C*-ALGEBRAS OF LABELLED GRAPHS

TERESA BATES and DAVID PASK

Communicated by William B. Arveson

Abstract

We describe a class of C^{*}-algebras which simultaneously generalise the ultragraph algebras of Tomforde and the shift space C^{*}-algebras of Matsumoto. In doing so we shed some new light on the different C^{*}-algebras that may be associated to a shift space. Finally, we show how to associate a simple C^{*}-algebra to an irreducible sofic shift.

KEYWORDS: C*-algebras, labelled graph, ultragraph, shift space, Matsumoto algebra.

MSC (2000): 46L05, 37B10.

1. INTRODUCTION

The purpose of this paper is to introduce a class of C^{*}-algebras associated to labelled graphs. Our motivation is to provide a common framework for working with the ultragraph algebras of Tomforde (see [26], [27]) and the C^{*}-algebras associated to shift spaces studied by Matsumoto and Carlsen (see [14], [16], [6], [8] amongst others). Here a labelled graph (E, \mathcal{L}) over an alphabet \mathcal{A} is a directed graph E, together with a map $\mathcal{L}: E^{1} \rightarrow \mathcal{A}$. An ultragraph \mathcal{G} is a particular example of a labelled graph (see Example 3.3 (ii)), and a shift space Λ has many presentations as a labelled graph (see Example 3.3 (iii) of [13]). Hence it is natural to give our common framework in terms of labelled graphs.

To a two-sided shift space Λ over a finite alphabet, Matsumoto associates two C^{*}-algebras \mathcal{O}_{Λ} and $\mathcal{O}_{\Lambda^{*}}$ generated by partial isometries (see [8]). Although \mathcal{O}_{Λ} and $\mathcal{O}_{\Lambda^{*}}$ are generated by elements satisfying the same relations, it turns out that they are not isomorphic in general (see Theorem 4.1 of [8]). This fact manifests itself in our realisation in Section 6.2 of \mathcal{O}_{Λ} and $\mathcal{O}_{\Lambda^{*}}$ as the C^{*}-algebras of the labelled graphs $\left(E_{\Lambda}, \mathcal{L}_{\Lambda}\right)$ and $\left(E_{\Lambda^{*}}, \mathcal{L}_{\Lambda^{*}}\right)$ respectively, which are not necessarily isomorphic as labelled graphs. Moreover, in Corollary 6.9 we show that using labelled graphs gives us the facility to canonically associate a simple C^{*}-algebra to an irreducible sofic shift (cf. [8], [6], [7]).

In fact we can associate a number of (possibly different) C^{*}-algebras to a labelled graph. This leads us to the notion of a labelled space, which we describe in Section 3. Briefly, a labelled space $(E, \mathcal{L}, \mathcal{B})$ consists of a labelled graph (E, \mathcal{L}) together with a collection $\mathcal{B} \subseteq 2^{E^{0}}$ which plays the same role as \mathcal{G}^{0} in [26] and is related to the abelian AF-subalgebra A_{Λ} (respectively $A_{\Lambda^{*}}$) in \mathcal{O}_{Λ} (respectively $\left.\mathcal{O}_{\Lambda^{*}}\right)$ generated by the source projections.

In Section 4 we define a representation of a labelled space in terms of partial isometries $\left\{s_{a}: a \in \mathcal{A}\right\}$ and projections $\left\{p_{A}: A \in \mathcal{B}\right\}$ subject to certain relations. Our relations generalise those found in [26], [14]. In order to build a nondegenerate C^{*}-algebra from a representation of $(E, \mathcal{L}, \mathcal{B})$ it is necessary for \mathcal{B} to be weakly left-resolving: a condition which is a generalisation of the leftresolving property for labelled graphs. Hence we may define $C^{*}(E, \mathcal{L}, \mathcal{B})$ to be the C^{*}-algebra which is universal for representations of the weakly left-resolving labelled space $(E, \mathcal{L}, \mathcal{B})$. Since any ultragraph has a natural realisation as a leftresolving labelled graph, the class of C^{*}-algebras of labelled spaces contains the ultragraph algebras (and hence, graph algebras and Exel-Laca algebras).

In Section 5 we give a version of the gauge-invariant uniqueness theorem for $C^{*}(E, \mathcal{L}, \mathcal{B})$ which will ultimately allow us to make the connection with the Matsumoto algebras.

In Section 6 we give three applications of our uniqueness theorem: In Section 6.1 we show how to construct a dual labelled space, which is the analogue of the higher block presentation of a shift space (cf. [13]). We give an isomorphism theorem for dual labelled spaces which is a generalisation of Corollary 2.5 in [4] and forms a starting point for future work (see [3]). In Section 6.2 we show that if \mathcal{O}_{Λ} (respectively $\mathcal{O}_{\Lambda^{*}}$) has a gauge action, then it is isomorphic to the C^{*}-algebra of a certain labelled space. Then in Section 6.3 we give necessary conditions for the C^{*}-algebra of a labelled space to be isomorphic to the C^{*}-algebra of the underlying directed graph. We then show how to associate a simple C^{*}-algebra to an irreducible shift space. By example, we show that in general the C^{*}-algebra of a labelled space will not be isomorphic to the C^{*}-algebra of any directed graph; hence labelled graph C^{*}-algebras form a strictly larger class of C^{*}-algebras than graph algebras.

This paper has benefitted from several helpful suggestions made by the anonymous referee and Toke Carlsen.

Since we seek to generalise them, we begin by giving a brief description of ultragraph algebras and Matsumoto algebras.

2. ULTRAGRAPH ALGEBRAS AND MATSUMOTO ALGEBRAS

2.1. Ultragraph algebras. Following [26], an ultragraph $\mathcal{G}=\left(G^{0}, \mathcal{G}^{1}, r, s\right)$ consists of a countable set of vertices G^{0}, a countable set of edges \mathcal{G}^{1}, and functions $s: \mathcal{G}^{1} \rightarrow G^{0}$ and $r: \mathcal{G}^{1} \rightarrow 2^{G^{0}}$. Let \mathcal{G}^{0} be the smallest collection of $2^{G^{0}}$
which contains $s(e)$ and $r(e)$ for all $e \in \mathcal{G}^{1}$ and is closed under finite intersections and unions. The ultragraph algebra $C^{*}(\mathcal{G})$ is the universal C^{*}-algebra for CuntzKrieger \mathcal{G}-families: collections of partial isometries $\left\{s_{e}: e \in \mathcal{G}^{1}\right\}$ with mutually orthogonal ranges, and projections $\left\{p_{A}: A \in \mathcal{G}^{0}\right\}$ satisfying the relations:
(1.) $p_{\varnothing}=0, p_{A} p_{B}=p_{A \cap B}$ and $p_{A \cup B}=p_{A}+p_{B}-p_{A \cap B}$ for all $A, B \in \mathcal{G}^{0}$;
(2.) $s_{e}^{*} s_{e}=p_{r(e)}$ and $s_{e} s_{e}^{*} \leqslant p_{s(e)}$ for all $e \in \mathcal{G}^{1}$;
(3.) $p_{v}=\sum_{s(e)=v} s_{e} s_{e}^{*}$ whenever $0<\left|s^{-1}(v)\right|<\infty$;
(see Definition 2.7 in [26]). Recall that $v \in G^{0}$ is an infinite emitter if $\left|s^{-1}(v)\right|=\infty$.
If \mathcal{G} has no infinite emitters, then the underlying graph (see Examples 3.3 (ii)) can still fail to be row-finite. With this in mind we make the following definition (cf. Remark 2.6 in [26]):

DEFINITION 2.1. The ultragraph \mathcal{G} is row-finite if there are no infinite emitters and $r(e)$ is finite for all $e \in \mathcal{G}^{1}$.

Ultragraph algebras simultaneously generalise graph C^{*}-algebras and ExelLaca algebras (see Sections 3 and 4 of [26]). By Corollary 5.5 in [27] there is a non row-finite ultragraph whose C^{*}-algebra is not isomorphic to a graph algebra or an Exel-Laca algebra.
2.2. Matsumoto algebras. For an introduction to shift spaces we refer the reader to the excellent treatment in [13]. Let Λ be a two-sided shift space over a finite alphabet \mathcal{A}. Let

$$
\begin{equation*}
X_{\Lambda}=\left\{\left(x_{i}\right)_{i \geqslant 1}:\left(x_{i}\right)_{i \in \mathbb{Z}} \in \Lambda\right\} \tag{2.1}
\end{equation*}
$$

denote the set of all right-infinite sequences in Λ.
For each $k \geqslant 1$, let Λ^{k} be the set of all words with length k appearing in some $x \in \Lambda$. We set $\Lambda_{\ell}=\bigcup_{k=0}^{\ell} \Lambda^{k}$ and $\Lambda^{*}=\bigcup_{k=0}^{\infty} \Lambda^{k}$ where Λ^{0} denotes the empty word \varnothing.

Following [8] there are two C^{*}-algebras associated to Λ. Each C^{*}-algebra is generated by partial isometries $\left\{t_{a}: a \in \mathcal{A}\right\}$ subject to

$$
\begin{equation*}
\sum_{a \in \mathcal{A}} t_{a} t_{a}^{*}=1, \quad \text { and } \quad t_{\alpha}^{*} t_{\alpha} t_{\beta}=t_{\beta} t_{\alpha \beta}^{*} t_{\alpha \beta}, \quad \text { where } \alpha, \beta, \alpha \beta \in \Lambda^{*} \tag{2.2}
\end{equation*}
$$

As in [8] we denote by \mathcal{O}_{Λ} the C^{*}-algebra defined directly on Hilbert space in [18], [20] and by $\mathcal{O}_{\Lambda^{*}}$ the C^{*}-algebra defined using the Fock space construction in [14], [16], [17], [15], [19]. Because of the different ways in which the relations (2.2) are realised it turns out that \mathcal{O}_{Λ} and $\mathcal{O}_{\Lambda^{*}}$ are not isomorphic in general (see Section 6 in [8]).

There is a uniqueness theorem for \mathcal{O}_{Λ} (respectively $\mathcal{O}_{\Lambda^{*}}$) when Λ satisfies Condition (I) (respectively Condition (I^{*})) given in Section 4 of [8] (respectively Section 3 of [8]).

Condition I. For $x \in X_{\Lambda}$ and $l \in \mathbb{N}$ put $\Lambda_{l}(x)=\left\{\mu \in \Lambda_{l}: \mu x \in X_{\Lambda}\right\}$. Two infinite paths $x, y \in X_{\Lambda}$ are l-past equivalent (written $x \sim_{l} y$) if $\Lambda_{l}(x)=\Lambda_{l}(y)$. The shift space X_{Λ} satisfies Condition (I) if for any $l \in \mathbb{N}$ and $x \in X_{\Lambda}$ there exists $y \in X_{\Lambda}$ such that $y \neq x, y \sim_{l} x$.

Condition I^{*}. For $\omega \in \Lambda^{*}$ and $l \in \mathbb{N}$ we set $\Lambda_{l}(\omega)=\{\mu:|\mu| \leqslant l, \mu \omega \in$ $\left.\Lambda^{*}\right\}$. Two words $\mu, v \in \Lambda^{*}$ are said to be l-past equivalent (written $\mu \sim_{l} v$) if $\Lambda_{l}(\mu)=\Lambda_{l}(v)$. The subset $\Lambda_{l}^{*} \subseteq \Lambda^{*}$ is defined by

$$
\Lambda_{l}^{*}:=\left\{\omega \in \Lambda^{*}:\left|\left\{\mu \in \Lambda^{*}: \mu \sim_{l} \omega\right\}\right|<\infty\right\}
$$

The shift space Λ satisfies Condition (I^{*}) if for every $l \in \mathbb{N}$ and $\mu \in \Lambda_{l}^{*}$ there exist distinct words $\xi_{1}, \xi_{2} \in \Lambda^{*}$ with $\left|\xi_{1}\right|=\left|\xi_{2}\right|=m$ such that

$$
\mu \sim_{l} \xi_{1} \gamma_{1} \quad \text { and } \mu \sim_{l} \xi_{2} \gamma_{2}
$$

for some $\gamma_{1}, \gamma_{2} \in \Lambda_{l+m}^{*}$.
Proposition 2.2. Let Λ be a two-sided shift space over a finite alphabet which satisfies Condition (I). Then there is a strongly continuous action β of \mathbb{T} on \mathcal{O}_{Λ} such that $\beta_{z}\left(t_{a}\right)=z t_{a}$ for all $a \in \mathcal{A}$ and $z \in \mathbb{T}$.

