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ABSTRACT. Let T = {T(t)}t>0 be a continuous semigroup of contractions on
a Hilbert space. We define A(T) as the closure of the set { f̂ (T) : f ∈ L1(R+)}

with respect to the operator-norm topology, where f̂ (T) =
∞∫
0

f (t)T(t)dt is the

Laplace transform of f ∈ L1(R+) with respect to the semigroup T. Then, A(T)
is a commutative Banach algebra. In this paper, we obtain some connections
between the radical of A(T) and the set {R ∈ A(T) : T(t)R → 0, strongly or in
norm, as t → ∞}. Similar problems for the algebras generated by a discrete
semigroup {Tn : n = 0, 1, 2, . . .} is also discussed, where T is a contraction.
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1. INTRODUCTION

Let A be a complex commutative Banach algebra. Its structure space is
MA = {φ : A → C : nonzero, continuous, linear, multiplicative} equipped with
the w∗-topology. The Gelfand transform of a ∈ A is defined by â : MA → C,
â(φ) = φ(a). The radical of A, denoted by Rad(A) is defined as

{a ∈ A : â(φ) = 0, φ ∈ MA}.

Rad(A) is precisely the set of all quasinilpotent elements in A. If Rad(A) = {0},
then A is said to be semisimple. By the definition, A is semisimple if and only if
the Gelfand transform is injective.

Let X be a complex Banach space and B(X), the algebra of all bounded
linear operators on X. Let A be a closed commutative subalgebra of B(X). It
follows from the spectral radius formula that Rad(A) = {R ∈ A : σ(R) = {0}}.
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Hence, A is semisimple if and only if it does not contain a non-zero operator with
zero spectrum.

If T ∈ B(X), we let A(T) denote the uniformly closed algebra generated by
T and the identity operator I. Then, A(T) is a commutative unital Banach algebra.
The structure space of A(T) can be identified with σA(T)(T), where σA(T)(T) is the
spectrum of T with respect to the algebra A(T). Note also that σA(T)(T) ⊃ σ(T).
By W(T) we will denote the weak operator closure of A(T). Clearly, W(T) ⊂
{T}′, the commutant of T.

Recall that a family T = {T(t)}t>0 in B(X) is called a C0-semigroup (or con-
tinuous semigroup) if the following properties are satisfied:

(1) T(0) = I;
(2) T(t + s) = T(t)T(s), for every t, s > 0;
(3) lim

t→0+
‖T(t)x − x‖ = 0, for all x ∈ X.

The generator of the C0-semigroup T = {T(t)}t>0 is the linear operator A
with domain D(A) defined by

Ax = lim
t→0+

1
t
(T(t)x − x), x ∈ D(A).

The generator is always a closed, densely defined operator. The C0-groups are
defined analogously to C0-semigroups, the only difference being that the role of
the index family t > 0 is replaced by t ∈ R. The generator of a C0-group T =
{T(t)}t>0 is defined as the generator of the associated C0-semigroup.

A C0-semigroup T = {T(t)}t>0 is said to be bounded if sup
t>0

‖T(t)‖ < ∞. If T

is a bounded C0-semigroup on a Banach space X, then

‖|x|‖ = sup
t>0

‖T(t)x‖

is an equivalent norm on X with respect to which T becomes a C0-semigroup of
contractions. Note also that if T = {T(t)}t>0 is a C0-semigroup of contractions
on a Banach space X, then for every x ∈ X, the limit lim

t→∞
‖T(t)x‖ exists and is

equal to inf
t>0

‖T(t)x‖.

Now let T = {T(t)}t>0 be a bounded C0-semigroup with generator A.
Then, the spectrum σ(A) of A belongs to the closed left half-plane. For Reλ > 0,
the resolvent is given by

R(λ, A) =
∞∫

0

exp(−λt)T(t)dt

([12], p. 6). σ(A) ∩ iR is called the unitary spectrum of the generator A.
Let L1(R+) be the space of all absolutely integrable measurable complex

functions on the half-line R+. L1(R+) is a commutative Banach algebra when
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convolution is taken as the multiplication, where “convolution” is defined by the
formula

( f ∗ g)(t) =
t∫

0

f (t − τ)g(τ)dτ.

L1(R+) can be considered (in the natural way) as a subalgebra of L1(R). The
Fourier transform f̂ (z) of f ∈ L1(R+), where

f̂ (z) =
∞∫

0

exp(−itz) f (t)dt,

is a function analytic in the open half-plane {z ∈ C : Imz < 0} and is a bounded
continuous function in the closed half-plane {z ∈ C : Imz 6 0}. Every complex
homomorphism φ on L1(R+) is of the form φ = φz, where φz( f ) = f̂ (z), Imz 6 0.
In this sense, the maximal ideal space of L1(R+) can be identified with the closed
left half-plane ([6], p. 115).

For a function f ∈ L1(R+), we put

f̂ (T) =
∞∫

0

f (t)T(t)dt.

The map f → f̂ (T) is a continuous algebra homomorphism of L1(R+) into B(X).
We define A(T) as the closure with respect to the operator-norm topology of the
set { f̂ (T) : f ∈ L1(R+)}. Then, A(T) is a commutative Banach algebra. The maxi-
mal ideal space of A(T) will be denoted by MT . If R ∈ A(T), its Gelfand transform
will be denoted as R̂. It can be easily verified that if the generator T of the C0-
semigroup T is bounded, then A(T) = A(T).

