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ABSTRACT. We provide groupoid models for Toeplitz and Cuntz-Krieger al-
gebras of topological higher-rank graphs. Extending groupoid models used
in the theory of graph algebras and topological dynamical systems to our set-
ting, we prove results on essential freeness and amenability of the groupoids
which capture the existing theory, and extend results involving group crossed
products of graph algebras.
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1. INTRODUCTION

In recent years there has been significant interest in different generalizations
of Cuntz-Krieger algebras, including the C∗-algebras of higher-rank graphs [12],
[25], [26], [6], [30] and the C∗-algebras of topological graphs [10], [11]. In this
article, we use groupoid models to explore a common approach to both general-
izations.

We begin by introducing the notion of a topological higher-rank graph.
Given a topological graph Λ of rank k ∈ N, we define a topological path space
XΛ, which contains the finite paths of Λ together with paths which are infinite in
some or all of their k dimensions. There is a natural action of Λ on XΛ given by
concatenation and removal of initial path segments, and using this we define a
groupoid GΛ, called the path groupoid of Λ, which has XΛ as its unit space.

We identify a topological analogue of the finitely aligned condition of [26],
[6], [18], [30] called compactly aligned. If Λ fails to be compactly aligned, then
GΛ fails to be a topological groupoid: the range and source maps are not contin-
uous and the topology on GΛ is not locally compact. However, if Λ is compactly
aligned, then GΛ is a locally compact topological groupoid which is r-discrete in
the sense that the unit space G(0)

Λ is open in GΛ. Furthermore, GΛ admits a Haar
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system, and so we may define the full groupoid C∗-algebra C∗(GΛ), which we
refer to as the Toeplitz algebra of Λ.

We identify a closed invariant subset ∂Λ of G(0)
Λ = XΛ, called the boundary-

path space. The boundary-path groupoid of Λ is the reduction GΛ := GΛ|∂Λ: a
locally compact r-discrete groupoid admitting a Haar system. The Cuntz-Krieger
algebra of Λ is then defined to be the full groupoid C∗-algebra C∗(GΛ). When Λ is
a finitely aligned discrete k-graph or the finite-path space of a second-countable
topological graph, we recover the usual Toeplitz and Cuntz-Krieger algebras of
the graph.

We then consider an analogue of the Aperiodicity Condition used in [12].
We extend Proposition 4.5 of [12] and Proposition 7.2 of [6] to our setting, proving
that a compactly aligned topological k-graph Λ satisfies the Aperiodicity Condi-
tion if and only if GΛ is essentially free in the sense that the units with trivial
isotropy are dense in G(0)

Λ .
Next, we address amenability of the boundary-path groupoid, showing that

GΛ is amenable if Λ is either a finitely aligned discrete k-graph, a topological 1-
graph, or a proper topological k-graph without sources.

We end the article with a section on crossed products of topological k-graph
algebras by coactions, extending Theorem 2.4 of [9] and Corollary 5.3 of [12]. To
begin, given a topological k-graph Λ, a locally compact group A and a continuous
functor c : Λ → A, we define the notion of a skew-product topological k-graph
Λ×c A.

If A is abelian, then there are induced actions α of the dual group Â on
C∗(GΛ) and C∗(GΛ), and we extend Corollary 5.3 of [12], proving that the crossed
product C∗-algebras C∗(GΛ)×α Â and C∗(GΛ)×α Â are isomorphic to C∗(GΛ×c A)
and C∗(GΛ×c A), respectively.

If A is discrete, there are induced coactions δ of A on C∗(GΛ) and C∗(GΛ),
and we extend Theorem 2.4 of [9], proving that C∗(GΛ)×δ A ∼= C∗(GΛ×c A) and
C∗(GΛ)×δ A ∼= C∗(GΛ×c A).

2. TOPOLOGICAL HIGHER-RANK GRAPHS

DEFINITION 2.1. Given k ∈ N, a topological k-graph is a pair (Λ, d) consisting
of a small category Λ = (Obj(Λ), Mor(Λ), r, s) and a functor d : Λ → Nk, called
the degree map, which satisfy the following:

(i) Obj(Λ), Mor(Λ) are second-countable locally compact Hausdorff spaces;
(ii) r, s : Mor(Λ) → Obj(Λ) are continuous and s is a local homeomorphism;

(iii) composition ◦ : Λ×c Λ → Λ is continuous and open;
(iv) d is continuous, where Nk has the discrete topology;
(v) for all λ ∈ Λ and m, n ∈ Nk such that d(λ) = m + n, there exists unique

(ξ, η) ∈ Λ×c Λ such that λ = ξη, d(ξ) = m and d(η) = n.
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We refer to the morphisms of Λ as paths and to the objects of Λ as vertices. The
codomain and domain maps from Λ are called the range and source maps, re-
spectively.

NOTATION 2.2. For m ∈ Nk, we write mi for the ith coordinate of m. We
use the partial ordering 6 on Nk defined by m 6 n ⇐⇒ mi 6 ni for all i ∈
{1, . . . , k}, so least upper bounds and greatest lower bounds are given by (m ∨
n)i = max{mi, ni} and (m ∧ n)i = min{mi, ni}, respectively. For m ∈ Nk, define
Λm to be the set d−1({m}) of paths of degree m. Define Λ ∗s Λ := {(λ, µ) ∈
Λ×Λ | s(λ) = s(µ)}, and for U, V ⊂ Λ define U ∗s V := (U ×V)∩ (Λ ∗s Λ). For
p, q ∈ Nk, U ⊂ Λp and V ⊂ Λq, we write

U ∨V := UΛ(p∨q)−p ∩VΛ(p∨q)−q

for the set of minimal common extensions of paths from U and V. For λ, µ ∈ Λ, we
write

Λmin(λ, µ) := {(α, β) | λα = µβ, d(λα) = d(λ) ∨ d(µ)}
for the set of pairs which give minimal common extensions of λ and µ; that is,

Λmin(λ, µ) = {(α, β) | λα = µβ ∈ {λ} ∨ {µ}}.

DEFINITION 2.3. A topological k-graph (Λ, d) is compactly aligned if for all
p, q ∈ Nk and compact U ⊂ Λp and V ⊂ Λq, the set U ∨V is compact.

REMARK 2.4. A discrete k-graph (Λ, d) is finitely aligned if for all λ, µ ∈ Λ,
the set Λmin(λ, µ) is finite; these discrete k-graphs form the scope of the higher-
rank graph theory to date (see [26], [18], [6], [30]). As compactness is equivalent
to finiteness for discrete topologies, it follows that a discrete k-graph is compactly
aligned if and only if it is finitely aligned.

EXAMPLES 2.5. (i) Any higher-rank graph (as defined in [12], [26] etc.) may
be regarded as a topological higher-rank graph with discrete topologies on the
object and morphism sets.

(ii) Let E be a second-countable topological graph as defined in Definition 2.1
of [10]; that is, E = (E0, E1, r, s) is a directed graph with E0, E1 second-countable
locally compact Hausdorff spaces, r, s : E1 → E0 continuous, and s a local home-
omorphism. The free category generated by E, endowed with the relative topol-
ogy inherited from the union of the product topologies, together with the length
function l(e1 · · · en) = n, forms a topological 1-graph (E∗, l). Conversely, given
a topological 1-graph (Λ, d), the quadruple EΛ := (Λ0, Λ1, r|Λ1 , s|Λ1) is a second-
countable topological graph with ((EΛ)∗, l) ∼= (Λ, d).

(iii) Let (X, θ) be a singly generated dynamical system as defined in [2], [29];
that is, X is a second-countable locally compact Hausdorff space and θ is a local
homeomorphism from an open subset dom(θ) of X onto an open subset ran(θ)
of X. In Section 10.3 of [10], Katsura constructs a topological graph E(X, θ) by
setting E(X, θ)0 := X and E(X, θ)1 := dom(θ), and for x ∈ E(X, θ)1, setting
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r(x) := x and s(x) := θ(x). So, as was done for a general topological graph
in the previous example, we may form the topological 1-graph (Λ(X, θ), d) :=
(E(X, θ)∗, l). The following example generalizes this construction.

(iv) Let X be a second-countable locally compact Hausdorff space. For i =
1, . . . , k, let θi be a local homeomorphism from an open subset dom(θi) of X onto
an open subset ran(θi) of X, such that for all i, j ∈ {1, . . . , k},

dom(θjθi) = θ−1
i (ran(θi) ∩ dom(θj)) = θ−1

j (ran(θj) ∩ dom(θi)) = dom(θiθj)

and for x ∈ dom(θjθi),
θj(θi(x)) = θi(θj(x)).

We define a topological k-graph (Λ(X, {θi}k
i=1), d) by setting

Obj(Λ(X, {θi})) := X,

Mor(Λ(X, {θi})) := {(m, x) ∈ Nk × X | x ∈ dom(θm1
1 θm2

2 · · · θ
mk
k )}

=
⋃

m∈Nk

{m} × dom(θm1
1 · · · θ

mk
k ),

r(m, x) := x, s(m, x) := θm1
1 · · · θ

mk
k (x),

and
(m, x)(n, θm1

1 · · · θ
mk
k (x)) := (m + n, x),

giving Λ(X, {θi}k
i=1) the relative topology inherited from the product topology,

and setting d(m, x) := m.