Proof. That each β_{z} is an automorphism of \mathcal{O}_{Λ} for each $z \in \mathbb{T}$ follows from Proposition 4.2 in [8]. A standard $\epsilon / 3$ argument shows that β is strongly continuous.

From p. 363 in [14] there is always a gauge action on $\mathcal{O}_{\Lambda^{*}}$. In [19] Matsumoto defines λ-graph systems \mathcal{L}_{Λ} and $\mathcal{L}_{\Lambda^{*}}$ associated to a two-sided shift space Λ together with corresponding C^{*}-algebras $\mathcal{O}_{\mathcal{L}_{\Lambda}}$ and $\mathcal{O}_{\mathcal{L}_{\Lambda^{*}}}$. By Theorem 5.6 in [8] we see that if Λ satisfies Condition (I) then $\mathcal{O}_{\Lambda} \cong \mathcal{O}_{\mathcal{L}_{\Lambda}}$ and if Λ satisfies Condition (I ${ }^{*}$) then $\mathcal{O}_{\Lambda^{*}} \cong \mathcal{O}_{\mathcal{L}_{\Lambda^{*}}}$. Hence, for our purposes, it suffices to work with \mathcal{O}_{Λ} and $\mathcal{O}_{\Lambda^{*}}$.

3. LABELLED SPACES

A directed graph E consists of a quadruple $\left(E^{0}, E^{1}, r, s\right)$ where E^{0} and E^{1} are countable sets of vertices and edges respectively and $r, s: E^{1} \rightarrow E^{0}$ are maps giving the direction of each edge. A path $\lambda=e_{1} \cdots e_{n}$ is a sequence of edges $e_{i} \in E^{1}$ such that $r\left(e_{i}\right)=s\left(e_{i+1}\right)$ for $i=1, \ldots, n-1$. The collection of paths of length n in E is denoted E^{n} and the collection of all finite paths in E by E^{*}, so that $E^{*}=\bigcup_{n \geqslant 0} E^{n}$. The edge shift $\left(\mathrm{X}_{E}, \sigma_{E}\right)$ associated to a directed graph E with no sinks or sources is defined by:
$\mathrm{X}_{E}=\left\{x \in\left(E^{1}\right)^{\mathbb{Z}}: s\left(x_{i+1}\right)=r\left(x_{i}\right)\right.$ for all $\left.i \in \mathbb{Z}\right\} \quad$ and $\quad\left(\sigma_{E} x\right)_{i}=x_{i+1} \quad$ for $i \in \mathbb{Z}$.
The following definition is adapted from Definition 3.1.1 in [13]:
DEfinition 3.1. A labelled graph (E, \mathcal{L}) over an alphabet \mathcal{A} consists of a directed graph E together with a labelling $\operatorname{map} \mathcal{L}: E^{1} \rightarrow \mathcal{A}$.

Without loss of generality we may assume that the map \mathcal{L} is onto. We say that the labelled graph (E, \mathcal{L}) is row-finite if the underlying graph E is row-finite.

Given a labelled graph (E, \mathcal{L}) such that every vertex in E emits and receives an edge, we may define a subshift $\left(\mathrm{X}_{(E, \mathcal{L})}, \sigma\right)$ of $\mathcal{A}^{\mathbb{Z}}$ by

$$
\mathrm{X}_{(E, \mathcal{L})}=\left\{y \in \mathcal{A}^{\mathbb{Z}}: \text { there exists } x \in \mathrm{X}_{E} \text { such that } y_{i}=\mathcal{L}\left(x_{i}\right) \text { for all } i \in \mathbb{Z}\right\}
$$

where σ is the shift map. The labelled graph (E, \mathcal{L}) is said to be a presentation of the shift space $X=X_{(E, \mathcal{L})}$. As shown in Section 3.1 of [13] a shift space may have many different presentations (see Examples 3.3 (ii), (vi), (vii)).

Let \mathcal{A}^{*} be the collection of all words in the symbols of \mathcal{A} (see Section 0.2 of [25]). The map \mathcal{L} extends naturally to a $\operatorname{map} \mathcal{L}: E^{n} \rightarrow \mathcal{A}^{*}$, where $n \geqslant 1$: for $\lambda=e_{1} \cdots e_{n} \in E^{n}$ put $\mathcal{L}(\lambda)=\mathcal{L}\left(e_{1}\right) \cdots \mathcal{L}\left(e_{n}\right)$; in this case the path $\lambda \in E^{n}$ is said to be a representative of the labelled path $\mathcal{L}\left(e_{1}\right) \cdots \mathcal{L}\left(e_{n}\right)$. Let $\mathcal{L}\left(E^{n}\right)$ denote the collection of all labelled paths in (E, \mathcal{L}) of length n, then $\mathcal{L}^{*}(E)=\bigcup_{n \geqslant 1} \mathcal{L}\left(E^{n}\right)$ denotes the collection of all words in the alphabet \mathcal{A} which may be represented by paths in the labelled graph (E, \mathcal{L}). In this way \mathcal{L} induces a map from the language $\bigcup_{n \geqslant 1} E^{n}$ of the subshift of finite type X_{E} associated to E into $\mathcal{L}^{*}(E)$, the language of the shift space $X_{(E, \mathcal{L})}$ presented by (E, \mathcal{L}) (see Section 3 of [13]). The usual length function $|\cdot|: E^{*} \rightarrow \mathbb{N}$ transfers naturally over to $\mathcal{L}^{*}(E)$.

For α in $\mathcal{L}^{*}(E)$ we put

$$
s_{\mathcal{L}}(\alpha)=\left\{s(\lambda) \in E^{0}: \mathcal{L}(\lambda)=\alpha\right\} \quad \text { and } \quad r_{\mathcal{L}}(\alpha)=\left\{r(\lambda) \in E^{0}: \mathcal{L}(\lambda)=\alpha\right\}
$$

so that $r_{\mathcal{L}}, s_{\mathcal{L}}: \mathcal{L}^{*}(E) \rightarrow 2^{E^{0}}$. We shall drop the subscript on $r_{\mathcal{L}}$ and $s_{\mathcal{L}}$ if the context in which it is being used is clear. For $\alpha, \beta \in \mathcal{L}^{*}(E)$ we have $\alpha \beta \in \mathcal{L}^{*}(E)$ if and only if $r(\alpha) \cap s(\beta) \neq \varnothing$.

Where possible we shall denote the elements of $\mathcal{A}=\mathcal{L}\left(E^{1}\right)$ as a, b, etc., elements of $\mathcal{L}^{*}(E)$ as α, β, etc., leaving e, f for elements of E^{1} and λ, μ for elements of E^{*}.

Let (E, \mathcal{L}) and $\left(F, \mathcal{L}^{\prime}\right)$ be graphs labelled by the same alphabet. A graph isomorphism $\phi: E \rightarrow F$ is a labelled graph isomorphism if $\mathcal{L}^{\prime}(\phi(e))=\mathcal{L}(e)$ for all $e \in E^{1}$ and we write $\phi:(E, \mathcal{L}) \rightarrow\left(F, \mathcal{L}^{\prime}\right)$.

Definition 3.2. The labelled graph (E, \mathcal{L}) is left-resolving if for all $v \in E^{0}$ the $\operatorname{map} \mathcal{L}: r^{-1}(v) \rightarrow \mathcal{A}$ is injective.

The left-resolving condition ensures that for all $v \in E^{0}$ the labels $\{\mathcal{L}(e)$: $r(e)=v\}$ of all incoming edges to v are all different. In particular if $\lambda, \mu \in \bigcup_{n \geqslant 1} E^{n}$ satisfy $\mathcal{L}(\lambda)=\mathcal{L}(\mu)$ and $r(\lambda)=r(\mu)$ then $\lambda=\mu$.

Examples 3.3. (i) Let E be a directed graph. Put $\mathcal{A}=E^{1}$ and let $\mathcal{L}: E^{1} \rightarrow$ E^{1} be the identity map (the trivial labelling); then (E, \mathcal{L}) is a left-resolving labelled graph.
(ii) Let $\mathcal{G}=\left(G^{0}, \mathcal{G}^{1}, r, s\right)$ be an ultragraph. Define $E=E_{\mathcal{G}}$ by putting $E^{0}=G^{0}$, $E^{1}=\left\{(e, w): e \in \mathcal{G}^{1}, w \in r(e)\right\}$ and defining $r^{\prime}, s^{\prime}: E^{1} \rightarrow E^{0}$ by $s^{\prime}(e, w)=s(e)$, $r^{\prime}(e, w)=w$. Set $\mathcal{A}=\mathcal{G}^{1}$ and define $\mathcal{L}_{\mathcal{G}}: E^{1} \rightarrow \mathcal{A}$ by $\mathcal{L}_{\mathcal{G}}(e, w)=e$. The resulting labelled graph $\left(E_{\mathcal{G}}, \mathcal{L}_{\mathcal{G}}\right)$ is left-resolving since the source map is single-valued. If \mathcal{G} is row-finite in the sense of Definition 2.1 then $E_{\mathcal{G}}$ is row-finite.

On the other hand, given a left-resolving labelled graph (E, \mathcal{L}) over an alphabet \mathcal{A} where $s_{\mathcal{L}}: \mathcal{L}^{*}(E) \rightarrow 2^{E^{0}}$ is single-valued, we can form a ultragraph $\mathcal{G}_{(E, \mathcal{L})}=\left(E^{0}, \mathcal{A}, r^{\prime}, s^{\prime}\right)$ with $s^{\prime}=s_{\mathcal{L}}$ and $r^{\prime}=r_{\mathcal{L}}$. If (E, \mathcal{L}) is row-finite then the ultragraph $\mathcal{G}_{(E, \mathcal{L})}$ is row-finite.
(iii) Following Section 3 of [13] the labelled graphs

have the same language as the even shift Y since between any two 1's there must be an even number of 0's. Hence $\mathrm{X}_{\left(E_{i}, \mathcal{L}_{i}\right)}=Y$ for $i=1,2,3$ by Proposition 1.3.4 (3) of [13]. Only graphs $\left(E_{1}, \mathcal{L}_{1}\right)$ and $\left(E_{2}, \mathcal{L}_{2}\right)$ are left-resolving.
(iv) Let E be a directed graph and Γ a group which acts on (the right of) E. Define $\mathcal{L}_{q}: E^{1} \rightarrow E^{1} / \Gamma$ by $\mathcal{L}_{q}(e)=q(e)$ where $q: E^{1} \rightarrow E^{1} / \Gamma$ is the quotient map. If the action of Γ is free on E^{1}, then the resulting labelled graph $\left(E, \mathcal{L}_{q}\right)$ is left-resolving. More generally, if $p: F \rightarrow E$ is a graph morphism then there is a labelling $\mathcal{L}_{p}: F^{1} \rightarrow E^{1}$ given by $\mathcal{L}_{p}(f)=p(f)$ for all $f \in E^{1}$. If p is a covering map then \mathcal{L}_{p} is left-resolving.
(v) Recall from Section 3 of [2], that an out-splitting of a directed graph E is formed by a partition \mathcal{P} of $s^{-1}(v)$ into $m(v) \geqslant 1$ non-empty subsets for each
$v \in E^{0}$ (if $s^{-1}(v)=\varnothing$ then $m(v)=0$). Given such a partition \mathcal{P} one may construct a directed graph $E_{s}(\mathcal{P})$ where $E_{s}\left(\mathcal{P}^{1}\right)=\left\{e^{j}: e \in E^{1}, 1 \leqslant j \leqslant m(r(e))\right\} \cup\{e:$ $m(r(e))=0\}$. Define $\mathcal{L}: E_{s}(\mathcal{P})^{1} \rightarrow E^{1}$ by $\mathcal{L}\left(e^{j}\right)=e$ for $1 \leqslant j \leqslant m(r(e))$ and $\mathcal{L}(e)=e$ if $m(r(e))=0$. For an in-splitting (see Section 5 in [2]) of E using a partition \mathcal{P}, a similar construction also yields a labelled graph. However the resulting labelling \mathcal{L} of the in-split graph $E_{r}(\mathcal{P})$ will not be left-resolving in general.
(vi) Let Λ be a two-sided shift space over a finite alphabet \mathcal{A} with X_{Λ} defined as in (2.1). Let $X_{\Lambda}^{-}=\left\{\left(x_{i}\right)_{i \leqslant 0}:\left(x_{i}\right)_{i \in \mathbb{Z}} \in \Lambda\right\}$ so that any element $x \in \Lambda$ may be written as $x=x^{-} x^{+}$. For arbitrary $x^{+} \in X_{\Lambda}$ and $x^{-} \in X_{\Lambda}^{-}$the bi-infinite sequence $y=x^{-} x^{+}$may not belong to Λ. Define the past set of $t \in X_{\Lambda}$ as

$$
P_{\infty}(t)=\left\{x^{-} \in X_{\Lambda}^{-}: x^{-} t \in \Lambda\right\} .
$$