We define W(T) as the closure with respect to the weak operator topology
of A(T). It follows from the definition of the vector-valued integral that W(T) be-
longs to the closure with respect to the weak operator topology of all polynomials
c1T(t1) + · · ·+ cnT(tn) in T.

Let en(s) = 2nχ[0,1/.n](s) (n = 1, 2, . . .), where χ[0,1/.n](s) is the characteristic
function of the interval [0, 1/.n]. For t > 0, we define

et
n(s) =

{
en(s − t) s > t;
0 0 6 s < t.

It is easy to see that
∞∫

0

et
n(s)T(s)ds → T(t), strongly, as n → ∞.

This shows that T(t) ∈ W(T), so that W(T) coincides with the weak operator
closure of all polynomials in T. Hence, W(T) is a commutative Banach algebra
with the identity I.
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In this paper, we study the semisimplicity problem for the Banach algebras
defined above. In Section 2, we study the behavior of the radical of the algebras
A(T) and W(T). In Section 3, similar problems for the algebras generated by a
single bounded operator will be discussed.

2. THE BANACH ALGEBRA GENERATED BY A C0-SEMIGROUP

We shall need the following preliminary lemmas.

LEMMA 2.1. Let T = {T(t)}t>0 be a bounded C0-semigroup on a Banach space
with generator A. If z ∈ σ(A), then f̂ (iz) ∈ σ( f̂ (T)), for all f ∈ L1(R+).

Proof. Let f ∈ L1(R+) be given. As is well known σ(A) = σa(A) ∪ σr(A),
where σa(A) is the approximate point spectrum and σr(A), the residual spectrum
of A. If z ∈ σa(A), then there is a sequence (xn)n∈N of norm one vectors in D(A)
such that ‖Axn − zxn‖ → 0. This implies ([12], Proposition 2.1.6),

‖T(t)xn − exp(zt)xn‖ → 0, for all t > 0.

Consequently, we have

‖ f̂ (T)xn − f̂ (iz)xn‖ 6

∞∫
0

‖T(t)xn − exp(zt)xn‖ | f (t)|dt → 0, as n → ∞.

This shows that f̂ (iz) ∈ σ( f̂ (T)).
If z ∈ σr(A), then z ∈ σp(A∗), the point spectrum of A∗. Consequently,

A∗x∗ = zx∗ for some nonzero x∗ ∈ D(A∗). It follows that T(t)∗x∗ = eztx∗

([12], p. 31), for all t > 0. Hence, we have that f̂ (T)∗x∗ = f̂ (iz)x∗ and therefore,
f̂ (iz) ∈ σ( f̂ (T)).

LEMMA 2.2. Let T = {T(t)}t>0 be a bounded C0-semigroup on a Banach space
with generator A. Then, the map z → φz homeomorphically identifies σ(A) with a closed
subset of MT, where φz : A(T) → C is defined by

φz( f̂ (T)) = f̂ (iz), f ∈ L1(R+).

Proof. By Lemma 2.1 we have | f̂ (iz)| 6 ‖ f̂ (T)‖, for all f ∈ L1(R+) and
z ∈ σ(A). Since the set { f̂ (T) : f ∈ L1(R+)} is dense in A(T), it follows from
the above inequality that the homomorphism φz : f̂ (T) → f̂ (iz) can be extended
to an element of MT . It is easy to see that the map z → φz, of σ(A) into MT
is continuous and injective. Thus, it suffices to show that if {φzn}n∈N ⊂ MT
and φz ∈ MT are such that φzn → φz, in the usual topology of MT , then zn →
z. But if φzn → φz, then for every f ∈ L1(R+) we have f̂ (izn) → f̂ (iz) and
the conclusion follows from the fact that the maximal ideal space of L1(R+) is
homeomorphically identified with {z ∈ C, Imz 6 0}.
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Let T be a bounded C0-semigroup with generator A and let R ∈ A(T). It
follows from Lemma 2.2 that instead of R̂(φz)(= φz(R)), z ∈ σ(A), we can (and
will) write R̂(z).

Let U = {U(t)}t>0 be a C0-semigroup of unitary operators on a Hilbert
space. By the Stone Theorem

U(t) = exp(−itQ) =
∫
R

exp(−itλ)dE(λ),

where Q is a self-adjoint (possibly unbounded) operator and E(·), the spectral
measure associated with Q which is supported on σ(Q). It can be easily verified
that

f̂ (U) =
∫
R

f̂ (λ)dE(λ), f ∈ L1(R+).

From this and from Lemma 2.1 it follows that

(2.1) ‖ f̂ (U)‖ = sup
λ∈σ(Q)

| f̂ (λ)|.

This clearly implies that the algebra A(U) is semisimple.
The following example shows that there exists a bounded C0-semigroup on

a Hilbert space that generates a non-semisimple algebra.

EXAMPLE 2.3. Let V be the Volterra integration operator on the Hilbert
space L2[0, 1] and let T = {exp(−tV)}t>0. Notice that the exponential formula
([14], Theorem 1.8.3) yields ‖exp(−tV)‖ = 1, for all t > 0. On the other hand, V
is a nonzero quasinilpotent operator and V ∈ A(V) = A(T). This shows that the
algebra A(T) is not semisimple.