3. THE PATH GROUPOID

We begin this section by associating a groupoid GΛ to each topological k-
graph (Λ, d). We first define the unit space G(0)

Λ as a space XΛ of paths of Λ; the
finite paths in XΛ are characterized by the morphisms λ ∈ Λ, however we must
also consider paths of Λ which are infinite in some or all of their k-dimensions.
To do this, we first define appropriate rank-k path prototypes for each and every
degree — finite, infinite and partially infinite — and then obtain XΛ as the set
of representations of the path prototypes. The morphisms of the category Λ are
then in correspondence with the representations of those path prototypes which
are finite in each of the k dimensions.

For k ∈ N and m ∈ (N ∪ {∞})k, define the topological k-graph (Ωk,m, d) by
giving the discrete topologies to the sets

Obj(Ωk,m) := {p ∈ Nk | p 6 m}

and
Mor(Ωk,m) := {(p, q) ∈ Nk ×Nk | p 6 q 6 m},

and setting r(p, q) := p, s(p, q) := q, (n, p) ◦ (p, q) := (n, q) and d(p, q) := q− p.
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Let (Λ1, d1) and (Λ2, d2) be topological k-graphs. A graph morphism between
Λ1 and Λ2 is a continuous functor x : Λ1 → Λ2 satisfying d2( f (λ)) = d1(λ) for
all λ ∈ Λ1.

DEFINITION 3.1. Let (Λ, d) be a topological k-graph. We define

XΛ :=
⋃

m∈(N∪{∞})k

{x : Ωk,m → Λ | x is a graph morphism}.

We extend the range and degree maps to x : Ωk,m → Λ in XΛ by setting r(x) :=
x(0) and d(x) := m. For v ∈ Λ0 we define vXΛ := {x ∈ XΛ | r(x) = v}.

NOTATION 3.2. For each λ ∈ Λ there is a unique graph morphism xλ :
Ωk,d(λ) → Λ such that xλ(0, d(λ)) = λ; in this sense, we may view Λ as a subset
of XΛ, and we refer to elements of XΛ as paths. Indeed, for λ ∈ Λ and p, q ∈ Nk

with 0 6 p 6 q 6 d(λ), we may write λ(0, p), λ(p, q) and λ(q, d(λ)) for the
unique elements of Λ which satisfy λ = λ(0, p)λ(p, q)λ(q, d(λ)), d(λ(0, p)) = p,
d(λ(p, q)) = q− p and d(λ(q, d(λ))) = d(λ)− q.

Straightforward arguments give the following lemma.

LEMMA 3.3. Let (Λ, d) be a topological k-graph. For x ∈ XΛ, m ∈ Nk with
m 6 d(x), and λ ∈ Λ with s(λ) = r(x), there exist unique paths λx and σmx in XΛ

satisfying d(λx) = d(λ) + d(x), d(σmx) = d(x)−m,

(λx)(0, p) =

{
λ(0, p) if p 6 d(λ),
λx(0, p− d(λ)) if d(λ) 6 p 6 d(λx),

and
(σmx)(0, p) = x(m, m + p) for p 6 d(σmx).

DEFINITION 3.4. Let (Λ, d) be a topological k-graph. Define the path groupoid
GΛ to be the groupoid with object set Obj(GΛ) := XΛ, morphism set

Mor(GΛ) := {(λx, d(λ)− d(µ), µx) ∈ XΛ ×Zk × XΛ |
(λ, µ) ∈ Λ ∗s Λ, x ∈ XΛ and s(λ) = r(x)}

= {(x, m, y) ∈ XΛ ×Zk × XΛ | there exist p, q ∈ Nk such that

p 6 d(x), q 6 d(y), p− q = m and σpx = σqy},

range and source maps r(x, m, y) := x and s(x, m, y) := y, composition

((x, m, y), (y, n, z)) 7→ (x, m + n, z),

and inversion (x, m, y) 7→ (y,−m, x).

NOTATION 3.5. Let (Λ, d) be a topological k-graph. For F ⊂ Λ ∗s Λ and
m ∈ Zk, define Z(F, m) ⊂ GΛ by

Z(F, m) := {(λx, d(λ)− d(µ), µx) ∈ GΛ | (λ, µ) ∈ F, d(λ)− d(µ) = m}.
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For U ⊂ Λ, define Z(U) ⊂ G(0)
Λ by

Z(U) := Z(U ∗s U, 0) ∩ Z(Λ0 ∗s Λ0, 0).

PROPOSITION 3.6. Let (Λ, d) be a topological k-graph. The family of sets of the
form

Z(U ∗s V, m) ∩ Z(F, m)c,

where m ∈ Zk, U, V ⊂ Λ are open and F ⊂ Λ ∗s Λ is compact, is a basis for a second-
countable Hausdorff topology on GΛ.

Proof. To see that the family of sets forms a basis, suppose

(x, m, y) ∈ (Z(U1 ∗s V1, m) ∩ Z(F1, m)c) ∩ (Z(U2 ∗s V2, m) ∩ Z(F2, m)c),

where m ∈ Zk, U1, U2, V1, V2 ⊂ Λ are open and F1, F2 ⊂ Λ ∗s Λ are compact. We
then have the existence of (λ, µ) ∈ U1 ∗s V1, (ξ, η) ∈ U2 ∗s V2 and w, z ∈ XΛ such
that

(x, m, y) = (λw, d(λ)− d(µ), µw) = (ξz, d(ξ)− d(η), ηz).

Hence the pair w, z extend λ, ξ and µ, η to common paths x and y, respectively,
and setting

α := w(0, (d(λ) ∨ d(ξ))− d(λ)) = w(0, (d(µ) ∨ d(η))− d(µ))

and
β := z(0, (d(λ) ∨ d(ξ))− d(ξ)) = z(0, (d(µ) ∨ d(η))− d(η)),

we have
λα = ξβ and µα = ηβ.

Let W1 ⊂ Λ be an open neighbourhood of α such that s|W1 is a homeomorphism,
and let W2 ⊂ Λ be an open neighbourhood of β such that s|W2 is a homeomor-
phism. Since composition is open, the sets U1W1, V1W1, U2W2, V2W2 ⊂ Λ are
open, and we have

(x, m, y) ∈ Z((U1W1 ∗s V1W1) ∩ (U2W2 ∗s V2W2), m) ∩ Z(F1 ∪ F2, m)c.

Furthermore, since s|W1 and s|W2 are homeomorphisms, it follows that

Z((U1W1 ∗s V1W1) ∩ (U2W2 ∗s V2W2), m) ∩ Z(F1 ∪ F2, m)c

⊂ (Z(U1 ∗s V1, m) ∩ Z(F1, m)c) ∩ (Z(U2 ∗s V2) ∩ Z(F2, m)c),

as required.
Second-countability is clear. It remains to show the topology is Hausdorff.

Let (w, m, x) and (y, n, z) be distinct elements of GΛ. If m 6= n, then (w, m, x) ∈
Z(Λ ∗s Λ, m), (y, n, z) ∈ Z(Λ ∗s Λ, n) and Z(Λ ∗s Λ, m) ∩ Z(Λ ∗s Λ, m) = ∅, so
we assume m = n. Furthermore, if r(w) 6= r(y), then taking open neighbour-
hoods U, V ⊂ Λ0 of r(w) and r(y), respectively, such that U ∩ V = ∅, we
have (w, m, x) ∈ Z(UΛ ∗s Λ, m), (y, m, z) ∈ Z(VΛ ∗s Λ, m) and Z(UΛ ∗s Λ, m) ∩
Z(VΛ ∗s Λ, m) = ∅. A similar argument holds if r(x) 6= r(z), so we assume
r(w) = r(y) and r(x) = r(z).
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We must have either w 6= y or x 6= z, so assume w 6= y. Let p ∈ Nk be
minimal with respect to the conditions: p 6 d(w) ∧ d(y), w(0, p) = y(0, p), and
w(0, p + ei) 6= y(0, p + ei) for some i ∈ {1, . . . , k}. We must have either d(w) >
p + ei or d(y) > p + ei: If both d(w) > p + ei and d(y) > p + ei, we can take open
neighbourhoods U, V ⊂ Λp+ei of w(0, p + ei) and y(0, p + ei), respectively, such
that U ∩ V = ∅. Then (w, m, x) ∈ Z(UΛ ∗s Λ, m), (y, m, z) ∈ Z(VΛ ∗s Λ, m) and
Z(UΛ ∗s Λ, m) ∩ Z(VΛ ∗s Λ, m) = ∅, so we assume d(w) > p + ei and d(y) 6>
p + ei.