A shift is sofic if and only if the number of past sets is finite [11], [13].
For $s, t \in X_{\Lambda}$, we say that s is past equivalent to t (denoted $s \sim_{\infty} t$) if $P_{\infty}(s)=P_{\infty}(t)$. Define a labelled graph $\left(E_{\Lambda}, \mathcal{L}_{\Lambda}\right)$ as follows: let $E_{\Lambda}^{0}=\{[v]:$ $\left.v \in X_{\Lambda} / \sim_{\infty}\right\}, E_{\Lambda}^{1}=\left\{([v], a,[w]): a \in \mathcal{A}, a w \sim_{\infty} v\right\}$ with $s([v], a,[w])=[v]$ and $r([v], a,[w])=[w]$. If $([v], a,[w]) \in E_{\Lambda}^{1}$ we put $\mathcal{L}_{\Lambda}([v], a,[w])=a$. The resulting left-resolving labelled graph is usually referred to as the left-Krieger cover of Λ and the construction is evidently independent of the choice of representatives (see [11]).

If Y is the even shift then $\left(E_{Y}, \mathcal{L}_{Y}\right)$ is labelled graph isomorphic to $\left(E_{2}, \mathcal{L}_{2}\right)$ in (iii) above. Let Z be shift over the alphabet $\{1,2,3,4\}$ in which the words

$$
\left\{12^{k} 1,32^{k} 12,32^{k} 13,42^{k} 14: k \geqslant 0\right\}
$$

do not occur (see Section 4 of [8]) then $\left(E_{Z}, \mathcal{L}_{Z}\right)$ has six vertices.
(vii) Let Λ be a two-sided shift over a finite alphabet \mathcal{A}. We construct a variant of the predecessor graph $\left(E_{\Lambda^{*}}, \mathcal{L}_{\Lambda^{*}}\right)$ in the following way. For $\mu \in \Lambda^{*}$ we define

$$
P(\mu):=\left\{\lambda: \lambda \mu \in \Lambda^{*}\right\}
$$

and define an equivalence relation by $\mu \sim \nu$ if $P(\mu)=P(v)$. A shift is sofic if and only if the number of predecessor sets is finite [13].

Let Λ_{∞}^{*} denote those $\mu \in \Lambda^{*}$ which have an infinite equivalence class. Since \mathcal{A} is finite $\Lambda_{\infty}^{*} / \sim$ can be identified with $\Omega_{\Lambda^{*}}=\lim _{\leftarrow} \Omega_{l}^{*}$ as described in Section 2 of [16]. We set $E_{\Lambda^{*}}^{0}=\Lambda_{\infty}^{*} / \sim, E_{\Lambda^{*}}^{1}=\{([\mu], a,[v]): a \in \mathcal{A},[\mu]=[a v]\}, r([\mu], a,[v])=$ $[v]$ and $s([\mu], a,[v])=[\mu]$. The labelling map is defined by $\mathcal{L}_{\Lambda^{*}}([\mu], a,[v])=a$. The resulting labelled graph is evidently left-resolving.

If Y is the even shift then $\left(E_{Y^{*}}, \mathcal{L}_{Y^{*}}\right)$ is labelled graph isomorphic to $\left(E_{2}, \mathcal{L}_{2}\right)$ in (iii) above (cf. [6], [16]). If Z is the sofic shift described in Example 3.3 (vi) then $\left(E_{Z^{*}}, \mathcal{L}_{Z^{*}}\right)$ has seven vertices and contains $\left(E_{Z}, \mathcal{L}_{Z}\right)$ as a subgraph.

DEFINITION 3.4. Let (E, \mathcal{L}) be a labelled graph. For $A \subseteq E^{0}$ and $\alpha \in \mathcal{L}^{*}(E)$ the relative range of α with respect to A is defined to be

$$
r(A, \alpha)=\left\{r(\lambda): \lambda \in E^{*}, \mathcal{L}(\lambda)=\alpha, s(\lambda) \in A\right\}
$$

REMARK 3.5. For any $A, B \subseteq E^{0}$ and $\alpha \in \mathcal{L}^{*}(E)$ we have $r(A \cap B, \alpha) \subseteq r(A, \alpha) \cap r(B, \alpha) \quad$ and $\quad r(A \cup B, \alpha)=r(A, \alpha) \cup r(B, \alpha)$. For all $A \subseteq E^{0}$ and $\alpha \in \mathcal{L}^{*}(E)$ we have $r(A, \alpha)=r(A \cap s(\alpha), \alpha)$.

A collection $\mathcal{B} \subseteq 2^{E^{0}}$ of subsets of E^{0} is said to be closed under relative ranges for (E, \mathcal{L}) if for all $A \in \mathcal{B}$ and $\alpha \in \mathcal{L}^{*}(E)$ we have $r(A, \alpha) \in \mathcal{B}$. If \mathcal{B} is closed under relative ranges for (E, \mathcal{L}), contains $r(\alpha)$ for all $\alpha \in \mathcal{L}^{*}(E)$ and is also closed under finite intersections and unions, then we say that \mathcal{B} is accommodating for (E, \mathcal{L}).

Definition 3.6. A labelled space consists of a triple $(E, \mathcal{L}, \mathcal{B})$, where (E, \mathcal{L}) is a labelled graph and \mathcal{B} is accommodating for (E, \mathcal{L}).

DEfinition 3.7. A labelled space $(E, \mathcal{L}, \mathcal{B})$ is weakly left-resolving if for every $A, B \in \mathcal{B}$ and every $\alpha \in \mathcal{L}^{*}(E)$ we have $r(A, \alpha) \cap r(B, \alpha)=r(A \cap B, \alpha)$.

In particular, the labelled space $(E, \mathcal{L}, \mathcal{B})$ is weakly left-resolving if no pair of disjoint sets $A, B \in \mathcal{B}$ can emit paths λ, μ respectively with $\mathcal{L}(\lambda)=\mathcal{L}(\mu)$ and $r(\lambda)=r(\mu)$. If (E, \mathcal{L}) is left-resolving then $(E, \mathcal{L}, \mathcal{B})$ is weakly left-resolving for any \mathcal{B}. Evidently if $(E, \mathcal{L}, \mathcal{B})$ is weakly left-resolving, then $\left(E, \mathcal{L}, \mathcal{B}^{\prime}\right)$ is weakly left-resolving for any $\mathcal{B}^{\prime} \subseteq \mathcal{B}$.

Consider the following subsets of $2^{E^{0}}$:
$\mathcal{E}=\left\{\{v\}: v \in E^{0}\right.$ is a source or a sink $\} \cup\left\{r(\alpha): \alpha \in \mathcal{L}^{*}(E)\right\} \cup\left\{s(\alpha): \alpha \in \mathcal{L}^{*}(E)\right\}$, $\mathcal{E}^{-}=\left\{\{v\}: v \in E^{0}\right.$ is a sink $\} \cup\left\{r(\alpha): \alpha \in \mathcal{L}^{*}(E)\right\}$.

The following definition is analogous to the definition of \mathcal{G}^{0} in [26].
DEFINITION 3.8. Let \mathcal{E}^{0} (respectively $\mathcal{E}^{0,-}$) denote the smallest subset of $2^{E^{0}}$ containing \mathcal{E} (respectively \mathcal{E}^{-}) which is accommodating for (E, \mathcal{L}).

REMARK 3.9. If $\alpha, \beta \in \mathcal{L}^{*}(E)$ are such that $\alpha \beta \in \mathcal{L}^{*}(E)$ then

$$
r(s(\alpha), \alpha \beta)=r(\alpha \beta) \quad \text { and } \quad r(r(\alpha), \beta)=r(\alpha \beta)
$$

For $\alpha, \beta \in \mathcal{L}^{*}(E)$ with $\alpha \beta \in \mathcal{L}^{*}(E)$ and $A \subseteq E^{0}$ we have $r(r(A, \alpha), \beta)=r(A, \alpha \beta)$.
For labelled spaces $\left(E, \mathcal{L}, \mathcal{E}^{0}\right)$ which are weakly left-resolving Remark 3.5 and Remark 3.9 show that to form \mathcal{E}^{0} it suffices to form

$$
\mathcal{E} \cup\left\{r(A, \alpha): A \in \mathcal{E}, \alpha \in \mathcal{L}^{*}(E)\right\}
$$

and then close under finite intersections and unions. To form $\mathcal{E}^{0,-}$, by Remark 3.5 it suffices to close \mathcal{E}^{-}under finite intersections and unions. Evidently, $\mathcal{E}^{0,-} \subseteq \mathcal{E}^{0}$; the containment can be strict, for instance this occurs when E has sources. One can show that $\mathcal{E}^{0}=\mathcal{E}^{0,-}$ if and only if for every $\alpha \in \mathcal{L}^{*}(E), s(\alpha)$ can be written as a finite union of sets of the form $\bigcap_{i=1}^{n} r\left(\beta_{i}\right)$. Since $E^{0}, \mathcal{L}^{*}(E)$ and \mathcal{E} are countable it follows that \mathcal{E}^{0} and $\mathcal{E}^{0,-}$ are countable.

For $A \in 2^{E^{0}}$ and $n \geqslant 1$ let

$$
L_{A}^{n}=\left\{\alpha \in \mathcal{L}\left(E^{n}\right): A \cap s(\alpha) \neq \varnothing\right\}
$$

denote those labelled paths of length n whose source intersects A nontrivially.