Let T = {T(t)}t>0 be a C0-semigroup of contractions on a Hilbert space H.
As is known ([17], Chapter 1, Theorem 8.1), there exists a Hilbert space K ⊃ H
and a C0-group of unitary operators U = {U(t)}t∈R on K such that

〈T(t)x, y〉 = 〈U(t)x, y〉,
for all t > 0 and x, y ∈ H. It follows that

〈 f̂ (T)x, y〉 = 〈 f̂ (U)x, y〉, f ∈ L1(R+).

From this and from the identity (2.1), we can write

‖ f̂ (T)‖ 6 ‖ f̂ (U)‖ 6 sup
λ∈R

| f̂ (λ)|.

Thus, we have that

‖ f̂ (T)‖ 6 sup
λ∈R

| f̂ (λ)|, for all f ∈ L1(R+).

This is the semigroup version of the von Neumann inequality.

PROPOSITION 2.4. If V = {V(t)}t>0 is a C0-semigroup of isometries on a Hilbert
space, then the algebra A(V) is semisimple.
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Proof. Let B be the generator of the semigroup V . If iR 6⊂ σ(B), then V
extends to a C0-group of unitary operators with generator B ([12], Lemma 2.8)
and therefore, the algebra A(V) is semisimple. Hence, we may assume that iR ⊂
σ(B). Let R ∈ RadA(V). Then, there exists a sequence ( fn)n∈N in L1(R+) such
that ‖ f̂n(T)− R‖ → 0, as n → ∞. It follows from Lemma 2.2 that φz( f̂n(T)) =
f̂n(iz) → 0, uniformly for z ∈ iR. By the semigroup version of the von Neumann
inequality we have ‖ f̂n(T)‖ → 0, so that R = 0.

Recall that T ∈ B(H) is called cyclic if it has a cyclic vector, that is, a vector
x ∈ H such that span{Tnx : n = 0, 1, 2, . . .} = H. Let T = {T(t)}t>0 be a C0-
semigroup on a Hilbert space H. T is called cyclic if it has a cyclic vector, that is,
a vector x ∈ H such that span{T(t)x : t > 0} = H. By {T}′ we will denote the
commutant of T:

{T}′ = {S ∈ B(H) : ST(t) = T(t)S, for all t > 0}.

Clearly, W(T) ⊂ {T}′.

PROPOSITION 2.5. If V = {V(t)}t>0 is a cyclic C0-semigroup of isometries on a
Hilbert space, then {T}′ = W(V) and the algebra W(V) is semisimple.

For the proof, some further information is needed. Here and throughout
the paper, we have written D = {z ∈ C : |z| < 1} and Γ = {z ∈ C : |z| = 1}.
A(D) will denote the disc-algebra. Now let T = {T(t)}t>0 be a C0-semigroup of
contractions on a Hilbert space H with generator A. The operator T defined by
T = (A + I)/(A − I) is a contraction on H and is called the cogenerator of T ([17],
Chapter 3, Section 8). For t > 0, let

et(z) = exp
(
t
z + 1
z − 1

)
=

∞

∑
k=1

ck(t)zk, z ∈ D.

Then,

T(t) = et(T) : = s- lim
r→1−

∞

∑
k=1

ck(t)rkTk

([17], Chapter 3, Theorem 8.1). It follows that if the semigroup T is cyclic, then its
cogenerator T is also cyclic.

Now, we claim that {T}′ = {T}′. Recall ([17], Chapter 3, Theorem 8.1) that
there exists a family { ft(z)}t>0 in A(D) such that

s- lim
t→0+

ft(T(t)) = T.

If T(t)R = RT(t) for some R ∈ B(H), then ft(T(t))R = R ft(T(t)), for all t > 0.
By letting t → 0+, we find that TR = RT. Conversely, if TR = RT, then et(T)R =
Ret(T), so that T(t)R = RT(t), for all t > 0.

Next, we claim that W(T) = W(T). Recall that W(T) is the weak operator
closure of all polynomials in T. Since T(t) = et(T), we have T(t) ∈ W(T), for all
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t > 0 and so W(T) ⊂ W(T). The reverse inclusion follows from the identity

T =
A + I
A − I

= s- lim
t→0+

T(t)− I + tI
T(t)− I − tI

.

Proof of Proposition 2.5. If V = {V(t)}t>0 is a cyclic C0-semigroup of isome-
tries, then its cogenerator V is a cyclic isometry ([17], Chapter 3, Proposition 9.2).
We know ([8]) that {V}′ = W(V) and the algebra W(V) is semisimple. Since
{V}′ = {V}′ and W(V) = W(V), we obtain that {V}′ = W(V) and the algebra
W(V) is semisimple.

One of the main results of this section is the following theorem.

THEOREM 2.6. Let T = {T(t)}t>0 be a C0-semigroup of contractions on a Hilbert
space H with generator A. If the Gelfand transform of R ∈ A(T) vanishes on the unitary
spectrum of A, then for every x ∈ H,

lim
t→∞

‖T(t)Rx‖ = 0.

