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ABSTRACT. We present a formula for the norm of an elementary operator on
a C∗-algebra that seems to be new. The formula involves (matrix) numerical
ranges and a kind of geometrical mean for positive matrices, the tracial geo-
metric mean, which seems not to have been studied previously and has in-
teresting properties. In addition, we characterise compactness of elementary
operators.
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INTRODUCTION

We consider an elementary operator Tx =
`
∑

j=1
ajxbj (with x ∈ A a C∗-algebra

and aj, bj ∈ M(A), with M(A) the multiplier algebra of A). We denote the class of
elementary operators T : A → A by E`(A). Specifically, we address the question
of finding a concrete formula for the operator norm ‖T‖. This problem has been
considered (at least implicitly) over a long period by several authors and there are
solutions known under various special circumstances (generalised derivations
[25], antiliminal by abelian C∗-algebras [5], for example). See [19] for a recent
survey of the problem, or see Section 5.4 of [3] for a brief summary of its impor-
tance. One way to view the literature that relates to the problem is to separate
two strands of problems. One strand concentrates on elementary operators of a
rather special form (with ` 6 2) and the other (for arbitrary `) has relied largely
on dealing with the completely bounded norm ‖T‖cb and the Haagerup tensor

norm estimate ‖T‖cb 6
∥∥∥ `

∑
j=1

aj ⊗ bj

∥∥∥
h
.

For special forms where ` 6 2, the case ` = 1 is well understood (see [19]).
There is a significant body of literature dealing with (inner) derivations δa(x) =
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ax − xa and the estimate ‖δa‖ 6 2 inf ‖a − z‖ with the infimum over z in the
centre Z(M(A)) of M(A) (see references in Section 4.1, Section 4.6 of [3] and
[19]). In the case A = B(H) is the algebra of all bounded linear operators on a
Hilbert space H (or A = K(H), the compacts) Z(M(A)) is just scalar multiples
of the identity and [25] showed equality in this estimate for ‖δa‖. Subsequent
work has generalised this equality to various classes of C∗-algebras but 3.2, 3.3
in [22] implies a characterisation of those A where equality always holds (those
where all Glimm ideals of M(A) are 3-primal). Moreover in case this condition is
not true, then there is a ∈ M(A) with ‖δa‖ 6

√
3 inf

z∈Z(M(A))
‖a − z‖ (and further

related work is to be found in [4], [21], [22], [23], [6]). An example of [7] shows
that the condition on Glimm ideals of M(A) is difficult to relate to the structure
of the primitive ideal space of A, so that the results are perhaps most satisfactory
in the unital case where M(A) = A. An alternative approach is given in 4.1.23 of
[3] where it is shown that (for general A) ‖δa‖ = 2 inf{‖a− z‖ : z ∈ Z(cM(A))}
with cM(A) the bounded central closure of M(A).

For generalised (inner) derivations δa,b(x) = ax − xb, there are results that
are rather less comprehensive than for δa. In particular [25] shows ‖δa,b‖ =
inf
λ∈C

‖a− λ‖+ ‖b− λ‖ when A = B(H) and there is a result in terms of represen-

tations of cM(A) and Z(cM(A)) in 4.1.23 of [3]. One may invoke operator space
methods and the fact that ‖δa,b‖ = ‖δa,b‖cb as another approach. The “obvious”
estimate that arises from taking account of the centre is then ‖δa,b‖ 6 ‖a ⊗ 1 −
1⊗ b‖Z,h where ‖ · ‖Z,h is the central Haagerup tensor norm on M(A)⊗ M(A).
Results of [7] show that there is equality in this estimate (for all a, b ∈ M(A))
when all Glimm ideals of M(A) are 5-primal, but that it is not sufficient for all
Glimm ideals to be 3-primal.

The case of Jordan mappings Ja,b(x) = axb + bxa was also the subject of
several papers and a conjecture of M. Mathieu that ‖Ja,b‖ > ‖a‖‖b‖ when A =
B(H) (or more generally when A is a prime C∗-algebra) has recently been proved
to be true. In [18] a weaker result ‖Ja,b‖cb > ‖a‖‖b‖ was shown and in [27] a
different proof of this was given along with a proof of the conjecture using results
from [26]. The conjecture was also shown slightly earlier in [10] by quite different
methods.

Turning to progress on general elementary operators (where ` can be large)
the most satisfactory progress to date deals with ‖T‖cb rather than ‖T‖. It is
shown in [5] that ‖T‖cb = ‖T‖ for all elementary operators T if and only if
the C∗-algebra A is “antiliminal by abelian”. It is shown in [24] that ‖T‖cb =∥∥∥ `

∑
j=1

aj ⊗ bj

∥∥∥
Z,h

for each elementary operator Tx =
`
∑

j=1
ajxbj on A if all Glimm

ideals of M(A) are primal, and [7] establishes the converse. In fact [7] also gives
a necessary and sufficient condition for this equality when restricted to specific `
(all Glimm ideals of M(A) should be N-primal for N = `2 + 1).
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Note that a result of [16] says that elementary operators can approximate
arbitrary bounded linear operators on A which preserve all ideals of A (albeit in
the strong operator topology). It follows that in many ways elementary operators
must be typical, especially if A is simple. For general A, the special properties
of elementary operators can be captured via the concepts of central bimodule
homomorphisms used in Section 5.3 of [3].

In this work, we give slightly different approaches to our formula for the
norm ‖T‖ of an elementary operator T in Theorems 1.3 and 1.8 for the case
A = B(H) and in Theorem 2.1 for the case of general A. The formulae involve
the tracial geometric mean as defined in Definition 1.2 and we give some basic
properties of this mean in Remarks 1.5. The formulae also involve matrix-valued
numerical ranges considered in [26] but are independent of the different possible
expressions for the elementary operator. We use the formulae to establish some
bounds on the growth of k-norms of T ∈ E`(A) as k increases and exploit conti-
nuity in our formula to give a new proof of a result of [5] showing that there is no
growth at all if A is antiliminal (Corollary 2.5).

The question of compactness of elementary operators has also been inves-
tigated under several circumstances (for example on the Calkin algebra — see
references given in [3], p. 232) but a characterisation for general C∗-algebras has
eluded proof. In Theorem 3.1 we characterise compactness of T ∈ E`(A) via the
possibility of choosing compact aj and bj.

1. THE CASE B(H)

For the moment we take A = B(H) = M(A) and establish a formula for
‖T‖ in that case. Later we will extend the formula to general A.

Recall again the upper bound

‖T‖ 6
∥∥∥ `

∑
j=1

aj ⊗ bj

∥∥∥
h

in terms of the Haagerup norm ‖ · ‖h on B(H)⊗ B(H) (see 5.4.7 of [3] for exam-
ple). We know that equality holds in case the operators aia∗j commute and the
operators b∗j bk also commute ([26], Theorem 3.3 and Remark 2.5). In general the
inequality is strict.

For η, ξ ∈ H we use the notation η ⊗ ξ∗ for the rank one operator on H with
(η ⊗ ξ∗)(θ) = 〈θ, ξ〉η.

LEMMA 1.1. For T ∈ E`(B(H)), Tx =
`
∑

j=1
ajxbj, we have

‖T‖ = sup
p1,p2

∥∥∥ `

∑
j=1

(p1aj)⊗ (bj p2)
∥∥∥

h
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where p1, p2 ∈ B(H) are rank one projections (p2
i = pi = p∗i (i = 1, 2)).

Proof. Let p1 = ξ ⊗ ξ∗ and p2 = η⊗ η∗ be 1-dimensional projections (where
η, ξ ∈ H are unit vectors). We look at the operator

Tp1,p2(x) =
`

∑
j=1

p1ajxbj p2,

an operator with a 1-dimensional range. Specifically it is the operator

x 7→ 〈(Tx)η, ξ〉ξ ⊗ η∗

and thus almost a linear functional.
For this operator, (p1ai)(p1aj)∗ are commuting and so are (bi p2)∗(bj p2).

Thus,

‖Tp1,p2‖ =
∥∥∥ `

∑
j=1

(p1aj)⊗ (bj p2)
∥∥∥

h

by the remarks above ([26], Theorem 3.3 and Remark 2.5). Alternatively, one can
appeal to the fact that the norm of a linear functional is the same as its completely
bounded norm, hence ‖Tp1,p2‖ = ‖Tp1,p2‖cb = the Haagerup tensor norm (by a
result of Haagerup — see 5.4.7 of [3] for example).

Now, clearly

‖T‖ = sup{‖Tx‖ : x ∈ B(H), ‖x‖ 6 1}
= sup{<〈(Tx)η, ξ〉 : x ∈ B(H), ‖x‖ 6 1, ξ, η ∈ H, ‖ξ‖ = ‖η‖ = 1}
= sup{<〈(Tp1,p2 x)η, ξ〉 : x, ξ, η as above} 6 sup

p1,p2

‖Tp1,p2‖.