4. C^{*}-ALGEBRAS OF LABELLED SPACES

DEFINITION 4.1. Let $(E, \mathcal{L}, \mathcal{B})$ be a weakly left-resolving labelled space. A representation of $(E, \mathcal{L}, \mathcal{B})$ consists of projections $\left\{p_{A}: A \in \mathcal{B}\right\}$ and partial isometries $\left\{s_{a}: a \in \mathcal{L}\left(E^{1}\right)\right\}$ with the properties that:
(i) If $A, B \in \mathcal{B}$ then $p_{A} p_{B}=p_{A \cap B}$ and $p_{A \cup B}=p_{A}+p_{B}-p_{A \cap B}$, where $p_{\varnothing}=0$.
(ii) If $a \in \mathcal{L}\left(E^{1}\right)$ and $A \in \mathcal{B}$ then $p_{A} s_{a}=s_{a} p_{r(A, a)}$.
(iii) If $a, b \in \mathcal{L}\left(E^{1}\right)$ then $s_{a}^{*} s_{a}=p_{r(a)}$ and $s_{a}^{*} s_{b}=0$ unless $a=b$.
(iv) For $A \in \mathcal{B}$, if L_{A}^{1} is finite and non-empty we have

$$
\begin{equation*}
p_{A}=\sum_{a \in L_{A}^{1}} s_{a} p_{r(A, a)} s_{a}^{*} . \tag{4.1}
\end{equation*}
$$

If $a, b \in \mathcal{L}\left(E^{1}\right)$ are such that $a b \in \mathcal{L}^{*}(E)$ then we have

$$
\left(s_{a}^{*} s_{a}\right)\left(s_{b} s_{b}^{*}\right)=p_{r(a)} s_{b} s_{b}^{*}=s_{b} p_{r(r(a), b)} s_{b}^{*}=s_{b} s_{b}^{*} p_{r(a)}=\left(s_{b} s_{b}^{*}\right)\left(s_{a}^{*} s_{a}\right)
$$

Hence $s_{a} s_{b}$ is a partial isometry which is nonzero if and only if s_{a} and s_{b} are. Therefore we may define $s_{a b}=s_{a} s_{b}$ and similarly define s_{α} for all $\alpha \in \mathcal{L}^{*}(E)$. One checks that Definition 4.1 (ii) holds for $\alpha \in \mathcal{L}^{*}(E)$, Definition 4.1 (iii) holds for $\alpha, \beta \in \mathcal{L}\left(E^{n}\right)$ for $n \geqslant 1$ and Definition 4.1 (iv) holds for $A \in \mathcal{B}$ with finite and nonempty L_{A}^{n} for $n \geqslant 1$. Then (cf. (2.2)) we have

$$
s_{\alpha}^{*} s_{\alpha} s_{\beta}=p_{r(\alpha)} s_{\beta}=s_{\beta} p_{r(r(\alpha), \beta))}=s_{\beta} p_{r(\alpha \beta)}=s_{\beta} s_{\alpha \beta}^{*} s_{\alpha \beta} .
$$

To justify the requirement that $(E, \mathcal{L}, \mathcal{B})$ is weakly left-resolving in Definitions 4.1, consider the following: Let $\left\{p_{A}, s_{a}\right\}$ be a representation of $(E, \mathcal{L}, \mathcal{B})$ in which $p_{A} \neq 0$ for all $A \in \mathcal{B}$. By Definition 4.1 (i) we have $\left(p_{A}-p_{A \cap B}\right)\left(p_{B}-\right.$ $\left.p_{A \cap B}\right)=0$ for all $A, B \in \mathcal{B}$. Suppose, for contradiction, that there is $\alpha \in \mathcal{L}^{*}(E)$ such that $r(A, \alpha) \cap r(B, \alpha) \neq r(A \cap B, \alpha)$. From Definition 4.1 (iv) we have $p_{A}-p_{A \cap B} \geqslant s_{\alpha}\left(p_{r(A, \alpha)}-p_{r(A \cap B, \alpha)}\right) s_{\alpha}^{*} \quad$ and $\quad p_{B}-p_{A \cap B} \geqslant s_{\alpha}\left(p_{r(B, \alpha)}-p_{r(A \cap B, \alpha)}\right) s_{\alpha}^{*}$ so $\left(p_{A}-p_{A \cap B}\right)\left(p_{B}-p_{A \cap B}\right) \neq 0$, a contradiction. Thus a representation of $(E, \mathcal{L}, \mathcal{B})$ will be degenerate if $(E, \mathcal{L}, \mathcal{B})$ is not weakly left-resolving.

Relation (iv) in Definition 4.1 can make sense even if $A \in \mathcal{B}$ emits infinitely many edges in E : If there are only finitely many different labels attached to the edges which A emits then L_{A}^{1} is finite. For directed graphs the analogue of equation (4.1) holds when a vertex has finite valency; when this is true at every vertex, the graph is called row-finite. With this in mind, we make the following definition:

Definition 4.2. Let $(E, \mathcal{L}, \mathcal{B})$ be a labelled space. We say that $A \in \mathcal{B}$ is singular if L_{A}^{1} is infinite. If no set $A \in \mathcal{B}$ is singular we say that $(E, \mathcal{L}, \mathcal{B})$ is setfinite.

If $(E, \mathcal{L}, \mathcal{B})$ is set-finite, then L_{A}^{n} is finite for all $A \in \mathcal{B}$ and all $n \geqslant 1$. In the examples below, the resulting labelled space will be set-finite whenever the original graph is row-finite.

EXAMPLES 4.3. (i) Let E be a directed graph with the trivial labelling \mathcal{L}. Then \mathcal{E}^{0} consists of all the finite subsets of E^{0}. If E is row-finite then $\left(E, \mathcal{L}, \mathcal{E}^{0}\right)$ and $\left(E, \mathcal{L}, \mathcal{E}^{0,-}\right)$ are set-finite. One may show that a representation of $\left(E, \mathcal{L}, \mathcal{E}^{0}\right)$ is a Cuntz-Krieger E-family and conversely (see [1], [4] for instance). If all sources in E have finite valency, then the $*$-algebra generated by a representation of $\left(E, \mathcal{L}, \mathcal{E}^{0,-}\right)$ contains a representation of $\left(E, \mathcal{L}, \mathcal{E}^{0}\right)$. If there is a source $v \in E^{0}$ with infinite valency then there is no representative of p_{v} in the $*$-algebra generated by a representation of $\left(E, \mathcal{L}, \mathcal{E}^{0,-}\right)$.
(ii) Under the identification of an ultragraph \mathcal{G} with a labelled graph $\left(E_{\mathcal{G}}, \mathcal{L}_{\mathcal{G}}\right)$ we have $\mathcal{E}_{\mathcal{G}}^{0}=\mathcal{G}^{0}$. Since $\mathcal{A}=\mathcal{G}^{1}$ a representation of $\left(E_{\mathcal{G}}, \mathcal{L}_{\mathcal{G}}, \mathcal{E}_{\mathcal{G}}^{0}\right)$ is a CuntzKrieger \mathcal{G}-family (see Definition 2.7 of [26]). If \mathcal{G} has sources which are singular then we get similar behaviour to that described in (i) above.
(iii) In Examples 3.3 (iii) we have $\mathcal{E}_{i}^{0}=2^{E_{i}^{0}}$ for $i=1,2,3$. Though $\mathcal{E}_{1}^{0,-}=2^{E_{1}^{0}}$, we find that $\mathcal{E}_{2}^{0,-}=\{\{w\},\{u, w\},\{v, w\},\{u, v, w\}\}$ and $\mathcal{E}_{3}^{0,-}=\{\varnothing,\{u\},\{v\}$, $\{u, v\},\{u, v, w\}\}$. A representation of $\left(E_{2}, \mathcal{L}_{2}, \mathcal{E}_{2}^{0,-}\right)$ is generated by partial isometries s_{0}, s_{1} satisfying the relations in Proposition 8.3 of [14] and Section 2 of [6] for \mathcal{O}_{Y}, where Y is the even shift.
(iv) A covering $p: F \rightarrow E$ of directed graphs yields a labelling $\mathcal{L}_{p}: F^{1} \rightarrow E^{1}$. We may identify \mathcal{F}^{0} with the collection of inverse images of the finite subsets of E^{0}. A representation of $\left(F, \mathcal{L}_{p}, \mathcal{F}^{0}\right)$ is a Cuntz-Krieger E-family. If F has sources with infinite valency, then we get similar behaviour to that described in (i) above.
(v) An outsplitting $E_{S}(\mathcal{P})$ of E gives rise to a labelling $\mathcal{L}: E_{s}(\mathcal{P})^{1} \rightarrow E^{1}$. If \mathcal{P} is proper then we may identify $\mathcal{E}_{\mathcal{S}}(\mathcal{P})^{0}$ with the collection of finite subsets of E^{0}, and a representation of $\left(E_{S}(\mathcal{P}), \mathcal{L}, \mathcal{E}_{\mathcal{S}}(\mathcal{P})^{0}\right)$ is a Cuntz-Krieger E-family. If E has sources with infinite valency then, we get similar behaviour to that described in (i) above, even when the outsplitting is proper.
(vi) An arbitrary shift $\Lambda \subseteq \mathcal{A}^{\mathbb{Z}}$ gives rise to a left-resolving labelled graph ($E_{\Lambda}, \mathcal{L}_{\Lambda}$) with no sources or sinks, called the Left Krieger cover. If \mathcal{A} is finite then the generators of \mathcal{O}_{Λ} form a representation of $\left(E_{\Lambda}, \mathcal{L}_{\Lambda}, \mathcal{E}_{\Lambda}^{0,-}\right)$ (cf. [8], [14]).
(vii) An arbitrary shift $\Lambda \subseteq \mathcal{A}^{\mathbb{Z}}$ gives rise to a left-resolving labelled graph $\left(E_{\Lambda^{*}}, \mathcal{L}_{\Lambda^{*}}\right)$ with no sources or sinks, called the predecessor graph. If \mathcal{A} is finite then the generators of $\mathcal{O}_{\Lambda^{*}}$ form a representation of the $\left(E_{\Lambda^{*}}, \mathcal{L}_{\Lambda^{*}}, \mathcal{E}_{\Lambda^{*}}^{0,-}\right)$ (cf. [8], [14]).

Examples 4.3 (i)-(v) show that it is possible for \mathcal{E}^{0} and $\mathcal{E}^{0,-}$ to be different,
but for the $*$-algebras generated by representations of $\left(E, \mathcal{L}, \mathcal{E}^{0}\right)$ and $\left(E, \mathcal{L}, \mathcal{E}^{0,-}\right)$ to be the same.

Let $(E, \mathcal{L}, \mathcal{B})$ be a labelled space. Let $\mathcal{B}^{*}=\mathcal{L}^{*}(E) \cup \mathcal{B}$ and extend r, s to \mathcal{B}^{*} by $r(A)=A, s(A)=A$ for all $A \in \mathcal{B}$. For $A \in \mathcal{B}$, put $s_{A}=p_{A}$, so s_{β} is defined for all $\beta \in \mathcal{B}^{*}$.

Lemma 4.4. Let $(E, \mathcal{L}, \mathcal{B})$ be a weakly left-resolving labelled space and $\left\{s_{a}, p_{A}\right\}$ be a representation of $(E, \mathcal{L}, \mathcal{B})$. Then any nonzero product of s_{a}, p_{A} and s_{b}^{*} can be written as a finite combination of elements of the form $s_{\alpha} p_{A} s_{\beta}^{*}$ for some $A \in \mathcal{B}$, and $\alpha, \beta \in \mathcal{B}^{*}$ satisfying $A \subseteq r(\alpha) \cap r(\beta) \neq \varnothing$.

