2}-action β on $A_{2 \theta}$. Then there exists a self-adjoint unitary element w in A_{θ} satisfying that $\beta=\operatorname{Ad}(w)$ and $A_{\theta}=\left\{x+y w: x, y \in A_{2 \theta}\right\}$. Let τ be the unique tracial state on A_{θ}. By the uniqueness of τ, we can see that $\tau(x+y w)=\tau(x)$. Let e be a projection in A_{θ} defined by $e=\frac{1}{2}(1+w)$. Then $\tau(e)=\frac{1}{2}$. This contradicts that $\tau\left(A_{\theta}\right)=(\mathbb{Z} \cap \theta \mathbb{Z}) \cap(0,1)$. Therefore A_{θ} can not be represented as a crossed product $A_{2 \theta} \rtimes_{\beta} \mathbb{Z}_{2}$ for any \mathbb{Z}_{2}-action β on $A_{2 \theta}$.

Example 4.7. Let σ be the involutive automorphism of A_{θ} determined by $\sigma(u)=u^{*}$ and $\sigma(v)=v^{*}$. Let C_{θ} denote the fixed point algebra $A_{\theta}^{\sigma}=\left\{x \in A_{\theta}\right.$: $\sigma(x)=x\}$ and B_{θ} the crossed product $A_{\theta} \rtimes_{\sigma} \mathbb{Z}_{2}$. Then B_{θ} is the basic construction of $C_{\theta} \subset A_{\theta}$. By Kumjian [8], K_{0}-group of $B_{\theta}, K_{0}\left(B_{\theta}\right)$ is isomorphic to \mathbb{Z}^{6}. By routine computations, we can see $[e] \neq[1-e]$ in $K_{0}\left(B_{\theta}\right)$, where e is the Jones projection for the inclusion $C_{\theta} \subset A_{\theta}$. Hence $e \nsim 1-e$ in B_{θ}. Therefore the inclusion $C_{\theta} \subset A_{\theta}$ can not be represented as the restricted crossed product $C_{\theta} \subset$ $C_{\theta} \rtimes_{\alpha / 2 \mathbb{Z}} \mathbb{Z}$ for any automorphism α on C_{θ} by Proposition 4.4.

Acknowledgements. The authors wish to thank the referee for some valuable suggestions for improvement of the manuscript, especially for improvement of the Introduction.

REFERENCES

[1] O. Bratteli, G.A. Elliott, D.E. Evans, A. Kishimoto, Non-commutative spheres. I, Internat. J. Math. 2(1991), 139-166.
[2] L.G. Brown, P. Green, M.A. Rieffel, Stable isomorphism and strong Morita equivalence of C^{*}-algebra, Pacific J. Math. 71(1977), 349-368.
[3] G.A. Elliott, M. RøRDAM, The automorphism group of the irrational rotation algebra, Comm. Math. Phys. 155(1993), 3-26.
[4] P. Green, The local structure of twisted covariance algebras, Acta Math. 140(1978), 191-250.
[5] M. Izumi, Inclusions of simple C*-algebras, J. Reine Angew. Math. 547(2002), 97-138.
[6] V. JONES, Index for subfactors, Invent. Math. 72(1983), 1-25.
[7] T. Kajiwara, Y. Watatani, Jones index theory by Hilbert C*-bimodules and Ktheory, Trans. Amer. Math. Soc. 352(2000), 3429-3472.
[8] A. Kumjian, On the K-theory of the symmetrized non-commutative torus, C. R. Math. Rep. Acad. Sci. Canada 12(1990), 87-89.
[9] D. Olesen, G.K. Pedersen, Partially inner C*-dynamical systems, J. Funct. Anal. 66(1986), 262-281.
[10] G.K. Pedersen, C^{*}-Algebras and their Automorphism Groups, Academic Press, London-New York 1979.
[11] M.A. Rieffel, C^{*}-algebra associated with irrational rotations, Pacific J. Math. 93(1981), 415-429.
[12] Y. Watatani, Index for C^{*}-subalgebras, Mem. Amer. Math. Soc. 424(1990).

KAZUNORI KODAKA, Department of Mathematical Sciences, Faculty of Science, Ryukyu University, Nishihara-cho, Okinawa 903-0213, Japan

E-mail address: kodaka@math.u-ryukyu.ac.jp
TAMOTSU TERUYA, Department of Mathematical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan

E-mail address: teruya@se.ritsumei.ac.jp

Received January 10, 2004; revised June 1, 2005 and June 10, 2005.