Express (w, m, x) as (λw′, d(λ) − d(µ), µw′), where d(λ) > p + ei, and let
U ⊂ Λd(λ) and V ⊂ Λd(µ) be relatively compact open neighbourhoods of λ and
µ, respectively. Then (w, m, x) ∈ Z(U ∗s V, m), (y, m, z) ∈ Z(U ∗s V, m)c and
Z(U ∗s V, m) ∩ Z(U ∗s V, m)c = ∅, proving the topology is Hausdorff.

REMARK 3.7. If (Λ, d) is not compactly aligned, then the topology on GΛ

defined by Proposition 3.6 may not be locally compact, and, under this topology,
GΛ may not be a topological groupoid. To illustrate these two facts, we consider
two 2-graphs which fail to be compactly aligned. We describe the 2-graphs in
terms of their 1-skeletons as in Section 2 of [25].

Let (Λ1, d) be the discrete topological 2-graph with 1-skeleton:
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So λαj = µβ j for all j ∈ N. The sequence 〈(λαj, (1, 0), αj)〉j∈N converges to
(λ, (1, 0), s(λ)) in GΛ1 , but 〈r(λαj, (1, 0), αj)〉j∈N = 〈λαj〉j∈N does not converge

to r(λ, (1, 0), s(λ)) = λ in G(0)
Λ1

since {λ} = Z(λ) ∩ Z(µ)c. Therefore the range
map in GΛ1 is not continuous.

Now, taking a family of copies of Λ1 indexed by N, and identifying the path
λ from each, we obtain the 2-graph (Λ2, d) with 1-skeleton:
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So, λαi,j = µiβi,j for all i, j ∈ N. We claim that the unit λ ∈ G(0)
Λ2

has no compact

neighbourhood: First note that any neighbourhood of λ in G(0)
Λ2

contains a basis



102 TRENT YEEND

set of the form

Z(λ) ∩
n⋂

k=1

Z(µik )
c, where ik ∈ N for k = 1, . . . , n;

furthermore, given such a basis set, and choosing l ∈ N with l 6= ik for all k ∈
{1, . . . , n}, the family{

Z(λ) ∩
n⋂

k=1

Z(µik )
c ∩ Z(µl)c

}
∪ {Z(µl βl,j) | j ∈ N}

forms an infinite, disjoint, open cover which, consequently, has no finite subcover.
Hence the topology on GΛ2 is not locally compact.

The following two lemmas allow us to restrict the type of basis elements we
will need to consider. We omit the proof of the first lemma.

LEMMA 3.8 (cf. Remark 5.5 of [6]). Let (Λ, d) be a compactly aligned topological
k-graph. For any relatively compact U ⊂ Λ and compact F ⊂ Λ,

Z(U) ∩ Z(F)c = Z(U) ∩ Z(U ∨ F)c.

Thus, since Λ is locally compact and since the source map in Λ is a local homeomorphism,
we need only consider basis sets for G(0)

Λ of the form Z(U) ∩ Z(F)c, where U ⊂ Λ is
relatively compact and open, and F ⊂ Λ is compact and satisfies µ ∈ F implies µ = λµ′

for some λ ∈ U.

LEMMA 3.9. Let (Λ, d) be a compactly aligned topological k-graph. Let p, q ∈ Nk,
let U ⊂ Λp, V ⊂ Λq be relatively compact open sets, and let F ⊂ Λ ∗s Λ be compact.
There exists a compact set F′ ⊂ Λ ∗s Λ such that

Z(U ∗s V, p− q) ∩ Z(F, p− q)c = Z(U ∗s V, p− q) ∩ Z(F′, p− q)c

and

(ξ, η) ∈ F′ implies (ξ, η) = (λα, µα) for some (λ, µ) ∈ U ∗s V and α ∈ Λ.

Proof. We can assume d(ξ)− d(η) = m for all (ξ, η) ∈ F. Since F is compact,
there exist m1, . . . , ml ∈ Nk such that each mj > p− q and

F =
l⋃

j=1

F ∩ (Λmj ∗s Λmj−(p−q));

for j = 1, . . . , l, define Fj := F ∩ (Λmj ∗s Λmj−(p−q)) and

F′j := {(ξ, η) ∈ Λmj∨p ∗s Λ(mj−p+q)∨q | (ξ(0, mj), η(0, mj − p + q)) ∈ Fj,

(ξ(0, p), η(0, q)) ∈ U ∗s V and ξ(p, mj ∨ p) = η(q, (mj − p + q) ∨ q)}.
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Letting P1, P2 : Λ ∗s Λ → Λ be the coordinate projections, we see that each F′j is

a closed subset of the compact set (P1(Fj) ∨U) ∗s (P2(Fj) ∨ V). Hence each F′j is

compact. Defining F′ :=
l⋃

j=1
F′j completes the proof.

DEFINITION 3.10. Let (Λ, d) be a topological k-graph. For m, p, q ∈ Nk with
p 6 q 6 m, define the continuous map Segm

(p,q) : Λm → Λq−p by Segm
(p,q)(λ) :=

λ(p, q).

DEFINITION 3.11. Let (Λ, d) be a topological k-graph. An infinite sequence
of paths in Λ is wandering if for every compact set F ⊂ Λ, the sequence is even-
tually in Λ \ F; that is to say, the sequence visits any compact set at most finitely
many times.

We have the following technical characterization of convergence in G(0)
Λ (cf.

Remark 5.6 of [6] and page 653 of [17]).

PROPOSITION 3.12. Let (Λ, d) be a compactly aligned topological k-graph, and
let 〈xj〉j∈N and x be in G(0)

Λ . Then

lim
j→∞

xj = x

if and only if the following two conditions hold:
(i) for all m ∈ Nk with m 6 d(x),

lim
j→∞

xj(0, m ∧ d(xj)) = x(0, m);

(ii) for all i ∈ {1, . . . , k} with d(x)i < ∞ and for all n ∈ Nk with n 6 d(x) and
ni = d(x)i, if the set

J(n, i) := {j ∈ N | d(xj) > n + ei}
is infinite, then 〈xj(n, n + ei)〉j∈J(n,i) is wandering.

Proof. Assume lim
j→∞

xj = x. For any m ∈ Nk with m 6 d(x) and any open

neighbourhood U of x(0, m), we have x ∈ Z(U). Hence 〈xj〉j∈N is eventually
in Z(U), it follows that 〈xj(0, m ∧ d(xj)〉j∈N is eventually in U, and Condition (i)
holds.

To show that Condition (ii) holds, suppose d(x) < ∞ for some i ∈ {1, . . . , k},
let n ∈ Nk satisfy n 6 d(x) and ni = d(x)i, suppose J(n, i) = {j ∈ N | d(xj) >
n + ei} is infinite, and let W ⊂ Λei be compact; we show that 〈xj(n, n + ei)〉j∈J(n,i)
is eventually in Λei \W.

Let U ⊂ Λn be a relatively compact open neighbourhood of x(0, n). Then
x ∈ Z(U) ∩ Z(UW)c, and hence, eventually, so is 〈xj〉j∈N. As 〈xj(0, n)〉j∈N is
eventually in U, it follows that 〈xj(n, n + ei)〉j∈J(n,i) is eventually in Λei \ W, as
required.
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Conversely, assume Conditions (i) and (ii) hold. We argue by contradiction,
so suppose there exist m ∈ Nk, relatively compact open U ⊂ Λm and compact
F ⊂ Λ such that

(3.1) x ∈ Z(U) ∩ Z(F)c

and

(3.2) xj 6∈ Z(U) ∩ Z(F)c for infinitely many j ∈ N.

By Condition (i), we must have xj ∈ Z(U) eventually, so it follows that

(3.3) xj ∈ Z(F) for infinitely many j ∈ N.

Since F is compact, without loss of generality we assume F ⊂ ΛM for some M ∈
Nk; by Lemma 3.8, we can assume m 6 M, retaining (3.1) through (3.3). (This is
the only point in the proof which relies on (Λ, d) being compactly aligned.)

We claim that M 66 d(x); otherwise, (3.1) implies x(0, M) ∈ ΛM \ F, which
combines with (3.3) to contradict Condition (i). Thus M 66 d(x).

Define N := M ∧ d(x). Then N 6 d(x) and there exists i ∈ {1, . . . , k} such
that Ni = d(x)i and N + ei 6 M. We have that J(N, i) = {j ∈ N | d(xj) >
N + ei} is infinite since it contains the infinite set {j ∈ N | xj ∈ Z(F)}. By (3.3),
we also have xj(N, N + ei) in the compact set SegM

(N,N+ei)
(F) for infinitely many

j ∈ J(N, i), which contradicts Condition (ii). Therefore 〈xj〉j∈N is eventually in
Z(U) ∩ Z(F)c, and lim

j→∞
xj = x.

We deduce the following characterization of convergence in GΛ.