Proof. Since $s_{\alpha} p_{A} s_{\beta}^{*}=s_{\alpha} p_{r(\alpha) \cap A \cap r(\beta)} s_{\beta}^{*}$ it follows that $s_{\alpha} p_{A} s_{\beta}^{*}$ is zero unless $A \cap r(\alpha) \cap r(\beta) \neq \varnothing$ and without loss of generality we may assume that $A \subseteq$ $r(\alpha) \cap r(\beta)$. For $\alpha, \beta, \gamma, \delta \in \mathcal{L}^{*}(E)$ and $A, B \in \mathcal{B}$ we have

$$
\left(s_{\alpha} p_{A} s_{\beta}^{*}\right)\left(s_{\gamma} p_{B} s_{\delta}^{*}\right)= \begin{cases}s_{\alpha \gamma^{\prime}} p_{r\left(A, \gamma^{\prime}\right) \cap B} s_{\delta}^{*} & \text { if } \gamma=\beta \gamma^{\prime} \tag{4.2}\\ s_{\alpha} p_{A \cap r\left(B, \beta^{\prime}\right.} s_{\delta \beta^{\prime}}^{*} & \text { if } \beta=\gamma \beta^{\prime} \\ s_{\alpha} p_{A \cap B} s_{\delta}^{*} & \text { if } \beta=\gamma \\ 0 & \text { otherwise }\end{cases}
$$

To see this, suppose $\gamma=\beta \gamma^{\prime}$ then as $A \subseteq r(\beta) \cap r(\alpha)$

$$
\begin{aligned}
s_{\alpha} p_{A} s_{\beta}^{*} s_{\gamma} p_{B} s_{\delta}^{*} & =s_{\alpha} p_{A} s_{\beta}^{*} s_{\beta} s_{\gamma^{\prime}} p_{B} s_{\delta}^{*}=s_{\alpha} p_{A} p_{r(\beta)} s_{\gamma^{\prime}} p_{B} s_{\delta}^{*} \\
& =s_{\alpha} p_{A} s_{\gamma^{\prime}} p_{B} s_{\delta}^{*}=s_{\alpha \gamma^{\prime}} p_{r\left(A, \gamma^{\prime}\right) \cap B s_{\delta}^{*}} .
\end{aligned}
$$

A similar calculation gives the desired formulas in the cases $\beta=\gamma \beta^{\prime}$ and $\beta=\gamma$. If β and γ have no common initial segment, then without loss of generality, assume that $\beta \in \mathcal{L}\left(E^{n}\right)$ and $\gamma \in \mathcal{L}\left(E^{m}\right)$ with $n>m$. Write $\beta=\beta^{\prime} \beta^{\prime \prime}$ where $\beta^{\prime} \in \mathcal{L}\left(E^{m}\right)$, and then by Definition 4.1(iv) we have $s_{\beta}^{*} s_{\gamma}=s_{\beta^{\prime \prime}}^{*} s_{\beta^{\prime}}^{*} s_{\gamma}=0$ since $\beta^{\prime} \neq \gamma$ and so $s_{\alpha} p_{A} s_{\beta}^{*} s_{\gamma} p_{A} s_{\delta}^{*}=0$. By Definition 4.1 (i) and (ii) we may extend (4.2) to the case when $\alpha, \beta, \gamma, \delta \in \mathcal{B}^{*}$.

THEOREM 4.5. Let $(E, \mathcal{L}, \mathcal{B})$ be a weakly left-resolving labelled space. There exists $a C^{*}$-algebra B generated by a universal representation of $\left\{s_{a}, p_{A}\right\}$ of $(E, \mathcal{L}, \mathcal{B})$. Furthermore the s_{a} 's are nonzero and every p_{A} with $A \neq \varnothing$ is nonzero.

Proof. Let $S_{(E, \mathcal{L}, \mathcal{B})}:=\left\{(\alpha, A, \beta): \alpha, \beta \in \mathcal{B}^{*}, A \in \mathcal{B}, A \subseteq r(\alpha) \cap r(\beta)\right\}$ and let $k_{(E, \mathcal{L}, \mathcal{B})}$ be the space of functions of finite support on $S_{(E, \mathcal{L}, \mathcal{B})}$. The set of point masses $\left\{e_{\tau}: \tau \in S_{(E, \mathcal{L}, \mathcal{B})}\right\}$ forms a basis for $k_{(E, \mathcal{L}, \mathcal{B})}$. Set $(\alpha, A, \beta)^{*}:=(\beta, A, \alpha)$; then thinking of $e_{(\alpha, A, \beta)}$ as $s_{\alpha} p_{A} s_{\beta}^{*}$ and using (4.2) we can define a multiplication with respect to which $k_{(E, \mathcal{L}, \mathcal{B})}$ is a $*$-algebra.

As a $*$-algebra $k_{(E, \mathcal{L}, \mathcal{B})}$ is generated by the elements $q_{A}:=e_{(A, A, A)}$ for $A \in \mathcal{B}$ and $t_{a}:=e_{(a, r(a), r(a))}$ for $a \in \mathcal{L}\left(E^{1}\right)$. Our definition of multiplication ensures that properties (ii) and (iii) of Definition 4.1 hold; moreover $q_{A} q_{B}=q_{A \cap B}$. We mod out by the ideal J generated by the elements $q_{A \cup B}-q_{A}-q_{B}+q_{A \cap B}$ for $A, B \in \mathcal{B}$, and
$q_{A}-\sum_{a \in L_{A}^{1}} s_{a} p_{r(A, a)} s_{a}^{*}$ for $A \in \mathcal{B}$ with L_{A}^{1} nonempty and finite. Then the images r_{A} of q_{A} and u_{a} of t_{a} in $k_{(E, \mathcal{L}, \mathcal{B})} / J$ form a representation of $(E, \mathcal{L}, \mathcal{B})$ that generates $k_{(E, \mathcal{L}, \mathcal{B})} / J$. The triple $\left(k_{(E, \mathcal{L}, \mathcal{B})} / J, r_{A}, u_{a}\right)$ has the required universal property, but is not a C^{*}-algebra. Using a standard argument we can convert this triple to a C^{*} algebra B satisfying the required properties (see Theorem 2.1 of [10] for instance).

Now for each $a \in \mathcal{L}\left(E^{1}\right)$ and $e \in \mathcal{L}^{-1}(a)$, let $\mathcal{H}_{(a, e)}$ be an infinite-dimensional Hilbert space. Also for each $v \in s(a)$ we define $\mathcal{H}_{(a, v)}:=\bigoplus_{\{e: s(e)=v, \mathcal{L}(e)=a\}} \mathcal{H}_{(a, e)}$. If v is a sink let \mathcal{H}_{v} be an infinite-dimensional Hilbert space. For $A \in \mathcal{B}$ we define $\mathcal{H}_{A}:=\bigoplus_{b \in L_{A}^{1}} \underset{v \in s(b) \cap A}{\bigoplus} \mathcal{H}_{(b, v)}$ and then note that each Hilbert space we have defined is a subspace of

$$
\mathcal{H}:=\left(\bigoplus_{a \in \mathcal{L}\left(E^{1}\right)} \bigoplus_{v \in s(a)} \mathcal{H}_{(a, v)}\right) \bigoplus_{\left\{v: s^{-1}(v)=\varnothing\right\}} \mathcal{H}_{v}
$$

For each $a \in \mathcal{L}\left(E^{1}\right)$, let S_{a} be a partial isometry with initial space $\mathcal{H}_{r(a)}$ and final space $\underset{v \in s(a)}{\bigoplus} \mathcal{H}_{(a, v)} \subseteq \mathcal{H}_{s(a)}$. For $A \in \mathcal{B}$, define P_{A} to be the projection of \mathcal{H} onto \mathcal{H}_{A}, where this is interpreted as the zero projection when $A=\varnothing$.

It is easy to verify that since $(E, \mathcal{L}, \mathcal{B})$ is weakly left-resolving, the operators $\left\{S_{a}, P_{A}\right\}$ form a representation of $(E, \mathcal{L}, \mathcal{B})$ in which S_{a}, P_{A} are nonzero. By the universal property there exists a homomorphism $\pi_{S, P}: B \rightarrow C^{*}\left(\left\{S_{a}, P_{A}\right\}\right)$. Since the $S_{a}{ }^{\prime}$ s and P_{A} 's are nonzero, it follows that the $s_{a}{ }^{\prime} s$ and p_{A} 's are also nonzero.

DEfinition 4.6. Let $(E, \mathcal{L}, \mathcal{B})$ be a weakly left-resolving labelled space, then $C^{*}(E, \mathcal{L}, \mathcal{B})$ is the universal C^{*}-algebra generated by a representation of $(E, \mathcal{L}, \mathcal{B})$.

Let $(E, \mathcal{L}, \mathcal{B})$ be a weakly left-resolving labelled space and $\left\{s_{a}, p_{A}\right\}$ be the universal representation of $(E, \mathcal{L}, \mathcal{B})$, then by Lemma 4.4

$$
\operatorname{span}\left\{s_{\alpha} p_{A} s_{\beta}^{*}: \alpha, \beta \in \mathcal{L}^{*}(E), A \in \mathcal{B}, A \subseteq r(\alpha) \cap r(\beta)\right\}
$$

is a dense $*$-subalgebra of $C^{*}(E, \mathcal{L}, \mathcal{B})$. The following result may be proved along the same lines as Lemma 3.2 of [26].

Lemma 4.7. Let \mathcal{A} be finite, E have no sinks, and $(E, \mathcal{L}, \mathcal{B})$ be a weakly leftresolving labelled space. Then $C^{*}(E, \mathcal{L}, \mathcal{B})$ is unital.

Proof. Observe that $\sum_{a \in \mathcal{A}} s_{a} s_{a}^{*}$ is a unit for $C^{*}(E, \mathcal{L}, \mathcal{B})$.
LEMMA 4.8. If $\phi:(E, \mathcal{L}) \rightarrow\left(F, \mathcal{L}^{\prime}\right)$ is a labelled graph isomorphism, then for all \mathcal{B} which are accommodating for (E, \mathcal{L}) we have $C^{*}(E, \mathcal{L}, \mathcal{B}) \cong C^{*}\left(F, \mathcal{L}^{\prime}, \phi(\mathcal{B})\right)$.

Proof. The map ϕ induces a bijection between the generators of $C^{*}(E, \mathcal{L}, \mathcal{B})$ and $C^{*}\left(F, \mathcal{L}^{\prime}, \phi(\mathcal{B})\right)$ and so by the universal property there are homomorphisms from one C^{*}-algebra to the other which are also inverses of each other.

5. GAUGE INVARIANT UNIQUENESS THEOREM

Let $\left\{s_{a}, p_{A}\right\}$ be the universal representation of $(E, \mathcal{L}, \mathcal{B})$ which generates $C^{*}(E, \mathcal{L}, \mathcal{B})$. For $z \in \mathbb{T}, a \in \mathcal{L}\left(E^{1}\right)$ and $A \in \mathcal{B}$ let

$$
t_{a}:=\gamma_{z} s_{a}=z s_{a} \quad \text { and } \quad q_{A}:=\gamma_{z} p_{A}=p_{A}
$$

then the family $\left\{t_{a}, q_{A}\right\} \in C^{*}(E, \mathcal{L}, \mathcal{B})$ is also a representation of $(E, \mathcal{L}, \mathcal{B})$. By universality of $C^{*}(E, \mathcal{L}, \mathcal{B})$ and a routine $\epsilon / 3$ argument we see that γ extends to a strongly continuous action

$$
\gamma: \mathbb{T} \rightarrow \text { Aut } C^{*}(E, \mathcal{L}, \mathcal{B})
$$

which we call the gauge action.
Proposition 5.1. (i) Let E be a directed graph with the trivial labelling \mathcal{L}. Then $C^{*}\left(E, \mathcal{L}, \mathcal{E}^{0}\right) \cong C^{*}(E)$.
(ii) Let \mathcal{G} be an ultragraph. Then $C^{*}\left(E_{\mathcal{G}}, \mathcal{L}_{\mathcal{G}}, \mathcal{E}_{\mathcal{G}}^{0}\right) \cong C^{*}(\mathcal{G})$, where $\left(E_{\mathcal{G}}, \mathcal{L}_{\mathcal{G}}\right)$ is the labelled graph associated to \mathcal{G}.
(iii) Let $p: F \rightarrow E$ be a covering map with induced labelling $\mathcal{L}_{p}: F^{1} \rightarrow E^{1}$. Then $C^{*}\left(F, \mathcal{L}_{p}, \mathcal{F}^{0}\right) \cong C^{*}(E)$.
(iv) Let E be a directed graph and let $E_{S}(\mathcal{P})$ be an outsplitting. Let \mathcal{L} be the labelling of $E_{S}(\mathcal{P})$ induced by the outsplitting. If \mathcal{P} is a proper partition then $C^{*}\left(E_{S}(\mathcal{P}), \mathcal{L}, \mathcal{E}_{s}(\mathcal{P})^{0}\right)$ $\cong C^{*}(E)$.