For the proof we need some preliminary results.

LEMMA 2.7. Let H be a Hilbert space and let T = {T(t)}t>0 be a C0-semigroup
of contractions on H with generator A. Let K be a Hilbert space and let V = {V(t)}t>0
be a C0-semigroup of isometries on K. Assume that the following conditions are satisfied:

(i) There exists a bounded linear operator J : H → K such that

V(t)J = JT(t), for all t > 0;

(ii)‖ f̂ (V)‖ 6 ‖ f̂ (T)‖, for all f ∈ L1(R+).
If the Gelfand transform of R ∈ A(T) vanishes on the unitary spectrum of A, then
JR = 0.

Proof. Let B be the generator of V . First, we claim that σ(B) ∩ iR ⊂ σ(A).
Assume that iy ∈ σ(B), for some y ∈ R. It follows from the condition (ii) that
the mapping f̂ (T) → f̂ (V) can be extended to a contractive homomorphism h :
A(T) → A(V). We can see that h∗MV ⊂ MT . By Lemma 2.2 since φiy ∈ MV, we
have h∗φiy ∈ MT and

(h∗φiy)( f̂ (T)) = f̂ (−y).

It follows that

(2.2) | f̂ (−y)| 6 ‖ f̂ (T)‖, for all f ∈ L1(R+).

Let λ = x + iy be given, where x > 0. We put fλ(t) = exp(−λt)(t > 0).
Then,

f̂λ(T) =
∞∫

0

exp(−λt)T(t)dt = R(λ, A)
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and f̂λ(−y) = (λ − iy)−1 = 1/.x. In view of (2.2), we have

1
x

6 ‖R(x + iy, A)‖, for all x > 0.

By letting x → 0+, we find that ‖R(iy, A)‖ = ∞. This shows that iy ∈ σ(A).
Now let R ∈ A(T) be such that R̂(z) = 0 on σ(A) ∩ iR. Assume first that

iR ⊂ σ(A). Since R ∈ A(T), there exists a sequence ( fn)n∈N in L1(R+) such that
‖ f̂n(T)− R‖ → 0. Since R̂(z) = 0 on σ(A) ∩ iR = iR, it follows from Lemma 2.2
that φz( f̂n(T)) = f̂n(iz) → 0, uniformly for z ∈ iR. By semigroup version of the
von Neumann inequality, we have ‖ f̂n(T)‖ → 0, so that R = 0. Hence, we may
assume that iR 6⊂ σ(A).

Since σ(B)∩ iR ⊂ σ(A), it follows that σ(B)∩ iR is a proper subset of iR. By
Lemma 2.8 of [12] V extends to a C0-group of unitary operators U = {U(t)}t∈R
with generator B. Also, since σ(B) ⊂ iR, we have σ(B) ⊂ σ(A) ∩ iR. Further,
there exists a sequence ( fn)n∈N in L1(R+) such that ‖ f̂n(T)− R‖ → 0. It fol-
lows that φz( f̂n(T)) = f̂n(iz) → 0, uniformly for z ∈ σ(A) ∩ iR. Consequently,
f̂n(iz) → 0, uniformly for z ∈ σ(B). Since for every f ∈ L1(R+),

| f̂ (U)‖ = sup
z∈σ(B)

| f̂ (iz)|,

this implies ‖ f̂n(U)‖ → 0. Now, using (i) we can write f̂n(U)J = J f̂n(T). By
letting n → ∞, we obtain that JR = 0.

A C0-semigroup T = {T(t)}t>0 on a Banach space X is bounded away from
zero if inf

t>0
‖T(t)x‖ > 0, for all x ∈ X\{0} ([12], p. 180).

Let H be a Hilbert space. Recall that an operator Y ∈ B(H) is said to be a
quasi-affinity if Y has zero kernel and dense range. The operators T, S ∈ B(H) are
quasi-similar if there exist quasi-affinities Y1, Y2 ∈ B(H) for which TY1 = Y1S and
Y2T = SY2.

LEMMA 2.8. Let T = {T(t)}t>0 be a bounded C0-semigroup on a Hilbert space
H. If T is bounded away from zero, then there exist a quasi-affinity Y and a C0-semigroup
of isometries V = {V(t)}t>0 on H such that:

(i) YT(t) = V(t)Y, for all t > 0;
(ii) for every R in {T}′, there exists a (unique) R̃ in {V}′ such that R̃Y = YR and

‖R̃‖ 6 ‖R‖.

Proof. (i) Here, we follow basically the proof by Nagy-Foias ([17], Chapter 2,
Proposition 5.3) given there for discrete semigroups. Let C(R+) be the space of
all bounded continuous functions on R+. It is well known that the semigroup R+
is amenable namely, there exists a functional Φ ∈ C(R+)∗ such that:

(1) Φ(1) = 1, where 1 is the constant one function on R+;
(2) Φ( f ) > 0, for every f > 0;
(3) Φ( f t) = Φ( f ), where f t(s) = f (s + t).
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For given x, y ∈ H, let us consider the function fx,y on R+ defined by

fx,y(s) = 〈T(s)x, T(s)y〉.
It can be seen that fx,y ∈ C(R+). Note also that ω(x, y) = Φ( fx,y) is a bounded
sesquilinear form on H. Then, there exists Z ∈ B(H) such that ω(x, y) = 〈Zx, y〉.
If x = y 6= 0, then we have

〈Zx, x〉 = Φ(‖T(s)x‖2) > inf
s
‖T(s)x‖2 > 0.