Since ‖Tp1,p2‖ 6 ‖T‖, the lemma follows.

NOTATIONS. Following the ideas in [26], we introduce some notation re-
lating to matrix numerical ranges.

For b = [b1, b2, . . . , b`]t a column of operators bj ∈ B(H) we consider the
matrix of operators

Q(b) = (b∗i bj)`
i,j=1 = [b1, b2, . . . , b`]∗[b1, b2, . . . , b`] ∈ M`(B(H)) ≡ B(H`)

and for η ∈ H

Q(b, η) = (〈b∗i bjη, η〉)`
i,j=1 = (〈bjη, biη〉)`

i,j=1 ∈ M`(C).

A matrix numerical range associated with b that was considered in [26] is

Wm(b) = {Q(b, η)t : η ∈ H, ‖η‖ = 1} ⊂ M`(C).

Then Wm,e(b) denotes the set of matrices of maximal trace in the closure of Wm(b).

Recall that the maximal trace is in fact ‖b‖2 =
∥∥∥ `

∑
j=1

b∗j bj

∥∥∥.
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In [26] it is shown that there is equality in the Haagerup estimate for the
norm of the elementary operator T,

‖T‖ 6 ‖a‖‖b‖ =

√√√√∥∥∥ `

∑
j=1

aja∗j
∥∥∥∥∥∥ `

∑
j=1

b∗j bj

∥∥∥ 6
1
2
(‖a‖2 + ‖b‖2)

if and only if Wm,e(a∗) ∩ Wm,e(b) 6= ∅ (for a = [a1, a2, . . . , a`] ∈ B(H)` a row
matrix of operators aj ∈ B(H) and a∗ = [a∗1 , a∗2 , . . . , a∗` ]

t a column).

DEFINITION 1.2. For two positive semidefinite `× ` matrices X and Y we
define the tracial geometric mean of X and Y by

tgm(X, Y) = trace
√√

XY
√

X

(where, of course, the square roots mean the positive semidefinite square roots).

Here is one version of our formula for the norm of an elementary operator.

THEOREM 1.3. For a = [a1, a2, . . . , a`] ∈ B(H)` (a row matrix of operators

aj ∈ B(H)) and b = [b1, b2, . . . , b`]t ∈ B(H)` a column, and Tx =
`
∑

j=1
ajxbj an

elementary operator, we have

‖T‖ = sup{tgm(Q(a∗, ξ), Q(b, η)) : ξ, η ∈ H, ‖ξ‖ = ‖η‖ = 1}.

Proof. Note first that the result will follow from the lemma once we establish
that

‖Tp1,p2‖ =
∥∥∥ `

∑
j=1

(p1aj)⊗ (bj p2)
∥∥∥

h
= trace

√√
Q(a∗, ξ)Q(b, η)

√
Q(a∗, ξ)

when p1 = ξ ⊗ ξ∗, p2 = η ⊗ η∗.
We now fix unit vectors ξ, η ∈ H. Notice that the matrix numerical range of

the tuple bp2 = [b1 p2, b2 p2, . . . , b`p2]t consists of

{|λ|2Q(bp2, η)t : λ ∈ C, |λ| 6 1}

(if H is not one-dimensional; for the trivial one-dimensional case we only have
|λ| = 1). Moreover Q(bp2, η) = Q(b, η) for b = [b1, b2, . . . , b`]t. Similar remarks
apply to the tuple a∗ and (p1a)∗ = [p1a1, p1a2, . . . , p1a`]∗. Thus the condition
(from [26]) for equality in the Haagerup estimate

‖Tp1,p2‖ 6
1
2
(‖p1a‖2 + ‖bp2‖2)

is Q((p1a)∗, ξ)t = Q(bp2, η)t.

We now show how to rewrite
`
∑

j=1
(p1aj) ⊗ (bj p2) so as to get this equality

condition satisfied. To simplify the notation, we assume now that p1aj = aj and
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bj p2 = bj for 1 6 j 6 `. Introduce the notation

a� b =
`

∑
j=1

aj ⊗ bj

for rows a and columns b.
Suppose first that the tuples (aj)`

j=1 and (bj)`
j=1 are each linearly indepen-

dent. Then the different ways to rewrite a� b as a sum of the same type, without
going outside the spans of the aj and bj (or equivalently sticking to linearly inde-
pendent tuples) are all of the form

(aα)� (α−1b)

for invertible scalar matrices α ∈ M`(C). We have

Q((aα)∗, ξ)t = α∗Q(a∗, ξ)tα = α∗(〈a∗i ξ, a∗j ξ〉)`
i,j=1α

and

Q(α−1b, η)t = α−1Q(b, η)t(α−1)∗ = α−1(〈biη, bjη〉)`
i,j=1(α−1)∗.

For Q(a∗, ξ) and Q(b, η) invertible, we take α = α0α1,

α0 =
(√

Q(a∗, ξ)t
)−1

, α1 =
(√

Q(a∗, ξ)tQ(b, η)t
√

Q(a∗, ξ)t
)1/4

.

The effect of α0 is to make Q((aα0)∗, ξ) the identity matrix, and then α is designed
so that we get an equality

(1.1) Q((aα)∗, ξ)t = Q(α−1b, η)t =
(√√

Q(a∗, ξ)Q(b, η)
√

Q(a∗, ξ)
)t

.

We have now rewritten a� b to satisfy the criterion (from [26]) for equality in the
Haagerup estimate for ‖Tp1,p2‖ arising from (aα)� (α−1b). (Explicitly, taking x
to be a unitary operator in B(H) with x((α−1b)jη) = (aα)∗j ξ for 1 6 j 6 `, we get
〈Tp1,p2(x)η, ξ〉 = 〈T(x)η, ξ〉 = the trace of the matrix (1.1).) Thus ‖Tp1,p2‖ is the
trace of the matrix (1.1).

We have made a linear independence assumption and the calculation we
made requires Q(a∗, ξ) and Q(b, η) to be invertible. Though we could perhaps
manage without these assumptions and make use of various notions of gener-
alised inverses, it is easier to use an approximation argument to deduce the gen-
eral case. We embed B(H) in B(H⊕H0) where H0 is an auxiliary Hilbert space of
dimension `. Then we can modify aj so that a∗j ξ acquire small mutually orthogo-
nal contributions in H0. Similarly for bj and bjη. This will ensure the assumptions
are valid and then we can take limits as the modifications of aj and bj tend to 0.
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EXAMPLE 1.4. If a∗j have orthogonal ranges and bj have orthogonal ranges,
then Q(a∗, ξ) and Q(b, η) are diagonal matrices and the formula from Theo-
rem 1.3 becomes

‖T‖ = sup
`

∑
j=1

‖a∗j ξ‖‖bjη‖.

REMARKS 1.5. (i) In Theorem 1.3, we are considering the tracial geometric
mean of two positive semidefinite matrices of the form X = Q(a∗, ξ) and Y =
Q(b, η). Such matrices X and Y can be arbitrary elements of M+

` (C) (as long as
the dimension of H is not smaller than `).

For example, starting with Y ∈ M+
` (C) we could take η1, η2, . . . , η` ∈ C`

to be the rows of
√

Yt. Then take bj = ηj ⊗ η∗ (with η any unit vector in the
`-dimensional Hilbert space C`) to get bjη = ηj and

(〈biη, bjη〉)`
i,j=1 = Yt ⇒ Q(b, η) = Y.

Similarly we can find aj = η ⊗ ξ∗j so that X = Q(a∗, η) = (〈a∗j η, a∗i η〉)`
i,j=1 and for

p = p1 = p2 = η ⊗ η∗ the operator T ∈ E`(M`) with Tx =
`
∑

j=1
ajxbj has T = Tp,p,

‖T‖ = tgm(X, Y).
(ii) A useful fact is that the eigenvalues of

√
XY

√
X are the same as those

of
√

X(
√

XY) = XY. (This well-known fact follows by conjugation if
√

X is
invertible.) So if λi(XY) (1 6 i 6 `) denote the eigenvalues of XY (arranged in
non-increasing order, say), then

tgm(X, Y) =
`

∑
i=1

√
λi(XY).

(iii) The symmetry property tgm(X, Y) = tgm(Y, X) follows because λi(XY) =
λi(YX). (It can also be established using ‖T‖ = ‖T∗‖, where T∗ means T∗(x) =
T(x∗)∗, and (i).)

(iv) tgm(X, Y) has some other desirable properties for geometric means. If
X = Y, then tgm(X, Y) = trace X. If X = λI` is a multiple of the identity matrix,
then tgm(X, Y) =

√
λ trace

√
Y.

From the Haagerup estimate for ‖Tp1,p2‖ and remark (i) above, we can see
that

tgm(X, Y) 6
√

(trace X)(trace Y) 6
trace X + trace Y

2
holds. This is a tracial version of an arithmetic-geometric mean inequality.