Proof. In each case the left hand side contains a generating set for the C^{*} algebra on the right as shown in Examples 4.3. We apply the appropriate gaugeinvariant uniqueness theorem for the algebra on the right hand side to obtain the isomorphism.

To establish connections with the Matsumoto algebras we need a version of the gauge-invariant uniqueness theorem for labelled graph algebras.

Lemma 5.2. Let $(E, \mathcal{L}, \mathcal{B})$ be a weakly left-resolving labelled space, $\left\{s_{a}, p_{A}\right\}$ a representation of $(E, \mathcal{L}, \mathcal{B})$, and $Y=\left\{s_{\alpha_{i}} p_{A_{i}} s_{\beta_{i}}^{*}: i=1, \ldots, N\right\}$ be a set of partial isometries in $C^{*}(E, \mathcal{L}, \mathcal{B})$ which is closed under multiplication and taking adjoints. If q is a minimal projection in $C^{*}(Y)$ then either
(i) $q=s_{\alpha_{i}} p_{A_{i}} s_{\alpha_{i}}^{*}$ for some $1 \leqslant i \leqslant N$; or
(ii) $q=s_{\alpha_{i}} p_{A_{i}} s_{\alpha_{i}}^{*}-q^{\prime}$ where $q^{\prime}=\sum_{l=1}^{m} s_{\alpha_{k(l)}} p_{A_{k(l)}} s_{\alpha_{k(l)}}^{*}$ and $1 \leqslant i \leqslant N$; moreover there is a nonzero $r=s_{\alpha_{i} \beta} p_{r\left(A_{i}, \beta\right)} s_{\alpha_{i} \beta}^{*} \in C^{*}(E, \mathcal{L}, \mathcal{B})$ such that $q^{\prime} r=0$ and $q \geqslant r$.

Proof. By 4.2 any projection in $C^{*}(Y)$ may be written as

$$
\sum_{j=1}^{n} s_{\alpha_{i(j)}} p_{A_{i(j)}} s_{\alpha_{i(j)}}^{*}-\sum_{l=1}^{m} s_{\alpha_{k(l)}} p_{A_{k(l)}} s_{\alpha_{k(l)}}^{*}
$$

where the projections in each sum are mutually orthogonal and for each l there is a unique j such that $s_{\alpha_{i(j)}} p_{A_{i(j)}} s_{\alpha_{i(j)}}^{*} \geqslant s_{\alpha_{k(l)}} p_{A_{k(l)}} s_{\alpha_{k(l)}}^{*}$.

If $q=\sum_{j=1}^{n} s_{\alpha_{i(j)}} p_{A_{i(j)}} s_{\alpha_{i(j)}}^{*}-\sum_{l=1}^{m} s_{\alpha_{k(l)}} p_{A_{k(l)}} s_{\alpha_{k(l)}}^{*}$ is a minimal projection in $C^{*}(Y)$ then we must have $n=1$. If $m=0$ then $q=s_{\alpha_{i}} p_{A_{i}} s_{\alpha_{i}}^{*}$ for some $1 \leqslant i \leqslant N$. If $m \neq 0$ then $q=s_{\alpha_{i}} p_{A_{i}} s_{\alpha_{i}}^{*}-q^{\prime}$ where $q^{\prime}=\sum_{l=1}^{m} s_{\alpha_{k(l)}} p_{A_{k(l)}} s_{\alpha_{k(l)}}^{*}$ and $1 \leqslant k \leqslant N$. Since q^{\prime} is the sum of finitely many projections and $q \neq 0$ it follows by repeated use of Definition 4.1 (iv) that there is a nonzero $r=s_{\alpha_{i} \beta} p_{r\left(A_{i}, \beta\right)} s_{\alpha_{i} \beta}^{*}$ in $C^{*}(E, \mathcal{L}, \mathcal{B})$ such that $r q^{\prime}=0$ and $q \geqslant r$.

THEOREM 5.3. Let $(E, \mathcal{L}, \mathcal{B})$ be a weakly left-resolving labelled space and let $\left\{S_{a}, P_{A}\right\}$ be a representation of $(E, \mathcal{L}, \mathcal{B})$ on Hilbert space. Take $\pi_{S, P}$ to be the representation of $C^{*}(E, \mathcal{L}, \mathcal{B})$ satisfying $\pi_{S, P}\left(s_{a}\right)=S_{a}$ and $\pi_{S, P}\left(p_{A}\right)=P_{A}$. Suppose that each P_{A} is non-zero whenever $A \neq \varnothing$, and that there is a strongly continuous action β of \mathbb{T} on $C^{*}\left(S_{\alpha}, P_{A}\right)$ such that for all $z \in \mathbb{T}, \beta_{z} \circ \pi_{S, P}=\pi_{S, P} \circ \gamma_{z}$. Then $\pi_{S, P}$ is faithful.

Proof. A straightforward argument along the lines of Lemma 2.2.3 of [22] shows that

$$
C^{*}(E, \mathcal{L}, \mathcal{B})^{\gamma}=\overline{\operatorname{span}}\left\{s_{\alpha} p_{A} s_{\beta}^{*}: \alpha, \beta \in \mathcal{L}\left(E^{n}\right) \text { for some } n \text { and } A \subseteq r(\alpha) \cap r(\beta)\right\}
$$

where $C^{*}(E, \mathcal{L}, \mathcal{B})^{\gamma}$ is the fixed point algebra of $C^{*}(E, \mathcal{L}, \mathcal{B})$ under the gauge action γ. We claim that $C^{*}(E, \mathcal{L}, \mathcal{B})^{\gamma}$ is AF. Let Y be a finite subset of $C^{*}(E, \mathcal{L}, \mathcal{B})^{\gamma}$. Since $y \in Y$ may be approximated by a finite linear combination of elements of the form $s_{\alpha} p_{A} s_{\beta}^{*}$ where $|\alpha|=|\beta|$ we may assume that $Y=\left\{s_{\alpha_{i}} p_{A_{i}} s_{\beta_{i}}^{*}:\left|\alpha_{i}\right|=\right.$ $\left.\left|\beta_{i}\right|, i=1, \ldots, N\right\}$.

Let M be the length of the longest word in $\left\{\alpha_{1}, \ldots, \alpha_{N}\right\}$. Let W denote the collection of all words in $\mathcal{L}^{*}(E)$ of length at most M that can be formed from composing subwords of $\alpha_{1}, \ldots, \alpha_{N}, \beta_{1}, \ldots, \beta_{N}$. Let \mathcal{C} be the collection all finite intersections of $\left\{A_{i}\right\}_{i=1}^{n}$ and $\left\{r\left(A_{i}, \gamma\right): 1 \leqslant i \leqslant N, \gamma \in W\right\}$. By (4.2) a nonzero product of elements of Y is of the form $s_{\gamma} p_{A} s_{\delta}^{*}$ where $\gamma, \delta \in W$ and $A \in \mathcal{C}$. Since W and \mathcal{C} are finite it follows that $Y^{\prime}=\left\{s_{\gamma} p_{A} s_{\delta}^{*}: \gamma, \delta \in W, A \in \mathcal{C}\right\}$ is finite, closed under adjoints and $C^{*}(Y)=C^{*}\left(Y^{\prime}\right)$. Hence we may assume that Y is closed under multiplication and taking adjoints. Thus $C^{*}(Y)=\overline{\operatorname{span}}(Y)$ is finite dimensional and so $C^{*}(E, \mathcal{L}, \mathcal{B})^{\gamma}$ is AF by Theorem 2.2 of [5], establishing our claim.

To show that the canonical map $\pi_{S, P}: C^{*}(E, \mathcal{L}, \mathcal{B}) \rightarrow C^{*}\left(S_{a}, P_{A}\right)$ is injective on $C^{*}(E, \mathcal{L}, \mathcal{B})^{\gamma}$ we write $C^{*}(E, \mathcal{L}, \mathcal{B})^{\gamma}$ as $\overline{\bigcup C^{*}\left(Y_{n}\right)}$ where $\left\{Y_{n}: n \geqslant 1\right\}$ is an increasing family of finite sets which are closed under multiplication and taking adjoints. Suppose, for contradiction, that $\pi_{S, P}$ is not faithful on $C^{*}\left(Y_{n}\right)$ for some n. Then its kernel is an ideal and so must contain a nonzero minimal projection q. If $Y_{n}=\left\{s_{\alpha_{i}} p_{A_{i}} s_{\beta_{i}}^{*}: i=1, \ldots, N(n)\right\}$ then by Lemma 5.2 either $q=s_{\alpha_{i}} p_{A_{i}} s_{\alpha_{i}}^{*}$
for some $1 \leqslant i \leqslant N(n)$ or $q=s_{\alpha_{i}} p_{A_{i}} s_{\alpha_{i}}^{*}-q^{\prime}$ where $q^{\prime}=\sum_{k=1}^{m} s_{\alpha_{i(k)}} p_{A_{i(k)}} s_{\alpha_{i(k)}}^{*}$ and $1 \leqslant i \leqslant N(n)$. In the first case $\pi_{S, P}\left(s_{\alpha_{i}} p_{A_{i}}\right)=S_{\alpha_{i}} P_{A_{i}}$ is a partial isometry with initial projection $P_{A_{i}}$ and final projection $S_{\alpha_{i}} P_{A_{i}} S_{\alpha_{i}}^{*}$. But $P_{A_{i}}=\pi_{S, P}\left(p_{A_{i}}\right) \neq 0$ by hypothesis and so $\pi_{S, P}(q)=\pi_{S, P}\left(s_{\alpha_{i}} p_{A_{i}} s_{\alpha_{i}}^{*}\right)=S_{\alpha_{i}} P_{A_{i}} S_{\alpha_{i}}^{*} \neq 0$ which is a contradiction. In the second case by Lemma 5.2 (ii) there is $r=s_{\alpha_{i} \beta} p_{r\left(A_{i}, \beta\right)} s_{\alpha_{i} \beta}^{*}$ such that $q \geqslant r$ and $q^{\prime} r=0$. We may apply the above argument to show that $\pi_{S, P}(r) \neq 0$ and hence $\pi_{S, P}(q) \geqslant \pi_{S, P}(r) \neq 0$ which is also a contradiction. Hence $\pi_{S, P}$ is injective on $C^{*}\left(Y_{n}\right)$ and the result follows by arguments similar to those in Theorem 2.1 of [4].