PROPOSITION 3.13. Let (Λ, d) be a compactly aligned topological k-graph, let
p, q ∈ Nk, and let the sequence 〈(xj, p − q, yj)〉j∈N and point (x, p − q, y) be contained
in Z(Λp ∗s Λq, p− q). Then

lim
j→∞

(xj, p− q, yj) = (x, p− q, y)

if and only if the following two conditions hold:
(i) for all m ∈ Nk,

(a) lim
j→∞

xj(0, m ∧ d(x) ∧ d(xj)) = x(0, m ∧ d(x)) and

(b) lim
j→∞

yj(0, m ∧ d(y) ∧ d(yj)) = y(0, m ∧ d(y));

(ii) for all i ∈ {1, . . . , k} with d(x)i < ∞ and for all n ∈ Nk with p 6 n 6 d(x) and
ni = d(x)i, if the set

J(n, i) := {j ∈ N | d(xj) > n + ei}
is infinite, then

〈xj(n, n + ei)〉j∈J(n,i)

is wandering.
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REMARK 3.14. Condition (ii) of Proposition 3.13 is equivalent to the follow-
ing condition stated in terms of y and the yj:

(ii’) for all i ∈ {1, . . . , k} with d(y)i < ∞ and for all n ∈ Nk with q 6 n 6
d(y) and ni = d(y)i, if the set

J(n, i) = {j ∈ N | d(yj) > n + ei}

is infinite, then
〈yj(n, n + ei)〉j∈J(n,i)

is wandering.

We now deduce that for compactly aligned (Λ, d), the groupoid GΛ has a lo-
cally compact topology; recall from Remark 3.7 that if (Λ, d) fails to be compactly
aligned, then the topology on GΛ may not be locally compact.

PROPOSITION 3.15. Let (Λ, d) be a compactly aligned topological k-graph. For
p, q ∈ Nk and compact sets U ⊂ Λp and V ⊂ Λq, the set Z(U ∗s V, p− q) is compact.

Proof. Let 〈(λjxj, p− q, µjxj)〉j∈N be a sequence in Z(U ∗s V, p− q) with each
(λj, µj) ∈ U ∗s V. Since U ∗s V is compact, there exists an infinite set I0 ⊂ N such
that 〈(λj, µj)〉j∈I0 converges to some (λ, µ) ∈ U ∗s V. We construct an element
z ∈ XΛ and an infinite set I ⊂ I0 such that 〈(λjxj, p − q, µjxj)〉j∈I converges to
(λz, p− q, µz).

Define f : N → {1, . . . , k} by f (j) = j(mod k) + 1, and iteratively construct
a sequence 〈zj〉j∈N in Λ as follows: First, set z0 := s(λ) = s(µ). Let l ∈ N, and
suppose z0, . . . , zl ∈ Λ and infinite sets Il ⊂ · · · ⊂ I0 ⊂ N have been defined and
satisfy:

s(zi) = r(zi+1) for all 0 6 i 6 l − 1,(3.4)

d(xj) > d(z0 · · · zl) for all j ∈ Il ,(3.5)

and

(3.6) lim
j∈Il

(λjxj(0, d(z0 · · · zl)), µjxj(0, d(z0 · · · zl))) = (λz0 · · · zl , µz0 · · · zl).

One of the following two properties must hold:

(1) There exists a compact set Wl+1 ⊂ Λe f (l+1) and an infinite set I′l+1 ⊂ Il such
that d(xj) > d(z0 · · · zl) + e f (l+1) for all j ∈ I′l+1, and the sequence 〈xj(d(z0 · · · zl),
d(z0 · · · zl) + e f (l+1))〉j∈I′l+1

is contained in Wl+1.

(2) The set Jl+1 := {j ∈ Il | d(xj) > d(z0 · · · zl) + e f (l+1)} is either
(-) finite, or
(-) infinite and the sequence 〈xj(d(z0 · · · zl), d(z0 · · · zl)+ e f (l+1))〉j∈Jl+1

is wandering.

If (1) holds, then fix compact Wl+1 and infinite I′l+1 satisfying the conditions of
(1); as Wl+1 is compact, fix an infinite subset Il+1 ⊂ I′l+1 such that the sequence
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〈xj(d(z0 · · · zl), d(z0 · · · zl) + e f (l+1))〉j∈Il+1
converges in Wl+1, and define

zl+1 := lim
j∈Il+1

xj(d(z0 · · · zl), d(z0 · · · zl) + e f (l+1)).

If (2) holds, then set zl+1 := s(zl) and Il+1 := Il .
There exists a unique path z ∈ XΛ such that

d(z) = lim
l→∞

d(z0 · · · zl) and z(0, d(z0 · · · zl)) = z0 · · · zl for all l ∈ N.

We also have for all l ∈ N,

(3.7) lim
j∈Il

(λjxj(0, d(z0 · · · zl)), µjxj(0, d(z0 · · · zl))) = (λz0 · · · zl , µz0 · · · zl)

and
if Jl+1 := {j ∈ Il | d(xj) > d(z0 · · · zl) + e f (l+1)} is infinite

and 〈xj(d(z0 · · · zl), d(z0 · · · zl) + e f (l+1))〉j∈Jl+1
is not wandering,

then zl+1 ∈ Λe f (l+1) ; otherwise zl+1 = s(zl).

(3.8)

Define an infinite set I = {ji}i∈N ⊂ N by choosing any j0 ∈ I0, and, after
j0, . . . , jl have been set, choosing jl+1 ∈ Il+1 such that jl+1 > jl .

We claim that Conditions (i) and (ii) of Proposition 3.13 hold for the se-
quence 〈(λjxj, p− q, µjxj)〉j∈I and point (λz, p− q, µz).

Condition (i) of Proposition 3.13 follows from (3.7). Suppose for contra-
diction that Condition (ii) of Proposition 3.13 does not hold, so there exist i ∈
{1, . . . , k} and n ∈ Nk such that n 6 d(z), ni = d(z)i,

J(p + n, i) := {j ∈ I | d(λjxj) > p + n + ei}

is infinite, and the sequence 〈(λjxj)(p + n, p + n + ei)〉j∈J(p+n,i) is not wandering.
Then there exists a compact set V1 ⊂ Λei such that V1 contains infinitely many
elements of 〈(λjxj)(p + n, p + n + ei)〉j∈J(p+n,i).

Let L ∈ N be the smallest number such that d(z0 · · · zL) > n and f (L + 1) =
i, so d(z)i = ni = d(z0 · · · zL)i. Let V2 ⊂ Λd(z0···zL)−n be a compact neighbour-
hood of z(n, d(z0 · · · zL)). Then 〈xj(n, d(z0 · · · zL))〉j∈J(p+n,i) is eventually in V2
by Condition (i).

Since Λ is compactly aligned and (d(z0 · · · zL) − n)i = 0, it follows that
V1 ∨V2 is a compact subset of Λd(z0···zL)−n+ei . Furthermore, V1 ∨V2 contains infin-
itely many elements of 〈xj(n, d(z0 · · · zL) + ei)〉j∈J(p+n,i). Since J(p + n, i) is con-

tained in the set JL+1 of (3.8), we have that Segd(z0···zL)−n+ei
(d(z0···zL)−n,d(z0···zL)−n+ei)

(V1 ∨V2) is
a compact subset of Λei which contains infinitely many elements of the sequence
〈xj(d(z0 · · · zL), d(z0 · · · zL) + ei)〉j∈JL+1 . By (3.8), we then have zL+1 ∈ Λei , which
contradicts d(z0 · · · zL)i = d(z)i. Therefore Condition (ii) of Proposition 3.13
holds, and Proposition 3.13 implies

lim
j∈I

(λjxj, p− q, µjxj) = (λz, p− q, µz),
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completing the proof.

THEOREM 3.16. Let (Λ, d) be a compactly aligned topological k-graph. Then GΛ

is a locally compact r-discrete topological groupoid admitting a Haar system consisting
of counting measures.

Proof. Local compactness of GΛ follows from Proposition 3.15. Straightfor-
ward applications of Proposition 3.13 give continuity of composition and inver-
sion. Therefore GΛ is a locally compact topological groupoid.

To show that GΛ is r-discrete and admits a Haar system, by Proposition I.2.8
of [28] it suffices to show that r : GΛ → G(0)

Λ is a local homeomorphism. Fix-
ing (λx, d(λ) − d(µ), µx) ∈ GΛ and choosing open neighbourhoods U ⊂ Λd(λ)

and V ⊂ Λd(µ) of λ and µ, respectively, such that s|U and s|V are homeomor-
phisms, one checks that r|Z(U∗sV,d(λ)−d(µ)) is a homeomorphism. Therefore GΛ is
r-discrete and admits a Haar system, and by Lemma I.2.7 of [28] we can choose
the Haar system to comprise counting measures.

EXAMPLES 3.17. (i) Let E be a discrete directed graph, and recall the con-
struction of the topological 1-graph (E∗, l) from Example 2.5(ii). In [17], Paterson
defines an inverse semigroup SPat

E and an action of SPat
E on the path space XE∗ .