According to a criterion established in [26] for overall equality in this esti-
mate, equality will only hold if X = Y. It follows that

tgm(X, Y) =
√

(trace X)(trace Y)

holds only when X and Y are linearly dependent.
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(v) It is clear that if u ∈ M`(C) is unitary, then tgm(u∗Xu, u∗Yu) = tgm(X, Y)
and it follows from the earlier remark (ii) (or the proof of Theorem 1.3) that if
α ∈ M` is invertible then

tgm(α∗Xα, (α−1)Y(α−1)∗) = tgm(X, Y).

(vi) It is easy to see that tgm(X, Y) is monotone in Y and by symmetry also in
X. So if X 6 X1 and Y 6 Y1 then tgm(X, Y) 6 tgm(X1, Y1).

(vii) There are various notions of geometric mean for two positive semidefinite
matrices in the literature (see for example [2]). One of these is usually denoted
X#Y and can be defined for the positive definite case by

X#Y =
√

X(X−1/2YX−1/2)1/2
√

X.

In general trace(X#Y) 6 tgm(X, Y) and strict inequality is possible.
T. Ando has kindly provided the following proof of the inequality (private

correspondence). Assuming X and Y are non-singular, by D4 of [2] we have
X#Y = X1/2UY1/2 for some unitary U. Hence

trace(X#Y) = trace(UY1/2X1/2)

is at most the trace class norm

‖Y1/2X1/2‖1 = trace(X1/2Y1/2Y1/2X1/2)1/2 = tgm(X, Y).

The case of general positive semidefinite X and Y follows by continuity.
To illustrate strict inequality, let

X =
(

1 1
2

1
2 1

)2

=
( 5

4 1
1 5

4

)
, Y =

(
1 0
0 0

)
.

Then

X#Y =

(
3

2
√

5
0

0 0

)
, tgm(X, Y) =

√
5

2
.

(viii) If P is an orthogonal projection in M` (that is P = P2 = P∗) and Q = I` − P,
we define a pinching map by C(X) = PXP + QXQ and then we have

tgm(X, Y) 6 tgm(C(X), C(Y)) = tgm(PXP, PYP) + tgm(QXQ, QYQ).

To verify this, we can assume (by a unitary change of basis) that P is the
projection of C` onto the first k coordinates (0 6 k 6 `), in other words a diagonal
matrix with k 1’s and `− k zeros. Choose T ∈ E`(M`) as indicated in remark (i) so

that T = Tp,p and ‖T‖ = tgm(X, Y). Taking T1x =
k
∑

j=1
ajxbj and T2x =

`
∑

j=k+1
ajxbj,

we find

‖T‖ 6 ‖T1‖+ ‖T2‖ = tgm(PXP, PYP) + tgm(QXQ, QYQ)

when we calculate ‖T1‖ and ‖T2‖ in a similar way.
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(ix) The maps X 7→ tgm(X, Y) = tgm(Y, X) (with Y ∈ M+
` fixed) satisfy sub-

additivity

tgm
( n

∑
j=1

Xj, Y
)

6
n

∑
j=1

tgm(Xj, Y)

(This can be shown by using tgm(X, Y) = tgm(
√

YX
√

Y, I`) to reduce to the case
Y = I` and using a known property of the Schatten 1/2 quasinorm — see Rotfel’d
Theorem IV.2.14 in [9]). Hence, for Xj, Yk ∈ M+

` ,

(1.2) tgm
( n

∑
j=1

Xj,
m

∑
k=1

Yk

)
6 ∑

16j6n,16k6m
tgm(Xi, Yj).

It follows by Cauchy-Schwarz that

(1.3) tgm
( n

∑
j=1

Xj,
m

∑
k=1

Yk

)2
6 mn ∑

16j6n,16k6m
tgm(Xi, Yj)2.

(x) By operator concavity of the square root ([9], V.1.8, V.2.5), X 7→ tgm(X, Y)
is a concave function of X (for fixed Y).

LEMMA 1.6. We can define a norm on the direct sum H` = H ⊕ H ⊕ · · · ⊕ H of
` copies of H by

‖(ξ1, ξ2, . . . , ξ`)‖S1 = trace
√

(〈ξi, ξ j〉)`
i,j=1 .

Proof. Fix a unit vector η ∈ H and consider the element x ∈ B(H`) ≡
M`(B(H)) given by

x =


ξ1 ⊗ η∗ ξ2 ⊗ η∗ · · · ξ` ⊗ η∗

0

 .

This depends linearly on (ξ1, ξ2, . . . , ξ`) ∈ H`. Computing x∗x we find the block
matrix (〈ξ j, ξi〉η ⊗ η∗)`

i,j=1. Since η ⊗ η∗ is a self-adjoint projection, the square
root of x∗x has entries that are scalar multiples of the projection, the scalars being
the entries of the square root of (〈ξ j, ξi〉)`

i,j=1. Since the projection has rank one, it
follows that the trace class norm of x is the same as

trace
√

(〈ξi, ξ j〉)`
i,j=1 .

Thus this expression gives a norm on H`.

EXAMPLE 1.7. If (ξ1, ξ2, . . . , ξ`) = (λ1ξ, λ2ξ, . . . , λ`ξ) (for a unit vector ξ ∈
H and scalars λj), that is if the ξ j are linearly dependent, then

‖(ξ1, ξ2, . . . , ξ`)‖S1 =
( `

∑
j=1

‖ξ j‖2
)1/2

.



130 RICHARD M. TIMONEY

On the other hand if the ξ j are mutually orthogonal, ‖(ξ1, ξ2, . . . , ξ`)‖S1 =
`
∑

j=1
‖ξ j‖.

NOTATION. For b = [b1, b2, . . . , b`]t ∈ B(H)`, we may regard b as an op-
erator from H to H` and then we denote by ‖b‖S1 the operator norm of b as an
operator from H to (H`, ‖ · ‖S1).

THEOREM 1.8. For a = [a1, a2, . . . , a`] ∈ B(H)`, b = [b1, b2, . . . , b`]t ∈ B(H)`

and Tx =
`
∑

j=1
ajxbj, we have

‖T‖ = sup
{∥∥∥√Q(b, η)ta∗

∥∥∥
S1

: η ∈ H, ‖η‖ = 1
}

.

Proof. We use Theorem 1.3 and show that, for a fixed unit vector η ∈ H

sup{tgm(Q(a∗, ξ), Q(b, η)) : ξ ∈ H, ‖ξ‖ = 1} =
∥∥∥√Q(b, η)ta∗

∥∥∥
S1

.

It will be convenient to work with invertible Q(b, η) and it is sufficient to consider
this case because of a perturbation argument. For example, consider B(H) ⊂
B(H`+1) with the ` + 1 copies of H numbered 0 to ` and B(H) included as the
top left block in B(H`+1) = M`+1(B(H)). Let E0j denote the operator

E0j(ξ0, ξ1, . . . , ξ`) = (0, 0, . . . , 0, ξ0, 0, . . . , 0)

with the ξ0 in position j. We can replace bj by bj + εE0j for ε > 0 small.
From Theorem 1.3 we know that for Sx = (Tx)p2 = (Tx)(η ⊗ η∗)

‖S‖ = sup{tgm(Q(a∗, ξ), Q(b, η)) : ξ ∈ H, ‖ξ‖ = 1}.

We can rewrite Sx using a � bp2 = (aα) � (α−1bp2) with α =
√

Q(b, η)t to
transform to the case where Q(α−1b, η) = I` is the `× ` identity matrix.

After this transformation,

‖S‖ = sup{trace
√

Q((aα)∗, ξ) : ξ ∈ H, ‖ξ‖ = 1} = ‖(aα)∗‖S1

and we have the result.

LEMMA 1.9. If b = [b1, b2, . . . , b`]t is an `-tuple of elements of B(H) (` > 1),
then b1, b2, . . . , b` are linearly independent if and only of there exist vectors ξ1, . . . , ξm ∈
H such that

m

∑
k=1

Q(b, ξk)

is positive definite.
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Proof. If the bj are linearly dependent, so that
`
∑

j=1
λjbj = 0 for some scalars

λj not all zero, then with λ = [λ1, λ2, . . . , λ`], for each ξ ∈ H we have

λQ(b, ξ)tλ∗ =
`

∑
j,k=1

λjλk〈bjξ, bkξ〉 =
∥∥∥ `

∑
j=1

λjbjξ
∥∥∥2

= 0

and so each finite sum
m
∑

k=1
Q(b, ξk) is singular.

Conversely, if each finite sum is singular, choose a sum M =
m
∑

k=1
Q(b, ξk) of

maximal rank among all such sums and a nonzero vector λ ∈ C` with Mtλ∗ = 0.
This λ∗ must be in the kernel of each Q(b, ξ)t for ξ ∈ H (as otherwise Q(b, ξ) +

m
∑

k=1
Q(b, ξk) would have larger rank). From the above calculation we get

`
∑

j=1
λjbjξ

= 0 for all ξ, hence
`
∑

j=1
λjbj = 0.