6. APPLICATIONS

6.1. DUAL LABELLED GRAPHS. Let E have no sinks and (E, \mathcal{L}) be a labelled graph over alphabet \mathcal{A}. From this data we may form the dual labelled graph $(\widehat{E}, \widehat{\mathcal{L}})$ over alphabet $\widehat{\mathcal{A}}:=\mathcal{L}\left(E^{2}\right)$ as follows: Let $\widehat{E}^{0}=E^{1}, \widehat{E}^{1}=E^{2}$ and the maps $r^{\prime}, s^{\prime}: \widehat{E}^{1} \rightarrow \widehat{E}^{0}$ be given by $r^{\prime}(e f)=f$ and $s^{\prime}(e f)=e$. The labelling $\widehat{\mathcal{L}}: \widehat{E}^{1} \rightarrow \widehat{\mathcal{A}}$ is induced by the original labelling, so that $\widehat{\mathcal{L}}(e f)=\mathcal{L}(e) \mathcal{L}(f)$. For $a b \in \widehat{\mathcal{L}}\left(\widehat{E}^{1}\right)=\mathcal{L}\left(E^{2}\right)$ we have

$$
r_{\widehat{\mathcal{L}}}(a b)=\{f: \widehat{\mathcal{L}}(e f)=a b\}, \quad \text { and } \quad s_{\widehat{\mathcal{L}}}(a b)=\{e: \widehat{\mathcal{L}}(e f)=a b\}
$$

and for $B \in 2^{E^{1}}$

$$
r_{\widehat{\mathcal{L}}}(B, a b)=\{f: \widehat{\mathcal{L}}(e f)=a b, e \in B\}
$$

These maps extend naturally to $\widehat{\mathcal{L}}^{*}(\widehat{E})=\bigcup_{n \geqslant 1} \widehat{\mathcal{L}}\left(\widehat{E}^{n}\right)$ where for $n \geqslant 1, \widehat{\mathcal{L}}\left(\widehat{E}^{n}\right)$ is identified with $\mathcal{L}\left(E^{n+1}\right)$. Consider the following subsets of $2^{E^{1}}$

$$
\begin{aligned}
\widehat{\mathcal{E}} & =\{\{e\}: s(e) \text { is a source }\} \cup\left\{r_{\widehat{\mathcal{L}}}(\alpha): \alpha \in \widehat{\mathcal{L}}^{*}(\widehat{E})\right\} \cup\left\{s_{\widehat{\mathcal{L}}}(\alpha): \alpha \in \widehat{\mathcal{L}}^{*}(\widehat{E})\right\} \\
\widehat{\mathcal{E}}^{-} & =\left\{r_{\widehat{\mathcal{L}}}(\alpha): \alpha \in \widehat{\mathcal{L}}^{*}(\widehat{E})\right\}
\end{aligned}
$$

Let $\widehat{\mathcal{E}}^{0}$ (respectively $\widehat{\mathcal{E}}^{0,-}$) be the smallest collection of subsets of $2^{E^{1}}$ containing $\widehat{\mathcal{E}}$ (respectively $\widehat{\mathcal{E}}^{-}$) which is accommodating for $(\widehat{E}, \widehat{\mathcal{L}})$. One checks easily that if $(E, \mathcal{L}, \mathcal{B})$ is left-resolving, then $(\widehat{E}, \widehat{\mathcal{L}}, \widehat{\mathcal{B}})$ is weakly left-resolving for $\mathcal{B}=\mathcal{E}^{0}, \mathcal{E}^{0,-}$.

For $B \in \widehat{\mathcal{E}}^{0}$ (respectively $B \in \widehat{\mathcal{E}}^{0,-}$) we set

$$
\widehat{L}_{B}^{1}=\left\{a b \in \widehat{\mathcal{L}}\left(\widehat{E}^{1}\right): s_{\widehat{\mathcal{L}}}(a b) \cap B \neq \varnothing\right\}
$$

If E has no sources and sinks, the shift $X_{(\widehat{E}, \widehat{\mathcal{L}})}$ determined by the dual labelled graph $(\widehat{E}, \widehat{\mathcal{L}})$ of (E, \mathcal{L}) is the second higher block shift $X_{(E, \mathcal{L})}^{[2]}$ formed from $\mathrm{X}_{(E, \mathcal{L})}$ (cf. Section 1.4 of [13]).

REMARK 6.1. Suppose that $a b \in \mathcal{L}\left(E^{2}\right)$ then $c \in L_{r(a b)}^{1}$ if and only if $b c \in$ $\widehat{L}_{r_{\widehat{\mathcal{L}}}(a b)}$; moreover $r(r(a b), c)=r\left(s\left(r_{\widehat{\mathcal{L}}}(a b)\right), b c\right)$. Suppose that $A \in \mathcal{E}^{0}$ (respectively $\left.A \in \mathcal{E}^{0,-}\right)$ then $a \in L_{A}^{1}$ and $a b \in \mathcal{L}\left(E^{2}\right)$ if and only if $a b \in \widehat{L}_{s^{-1}(A)}^{1}$.

THEOREM 6.2. Let (E, \mathcal{L}) be a set-finite, left-resolving labelled graph with no sinks; then $C^{*}\left(E, \mathcal{L}, \mathcal{E}^{0}\right) \cong C^{*}\left(\widehat{E}, \widehat{\mathcal{L}}, \widehat{\mathcal{E}}^{0}\right)$, moreover $C^{*}\left(E, \mathcal{L}, \mathcal{E}^{0,-}\right) \cong C^{*}\left(\widehat{E}, \widehat{\mathcal{L}}, \widehat{\mathcal{E}}^{0,-}\right)$.

Proof. Let $\left\{s_{a}, p_{A}\right\}$ be a representation of $\left(E, \mathcal{L}, \mathcal{E}^{0}\right)$ and $\left\{t_{a b}, q_{B}\right\}$ be a representation of $\left(\widehat{E}, \widehat{\mathcal{L}}, \widehat{\mathcal{E}}^{0}\right)$. For $a b \in \widehat{\mathcal{L}}\left(\widehat{E}^{1}\right)$ and $B \in \widehat{\mathcal{E}}^{0}$ let $T_{a b}=s_{a} s_{b} s_{b}^{*}$ and

$$
Q_{B}:=\sum_{a b \in \widehat{L}_{B}^{1}} s_{a b} p_{r(s(B), a b)} s_{a b}^{*} .
$$

Since $\left(E, \mathcal{L}, \mathcal{E}^{0}\right)$ is set-finite $\left(\widehat{E}, \widehat{\mathcal{L}}, \widehat{\mathcal{E}}^{0}\right)$ is set-finite by Remark 6.1 and so the above sum is finite. One checks that $\left\{T_{a b}, Q_{B}\right\}$ is a representation of $\left(\widehat{E}, \widehat{\mathcal{L}}, \widehat{\mathcal{E}}^{0}\right)$.

By the universal property there is a homomorphism $\pi_{T, Q}: C^{*}\left(\widehat{E}, \widehat{\mathcal{L}}, \widehat{\mathcal{E}}^{0}\right) \rightarrow$ $C^{*}\left(E, \mathcal{L}, \mathcal{E}^{0}\right)$ with $\pi_{T, Q}\left(t_{a b}\right)=T_{a b}$ and $\pi_{T, Q}\left(q_{B}\right)=Q_{B}$. Since $\pi_{T, Q}$ intertwines the respective gauge actions and $Q_{B} \neq 0$ it follows from Theorem 5.3 that $\pi_{T, Q}$ is faithful. We claim that $\pi_{T, Q}$ is surjective. For $a \in \mathcal{L}\left(E^{1}\right)$ we have

$$
\begin{aligned}
s_{a} & =s_{a} p_{r(a)}=s_{a} \sum_{b \in L_{r(a)}^{1}} s_{b} p_{r(r(a), b)} s_{b}^{*}=\sum_{b \in L_{r(a)}^{1}} s_{a} s_{b} s_{b}^{*} s_{b} p_{r(a b)} s_{b}^{*} \\
& =\sum_{b \in L_{r(a)}^{1}} s_{a} s_{b} s_{b}^{*} \sum_{c \in L_{r(a b)}^{1}} s_{b c} p_{r(r(a b), c)} s_{b c}^{*} \\
& \left.=\sum_{b \in L_{r(a)}^{1}} T_{a b} \sum_{b c \in \widehat{L}_{r \hat{\mathcal{L}}}} s_{b c} p_{r(s(r)}(r(a b)), b c\right) s_{b c}^{*}\left(\text { by Remark 6.1) }=\sum_{b \in L_{r(a)}^{1}} T_{a b} Q_{r_{\widehat{\mathcal{L}}}(a b)}\right.
\end{aligned}
$$

and so $s_{a} \in C^{*}\left(T_{a b}, Q_{B}\right)$. For $A \in \mathcal{E}^{0}$, by Remark 6.1 we have
$p_{A}=\sum_{a \in L_{A}^{1}} s_{a} p_{r(A, a)} s_{a}^{*}=\sum_{a \in L_{A}^{1}} s_{a} \sum_{b \in L_{r(A, a)}^{1}} s_{b} p_{r(r(A, a), b)} s_{b}^{*} s_{a}^{*}=\sum_{a b \in \widehat{L}_{s^{-1}(A)}^{1}} s_{a b} p_{r(A, a b)} s_{a b}^{*}=Q_{s^{-1}(A)}$
which establishes our claim. The second isomorphism is proved along similar lines.

6.2. MATSUMOTO ALGEbRAS.

THEOREM 6.3. Let Λ be a shift space over a finite alphabet \mathcal{A} which satisfies Condition (I) and has left-Krieger cover $\left(E_{\Lambda}, \mathcal{L}_{\Lambda}\right)$ then $\mathcal{O}_{\Lambda} \cong C^{*}\left(E_{\Lambda}, \mathcal{L}_{\Lambda}, \mathcal{E}_{\Lambda}^{0,-}\right)$. Moreover, if Λ has predecessor graph $\left(E_{\Lambda^{*}}, \mathcal{L}_{\Lambda^{*}}\right)$ then $\mathcal{O}_{\Lambda^{*}} \cong C^{*}\left(E_{\Lambda^{*}}, \mathcal{L}_{\Lambda^{*}}, \mathcal{E}_{\Lambda^{*}}^{0,-}\right)$.

Proof. By definition every $A \in \mathcal{E}_{\Lambda}^{0,-}$ can be written as a union of sets of the form $A_{j}=\bigcap_{i=1}^{m(j)} r\left(\mu_{i}^{j}\right)$ for $j=1, \ldots, n$. For $\mu \in \Lambda^{*}$ let $q_{r(\mu)}=t_{\mu}^{*} t_{\mu}$, then since the projections $\left\{t_{\mu}^{*} t_{\mu}: \mu \in \Lambda^{*}\right\}$ are mutually commutative (see p. 686 of [16]) we
may define $q_{r(\mu) \cap r(v)}=q_{r(\mu)} q_{r(v)}$, and hence define $q_{A_{j}}$ for $1 \leqslant j \leqslant n$. By the inclusion-exclusion principle one may further define

$$
q_{A}=\sum_{j=1}^{n} q_{A_{j}}-\sum_{j \neq k} q_{A_{j}} q_{A_{k}}+\cdots+(-1)^{n+1} q_{A_{1}} \cdots q_{A_{n}}
$$

Using calculations along the lines of those in Section 3 of [14] one checks that $\left\{t_{a}, q_{A}\right\}$ is a representation of $\left(E_{\Lambda}, \mathcal{L}_{\Lambda}, \mathcal{E}_{\Lambda}^{0,-}\right)$. Let $\left\{s_{a}, p_{A}\right\}$ be a representation of $\left(E_{\Lambda}, \mathcal{L}_{\Lambda}, \mathcal{E}_{\Lambda}^{0,-}\right)$. By the universal property for $C^{*}\left(E_{\Lambda}, \mathcal{L}_{\Lambda}, \mathcal{E}_{\Lambda}^{0,-}\right)$ there is a map $\pi_{t, q}$: $C^{*}\left(E_{\Lambda}, \mathcal{L}_{\Lambda}, \mathcal{E}_{\Lambda}^{0,-}\right) \rightarrow \mathcal{O}_{\Lambda}$ such that $\pi_{t, q}\left(s_{a}\right)=t_{a}$ and $\pi_{t, q}\left(p_{A}\right)=q_{A}$, in particular $\pi_{t, q}$ is surjective. Since Λ satisfies Condition (I) it follows by Proposition 2.2 that \mathcal{O}_{Λ} carries a strongly continuous action β of \mathbb{T}. Since $\beta_{z} \circ \pi_{t, q}=\pi_{t, q} \circ \gamma_{z}$ for all $z \in \mathbb{T}$ and $\pi_{t, q}\left(p_{A}\right)=q_{A} \neq 0$ it follows from Theorem 5.3 that $\pi_{t, q}$ is injective, which completes the proof of the first statement.