He then defines the topological groupoid HPat
E as the groupoid of germs of the

action. Comparing GE∗ with the description of HPat
E given in Theorem 1 of [17]

and comparing the topological structures of GE∗ and HPat
E given in Proposition 3.6

of this article and Proposition 3 of [17], respectively, we see that GE∗ and HPat
E are

isomorphic as topological groupoids.
(ii) Given a finitely aligned discrete k-graph, the authors of [6] define and study

an r-discrete groupoid GFMY
Λ (see Section 6 of [6]). Comparing GΛ with the de-

scription of GFMY
Λ given in Remark 6.2 of [6] and comparing the topological struc-

tures of GΛ and GFMY
Λ given in Proposition 3.6 of this article and Remark 6.4 of [6],

respectively, we see that GΛ and GFMY
Λ are isomorphic as topological groupoids.

4. THE BOUNDARY-PATH GROUPOID

Given a compactly aligned topological k-graph (Λ, d), we now identify a
closed invariant subset ∂Λ of XΛ = G(0)

Λ , and define our boundary-path groupoid
GΛ as the reduction GΛ|∂Λ.

DEFINITION 4.1. Let (Λ, d) be a topological k-graph and let V ⊂ Λ0. A
set E ⊂ VΛ is exhaustive for V if for all λ ∈ VΛ there exists µ ∈ E such that
Λmin(λ, µ) 6= ∅. For v ∈ Λ0, let vCE(Λ) denote the set of all compact sets E ⊂ Λ
such that r(E) is a neighbourhood of v and E is exhaustive for r(E).
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DEFINITION 4.2. Let (Λ, d) be a topological k-graph. A path x ∈ XΛ is called
a boundary path if for all m ∈ Nk with m 6 d(x), and for all E ∈ x(m)CE(Λ), there
exists λ ∈ E such that x(m, m + d(λ)) = λ. We write ∂Λ for the set of all boundary
paths in XΛ. For v ∈ Λ0 and V ⊂ Λ0, we define v∂Λ = {x ∈ ∂Λ | r(x) = v} and
V(∂Λ) = {x ∈ ∂Λ | r(x) ∈ V}.

PROPOSITION 4.3. Let (Λ, d) be a topological k-graph. Then v∂Λ is nonempty
for all v ∈ Λ0.

Proof. We construct a path x ∈ v∂Λ. Define f : N → {1, . . . , k} by f (j) :=
j(mod k) + 1. If vΛe f (1) 6= ∅, then choose λ1 ∈ vΛe f (1) , otherwise set λ1 := v. Once
λ1, . . . , λl have been defined, choose λl+1 ∈ s(λl)Λe f (l+1) if s(λl)Λe f (l+1) 6= ∅,
otherwise set λl+1 := s(λl). There exists x ∈ XΛ such that d(x) = lim

j∈N
d(λ1 · · · λj)

and x(0, d(λ1 · · · λj)) = λ1 · · · λj for all j ∈ N.
To show x ∈ ∂Λ, let m ∈ Nk satisfy m 6 d(x) and let E ∈ x(m)CE(Λ).

Since E is exhaustive, for each n ∈ Nk with m 6 n 6 d(x), there exists µn ∈ E
such that Λmin(x(m, n), µn) 6= ∅. We will show there exists N ∈ Nk such that
d(µN) 6 N −m; for this N we then have x(m, m + d(µN)) = µN , as required.

Since E is compact, it follows that {d(µn) | m 6 n 6 d(x)} is finite. If
d(x)i = ∞ for all i ∈ {1, . . . , k}, then choosing N :=

∨{m + d(µn) | m 6 n 6
d(x)} will do. So suppose there exists i ∈ {1, . . . , k} such that d(x)i < ∞.

Define I := {i ∈ {1, . . . , k} | d(x)i < ∞} and

(4.1) p := (
∨{m + d(µn) | m 6 n 6 d(x)}) ∧ d(x).

For each i ∈ I, let li ∈ N be the smallest number such that f (li) = i and s(λli−1
)Λei

= ∅, so s(λj)Λei = ∅ for all j > li. Let L ∈ N be the smallest number such that

(4.2) L > max
i∈I

li and d(λ1 · · · λL) > p.

Define N := d(λ1 · · · λL). Suppose for contradiction that d(µN) 66 N − m,
so there exists i ∈ {1, . . . , k} such that d(µN)i > (N − m)i. Then (4.1) and (4.2)
imply Ni = d(x)i. Thus d(x)i < ∞, and it follows from (4.2) that s(λL)Λei = ∅.
But Λmin(x(m, N), µN) 6= ∅ and for any (α, β) ∈ Λmin(x(m, N), µN) we must
have d(α)i > 0, contradicting s(λL)Λei = ∅. Therefore d(µN) 6 N − m, so
x(m, m + d(µN)) = µN and x ∈ v∂Λ.

PROPOSITION 4.4. Let (Λ, d) be a topological k-graph. Then ∂Λ is closed in G(0)
Λ .

Proof. Let 〈xj〉j∈N be a sequence in ∂Λ converging to some x ∈ XΛ. Sup-
pose for contradiction that x 6∈ ∂Λ, so there exists m ∈ Nk, m 6 d(x), and
E ∈ x(m)CE(Λ) such that x(m, p) 6∈ E for all p ∈ Nk with m 6 p 6 d(x).

Let U ⊂ Λm be a relatively compact open neighbourhood of x(0, m) such
that s(U) ⊂ r(E). Then x ∈ Z(U) ∩ Z(UE)c, so there exists J ∈ N such that
xj ∈ Z(U) ∩ Z(UE)c whenever j > J. But then for j > J and p ∈ Nk with



GROUPOID MODELS FOR THE C∗ -ALGEBRAS OF TOPOLOGICAL k-GRAPHS 109

m 6 p 6 d(xj), we have xj(0, p) 6∈ UE, which implies xj(m, p) 6∈ E, contradicting
xj ∈ ∂Λ and E ∈ xj(m)CE(Λ). Hence x ∈ ∂Λ, and ∂Λ is closed.

To prove ∂Λ is an invariant subset of G(0)
Λ , we first need a definition and a

lemma.

DEFINITION 4.5. Let (Λ, d) be a topological k-graph. For E, F ⊂ Λ, define
the minimal extenders of E by F to be the set

Ext(E; F) =
⋃

λ∈E

⋃
µ∈F

{α ∈ Λ | (α, β) ∈ Λmin(λ, µ) for some β ∈ Λ}.

If E is a singleton set E = {λ}, we write Ext(λ; F) for Ext({λ}; F).

The proof of the following lemma is straightforward.

LEMMA 4.6 (cf. Lemma C.5 of [26]). Let (Λ, d) be a compactly aligned topolog-
ical k-graph, let v ∈ Λ0 and λ ∈ vΛ, and suppose E ∈ vCE(Λ). Then for any compact
neighbourhood U ⊂ Λd(λ) of λ, Ext(U; E) ∈ s(λ)CE(Λ).

PROPOSITION 4.7. Let (Λ, d) be a compactly aligned topological k-graph. For
x ∈ ∂Λ, m ∈ Nk with m 6 d(x), and λ ∈ Λr(x), we have σmx, λx ∈ ∂Λ. Hence ∂Λ is
an invariant subset of G(0)

Λ .

Proof. To see that σmx ∈ ∂Λ, let n ∈ Nk satisfy n 6 d(σmx), and let E ∈
(σmx)(n)CE(Λ). Then E ∈ x(m + n)CE(Λ), so there exists µ ∈ E such that
(σmx)(n, n + d(µ)) = x(m + n, m + n + d(µ)) = µ, as required.

Now let n ∈ Nk satisfy n 6 d(λx), and let E ∈ (λx)(n)CE(Λ). Define ξ :=
x(n, n ∨ d(λ)) and let U ⊂ Λd(ξ) be a relatively compact open neighbourhood of
ξ such that s|U is a homeomorphism. Then by Lemma 4.6 we have

Ext(U; E) ∈ (λx)(n ∨ d(λ))CE(Λ) = x((n ∨ d(λ))− d(λ))CE(Λ),

so there exists α ∈ Ext(U; E) such that

x((n ∨ d(λ))− d(λ), (n ∨ d(λ))− d(λ) + d(α)) = α.

Since s(ξ) = r(α) and s|U is a homeomorphism, we have ξα = µβ for some µ ∈ E
and β ∈ Λ. Hence (λx)(n, n + d(µ)) = µ, giving λx ∈ ∂Λ.

DEFINITION 4.8. Let (Λ, d) be a compactly aligned topological k-graph. The
Propositions 4.3, 4.4 and 4.7 imply that ∂Λ is a nonempty closed invariant subset
of G(0)

Λ , and we define the boundary-path groupoid GΛ to be the reduction GΛ :=
GΛ|∂Λ. Then GΛ is a locally compact r-discrete groupoid admitting a Haar system
consisting of counting measures.

NOTATION 4.9. To distinguish basis sets of GΛ from those of GΛ, for F ⊂
Λ ∗s Λ, m ∈ Zk and U ⊂ Λ, define

Z(F, m) = Z(F, m) ∩ GΛ
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and

Z(U) = Z(U) ∩ GΛ = Z(U ∗s U, 0) ∩ Z(Λ0 ∗s Λ0, 0).