Now, if we set Y = Z1/.2, clearly Y is a quasi-affinity and

‖Yx‖2 = Φ(‖T(s)x‖2) = Φ(‖T(s + t)x‖2)

= Φ(‖T(s)T(t)x‖2) = ‖YT(t)x‖2, x ∈ H.(2.3)

For given t > 0, we define an operator V0(t) on YH by V0(t)Yx = YT(t)x,
x ∈ H. Since ‖V0(t)Yx‖ = ‖Yx‖ and Y has dense range, V0(t) can be extended to
an isometry V(t) on H. Then, we have

YT(t) = V(t)Y, for all t > 0.

It can be easily verified that V = {V(t)}t>0 is a C0-semigroup of isometries.
Next, we prove (ii). Let R ∈ {T}′. Define an operator R̃0 on YH by R̃0Y =

YR. In view of (2.3), for any x ∈ H we can write

‖R̃0Yx‖2 = ‖YRx‖2 = Φ(‖T(t)Rx‖2) = Φ(‖RT(t)x‖2)

6 ‖R‖2Φ(‖T(t)x‖2) = ‖R‖2‖Yx‖2.

Since Y has dense range, R̃0 can be extended to whole H. If denote this extension
by R̃, then we have R̃Y = YR and ‖R̃‖ 6 ‖R‖. It remains to show that R̃ ∈ {V}′.
Since Y has dense range, from the identities

R̃V(t)Y = R̃YT(t) = YRT(t) = YT(t)R = V(t)YR = V(t)R̃Y (t > 0),

we deduce that R̃ ∈ {V}′.

Now, we are in a position to prove Theorem 2.6.

Proof of Theorem 2.6. Assume that the Gelfand transform of R ∈ A(T) van-

ishes on σ(A) ∩ iR. Let H0 =
{

x ∈ H : lim
t→∞

‖T(t)x‖ = 0
}

. Then, H0 is a closed

subspace of H invariant under T. We may assume that H0 6= H. Let K = H/.H0
and let π : H → K be the canonical surjection. Let T = {T(t)}t>0 be the in-
duced C0-semigroup on K defined by T(t)π = πT(t). Then, T is bounded away
from zero and ‖ f̂ (T)‖ 6 ‖ f̂ (T)‖, for all f ∈ L1(R+). Now, apply Lemma 2.8(i)
to this situation to obtain a quasi-affinity Y : K → K and a C0-semigroup of
isometries V = {V(t)}t>0 on K such that YT(t) = V(t)Y. Hence we have
YπT(t) = V(t)Yπ, for all t > 0. On the other hand, since Y f̂ (T) = f̂ (V)Y, it
follows from Lemma 2.8(ii) that ‖ f̂ (V)‖ 6 ‖ f̂ (T)‖, so that ‖ f̂ (V)‖ 6 ‖ f̂ (T)‖,
for all f ∈ L1(R+). Finally, apply Lemma 2.7 to the situation (H, T), (K, V) and
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J = Yπ to conclude that YπR = 0. Since Y has zero kernel, we have that πR = 0,
i.e., RH ⊂ H0.

As a corollary, we have the following special result.

COROLLARY 2.9. Let T = {T(t)}t>0 be a C0-semigroup of contractions on a
Hilbert space H with generator A. If R ∈ A(T) is a compact operator, then the Gelfand
transform of R vanishes on σ(A) ∩ iR if and only if

lim
t→∞

‖T(t)R‖ = 0.

Proof. Assume that ‖T(t)R‖ → 0 (t → ∞), for some R ∈ A(T). Let t >
0, iy ∈ σ(A)(y ∈ R) and f ∈ L1(R+) be given. By Lemma 2.2, there exists a
multiplicative functional φiy on A(T) such that φiy( f̂ (T)) = f̂ (−y). It follows that

φiy(T(t) f̂ (T)) = φiy( f̂t(T)) = f̂t(−y)

= exp(iyt) f̂ (−y) = exp(iyt)φiy( f̂ (T)),

where ft(s) is defined by ft(s) = f (s − t), if s > t and = 0, if 0 6 s < t. Since the
set { f̂ (T) : f ∈ L1(R+)} is dense in A(T), we have φiy(T(t)R) = exp(iyt)R̂(iy),
for all t > 0. It follows that

|R̂(iy)| = |φiy(T(t)R)| 6 ‖T(t)R‖ → 0, as t → ∞.

Now, assume that R ∈ A(T) is a compact operator and R̂(z) vanishes on
σ(A) ∩ iR. Fix ε > 0. Since the set {Rx : x ∈ H, ‖x‖ 6 1} is relatively compact, it
has a finite ε-mesh, say Rx1, . . . , Rxn, where ‖xi‖ 6 1 (i = 1, . . . , n). This clearly
implies

‖T(t)R‖ 6 max{‖T(t)Rxi‖ : i = 1, . . . , n}+ ε, for all t > 0.

From this and from Theorem 2.6 it follows that ‖T(t)R‖ → 0, as t → ∞.