We now characterise compactness of T ∈ E`(B(H)). Let H1 = {ξ ∈ H :
‖ξ‖ 6 1} denote the closed unit ball of H (compact in the weak topology) and let
K(H) denote the compact elements of B(H).

The equivalence (in the linearly independent case) of the first and last con-
ditions in the following is known — see [13] or 5.3.26 of [3] and in the case ` = 1
see [28].

THEOREM 1.10. Let a = [a1, a2, . . . , a`] ∈ B(H)`, b = [b1, b2, . . . , b`]t ∈

B(H)` and Tx =
`
∑

j=1
ajxbj. Then the following are equivalent:

(i) T : B(H) → B(H) is compact.
(ii) For fT : H1 × H1 → C given by

fT(ξ, η) = tgm(Q(a∗, ξ), Q(b, η)),

the function fT is continuous in the product weak topology on H1 × H1.
(iii) The same function fT is continuous at each point of

(H1 × {0}) ∪ ({0} × H1)

in the product weak topology of H1 × H1.
Assuming that aj (1 6 j 6 `) are linearly independent and that bj (1 6 j 6 `) are also
linearly independent, then these are also equivalent to:

(iv) aj, bj ∈ K(H) (for 1 6 j 6 `).

Proof. It is clear that (ii) ⇒ (iii). For the case of unit vectors ξ, η we have

fT(ξ, η) = ‖Tp1,p2‖
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for p1 = ξ ⊗ ξ∗ and p2 = η ⊗ η∗, and this is also the norm of the linear functional
x 7→ 〈(Tx)η, ξ〉 by the proof of Lemma 1.1. We can see by homogeneity that
for all (ξ, η), fT(ξ, η) is the norm of the linear functional x 7→ 〈(Tx)η, ξ〉 and fT
does not depend on the representation of T. So it is sufficient to establish the
equivalence of the conditions under the assumption that the aj (1 6 j 6 `) and
the bj (1 6 j 6 `) are linearly independent.

(i) ⇒ (ii): As the image T(B1) of the unit ball B1 = {x ∈ K(H) : ‖x‖ 6 1}
is relatively compact, for each ε > 0 we can find a finite number of elements
x1, x2, . . . , xn ∈ T(B1) ⊂ K(H) so that

T(B1) ⊂
n⋃

k=1

{y ∈ K(H) : ‖y− xk‖ < ε}.

Denote by ωT
ξ,η the linear functional on B(H) given by ωT

ξ,η(x) = 〈(Tx)η, ξ〉 and

recall that ‖ωT
ξ,η‖ = fT(ξ, η). The norm of ωT

ξ,η is the same as the norm of its
restriction to K(H) (by weak* continuity on B(H)). Hence

max
16k6n

|〈xkη, ξ〉| 6 fT(ξ, η) 6
(

max
16k6n

|〈xkη, ξ〉|
)

+ ε

and so we have Fε : H1 × H1 → R given by Fε(ξ, η) = max
16k6n

|〈xkη, ξ〉| with

sup
(ξ,η)∈H1×H1

| fT(ξ, η)− Fε(ξ, η)| < ε.

For x = θ1 ⊗ θ∗2 ∈ B(H) of rank 1 (θ1, θ2 ∈ H), (ξ, η) 7→ 〈xη, ξ〉 = 〈η, θ2〉〈θ1, ξ〉
is clearly continuous on H1 × H1. So then is (ξ, η) 7→ 〈xη, ξ〉 when x is of finite
rank or when x ∈ K(H) by approximation. Hence Fε is continuous on H1 × H1.
As a uniform limit of continuous functions, fT must be continuous.

(iii) ⇒ (iv): Using the linear independence assumption and Lemma 1.9 we

can find η1, η2, . . . , ηn ∈ H so that
n
∑

k=1
Q(b, ηk) is positive definite. We can scale

the ηk so that ηk ∈ H1 for 1 6 k 6 n.
Now, (weak) continuity of fT(ξ, η) at points (0, η) implies continuity of

FT(ξ, η) = trace(Q(a∗, ξ)Q(b, η))

at the same points because

fT(0, η) = FT(0, η) = 0 6 FT(ξ, η) 6 ` fT(ξ, η)2.

Thus we also have (weak) continuity at ξ = 0 of ξ 7→
n
∑

k=1
FT(ξ, ηk). But as there is

some c > 0 so that
n
∑

k=1
Q(b, ηk) > cI`, we have

trace Q(a∗, ξ) 6
1
c

n

∑
k=1

FT(ξ, ηk) → 0 as ξ → 0 weakly.
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This means that
`
∑

j=1
〈aja∗j ξ, ξ〉 → 0 as ξ → 0 weakly, or ‖a∗j ξ‖ → 0 as ξ → 0 weakly.

Hence each a∗j maps weakly null bounded sequences to norm null sequences and
a∗j is compact. It follows that aj is compact. A similar argument shows that each
bj is compact.

(iv) ⇒ (i): This follows from Vala’s theorem.

2. GENERAL C∗-ALGEBRAS

We now extend some of the formulae to the case of T ∈ E`(A) with A an

arbitrary C∗-algebra. For the remainder of this section, Tx =
`
∑

j=1
ajxbj for x ∈ A

with aj, bj ∈ M(A).
By P(A) we denote the set of pure states of A and for φ ∈ P(A) let πφ : A →

B(Hπφ) denote the associated irreducible representation of A (arrived at by the
GNS method). Observe that φ(x) = 〈πφ(x)ξφ, ξφ〉 for ξφ the cyclic vector for the
representation. Â denotes the (unitary equivalence classes of) irreducible repre-
sentations of A and we write π1 ∼ π2 to indicate unitary equivalence of repre-
sentations. By φ1 ∼ φ2 for pure states, we mean equivalence of the associated
representations.

Let Tπ : B(Hπ) → B(Hπ) be the elementary operator

Tπ(y) =
`

∑
j=1

π(aj)yπ(bj),

using the fact that π extends to M(A). It is known that ‖T‖ = sup
π∈Â

‖Tπ‖ (for

example 5.3.12 in [3]).
For b = [b1, b2, . . . , b`]t a column of elements bj ∈ M(A) and φ ∈ P(A) we

introduce the notation

Q(b, φ) = (φ(b∗i bj))`
i,j=1 = φ(`)(Q(b)) ∈ M`(C).

Here φ(`) : M`(A) → M`(C) is given by φ(`)((xij)`
i,j=1) = (φ(xij))`

i,j=1.

THEOREM 2.1. For T ∈ E`(A), Tx =
`
∑

j=1
ajxbj, a = [a1, a2, . . . , a`] ∈ M(A)` a

row and b = [b1, b2, . . . , b`]t a column of elements of M(A), we have

‖T‖ = sup{tgm(Q(a∗, φ1), Q(b, φ2)) : φ1, φ2 ∈ P(A), φ1 ∼ φ2}

= sup
{∥∥∥√Q(b, φ)tπφ(a∗)

∥∥∥
S1

: φ ∈ P(A)
}

(where πφ(a∗) means [πφ(a∗1), πφ(a∗2), . . . , πφ(a∗` )]
t).
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Proof. This is immediate from the above remarks together with Theorems 1.3
and 1.8.

NOTATIONS. We now consider the maps T(k) : Mk(A) → Mk(A) on the
space Mk(A) of k × k matrices with entries in A, given by T(k)((xij)`

i,j=1) =
(Txij)`

i,j=1. We use the canonical C∗-norms on Mk(A) and the notation ‖T‖k =

‖T(k)‖. The completely bounded norm of T is ‖T‖cb = sup
k
‖T‖k.

Let Fk(A) denote the set of factorial states considered in [8]. They are those
states φ of A that are convex combinations of at most k unitarily equivalent pure
states, or those where the commutant πφ(A)′ of the GNS representation is a type
In factor with n 6 k. For a pure state ψ on Mk(A) there is a factorial state φ ∈
Fk(A) with

ψ


x 0 · · · 0
0 x 0

. . .
0 0 · · · x

 = φ(x)

for x ∈ M(A). Conversely, if φ =
k
∑

j=1
tjψj is a convex combination of ψj ∈ P(A)

(tj > 0, ∑
j

tj = 1) and we take the irreducible representation π : A → B(Hπ)

corresponding to ψ1, then there are unit vectors ξ j ∈ H so that ψj(x) = 〈xξ j, ξ j〉.
The unit vector (

√
tjξ j)k

j=1 ∈ Hk gives rise to a vector state ψ for Mk(A) (acting

on Hk via π(k)). This pure state ψ will relate to φ as above.
From 2.1(iii) in [8] we know that if φ is a proper convex combination of

states in P(A), not all of which are equivalent, then φ cannot be factorial. Relying
on this, we can say that for φ1, φ2 ∈ Fk(A), (φ1 + φ2)/2 is factorial if and only if
the pure states in a convex combination making φ1 are each unitarily equivalent
to those in a convex combination making φ2. We write φ1 � φ2 to mean that
(φ1 + φ2)/2 is factorial.