EXAMPLES 4.10. (i) Recalling Example 3.17(i), for a discrete directed graph
E, Paterson [17] defines an r-discrete groupoid HPat

E , and we saw that GE∗ and
HPat

E are isomorphic. Paterson then identifies a closed invariant subset XPat of
(HPat

E )(0) (see paragraph preceding Proposition 5 of [17]) and studies the reduc-
tion of HPat

E by XPat (see Theorem 2 of [17]). In the setting of directed graphs, it is
straightforward to see that our boundary paths are precisely the elements of Pa-
terson’s set XPat, so it follows that GE∗ and HPat

E |XPat are isomorphic as topological
groupoids.

(ii) Let (Λ, d) be a finitely aligned discrete k-graph. As discussed in Exam-
ple 3.17(ii), the authors of [6] associate a topological groupoid GFMY

Λ to Λ, and
this groupoid is isomorphic to our path groupoid GΛ. In [6], the authors iden-
tify a set of boundary paths ∂Λ of Λ as a closed invariant subset of (GFMY

Λ )(0)

and study the reduction GFMY
Λ |∂Λ. Since our definition of a boundary path corre-

sponds to Definition 5.10 of [6] in the setting of finitely aligned discrete k-graphs,
it follows that GΛ and GFMY

Λ |∂Λ are isomorphic as topological groupoids.
(iii) Given a singly generated dynamical system (X, θ), we formed a topological

1-graph (Λ(X, θ), d) (see Example 2.5(iii)). In [29], Renault defines a topological
groupoid G(X, θ) ⊂ X ×Z× X by setting

G(X, θ) = {(x, m− n, y) | x ∈ dom(θm), y ∈ dom(θn), θm(x) = θn(y)},

with the usual groupoid structure, and defining basis sets

U (U; m, n; V) = {(x, m− n, y) | (x, y) ∈ U ×V, θm(x) = θn(y)}

where U ⊂ dom(θm), V ⊂ dom(θn) are open sets on which, respectively, θm

and θn are injective (see Section 2 of [29] for details; see also [4] for the same
construction with X compact and θ surjective).

The boundary paths of Λ(X, θ) can be identified with X, and under this
identification, σ is intertwined with θ. One can then show that the groupoid
and topological structures on GΛ(X,θ) and G(X, θ) are equivalent, hence the two
topological groupoids are isomorphic.

5. APERIODICITY IN TOPOLOGICAL HIGHER-RANK GRAPHS AND ESSENTIAL FREENESS OF
BOUNDARY-PATH GROUPOIDS

In this section we consider an analogue of the Aperiodicity Condition used
in [12] and [6]. Using the condition, we extend Proposition 4.5 of [12] and Propo-
sition 7.2 of [6] to our setting.
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DEFINITION 5.1. Let (Λ, d) be a topological k-graph. A boundary path x ∈
∂Λ is aperiodic if

(5.1) for all p, q ∈ Nk with p, q 6 d(x), p 6= q implies σpx 6= σqx.

Recall that a topological groupoid Γ is essentially free if the set of units with
trivial isotropy is dense in Γ(0); that is, {x ∈ Γ(0) | xΓx = {x}} = Γ(0).

THEOREM 5.2. Let (Λ, d) be a compactly aligned topological k-graph. Then GΛ is
essentially free if and only if

(A) for all nonempty open V ⊂ Λ0, there exists an aperiodic path x ∈ V(∂Λ).

To prove the theorem, we need the following two lemmas.

LEMMA 5.3. Let (Λ, d) be a compactly aligned topological k-graph. A boundary-
path x ∈ ∂Λ is aperiodic if and only if its associated isotropy group in GΛ is trivial.

Proof. The lemma follows from the equivalence: For m ∈ Zk, the triple
(x, m, x) is an element of GΛ if and only if there exist p, q ∈ Nk such that p, q 6
d(x), p− q = m and σpx = σqx.

LEMMA 5.4. Let (Λ, d) be a topological k-graph. For any aperiodic x ∈ ∂Λ and
λ ∈ Λr(x), λx is aperiodic.

Proof. Arguing by contrapositive, suppose that λx is not aperiodic, so there
exists p, q ∈ Nk such that p, q 6 d(λx), p 6= q and σp(λx) 6= σq(λx). It follows
that

(d(λ) + p) ∧ d(λx) 6= (d(λ) + q) ∧ d(λx)

and

σ(d(λ)+p)∧d(λx)(λx) = σ(d(λ)+q)∧d(λx)(λx).

Thus we have p ∧ d(x) 6= q ∧ d(x) and

σp∧d(x)x = σ(d(λ)+p)∧d(λx)(λx) = σ(d(λ)+q)∧d(λx)(λx) = σq∧d(x)x,

proving x is not aperiodic.

Proof of Theorem 5.2. First assume that GΛ is essentially free, and let V ⊂ Λ0

be nonempty and open. By Lemma 4.3, V(∂Λ) is nonempty, so the open set Z(V)
is nonempty in G(0)

Λ . Therefore, there exists x ∈ Z(V) with trivial isotropy, and
Lemma 5.3 implies that x ∈ V(∂Λ) is aperiodic. Hence (Λ, d) satisfies Condi-
tion (A).

Conversely, assume that Condition (A) holds. Fix x ∈ G(0)
Λ and let Z(U) ∩

Z(F)c be a basis set containing x. There exists λ ∈ U such that x(0, d(λ)) = λ;
we can assume U ⊂ Λd(λ), U is relatively compact and open, s|U is a homeomor-
phism, and, by Lemma 3.8, every µ ∈ F has the form µ = ξµ′ for some ξ ∈ U.
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The set {d(µ) | µ ∈ F} is finite, and d(λ) 6 d(µ) for all µ ∈ F, so we define
the compact set

E :=
⋃

m∈{d(µ)|µ∈F}
Segm

(d(λ),m)(F ∩Λm).

We know that (s|U)−1(s(λ)) = {λ}, so for ν ∈ E, if r(ν) = s(λ), then λν ∈ F.
It follows that if there exists ν ∈ E such that x(d(λ), d(λ) + d(ν)) = ν, then
x(0, d(λν)) ∈ F, which contradicts x ∈ Z(F)c. Since x is a boundary path, we
deduce that E 6∈ s(λ)CE(Λ).

Now, E must fail to be an element of s(λ)CE(Λ) on account of one of two
reasons: either r(E) is not a neighbourhood of s(λ), or E is not exhaustive for
r(E). In either case, there exists η ∈ s(U)Λ such that Λmin(η, ν) = ∅ for all ν ∈ E.

We claim there exists a neighbourhood W ⊂ Λd(η) of η with Λmin(η′, ν) = ∅
for all η′ ∈ W and ν ∈ E: Suppose for contradiction that there exist sequences
〈ηj〉j∈N ⊂ Λd(η) and 〈νj〉j∈N ⊂ E such that lim

j∈N
ηj = η and Λmin(ηj, νj) 6= ∅ for

each j ∈ N. Since E is compact, we can assume 〈νj〉j∈N converges to some ν ∈ E.
Let 〈(αj, β j)〉j∈N be a sequence such that (αj, β j) ∈ Λmin(ηj, νj) for each j ∈

N. We can assume d(νj) = d(ν) for all j ∈ N, and hence d(αj) = (d(η) ∨ d(ν))−
d(η) and d(β j) = (d(η) ∨ d(ν))− d(ν) for all j ∈ N.

Taking a compact neighbourhood Y ⊂ Λd(η) of η, we can assume 〈ηj〉j∈N ⊂
Y. Since Λ is compactly aligned, it follows that Y ∨ E is compact and contains
the sequence 〈ηjαj〉j∈N = 〈νjβ j〉j∈N. Hence there exists a convergent subsequence
〈ηjαj〉j∈J contained in Λd(η)∨d(ν). We then have lim

j∈J
ηjαj = ηα and lim

j∈J
νjβ j = νβ

for some α, β ∈ Λ. It follows that (α, β) ∈ Λmin(η, ν); a contradiction. Therefore
there exists a neighbourhood W ⊂ Λd(η) of η such that Λmin(η′, ν) = ∅ for all
η′ ∈ W and ν ∈ E. We can assume that r(W) ⊂ s(U).

Condition (A) gives an aperiodic path z ∈ s(W)(∂Λ). Since r(W) ⊂ s(U),
there exist λ′ ∈ U and η′ ∈ W such that s(λ′) = r(η′) and s(η′) = r(z). Propo-
sition 4.7 and Lemma 5.4 imply λ′η′z is an aperiodic boundary path. Taking into
account that Λmin(η′, ν) = ∅ for all ν ∈ E, it follows that λ′η′z ∈ Z(U) ∩ Z(F)c.
Lemma 5.3 now gives the result.

6. AMENABILITY OF THE BOUNDARY-PATH GROUPOID

In this section we prove amenability of the boundary-path groupoid under
certain conditions on the topological k-graph. Rather than detail the characteri-
zations of groupoid amenability here, we refer the reader to Chapter 2 of [1].