For the bounded C0-semigroups we have the following theorem.

THEOREM 2.10. Let T = {T(t)}t>0 be a bounded C0-semigroup on a Hilbert
space, which is bounded away from zero. If the Gelfand transform of R ∈ A(T) vanishes
on the unitary spectrum of the generator of T, then R = 0.

Proof. This is an immediate consequence of Lemmas 2.7 and 2.8.

THEOREM 2.11. If T = {T(t)}t>0 is a cyclic C0-semigroup of contractions on a
Hilbert space H, then for every quasinilpotent R in {T}′ and x ∈ H,

lim
t→∞

‖T(t)Rx‖ = 0.

Proof. Let H0 =
{

x ∈ H : lim
t→∞

‖T(t)x‖ = 0
}

. Then, H0 is a closed subspace

of H invariant under {T}′. We may assume that H0 6= H. Let K = H/H0 and
let π : H → K be the canonical surjection. Let T = {T(t)}t>0 be the induced
semigroup on K defined by T(t)π = πT(t). Then, T is a bounded away from
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zero cyclic semigroup. Apply Lemma 2.8(i) to this situation to obtain a quasi-
affinity Y : K → K and a C0-semigroup of isometries V = {V(t)}t>0 on K such
that YT(t) = V(t)Y. It follows that V is a cyclic semigroup.

Note that any operator R in {T}′ generates an operator R in {T}′ defined
by Rπ = πR. Since ‖R‖ 6 ‖R‖, it follows from the spectral radius formula that
if σ(R) = {0}, then σ(R) = {0}. On the other hand, by Lemma 2.8(ii), for every
R in {T}′ there exists a unique R̃ in {V}′ such that YR = R̃Y and ‖R̃‖ 6 ‖R‖. It
follows that if σ(R) = {0}, then σ(R̃) = {0}.

Now let R be a quasinilpotent in {T}′. Then, R ∈ {T}′ and σ(R) = {0}.
Consequently, R̃ ∈ {V}′ and σ(R̃) = {0}. Since V is a cyclic semigroup, by
Proposition 2.5 we have R̃ = 0. This implies that YR = 0. Since Y has zero
kernel, we obtain R = 0, so that πR = 0, i.e., RH ⊂ H0.

3. THE BANACH ALGEBRA GENERATED BY A SINGLE OPERATOR

In this section, we shall discuss some results concerning the semisimplicity
problem for the algebras generated by a single bounded operator. For the proof
of the main results of this section, we shall need some preliminary results with
which we now proceed.

LEMMA 3.1. Let X be a Banach space and let T, R ∈ B(X), where σ(R) = {0}. If
(Pn(z))n∈N are polynomials such that Pn(T) → R, in the operator-norm topology, then
Pn(z) → 0, uniformly for z ∈ σ(T).

Proof. Since for every S ∈ A(T), σA(T)(S) = {φ(S) : φ ∈ MA(T)}, it follows
from the spectral radius formula that {φ(R) : φ ∈ MA(T)} = σA(T)(R) = {0}.
Also, since ‖Pn(T)− R‖ → 0, it follows that φ(Pn(T)) → φ(R), uniformly with
respect to φ ∈ MA(T). Taking into account the relation

φ(Pn(T)) = Pn(φ(T)) (φ ∈ MA(T)),

we have Pn(z) → 0, uniformly for z ∈ σA(T)(T). Since σA(T)(T) ⊃ σ(T), we
obtain that Pn(z) → 0, uniformly for z ∈ σ(T).

LEMMA 3.2. Let X be a Banach space and let T ∈ B(X). Then, A(T) is semisim-
ple if and only if A(T∗) is semisimple.

Proof. Assume that A(T∗) is semisimple. Let R ∈ RadA(T). Then, there
exists a sequence of polynomials (Pn(z))n∈N such that ‖Pn(T)− R‖ → 0. This
implies ‖Pn(T∗)− R∗‖ → 0. We see that R∗ ∈ A(T∗) and σ(R∗) = {0}. Since
A(T∗) is semisimple, we have R∗ = 0, so that R = 0.

Now, assume that A(T) is semisimple. Let R ∈ RadA(T∗). Then, there
exists a sequence of polynomials (Pn(z))n∈N such that ‖Pn(T∗)− R‖ → 0. This
implies ‖Pn(T∗∗)− R∗‖ → 0 and therefore, ‖Pn(T)− R∗|X .‖ → 0, where R∗|X . is
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the restriction of R∗ to X. We see that R∗|X . ∈ A(T). On the other hand, since
σ(R∗) = {0}, it follows from the spectral radius formula that σ(R∗|X .) = {0}.
Also, since A(T) is semisimple, we have R∗|X . = 0. Further, using the fact that X
is dense in X∗∗ in the σ(X∗∗, X∗)-topology, we obtain R∗ = 0, and so R = 0.

LEMMA 3.3. Let S be a (possibly unbounded) normal operator on a Hilbert space
H and let Y, T ∈ B(H), where Y has zero kernel and

TYx = YSx, for all x ∈ D(S).

Then, σ(S) ⊂ σ(T) and consequently, S is bounded.