From Theorem 2.1, we can deduce the following.

COROLLARY 2.2. For T ∈ E`(A), Tx =
`
∑

j=1
ajxbj, a = [a1, a2, . . . , a`] ∈

M(A)` a row and b = [b1, b2, . . . , b`]t a column of elements of M(A), we have:

‖T‖k = sup{tgm(Q(a∗, φ1), Q(b, φ2)) : φ1, φ2 ∈ Fk(A), φ1 � φ2}.

COROLLARY 2.3. For T ∈ E`(A), Tx =
`
∑

j=1
ajxbj, we have:

‖T‖k 6 max(k,
√

`)‖T‖, ‖T‖cb 6
√

`‖T‖.
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Proof. It is well-known that (for any operator T : A → A) ‖T‖k 6 k‖T‖. (See
Exercise 3.10(ii) of [20].)

In [26], it was shown that ‖T‖cb = ‖T‖` and so we could deduce ‖T‖k 6
`‖T‖ for all k, but we seek the improved bound involving

√
`.

With X = Q(a∗, φ1), Y = Q(b, φ2), φ1, φ2 ∈ P(A), φ1 ∼ φ2, Theorem 2.1
tells us

tgm(X, Y) =
`

∑
j=1

√
λj(XY) 6 ‖T‖ ⇒

`

∑
j=1

λj(XY) = trace(XY) 6 ‖T‖2.

This latter is a convex condition on X and Y. Hence it remains true on replacing
φ1, φ2 ∈ P(A) by convex combinations. Hence for φ1, φ2 ∈ Fk(A) with φ1 � φ2,

trace Q(a∗, φ1)Q(b, φ2) 6 ‖T‖2 ⇒ tgm(Q(a∗, φ1), Q(b, φ2)) 6
√

`‖T‖

(by the Cauchy Schwarz inequality for ∑
j

√
λj ). Thus Corollary 2.2 implies ‖T‖k

6
√

`‖T‖.

EXAMPLE 2.4. (i) The well-known transpose example T : Mn → Mn, with
Tx = xt has ‖T‖ = 1 while ‖T‖cb = ‖T‖n = n. As an elementary operator

Tx =
n
∑

i,j=1
eijxeij (with eij the matrix with 1 in the (i, j) place and zeros elsewhere)

and has ` = n2. Thus the familiar estimate ‖T‖k 6 k‖T‖ cannot be improved in
general.

For Sx = e11xt =
n
∑

j=1
e1jxe1j the first row of the transpose, one can check that

‖S‖n =
√

n (and ‖S‖ = 1) so that the
√

` bound is also optimal in a sense.
For this S, it is true that ‖S‖k =

√
k for 1 6 k 6 n, while for the transpose

example ‖T‖k = k (1 6 k 6 n).
(ii) A natural question would be to describe the functions of k that can arise

as f (k) = ‖T‖k for T ∈ E`(A). This would mean finding further refinements
of the estimates we have to pin down the possibilities for f (k). For example
f (k1k2) 6 k1 f (k2) follows because T(k1k2) = (T(k2))(k1). It follows that, for n 6 k,
f (k + n) 6 f (2k) 6 2 f (k).

If T1 ∈ E`(A1) and T2 ∈ E`(A2) then T1 ⊕ T2 ∈ E`(A1 ⊕ A2) satisfies ‖T1 ⊕
T2‖k = max(‖T1‖k, ‖T2‖k). Hence we can, for example, combine the identity
with the transpose example. Take T1x = x and T2x = xt/m on Mn(C) (where
1 < m < n) to produce T = T1 ⊕ T2 where f (k) = ‖T‖k = 1 for 1 6 k 6 m, while
f (k) = k/m for m + 1 6 k 6 n. In examples of this type f (k + 1)/ f (k) can be 1
and (k + 1)/k in different intervals.

We can use (1.2) to show that

(2.1) ‖T‖k+1 6
(

1 +
2
√

k
k + 1

)
‖T‖k
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holds for general T ∈ E`(A) and k = 1, 2, . . .. Assume ‖T‖k 6 1 and consider

a pair of factorial states φi =
k+1
∑

r=1
tirφir where ∑

r
tir = 1, tir > 0, φir are pure

states that are all unitarily equivalent (i = 1, 2, 1 6 r 6 k + 1). For at least
one r, tir 6 1/(k + 1) and we assume ti1 6 1/(k + 1) for i = 1, 2. Then write
φi = ti1φi1 + (1− ti1)ψi for ψi ∈ Fk(A) (i = 1, 2). Let X = Q(a∗, φ1), Y = Q(b, φ2),
X1 = Q(a∗, φ1i), X2 = Q(a∗, ψ1), Y1 = Q(b, φ21), Y2 = Q(b, ψ2) so that X =
t11X1 + (1− t11)X2 and Y = t21Y1 + (1− t21)Y2. Using (1.2) and tgm(Xi, Yα) 6 1
for i, α = 1, 2 we get

tgm(X, Y) 6 (
√

t11 +
√

1− t11 )(
√

t21 +
√

1− t21 ) 6

(√
1

k + 1
+
√

k
k + 1

)2

.

By Corollary 2.2 we get (2.1).

The following result is shown in [5] but the proof relies in an essential way
on Theorem 3.1 in [17] (concerning the case of prime C∗-algebras with zero socle).

COROLLARY 2.5. If A is an antiliminal C∗-algebra and T ∈ E`(A), then ‖T‖ =
‖T‖cb.

Proof. It is known that for antiliminal C∗-algebras (or more generally for
“antiliminal by abelian” ones [8]) every factorial state is a weak*-limit of pure
states. To deduce the corollary directly from Corollary 2.2, we would need to
know further that for φ1, φ2 ∈ Fk(A) with φ1 � φ2, we can find a net of pairs of
pure states φ1,α, φ2,α ∈ P(A) with lim

α
φ1,α = φ1, lim

α
φ2,α = φ2 and φ1,α ∼ φ2,α for

each α.
However, consideration of the proof in 11.2.3 of [11] reveals that this further

fact is true. From the Kadison transitivity theorem, we can choose a pure state φ,
unitary uij ∈ Ã = the unitisation of A and 0 6 tij 6 1 (i = 1, 2, 1 6 j 6 k) so that

φi(x) =
k

∑
j=1

tijφ(u∗ijxuij),
k

∑
j=1

tij = 1 (i = 1, 2).

The state φ can then be approximated by a net ψα of states where there exists
an irreducible representation πα : A → B(Hπα) with ψα vanishing on the inverse
image π−1

α (K(Hπα)) of the compacts ([11], 11.2.2). By 11.2.1 in [11], the two states

ψiα(x) =
k

∑
j=1

tijψα(u∗ijxuij) (i = 1, 2)

can be approximated by vector states on B(Hπα) composed with πα, hence by
equivalent pure states of A.
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3. COMPACT ELEMENTARY OPERATORS

We now characterise compact elementary operators on a C∗-algebra A. For
the case A = B(H), Theorem 1.10 extends known results somewhat. For prime
C∗-algebras A, 5.3.26 of [3] gives a characterisation but a similar result for general
A seems not to have been established up to now. In addition, we characterise
weakly compact elements of E`(B(H)) in a similar way to Theorem 1.10.

Compactness of elements a of a C∗-algebra A (in terms of a being in the
closure of the socle, or weak compactness of the operators of left or right mul-
tiplication by a, or compactness of the elementary operator x 7→ axa) has been
studied by several authors and references can be found in [3], p. 36. The set K(A)
of compact elements of A is a closed ideal in A.

We introduce the notion of the K(A) topology on the space E(A) = {ψ :
ψ = λφ, φ ∈ P(A), 0 6 λ 6 1} of multiples of pure states (a subset of the dual
of A). This means the topology of pointwise convergence on K(A), so that a net
(ψα)α converges to ψ ∈ E(A) if and only if lim

α
ψα(x) = ψ(x) for each x ∈ K(A).

If K(A) is small (zero for example) then this will be a very coarse topology on
E(A) (even the trivial topology if K(A) = 0). By R(A) we denote the subset of
the product E(A)× E(A) consisting of pairs (λ1φ1, λ2φ2) with φ1 ∼ φ2 unitarily
equivalent pure states (and 0 6 λ1, λ2 6 1).