Recall that a locally compact groupoid Γ is proper if (r, s) : Γ → Γ(0) × Γ(0),
defined by γ 7→ (r(γ), s(γ)), is a proper mapping; that is, if the inverse image of
any compact set from Γ(0) × Γ(0) is compact.
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The next proposition is standard in groupoid theory; its proof involves, for
the most part, tracing through definitions.

PROPOSITION 6.1. Let Γ be a locally compact proper groupoid admitting a Haar
system. Then Γ is amenable in the sense of Definition 2.2.7 of [1].

PROPOSITION 6.2. Let (Λ, d) be a topological k-graph. If either
(i) k = 1, or

(ii) (Λ, d) is a finitely aligned discrete k-graph,
then GΛ is amenable.

Proof. Suppose k = 1. Then Theorem 5.2 of [31] implies C∗(GΛ) is isomor-
phic to the Cuntz-Pimsner algebra O(EΛ) (see Section 5 of [31]). Thus, Propo-
sition 6.1 of [10] implies C∗(GΛ) is nuclear, and since GΛ is r-discrete, Corol-
lary 6.2.14 of [1] and Theorem 3.3.7 of [1] imply GΛ is amenable.

Now suppose (Λ, d) is a finitely aligned discrete k-graph. By Theorem 6.13
of [6], C∗(GΛ) ∼= C∗(Λ), where C∗(Λ) is defined in Remark 3.9 of [6]. We then
deduce C∗(GΛ) is nuclear by Proposition 8.1 of [30]. Since GΛ is r-discrete, Corol-
lary 6.2.14 of [1] and Theorem 3.3.7 of [1] imply GΛ is amenable.

DEFINITION 6.3. Let (Λ, d) be a topological k-graph and let v ∈ Λ0. Then v
is said to be a source if vΛei = ∅ for some i ∈ {1, . . . , k}, and v is said to be a sink
if Λei v = ∅ for some i ∈ {1, . . . , k}.

The following definition generalizes the row-finite condition on discrete
higher-rank graphs.

DEFINITION 6.4. A topological k-graph is proper if, for all m ∈ Nk, r|Λm is a
proper map; that is, if, for all m ∈ Nk and compact U ⊂ Λ0, UΛm is compact.

REMARK 6.5. It’s straightforward to see that any proper topological k-graph
is compactly aligned.

LEMMA 6.6. Let (Λ, d) be a proper topological k-graph without sources. Then
d(x) = (∞, . . . , ∞) for all x ∈ ∂Λ.

Proof. For any v ∈ Λ0, compact neighbourhood U ⊂ Λ0 of v and i ∈
{1, . . . , k}, we have UΛei ∈ vCE(Λ). Therefore, given x ∈ ∂Λ, m 6 d(x) and
i ∈ {1, . . . , k}, it follows that x(m, m + ei) ∈ x(m)Λei , which can only occur if
d(x) = (∞, . . . , ∞).

LEMMA 6.7. Let (Λ, d) be a proper topological k-graph. The groupoid HΛ =
Z(Λ ∗s Λ, 0), comprising all elements in GΛ of the form (x, 0, y), is amenable.

Proof. For m ∈ Nk, define

H(m) :=
⋃

n6m
Z(Λn ∗s Λn, 0).
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Then each H(m) is a subgroupoid of GΛ, each has G(0)
Λ as its unit space, and

for m 6 n, H(m) is both an open and closed subgroupoid of H(n). Hence we
have a direct system of groupoids {H(m) | m ∈ Nk} with direct-limit groupoid
HΛ :=

⋃
m∈Nk

H(m) = Z(Λ ∗s Λ, 0).

We claim that for each m ∈ Nk, H(m) is a proper groupoid: To see this, let
W ⊂ G(0)

Λ ×G(0)
Λ be compact. There exist compact sets Ui, Vj ⊂ Λ0, for i = 1, . . . , l1

and j = 1, . . . , l2, such that W ⊂
l1⋃

i=1

l2⋃
j=1

Z(Ui)×Z(Vj). We then have

(r, s)−1
( l1⋃

i=1

l2⋃
j=1

Z(Ui)×Z(Vj)
)

(6.1)

=
{
(x, 0, y) ∈ H(m) | x ∈

l1⋃
i=1

Z(Ui), y ∈
l2⋃

j=1

Z(Vj)
}

=
⋃

n6m

l1⋃
i=1

l2⋃
j=1

Z(UiΛ
n ∗s VjΛ

n, 0),

which is compact since the UiΛ
n, VjΛ

n are compact on account of Λ being proper.
Since (r, s)−1(W) is a closed subset of (6.1), it follows that (r, s)−1(W) is compact.
Thus each H(m) is a proper groupoid, and Proposition 6.1 implies each H(m) is
amenable. By Proposition 5.3.37 of [1], the direct limit HΛ is amenable.

THEOREM 6.8. Let (Λ, d) be a proper topological k-graph without sources. Then
GΛ is amenable.

Proof. Let c : GΛ → Zk be the continuous functor given by c(x, m, y) = m.
We will show that the skew-product groupoid GΛ(c) is amenable; the result will
then follow from Proposition II.3.8 of [28].

We identify the unit space GΛ(c)(0) with G(0)
Λ × Zk, and for each m ∈ Zk,

define Um := G(0)
Λ × {m}. Each GΛ(c)|Um is isomorphic to HΛ, so by Lemma 6.7,

each GΛ(c)|Um is amenable.
For m ∈ Zk, define Hm := GΛ(c)|[Um ], where [Um] := s(r−1(Um)) is the

saturation of Um. By Example 2.7 of [15], GΛ(c)|Um is equivalent to Hm, so it
follows from Theorem 2.2.17 of [1] that each Hm is amenable. We also have [Um] ⊂
[Un] whenever m 6 n, so, defining a cofinal sequence 〈mj〉j∈N in Nk, we have⋃
j∈N

[Umj ] = GΛ(c)(0).

For each j ∈ N, amenability gives C∗(Hmj) = C∗
red(Hmj), and since [Umj ] is

open in GΛ(c)(0), there exists a homomorphism πj : C∗(Hmj) → C∗
red(GΛ(c)) de-

fined by the inclusion Cc(Hmj) → Cc(GΛ(c)). Furthermore, amenability implies
that each C∗(Hmj) is nuclear, so it follows that each image πj(C∗(Hmj)) is nuclear.
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We also have πj(C∗(Hmj)) ⊂ πj(C∗(Hmj+1)) for each j ∈ N, and

⋃
j∈N

πj(Hmj) = C∗
red(GΛ(c)).

Therefore Theorem 2.3.9 of [14] implies C∗
red(GΛ(c)) is nuclear, and it follows from

Corollary 6.2.14(ii) of [1] and Theorem 3.3.7 of [1] that GΛ(c) is amenable. Since
Zk is amenable, it follows from Proposition II.3.8 of [28] that GΛ is amenable.

7. C∗-ALGEBRAS OF TOPOLOGICAL HIGHER-RANK GRAPHS

EXAMPLES 7.1. (i) Let (Λ, d) be a finitely aligned discrete k-graph. It follows
from Examples 3.17(ii) and 4.10(ii) together with Theorem 6.9 of [6] and Theo-
rem 6.13 of [6] that C∗(GΛ) ∼= T C∗(Λ) and C∗(GΛ) ∼= C∗(Λ), where T C∗(Λ)
and C∗(Λ) are defined and studied in [24] and [26], respectively. This example
includes the Toeplitz and Cuntz-Krieger algebras of arbitrary directed graphs as
studied in [8], [3], [7], [17], [27], [5], [23] (among others).

(ii) As we saw in Example 2.5(ii), there is a one-to-one correspondence between
topological 1-graphs and second-countable topological graphs. Given a topolog-
ical 1-graph (Λ, d) with corresponding topological graph EΛ, Theorem 5.1 of [31]
and Theorem 5.2 of [31] say that C∗(GΛ) ∼= T (EΛ) and C∗(GΛ) ∼= O(EΛ), where
T (EΛ) and O(EΛ) are, respectively, the Toeplitz and Cuntz-Krieger algebras of
the topological graph EΛ, as defined in [10].

(iii) Consider a second-countable locally compact Hausdorff space X and a
family {θi}k

i=1 of commuting homeomorphisms of X onto itself. There is an in-
duced action Θ of Zk on C0(X) defined by

Θm( f )(x) = f (θm1
1 · · · θ

mk
k (x)),

with universal crossed product (C0(X)×Θ Zk, jC0(X), jZk ).
Recall the topological k-graph (Λ(X, {θ}k

i=1), d) defined in Example 2.5(iv).
We have C∗(GΛ(X,{θi}))

∼= C0(X)×Θ Zk; there are a number of ways to see this:
for example, one can show that GΛ(X,{θi}) is isomorphic to the transformation
groupoid X × Zk whose C∗-algebra is isomorphic to the crossed-product C∗-al-
gebra.

The above examples allow us to coherently make the following definition.