Proof. Assume that there exists ξ ∈ σ(S), but ξ /∈ σ(T). We put δ =
‖(T − ξ)−1‖−1. Choose ε > 0 such that ε < δ. Let ∆ε = {z ∈ C : |z − ξ| < ε}
and let E(·) be the spectral measure associated with S. Since σ(S) ∩∆ε 6= ∅, we
have E(∆ε) 6= 0. Let x ∈ E(∆ε)H be such that ‖x‖ = 1. Then, x ∈ D(Sn) for all
n = 1, 2, . . .. From the identities

(S − ξ)nx =
∫
∆ε

(z − ξ)ndE(z)x, (n = 1, 2, . . .),

we have
‖(S − ξ)nx‖ 6 εn.

On the other hand, we can write

(T − ξ)nYx = Y(S − ξ)nx, for all n = 1, 2, . . . .

It follows that
‖(T − ξ)nYx‖ 6 εn‖Y‖.

Consequently, we have

‖Yx‖ 6 ‖(T − ξ)−n‖ ‖(T-ξ)nYx‖ 6
( ε

δ

)n
‖Y‖ → 0, as n → ∞.

Hence, Yx = 0. Since Y has zero kernel, we obtain x = 0. This is a contra-
diction.

Let T1, T2 ∈ B(H). An operator Y ∈ B(H) intertwines T2 and T1 if and only
if T1Y = YT2.

One of the main results of this section is the following theorem.

THEOREM 3.4. Let H be a Hilbert space and let T, S ∈ B(H), where S is a normal
operator. If there exists a quasi-affinity Y ∈ B(H) intertwining S and T (or T and S),
then the algebra A(T) is semisimple.

Proof. Let R ∈ RadA(T). Then, there exists a sequence of polynomials
(Pn(z))n∈N such that ‖Pn(T)− R‖ → 0. In view of Lemma 3.1, Pn(z) → 0, uni-
formly for z ∈ σ(T). By Lemma 3.3, σ(S) ⊂ σ(T) and therefore, Pn(z) → 0,
uniformly for z ∈ σ(S). Since S is a normal operator, ‖Pn(S)‖ → 0. Further, from
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the identity TY = YS we can write Pn(T)Y = YPn(S). By letting n → ∞, we find
that RY = 0. Since Y has dense range, we obtain R = 0.

If Y intertwines T and S, then Y∗ intertwines S∗ and T∗. Since S∗ is a normal
operator and Y∗ is a quasi-affinity, it follows from what we showed above that
A(T∗) is semisimple. Hence, by Lemma 3.2 the algebra A(T) is semisimple.

Let H be a Hilbert space. T ∈ B(H) is said to be essentially normal if TT∗ −
T∗T is a compact operator. We know that normal operators generate a semisimple
algebra. On the other hand, the Volterra operator is essentially normal but it
generates an algebra that is not semisimple.

We say that (see [10]) the sequence (Tn)n∈N in B(H) slowly converges to zero
if Tn → 0 in the weak operator topology and inf

n→∞
‖Tnx‖ > 0 for all x 6= 0.

COROLLARY 3.5. Let T be an essentially normal operator. Assume that both {T}′
and {T∗}′ contain sequences which converge slowly to zero. Then, the algebra A(T) is
semisimple.

Proof. As proved in [10], under the hypotheses of the corollary, T is quasi-
similar to some normal operator. It remains to apply Theorem 3.4.

It is a famous inequality of von Neumann that for every contraction T on
a Hilbert space and every polynomial P, ‖P(T)‖ 6 sup

z∈Γ

|P(z)|. Von Neumann’s

inequality is equivalent to the existence of a contractive disc-algebra functional
calculus. It follows that A(T) (respectively W(T)) coincides with the closure of
the set { f (T) : f ∈ A(D)} in the uniform operator topology (respectively weak
operator topology). Note also that for every ξ ∈ σ(T), there exists a multiplicative
functional φξ on A(T) such that φξ( f (T)) = f (ξ), f ∈ A(D).

THEOREM 3.6. Let T, S ∈ B(H), where S is a contraction and Γ ⊂ σ(T). As-
sume that for S and T (respectively for T and S) there exists an intertwining operator Y
with dense range (respectively with zero kernel). Then, the algebra A(T) is semisimple.

Proof. Let R ∈ RadA(T). Then, there exists a sequence (Pn(z))n∈N of poly-
nomials such that ‖Pn(T)− R‖ → 0. By Lemma 3.1, Pn(z) → 0, uniformly for
z ∈ σ(T). Since Γ ⊂ σ(T), Pn(z) → 0, uniformly for z ∈ Γ. It follows from the
von Neumann inequality that,

‖Pn(S)‖ 6 sup
z∈Γ

|Pn(z)| → 0, as n → ∞.

Further, from the identity TY = YS we can write Pn(T)Y = YPn(S). By letting
n → ∞, we obtain RY = 0. Since Y has dense range, we have that R = 0.

A theorem of Esterle-Strouse-Zouakia ([4], Theorem 3), states that if T is a
contraction on a Hilbert space and f ∈ A(D) vanishes on σ(T)∩ Γ, then it follows
lim

n→∞
‖Tn f (T)‖ = 0. We see that under these assumptions, the Lebesgue measure

of σ(T) ∩ Γ is necessarily zero.
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THEOREM 3.7. Let T be a contraction on a Hilbert space such that σ(T) ∩ Γ has
zero Lebesgue measure. Then, the Gelfand transform of R ∈ A(T) vanishes on σ(T)∩ Γ
if and only if

lim
n→∞

‖TnR‖ = 0.