When A = K(H), there is a surjection µ : H1 → E(A) given by µ(ξ) = ωξ .
This is continuous (from the weak topology on H1 to theK(A) topology on E(A)).
Neighbourhoods of ωξ ∈ E(A) contain finite intersections of neighbourhoods
of the form N = {ωη : |ωη(x) − ωξ(x)| < 1} with x = θ1 ⊗ θ∗2 of rank one
(θ1, θ2 ∈ H). Since µ−1(N) = {η ∈ H1 : |〈η, θ2〉〈θ1, η〉 − 〈ξ, θ2〉〈θ1, ξ〉| < 1},
continuity of µ is clear. µ is also surjective and the inverse image of ωξ consists
of multiples ζξ with ζ ∈ T = {ζ ∈ C : |ζ| = 1}. As the quotient space of H1
by the action of T is compact in the quotient topology and E(A) is Hausdorff,
it follows that µ induces a homeomorphism from the quotient space H1/T to
E(A) = E(K(H)).

In the case A = B(H) (with H infinite dimensional) the elements of E(B(H))
not in E(K(H)) are the nonzero multiples λφ of pure states φ of B(H) vanish-
ing on K(H), and so they are not separated from 0 in the K(B(H)) topology of
E(B(H)).

For the case of a general C∗-algebra A, we can also analyse the topology on
E(A). Pure states P(A) of A are either pure states of K(A) or vanish on K(A), so
that P(A) = P(K(A)) ∪ P(A/K(A)) is a disjoint union. Note that multiples of
states in P(A/K(A)) are in the closure of 0 in the K(A) topology on E(A). Simi-
larly irreducible representations π : A → B(Hπ) of A are either irreducible when
restricted to K(A) or may be regarded as irreducible representations of the quo-
tient. We will use the notation Â in a slightly ambiguous way as also standing for
a specific set of representatives of the unitary equivalence classes of irreducibles.
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We have then Â = K̂(A) ∪ (A/K(A))̂ (where we use K̂(A) for (K(A))̂ ). For
π ∈ K̂(A) we have π(K(A)) = K(Hπ).

It is known that K(A) is a direct sum of algebras K(Hi) of compact oper-
ators on Hilbert spaces Hi (for i ∈ I = some index set). This is known because
K(A) is a C∗-algebra of compact elements and we can apply Theorem 8.2 of [1]
(or a fact now known to be equivalent shown in Theorem 8.3 of [15]). It follows
that the Hi are the Hπ with π ∈ K̂(A). Also for λφ ∈ E(A) with λ 6= 0 and where
φ ∈ P(K(A)), πφ is (unitarily equivalent to) some π ∈ K̂(A). Hence there is a
nonzero vector ξ in the unit ball of Hπ so that λφ(x) = ωξ(π(x)). By considering
K(Hπ) as contained in the direct sum K(A) we see that there exist neighbour-
hoods of λφ in E(A) that consist entirely of functionals ψ ∈ E(K(Hπ)) \ {0}. So
the complement of the closure of 0 in E(A) is homeomorphic to the disjoint union
of E(K(Hπ)) \ {0} (for π ∈ K̂(A)). Moreover each E(K(Hπ)) \ {0} is homeomor-
phic to ((Hπ)1 \ {0})/T (for π ∈ K̂(A)). On the other hand neighbourhoods of
0 in E(A) contain all but finitely many of E(K(Hπ)) for π ∈ K̂(A) (and inter-
sect the remaining E(K(Hπ)) in neighbourhoods of 0). This is the case because
a basic neighbourhood of ψ ∈ E(A) is an intersection of neighbourhoods of the
form Nψ,x = {ψ1 ∈ E(A) : |ψ1(x) − ψ(x)| < 1} with x ∈ K(A). Any such x

can be approximated in norm by x0 ∈
n⊕

j=1
K(Hπj), a finitely supported element

of the direct sum making up K(A). Choosing x0 so that ‖x − x0‖ < 1/4 we get
Nψ,2x0 ⊂ Nψ,x and the smaller neighbourhood places a restriction only on finitely
many E(K(Hπ)).

For (φ, ψ) ∈ R(A), if φ is outside the closure {0} of 0 in the K(A) topology
on E(A) then ψ is either 0 or also outside {0}. We can say that R(A) is the union
of R(K(A)) and a set contained in {0} × {0}.

THEOREM 3.1. Let A be a C∗-algebra and T ∈ E`(A). Then the following are
equivalent for T:

(i) T is compact.

(ii) If Tx =
`
∑

j=1
ajxbj for aj, bj ∈ M(A), and fT : R(A) → R is defined as

fT(φ1, φ2) = tgm(Q(a∗, φ1), Q(b, φ2)),

then the function fT is continuous on R(A).

(iii) T can be expressed as Tx =
`
∑

j=1
ajxbj for aj and bj compact elements of A (1 6

j 6 `).

Proof. (i) ⇒ (ii): Let Tx =
`
∑

j=1
ajxbj.
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Compactness of T implies compactness of its double transpose (again x 7→
`
∑

j=1
ajxbj) and of its restriction Tπa to the atomic part ∏

π∈Â
B(Hπ) of the double

dual of A (where the same formula x 7→
`
∑

j=1
ajxbj holds modulo identifying

elements of M(A) with their images under the reduced atomic representation
πa =

⊕
π∈Â

π). Let Tπ ∈ E`(B(Hπ)) be the elementary operator arising from T

and π. As a restriction of Tπa , Tπ is compact. Moreover, for each ε > 0, we have
{π ∈ Â : ‖Tπ‖ > ε} finite. This is a consequence of 5.3.17 in [3], but we offer a
self-contained argument.

If not we could find a sequence of unit norm elements xn ∈ B(Hπn) with
πn ∈ Â all distinct and ‖Tπn(xn)‖ > ε. Inside ∏

π∈Â
B(Hπ) we have then an infinite

dimensional space spanned by the xn on which T restricts to a topological linear
isomorphism, contradicting compactness of T.

As each Tπ (π ∈ Â) is compact, we have Tπ(B(Hπ)) ⊂ K(Hπ) by The-
orem 1.10. Putting these facts together, we get T(A) ⊂ K(A) (via 1.2.30(g) in
[3]).

For x ∈ A and (φ, ψ) ∈ R(A) we define |x(φ, ψ)| as follows. Choose π ∈ Â
and ξ, η ∈ (Hπ)1 with φ(x) = ωξ(π(x)), ψ(x) = ωη(π(x)), and set |x(φ, ψ)| =
|〈π(x)η, ξ〉|.

Then continuity of fT can be established using ‖T‖ = sup{|y(φ, ψ)| : y ∈
T(A1), (φ, ψ) ∈ R(A)} (where A1 is the unit ball of A) and an argument similar
to the one used in the proof of (i) ⇒ (ii) of Theorem 1.10. Choose y1, y2, . . . , yn ∈
T(B1) ⊂ K(A) so that each y ∈ T(B1) has ‖y − yk‖ < ε for some 1 6 k 6 n.
fT(φ, ψ) is approximately max

k
|yk(φ, ψ)|.

To finish, we need to know that for z ∈ K(A) the map

(φ, ψ) 7→ |z(φ, ψ)| : R(A) → R

is continuous. We can approximate z in norm by a finitely supported element

z′ =
n
∑

j=1
zj ∈

n⊕
j=1

K(Hπj) in the direct sum making up K(A). Then |z′(φ, ψ)| =

n
∑

j=1
|zj(φ, ψ)|. The continuity of (φ, ψ) 7→ |zj(φ, ψ)| can be shown by noting first

that the map is zero on those parts of R(A) coming from pairs of pure states with
GNS representation different from πj. Consider the weakest topology τ on R(A)
so that the maps (φ, ψ) 7→ (φ(z′), ψ(z′′)) : R(A) → C2 are continuous for z′, z′′ ∈
K(Hπj). Note that τ is weaker than the usual topology on R(A). This space
(R(A), τ) is R(K(Hπj)) plus points that cannot be separated from (0, 0), and it
becomes R(K(Hπj)) = E(K(Hπj))× E(K(Hπj)) if we identify these points with
(0, 0). We saw in the proof of Theorem 1.10 that (η, ξ) 7→ 〈zjη, ξ〉 is continuous
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on (Hπ)1 × (Hπ)1 and it follows then that (η, ξ) 7→ |〈zjη, ξ〉| is continuous on
(Hπ)1/T× (Hπ)1/T. Hence (ωξ , ωη) 7→ |〈zjη, ξ〉| is continuous on E(K(Hπj))×
E(K(Hπj)) and (φ, ψ) 7→ |zj(φ, ψ)| is continuous on (R(A), τ), thus on R(A).

(ii) ⇒ (iii): Let T ∈ E`(A) and write Tx =
`
∑

j=1
a0jxb0j for some a0j, b0j ∈

M(A). Our aim is to show that there is an alternative way to write T with a0j and
b0j replaced by compact elements of A.