DEFINITION 7.2. Let (Λ, d) be a compactly aligned topological k-graph. We
define the Toeplitz algebra of Λ to be the full groupoid C∗-algebra C∗(GΛ), and we
define the Cuntz-Krieger algebra of Λ to be the full groupoid C∗-algebra C∗(GΛ).
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8. SKEW-PRODUCT TOPOLOGICAL HIGHER-RANK GRAPHS AND CROSSED PRODUCTS BY
COACTIONS

In this section we extend the definition of a skew-product k-graph to topo-
logical k-graphs, and show that the associated groupoids can be realized as skew-
product groupoids, extending Theorem 5.2 of [12]. We can then realize certain
crossed product C∗-algebras as topological higher-rank graph C∗-algebras, build-
ing on Corollary 5.3 of [12] and Theorem 2.4 of [9].

Given a topological groupoid Γ, a locally compact group A and a continu-
ous functor b : Γ → A, we denote the skew product of Γ by b as Γ(b); that is, Γ(b)
is the locally compact groupoid obtained by defining on Γ× A the multiplication
(x, g)(y, gb(x)) := (xy, g) and the inverse (x, g)−1 := (x−1, gb(x)). In our setting,
the groupoid Γ is r-discrete and admits a Haar system, and it follows that the
same is true for Γ(b).

DEFINITION 8.1. Let (Λ, d) be a topological k-graph, let A be a locally com-
pact group, and let c : Λ → A be a continuous functor. Define Λ×c A to be the
category with object and morphism sets

Obj(Λ×c A) = Obj(Λ)× A and Mor(Λ×c A) = Mor(Λ)× A,

range and source maps r(λ, a) = (r(λ), a) and s(λ, a) = (s(λ), ac(λ)), and com-
position (λ, a)(µ, ac(λ)) = (λµ, a).

Define a functor d : Λ×c A → Nk by d(λ, a) = d(λ). Then, giving the object
and morphism sets their product topologies, the pair (Λ×c A, d) is a topological
k-graph, called the skew-product of (Λ, d) by c.

LEMMA 8.2. If (Λ, d) is compactly aligned, then so is (Λ×c A, d).

Proof. Let p, q ∈ Nk, and let E ⊂ (Λ×c A)p and F ⊂ (Λ×c A)q be compact.
Let PΛ : Λ×c A → Λ and PA : Λ×c A → A be the coordinate maps PΛ(λ, a) = λ
and PA(λ, a) = a. We then see that E ∨ F is compact since it is a closed subset of
the compact set (PΛ(E) ∨ PΛ(F))× (PA(E) ∩ PA(F)).

The proof of the following lemma is straightforward.

LEMMA 8.3. Let (Λ, d) be a compactly aligned topological k-graph, let A be a
locally compact topological group, and let c : Λ → A be a continuous functor. Then there
is a continuous functor c̃ : GΛ → A defined by

c̃(λx, d(λ)− d(µ), µx) = c(λ)c(µ)−1.

PROPOSITION 8.4. Let (Λ, d) be a compactly aligned topological k-graph, let A
be a locally compact topological group, and let c : Λ → A be a continuous functor. Then,
with the notation of Lemma 8.3,

GΛ(c̃) ∼= GΛ×c A.
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Furthermore, denoting the restriction of c̃ to GΛ = GΛ|∂Λ again by c̃, we have

GΛ(c̃) ∼= GΛ×c A.

Proof. We first define a functor φ : GΛ(c̃) → GΛ×c A. For (x, a) ∈ (GΛ(c̃))(0),
define a path φ(x, a) : Ωk,d(x) → Λ×c A in XΛ×c A by

(φ(x, a))(m, n) = (x(m, n), ac(x(0, m))) for m 6 n 6 d(x).

Now let ((λx, d(λ)− d(µ), µx), a) ∈ GΛ(c̃) and define

φ((λx, d(λ)−d(µ), µx), a)=(φ(λx, a), d(λ)−d(µ), φ(µx, ac̃(λx, d(λ)−d(µ), µx)))

=(φ(λx, a), d(λ)− d(µ), φ(µx, ac(λ)c(µ)−1)).

Straightforward but lengthy calculations then show that φ : GΛ(c̃) → GΛ×c A is
a bijective continuous functor with continuous inverse, and the first part of the
proposition follows.

We now show that GΛ(c̃) ∼= GΛ×c A. We have GΛ(c̃) = GΛ(c̃)|(∂Λ)×A by
definition, so it suffices to show that φ((∂Λ)× A) = ∂(Λ×c A).

First fix φ(x, a) ∈ ∂(Λ×c A); we show that (x, a) ∈ (∂Λ)× A. Let m ∈ Nk

satisfy m 6 d(x), and let E ∈ x(m)CE(Λ). Choosing any compact neighbourhood
B of ac(x(0, m)), we have E× B ∈ (φ(x, a)(m))CE(Λ×c A), so there exists (λ, b) ∈
E × B such that φ(x, a)(m, m + d(λ)) = (λ, b). We then have x(m, m + d(λ)) =
λ ∈ E, giving ∂(Λ×c A) ⊂ φ((∂Λ)× A).

On the other hand, fix (x, a) ∈ (∂Λ)× A, let m ∈ Nk satisfy m 6 d(φ(x, a)) =
d(x), and let E ∈ (φ(x, a)(m))CE(Λ×c A).

Let {Bj}j∈N be a neighbourhood basis for φ(x, a)(m) = (x(m), ac(x(0, m)))
such that each Bj ⊂ r(E) and B j+1 ⊂ Bj. For each j ∈ N, define

Fj := B j(Λ×c A) ∩ E = {(λ, b) ∈ E | r(λ, b) ∈ B j},

so Fj ∈ (φ(x, a)(m))CE(Λ×c A).
Let PΛ : Λ×c A → Λ denote the coordinate map. For each j ∈ N, we have

PΛ(Fj) ∈ x(m)CE(Λ), so there exists (λj, bj) ∈ Fj such that x(m, m + d(λj)) = λj.
Since each r(λj, bj) ∈ Bj, it follows that

(8.1) lim
j∈N

(r(λj), bj) = (x(m), ac(x(0, m))).

Since 〈(λj, bj)〉j∈N is contained in the compact set E, there exists a conver-
gent subsequence 〈(λj, bj)〉j∈J with limit (λ, b) ∈ E. We then have

(r(λ), b) = r(λ, b) = r
(

lim
j∈J

(λj, bj)
)

= lim
j∈N

r(λj, bj) = (x(m), ac(x(0, m))) by (8.1),

hence b = ac(x(0, m)). Furthermore,

λ = lim
j∈J

λj = lim
j∈J

x(m, m + d(λj)) = x(m, m + d(λ)),
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and it follows that φ(x, a)(m, m + d(λ)) = (λ, b) ∈ E, and φ(x, a) ∈ ∂(Λ×c A).
Therefore φ((∂Λ)× A) = ∂(Λ×c A), so φ restricts to an isomorphism from

GΛ(c̃) onto GΛ×c A, completing the proof.

NOTATION 8.5. For a continuous functor b from a locally compact groupoid
G with continuous Haar system to a locally compact abelian group A, we denote
by α(b) the action of the dual group Â on C∗(G) defined by Proposition II.5.1
of [28]. On the other hand, for a continuous functor b from a locally compact r-
discrete groupoid G with Haar system to a discrete group A, we denote by δ(b)
the coaction of A on C∗(G) defined by Lemma 4.2 of [9].

REMARK 8.6. Our Theorem 8.8 concerns coactions of discrete groups (see
[16], [20], [9], [23], for example). There is, however, much literature on the the-
ory of coactions of locally compact groups on C∗-algebras (see [13], [21], [19],
[22], for example). Our reliance on groupoid theory in the proofs of Theorem 8.7
and Theorem 8.8 has meant that our theorems only address actions of locally
compact abelian groups and coactions of discrete groups. It is possible that The-
orem 8.8 holds in the generality of locally compact groups; consequently, Theo-
rem 8.7 would follow as the abelian case.

THEOREM 8.7. Let (Λ, d) be a compactly aligned topological k-graph, let A be a
locally compact abelian group, and let c : Λ → A be a continuous functor. Then, with
the notation of Lemma 8.3 and Notation 8.5,

C∗(GΛ)×α(c̃) Â ∼= C∗(GΛ×c A).

Furthermore, denoting the restriction of c̃ to GΛ again by c̃, we have

C∗(GΛ)×α(c̃) Â ∼= C∗(GΛ×c A).

Proof. Both parts of of the theorem are achieved in two steps, using Theo-
rem II.5.7 of [28] and Proposition 8.4.

THEOREM 8.8. Let (Λ, d) be a compactly aligned topological k-graph, let A be a
discrete group and let c : Λ → A be a continuous functor. Then, with the notation of
Lemma 8.3 and Notation 8.5,

C∗(GΛ)×δ(c̃) A ∼= C∗(GΛ×c A).

Furthermore, denoting the restriction of c̃ to GΛ again by c̃, we have

C∗(GΛ)×δ(c̃) A ∼= C∗(GΛ×c A).

Proof. The theorem follows from Theorem 4.3 of [9], Theorem 6.2 of [9] and
Proposition 8.4.
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