Proof. Assume that ‖TnR‖ → 0 (n → ∞), for some R ∈ A(T). For an
arbitrary ξ ∈ σ(T) ∩ Γ there exists a multiplicative functional φξ on A(T) such
that φξ(T) = ξ and so since φξ has norm one,

|R̂(ξ)| = |φξ(TnR)| 6 ‖TnR‖ → 0, as n → ∞.

Now let R ∈ A(T) be such that R̂(ξ) = 0 on σ(T) ∩ Γ. Fix ε > 0. Since
R ∈ A(T), there exists a function f ∈ A(D) such that ‖R − f (T)‖ < ε. It follows
that sup

ξ∈σ(T)∩Γ

| f (ξ)| < ε. Since σ(T)∩ Γ has zero Lebesgue measure, by the Rudin-

Carleson Theorem ([1], Chapter 8, Theorem 7.4), there exists a function g ∈ A(D)
such that f (ξ) = g(ξ), for all ξ ∈ σ(T) ∩ Γ and ‖g‖ = sup

ξ∈σ(T)∩Γ

| f (ξ)| < ε. By the

von Neumann inequality, ‖g(T)‖ < ε. We put h = f − g. Then, we can write

‖R − h(T)‖ = ‖R − f (T) + g(T)‖ 6 ‖R − f (T)‖+ ‖g(T)‖ < 2ε.

This implies

‖TnR − Tnh(T)‖ < 2ε, for all n = 1, 2, . . . ,

so that

‖TnR‖ 6 ‖Tnh(T)‖+ 2ε, for all n = 1, 2, . . . .

Since h(ξ) = 0 on σ(T) ∩ Γ, by the Esterle-Strouse-Zouakia Theorem

‖Tnh(T)‖ → 0, as n → ∞.

Hence, we have that lim
n→∞

‖TnR‖ 6 2ε. Since ε was arbitrary, the theorem is

proved.

Recall that for the contraction T on a Hilbert space the discrete version of
Corollary 2.9 can be formulated as follows: If R ∈ A(T) is a compact operator
and if the Gelfand transform of R vanishes on σ(T) ∩ Γ, then lim

n→∞
‖TnR‖ → 0.

A partial converse of this fact is contained in the next theorem.

THEOREM 3.8. Let T be a completely non-unitary contraction on a Hilbert space
H such that σ(T) ∩ Γ has zero Lebesgue measure and let

dim(I − TT∗)H = dim(I − T∗T)H = 1.

If lim
n→∞

‖TnR‖ → 0, then the Gelfand transform of R ∈ A(T) vanishes on σ(T)∩ Γ and
R is a compact operator.
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Proof. Assume that ‖TnR‖ → 0, as n → ∞. As in the proof of Theorem 3.7
we can see that R̂(ξ) = 0, for all ξ ∈ σ(T) ∩ Γ. It remains to show that R is a
compact operator. Let us mention a theorem of Sz.-Nagy and Foias ([17], Chapter
2, Proposition 6.7) that if T is a completely non-unitary contraction with zero
Lebesgue measure of σ(T) ∩ Γ, then Tn → 0 and T∗n → 0 strongly. According
to the well known model theorem of Sz.-Nagy and Foias, T is unitary equivalent
to its model operator Mϕ = PϕS|Kϕ . acting on the model space Kϕ = H2–OϕH2,
where ϕ is an inner function, S f = z f is the shift operator on the Hardy space
H2 and Pϕ is the orthogonal projection of H2 onto Kϕ. It follows that for every
h ∈ A(D), the operator h(T) is unitary equivalent to h(Mϕ) = Pϕh(S)|Kϕ .

Fix ε > 0. Since R ∈ A(T), there exists a function f ∈ A(D) such that
‖R − f (T)‖ < ε. It follows that sup

ξ∈σ(T)∩Γ

| f (ξ)| < ε. Since σ(T) ∩ Γ has zero

Lebesgue measure, by the Rudin-Carleson Theorem ([1], Chapter 8, Theorem 7.4)
there exists a function g ∈ A(D) such that f (ξ) = g(ξ), for all ξ ∈ σ(T) ∩ Γ
and ‖g‖ = sup

ξ∈σ(T)∩Γ

| f (ξ)| < ε. In view of the von Neumann inequality, we

have ‖g(T)‖ < ε. Put h = f − g. Since h(ξ) = 0 on σ(T) ∩ Γ, by the Esterle-
Strouse-Zouakia Theorem, ‖Tnh(T)‖ → 0, as n → ∞. Hence, we have that
‖Mn

ϕh(Mϕ)‖ → 0. Now, by the Hartman-Sarason Theorem ([13], p. 235), h(Mϕ)
is a compact operator. Consequently, h(T) is a compact operator. On the other
hand,

‖R − h(T)‖ = ‖R − f (T) + g(T)‖ 6 ‖R − f (T)‖+ ‖g(T)‖ < 2ε.

It follows that R is a compact operator.
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