First, note that continuity of fT implies that fT(φ, ψ) = 0 when (φ, ψ) ∈
R(A/K(A)). Since ‖T‖π = sup{ fT(φ, ψ) : (φ, ψ) ∈ R(B(Hπ))}, it follows that

Tπ = 0 for π ∈ (A/K(A))̂ . Also note that for each ε > 0, we have {π ∈ K̂(A) :
‖Tπ‖ > ε} finite. This follows from continuity of fT at (0, 0) and earlier remarks
about neighbourhoods of 0 in E(A).

Let S denote the restriction of T to K(A) and observe that S ∈ E`(K(A))
and S has a representation as a sum of ` terms.

The function fS is the restriction of fT to R(K(A)) and the function fSπ
of

Theorem 1.10 on (Hπ)1 × (Hπ)1 is fSπ
(ξ, η) = fT(ωξ ◦ π, ωη ◦ π). Therefore fSπ

is continuous by the relationships between the topologies concerned. Thus each
Sπ is compact for π ∈ K̂(A).

By Theorem 1.10 or 5.3.26 in [3], each Sπ can be represented as Sπ(x) =
`
∑

j=1
aπ jxbπ j with aπ j, bπ j ∈ K(Hπ). We can moreover arrange that

‖Sπ‖cb =
∥∥∥ `

∑
j=1

aπ j ⊗ bπ j

∥∥∥
h

=
∥∥∥ `

∑
j=1

aπ ja∗π j

∥∥∥ =
∥∥∥ `

∑
j=1

b∗π jbπ j

∥∥∥
using the Haagerup’s theorem ([3], 5.4.7) and the fact that the infimum defining
the Haagerup norm of a tensor can be realised without increasing the length of
its representation or the span of either {aπ j : 1 6 j 6 `} or {bπ j : 1 6 j 6 `} ([12],
Proposition 9.2.6). By Corollary 2.3, ‖Sπ‖cb 6

√
`‖Sπ‖ and so

max(‖aπ j‖2, ‖bπ j‖2) 6
√

`‖Sπ‖.

It follows that we can define aj, bj ∈
⊕

π∈K̂(A)
K(Hπ) = K(A) by aj = (aπ j)π∈K̂(A)

and bj = (bπ j)π∈K̂(A). Then we have Sx =
`
∑

j=1
ajxbj for x ∈ K(A) since π(Sx) =

Sπ(π(x)) =
`
∑

j=1
aπ jπ(x)bπ j = π

( `
∑

j=1
ajxbj

)
for π ∈ K̂(A).

Let T1 ∈ E`(A) be T1x =
`
∑

j=1
ajxbj. We have T1x = Sx = Tx for x ∈ K(A).

Finally we show T1 = T to complete the proof. Let x ∈ A. For any π ∈
(A/K(A))̂ we have π(Tx) = 0 = π(T1x). For π ∈ K̂(A), π(K(A)) = K(Hπ).
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Since (T1)π = Tπ = Sπ on K(Hπ), a density argument shows (T1)π = Tπ . Thus
π(Tx) = Tπ(π(x)) = (T1)π(π(x)) = π(T1x) for π ∈ K̂(A) also.

(iii) ⇒ (i): If aj and bj are each compact (1 6 j 6 `) then T is compact by
Vala’s theorem (as remarked in the proof of 5.3.26 in [3]).

We now consider weak compactness of elementary operators on B(H) (for
H infinite dimensional). Our arguments will involve the matrix valued essential
numerical ranges Q(a∗, φ) and Q(b, φ) where φ is a state of the Calkin algebra
B(H)/K(H). A fact we rely upon is that all states φ of the Calkin algebra (or
states of B(H) vanishing on K(H)) are weak*-limits of vector states ωξ(x) =
〈xξ, ξ〉 (for unit vectors ξ ∈ H) ([11], 11.2.1). That is, for any state φ vanishing on
K(H) there is a net ωξα

so that φ(x) = lim
α

ωξα
(x) for all x ∈ B(H). Taking x to

be a rank one operator η∗ ⊗ η we see that 0 = φ(η∗ ⊗ η) = lim
α
|〈ξα, η〉|2 and so

ξα → 0 weakly in H.

LEMMA 3.2. If b = [b1, b2, . . . , b`]t is an `-tuple of elements of B(H) (` > 1),
then b1, b2, . . . , b` are linearly independent modulo K(H) if and only if there exists a
weakly null net (ξα)α of unit vectors in H such that

lim
α

Q(b, ξα)

is positive definite.

Proof. We assume that the `-tuple of elements bj +K(H) (1 6 j 6 `) of the
Calkin algebra are linearly independent. We apply Lemma 1.9, by temporarily
representing B(H)/K(H) as an algebra of operators on some Hilbert space. Nor-
malising the vectors we obtain from Lemma 1.9 so that the sum of the squares of
their norms is 1, we see that we have a state φ of B(H)/K(H) so that Q(b, φ) is
positive definite.

Applying the above remarks about states of the Calkin algebra we deduce
the existence of the net (ξα)α as stated.

For the converse, given a weakly null net (ξα)α of unit vectors as in the
statement, we can pass to a subnet and assume that the vector states ωξα

converge
weak* to some state φ of B(H). One can easily see that φ vanishes on rank one
operators and so on K(H). Note that Q(b, φ) = lim

α
Q(b, ωξα

) is positive definite.

If a linear combination
`
∑

j=1
λjbj ∈ K(H), then for λ = [λ1, λ2, . . . , λ`] we can

compute

0 = φ
(( `

∑
j=1

λjbj

)∗( `

∑
j=1

λjbj

))
= λ∗Q(b, φ)tλ = 0

and so λ = 0.
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THEOREM 3.3. Let a = [a1, a2, . . . , a`] ∈ B(H)`, b = [b1, b2, . . . , b`]t ∈ B(H)`

and Tx =
`
∑

j=1
ajxbj. Then the following are equivalent:

(i) T : B(H) → B(H) is weakly compact.
(ii) T : K(H) → K(H) is weakly compact.

(iii) For fT : H1 × H1 → C given by

fT(ξ, η) = tgm(Q(a∗, ξ), Q(b, η)),

the function fT is continuous at (0, 0) (in the product weak topology on H1 × H1, with
H1 the closed unit ball of H as before).

(iv) The function gT(ξ) = fT(ξ, ξ) on H1 is continuous at 0.
(v) There exist c1, c2, . . . , c` ∈ K(H), d1, d2, . . . , d` ∈ B(H) and 0 6 m 6 ` so that

Tx =
m

∑
j=1

cjxdj +
`

∑
j=m+1

djxcj .

Proof. In the case when H is finite dimensional, the statements are all true
about every T ∈ E`(B(H)). So we assume that H is infinite dimensional.

(i) ⇒ (ii) is clear by restriction of T.
(ii) ⇒ (i) is clear because the elementary operator on B(H) is the double

transpose of the operator on K(H).
(i) ⇒ (iii): If fT is not continuous at (0, 0) there exist weakly null nets (ξα)α

and (ηα)α in H1 so that fT(ξα, ηα) does not converge to 0. Taking a subnet we can
assume that ‖ξα‖ and ‖ηα‖ are both bounded away from 0 and then we can nor-
malise them to be unit vectors. Passing to subnets again we assume lim

α
fT(ξα, ηα)

exists and is nonzero. Passing to further subnets we can assume that ωξα
→ φ1

and ωηα → φ2 for states φ1 and φ2 of B(H) vanishing on K(H). Now

tgm(Q(a∗, φ1), Q(b, φ2)) 6= 0.

The state φ = (φ1 + φ2)/2 satisfies

tgm(Q(a∗, φ), Q(b, φ)) >
1
2

tgm(Q(a∗, φ1), Q(b, φ2)) > 0.

As all states on the Calkin algebra are weak*-limits of pure states (by 11.2.4 of [11]
and Theorem 3.3 of [14]), there must be a pure state ψ of B(H)/K(H) so that

tgm(Q(a∗, ψ), Q(b, ψ)) 6= 0.

Thus the operator induced by T on the Calkin algebra has nonzero norm by The-
orem 2.1.

Consider an arbitrary x ∈ B(H) (of norm ‖x‖ 6 1). Take the net of all
finite rank projections P on H ordered by range inclusion. Then the net xP =
(1− P)x(1− P) converges to 0 in the weak*-topology on B(H) and so T(xP) → 0
in the weak*-topology (by weak*-continuity of T ∈ E`(B(H))). By weak com-
pactness of T, a subnet of T(xP) must converge weakly to 0.
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Let π = πψ : B(H)/K(H) → B(Hπ) be the irreducible representation deter-
mined by the pure state ψ and let θψ be the cyclic vector for the representation. By
the proofs of Lemma 1.1 and Theorem 1.3, we can see that tgm(Q(a∗, ψ), Q(b, ψ))
is the norm of the linear functional y 7→ 〈(Tπy)θψ, θψ〉. Choose y ∈ B(Hπ) so that
〈(Tπy)θψ, θψ〉 6= 0 and x ∈ B(H) so that π(x) = y. Then ψ(Tx) 6= 0. Since
x− xP ∈ K(H), it follows that Tx− TxP ∈ K(H) and so |ψ(TxP)| = |ψ(Tx)| > 0.
This contradicts any subnet TxP → 0 weakly.

(iii) ⇒ (iv) is clear.
(iv) ⇒ (i): Consider a net (xα)α in the unit ball of B(H). It has a subnet

converging weak* to some x0. We call the subnet (xα)α again and aim to show
Txα → Tx0 weakly.

We denote the dual spaces of K(H) by K(H)′ and of B(H) by B(H)′. Since
K(H) is an M-ideal in B(H), B(H)′ is an `1 direct sum of those functionals van-
ishing on K(H) (or (B(H)/K(H))′) and a complement which is the canonical
image of K(H)′ in its double dual K(H)′′′ = B(H)′. Thus every functional γ
on B(H) is a sum of (singular and normal) functionals γs ∈ (B(H)/K(H))′ and
γn ∈ K(H)′. We know lim

α
γn(Txα) = γn(Tx0) by weak*-continuity of T and so

we concentrate on establishing lim
α

γs(Txα) = γs(Tx0).

As γs can be expressed as a linear combination of 4 states, it is enough to
deal with the case when γs = φ is a state of the Calkin algebra. But in that
case, we know we can express φ as a weak*-limit φ(y) = lim

β
ωξβ

(y) (y ∈ B(H))

for a weakly null net (ξβ)β of unit vectors in H. The norm of the functional
x 7→ φ(Tx) is

tgm(Q(a∗, φ), Q(b, φ)) = lim
β

tgm(Q(a∗, ωξβ
), Q(b, ωξβ

)) = lim
β

fT(ξβ, ξβ) = 0

by (iv). Hence φ(Txα) = φ(Tx0) = 0 for all α.
(iii) ⇒ (v): Consider a maximal subset of {a1, a2, . . . , a`} which is linearly

independent modulo K(H). By renumbering, we can assume this maximal set is
a1, a2, . . . , am for 0 6 m 6 `. (If m = 0, all the aj are compact.) We can then express
aj for m + 1 6 j 6 ` as a compact cj plus a linear combination of a1, a2, . . . , am.
This allows us to write T in the form

Tx =
m

∑
j=1

ajxb′j +
`

∑
j=m+1

cjxbj = T1x + T2x.

It is easy to see that fT2 is continuous at points {0} × H1. As fT(ξ, η) is the norm
of the functional x 7→ 〈(Tx)η, ξ〉, it follows that fT1(η, ξ) 6 fT(η, ξ) + fT2(η, ξ)
and is continuous at (0, 0) ∈ H1 × H1.

Thus it is sufficient to consider the case where m = ` and the aj are linearly
independent modulo K(H) and to show that each bj is compact in this case. By
Lemma 3.2 there is a weakly null net (ξα)α in H1 so that lim

α
Q(a∗, ξα) is positive

definite. Thus for α large there is ε > 0 so that Q(a∗, ξα) > εI`. For any net (ηβ)β
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in H1 which is weakly null, we can order pairs (α, β) via (α1, β1) 6 (α2, β2) ⇐⇒
α1 6 α2 and β1 6 β2 and thereby create a net ((ξα, ηβ))(α,β) which converges to
(0, 0) in H1 × H1. However

fT(ξα, ηβ) = tgm(Q(a∗, ξα), Q(b, ηβ)) >
√

ε
√

trace Q(b, ηβ)

and it follows that lim
β
‖bjηβ‖ = 0 for each j. Thus each bj is compact in this case.

(v) ⇒ (iii): is easy to verify by writing

Tx =
m

∑
j=1

cjxdj +
`

∑
j=m+1

djxcj = T1x + T2x,

and using fT 6 fT1 + fT2 . It is easy to show that fT1 is continuous at points of
{0} × H1 and fT2 is continuous at points of H1 × {0}.

A natural question which remains unresolved is whether an analogue of
Theorem 3.3 holds for weakly compact elementary operators on (general) C∗-
algebras. There are several related results established in Section 5.3 of [3].

Acknowledgements. This work arose out of discussions with Aleksej Turnšek in Dublin
in January 2004 and we thank him for several helpful comments on earlier drafts of this
paper. Thanks also to the referee for several suggestions.

REFERENCES

[1] J.C. ALEXANDER, Compact Banach algebras, Proc. London Math. Soc. (3) 18(1968), 1–
18.

[2] T. ANDO, C.-K. LI, R. MATHIAS, Geometric means, Linear Algebra Appl. 383(2004),
305–334.

[3] P. ARA, M. MATHIEU, Local Multipliers of C*-Algebras, Springer, London 2003.

[4] R.J. ARCHBOLD, On the norm of an inner derivation of a C∗-algebra, Math. Proc.
Cambridge Philos. Soc. 84(1978), 273–291.

[5] R.J. ARCHBOLD, M. MATHIEU, D.W.B. SOMERSET, Elementary operators on antil-
iminal C*-algebras, Math. Ann. 313(1999), 609–616.

[6] R.J. ARCHBOLD, D.W.B. SOMERSET, Inner derivations and primal ideals of C∗-
algebras. II, Proc. London Math. Soc. (3) 88(2004), 225–250.

[7] R.J. ARCHBOLD, D.W.B. SOMERSET, R.M. TIMONEY, On the central Haagerup tensor
product and completely bounded mappings of a C∗-algebra, J. Funct. Anal. 226(2005),
406–428

[8] C.J.K. BATTY, R.J. ARCHBOLD, On factorial states of operator algebras. II, J. Operator
Theory 13(1985), 131–142.

[9] R. BHATIA, Matrix Analysis, Graduate Texts in Math., vol. 169, Springer-Verlag, New
York 1997.



NORMS OF ELEMENTARY OPERATORS 145

[10] A. BLANCO, M. BOUMAZGOUR, T.J. RANSFORD, On the norm of elementary opera-
tors, J. London Math. Soc. (2) 70(2004), 479–498.

[11] J. DIXMIER, Les C∗-algèbres et leurs representations, Gauthier-Villars, Paris 1964.

[12] E.G. EFFROS, Z.-J. RUAN, Operator Spaces, London Math. Soc. Monographs, vol. 23,
Oxford Sci. Publ., Oxford 2000.

[13] C.K. FONG, A.R. SOUROUR, On the operator identity ∑ AkXBk ≡ 0, Canad. J. Math.
31(1979), 845–857.

[14] B. GRAMSCH, Eine Idealstruktur Banachscher Operatoralgebren, J. Reine Angew.
Math. 225(1967), 97–115.

[15] I. KAPLANSKY, Normed algebras, Duke Math. J. 16(1949), 399–418.

[16] B. MAGAJNA, A transitivity theorem for algebras of elementary operators, Proc. Amer.
Math. Soc. 118(1993), 119–127.

[17] B. MAGAJNA, The Haagerup norm on the tensor product of operator modules, J.
Funct. Anal. 129(1995), 325–348.

[18] B. MAGAJNA, A. TURNŠEK, On the norm of symmetrised two-sided multiplications,
Bull. Australian Math. Soc. 67(2003), 27–38.

[19] M. MATHIEU, The norm problem for elementary operators, in Recent Progress in Func-
tional Analysis (K.D. Bierstedt et al, eds.), Elsevier, Amsterdam 2001, pp. 363–368.

[20] V. PAULSEN, Completely Bounded Maps and Operator Algebras, Cambridge Univ. Press,
Cambridge 2002.

[21] D.W.B. SOMERSET, The inner derivations and the primitive ideal space of a C∗-
algebra, J. Operator Theory 29(1993), 307–321.

[22] D.W.B. SOMERSET, Inner derivations and primal ideals of C∗-algebras, J. London
Math. Soc. (2) 50(1994), 568–580.

[23] D.W.B. SOMERSET, The proximinality of the centre of a C∗-algebra, J. Approx. Theory
89(1997), 114–117.

[24] D.W.B. SOMERSET, The central Haagerup tensor product of a C*-algebra, J. Operator
Theory 39(1998), 113–121.

[25] J.G. STAMPFLI, The norm of a derivation, Pacific J. Math. 33(1970), 737–747.

[26] R.M. TIMONEY, Computing the norms of elementary operators, Illinois J. Math.
47(2003), 1207–1226.

[27] R.M. TIMONEY, Norms and CB norms of Jordan elementary operators, Bull. Sci. Math.
127(2003), 597–609.

[28] K. VALA, On compact sets of compact operators, Ann. Acad. Sci. Fenn. Ser. A I Math.
351(1964).

RICHARD M. TIMONEY, SCHOOL OF MATHEMATICS, TRINITY COLLEGE, DUBLIN

2, IRELAND

E-mail address: richardt@maths.tcd.ie

Received March 7, 2005.