The second statement is proved similarly.
REMARKS 6.4. (i) In Section 5 of [8] a Condition (*) is given under which for shift spaces Λ satisfying $(*)$ Conditions (I) and (I^{*}) are equivalent and $\mathcal{O}_{\Lambda} \cong \mathcal{O}_{\Lambda^{*}}$. This suggests that if Λ satisfies $(*)$ then $\left(E_{\Lambda}, \mathcal{L}_{\Lambda}\right)$ is labelled graph isomorphic to $\left(E_{\Lambda^{*}}, \mathcal{L}_{\Lambda^{*}}\right)$ and the isomorphism of \mathcal{O}_{Λ} and $\mathcal{O}_{\Lambda^{*}}$ can be deduced from Theorem 4.8. However Theorem 6.1 of [8] shows that, in general, \mathcal{O}_{Λ} and $\mathcal{O}_{\Lambda^{*}}$ are not isomorphic. In particular, $\left(E_{\Lambda}, \mathcal{L}_{\Lambda}\right)$ and $\left(E_{\Lambda^{*}}, \mathcal{L}_{\Lambda^{*}}\right)$ are not labelled graph isomorphic in general.
(ii) The isomorphism of $C^{*}\left(E_{\Lambda}, \mathcal{L}_{\Lambda}, \mathcal{E}_{\Lambda}^{0,-}\right)$ and \mathcal{O}_{Λ} identifies $C^{*}\left(p_{A}: A \in \mathcal{E}_{\Lambda}^{0,-}\right)$ with $A_{\Lambda} \subset \mathcal{O}_{\Lambda}$. Recall from Corollary 4.7 of [16] that $A_{\Lambda} \cong C\left(\Omega_{\Lambda}\right)$, hence we may think of the elements of $\mathcal{E}_{\Lambda}^{0,-}$ as indexing closed sets in Ω_{Λ}.
(iii) In [7] Carlsen constructs a C^{*}-algebra which has \mathcal{O}_{Λ} as a quotient, that is isomorphic to \mathcal{O}_{Λ} if Λ satisfies Condition (I), and always carries a gauge action. A proof along the lines of Theorem 6.3 shows that this new algebra is isomorphic to $C^{*}\left(E_{\Lambda}, \mathcal{L}_{\Lambda}, \mathcal{E}_{\Lambda}^{0,-}\right)$ for all Λ.

6.3. Finiteness conditions.

DEFINITION 6.5. A labelled graph (E, \mathcal{L}) is label-finite if $\left|\mathcal{L}^{-1}(a)\right|<\infty$ for all $a \in \mathcal{L}\left(E^{1}\right)$.

If (E, \mathcal{L}) is label-finite then $\mathcal{L}^{-1}(\alpha)$ is finite for all $\alpha \in \mathcal{L}^{*}(E)$ and so all sets in \mathcal{E}^{0} are finite (and conversely). If (E, \mathcal{L}) is label-finite then $(\widehat{E}, \widehat{\mathcal{L}})$ is label-finite. If E is row-finite and (E, \mathcal{L}) is label-finite then $\left(E, \mathcal{L}, \mathcal{E}^{0}\right)$ is set-finite.

The following result generalises Corollary 2.5 in [4] (see also Remark 3.3 (i) in [2]).

THEOREM 6.6. Let (E, \mathcal{L}) be a row-finite left-resolving labelled graph which is label-finite and satisfies $\{v\} \in \mathcal{E}^{0}$ for all $v \in E^{0}$. Then $C^{*}\left(E, \mathcal{L}, \mathcal{E}^{0}\right) \cong C^{*}(E)$; moreover if $\{v\} \in \mathcal{E}^{0,-}$ for all $v \in E^{0}$ then $C^{*}\left(E, \mathcal{L}, \mathcal{E}^{0,-}\right) \cong C^{*}(E)$.

Proof. Let $\left\{s_{e}, p_{v}\right\}$ be the canonical Cuntz-Krieger E-family and $\left\{t_{a}, q_{A}\right\}$ be the canonical generators of $C^{*}\left(E, \mathcal{L}, \mathcal{E}^{0}\right)$. For $a \in \mathcal{L}\left(E^{1}\right)$ and $A \in \mathcal{E}^{0}$ let

$$
T_{a}=\sum_{e \in E^{1}: \mathcal{L}(e)=a} s_{e}, \quad \text { and } \quad Q_{A}=\sum_{v \in A} p_{v} .
$$

The above sums make sense since (E, \mathcal{L}) is label-finite. Since E is row-finite one may easily check that these operators define a representation of $\left(E, \mathcal{L}, \mathcal{E}^{0}\right)$. By the universal property of $C^{*}\left(E, \mathcal{L}, \mathcal{E}^{0}\right)$ there is a homomorphism $\pi_{T, Q}: C^{*}\left(E, \mathcal{L}, \mathcal{E}^{0}\right)$ $\rightarrow C^{*}(E)$ given by $\pi_{T, Q}\left(t_{a}\right)=T_{a}$ and $\pi_{T, Q}\left(q_{A}\right)=Q_{A}$ for all $a \in \mathcal{L}\left(E^{1}\right)$ and $A \in$ \mathcal{E}^{0}. Since $\{v\} \in \mathcal{E}^{0}$ for all $v \in E^{0}$, we have $p_{v}=Q_{v} \in C^{*}\left(T_{a}, Q_{A}\right)$ for all $v \in E^{0}$. Since our labelled graph is left-resolving we have $s_{e}=T_{\mathcal{L}(e)} Q_{r(e)} \in C^{*}\left(T_{a}, Q_{A}\right)$ for all $e \in E^{1}$, and so $\pi_{T, Q}$ is surjective. The canonical gauge actions on $C^{*}(E)$ and $C^{*}\left(E, \mathcal{L}, \mathcal{E}^{0}\right)$ satisfy the required properties and $\pi_{T, Q}\left(q_{A}\right)=Q_{A} \neq 0$ for all $A \in \mathcal{E}^{0}$, so $\pi_{T, Q}$ is an isomorphism by Theorem 5.3.

The proof of the second isomorphism is essentially the same.
COROLLARY 6.7. Let $\mathcal{G}=\left(G^{0}, \mathcal{G}^{1}, r, s\right)$ be a row-finite ultragraph; then $C^{*}(\mathcal{G}) \cong$ $C^{*}\left(E_{\mathcal{G}}\right)$ where $E_{\mathcal{G}}$ is the underlying directed graph of \mathcal{G}.

Proof. From Examples 3.3 (ii) a row-finite ultragraph \mathcal{G} may be realised as a row-finite left-resolving labelled graph $\left(E_{\mathcal{G}}, \mathcal{L}_{\mathcal{G}}\right)$. As $E_{\mathcal{G}}$ is row-finite it follows that $\left(E_{\mathcal{G}}, \mathcal{L}_{\mathcal{G}}\right)$ is label-finite. Since the source map is single-valued it follows that $v \in \mathcal{E}_{\mathcal{G}}^{0}$ for all $v \in G^{0}=E_{\mathcal{G}}^{0}$ and hence the result follows from Theorem 6.6.

The following result was first observed in Theorem 3.5 of [6] (see also Corollary 3.4.5 in [24]).

Corollary 6.8. Let Λ be a sofic shift over a finite alphabet; then $\mathcal{O}_{\Lambda} \cong C^{*}\left(E_{\Lambda}\right)$ where $\left(E_{\Lambda}, \mathcal{L}_{\Lambda}\right)$ is the left-Krieger cover of Λ.

Proof. As E_{Λ}^{0} is finite and each $v \in E_{\Lambda}^{0}$ has a different past there are the word $\alpha_{v} \in \mathcal{L}^{*}\left(E_{\Lambda}\right)$ with $r_{\mathcal{L}_{\Lambda}}\left(\alpha_{v}\right)=\{v\}$. Hence $\{v\} \in \mathcal{E}_{\Lambda}^{0,-}$ for all $v \in E_{\Lambda}^{0}$. The result follows by Theorem 6.6.

From Theorem 3.3.18 in [13] any two minimal left-resolving representations $(E, \mathcal{L}),\left(F, \mathcal{L}^{\prime}\right)$ of an irreducible sofic shift are labelled graph isomorphic and so $C^{*}\left(E, \mathcal{L}, \mathcal{E}_{-}^{0}\right) \cong C^{*}\left(F, \mathcal{L}^{\prime}, \mathcal{F}_{-}^{0}\right)$ by Lemma 4.8. Moreover, one may use the minimality of the representation to show that the underlying graph E is irreducible (cf. Lemma 3.3.10 in [13]). Hence we have:

Corollary 6.9. Let (E, \mathcal{L}) be a minimal left-resolving presentation of an irreducible sofic shift over a finite alphabet, then $C^{*}\left(E, \mathcal{L}, \mathcal{E}^{0,-}\right) \cong C^{*}\left(E, \mathcal{L}, \mathcal{E}^{0}\right)$ is simple.

REMARK 6.10. Recall that the graph $\left(E_{2}, \mathcal{L}_{2}\right)$ in Examples 3.3 (ii) is the leftKrieger cover of the even shift Y. Although Y is irreducible, $\left(E_{2}, \mathcal{L}_{2}\right)$ is not a minimal left-resolving presentation of Y and $\mathcal{O}_{Y} \cong C^{*}\left(E_{2}\right)$ is not simple. However the graph $\left(E_{1}, \mathcal{L}_{1}\right)$ Examples 3.3 (ii) is a minimal left-resolving cover of Y
and so

$$
C^{*}\left(E_{1}, \mathcal{L}_{1}, \mathcal{E}_{1}^{0,-}\right) \cong C^{*}\left(E_{1}, \mathcal{L}_{1}, \mathcal{E}_{1}^{0}\right) \cong C^{*}\left(E_{1}\right)
$$

is simple. Similarly $C^{*}\left(E_{Z}, \mathcal{L}_{Z}, \mathcal{E}_{Z}^{0,-}\right) \cong C^{*}\left(E_{Z}\right)$ is simple where Z is the irreducible shift introduced in Examples 3.3 (vi).

Thus, if one wishes to associate a simple C^{*}-algebra to an irreducible sofic shift Λ, then one should use the minimal left-resolving presentation of Λ ([6], [7]).

For a general shift space Λ, either $\left(E_{\Lambda}, \mathcal{L}_{\Lambda}\right)$ will not be row-finite or there will be $v \in E_{\Lambda}^{0}$ with $v \notin \mathcal{E}_{\Lambda}^{0,-}$. This indicates that the C^{*}-algebras corresponding to presentations of such shift spaces will not be Morita equivalent to graph algebras. The shift associated to a certain Shannon graph (see Theorem 7.7 of [21]) provides such an example.

Acknowledgements. This research was supported by the University of Newcastle and the University of New South Wales.

REFERENCES

[1] T. Bates, J.-H. Hong, I. Raeburn, W. Szymański, The ideal structure of the $C^{*}-$ algebras of infinite graphs, Illinois J. Math. 46(2002), 1159-1176.
[2] T. Bates, D. Pask, Flow equivalence of graph algebras, Ergodic Theory Dynamical Systems 24(2004), 367-382.
[3] T. BATES, D. PASK, Flow equivalence of labelled graph algebras, in preparation.
[4] T. Bates, D. Pask, I. Raeburn, W. Szymański, The C^{*}-algebras of row-finite graphs, New York J. Math. 6(2000), 307-324.
[5] O. Bratteli, Inductive limits of finite dimensional C*-algebras, Trans. Amer. Math. Soc. 171(1972), 195-234.
[6] T. CARLSEN, On C*-algebras associated with sofic shifts, J. Operator Theory 49(2003), 203-212.
[7] T. CARLSEN, Cuntz-Pimsner C^{*}-algebras associated with subshifts, preprint, arXiv.math.OA/0505503.
[8] T. Carlsen, K. Matsumoto, Some remarks on the C^{*}-algebras associated with subshifts, Math. Scand. 95(2004), 145-160.
[9] K. Deicke, D. Pask, I. RaEburn, Coverings of directed graphs and crossed products of C^{*}-algebras by coactions of homogeneous spaces, Internat. J. Math. 14(2003), 773789.
[10] A. an Huef, I. Raeburn, The ideal structure of Cuntz-Krieger algebras, Ergodic Theory Dynamical Systems 17(1997), 611-624.
[11] W. Krieger, Sofic systems. I, Israel J. Math. 48(1984), 305-330.
[12] A. Kumjian, D. Pask, I. Raeburn, Cuntz-Krieger algebras of directed graphs, Pacific J. Math. 184(1998), 161-174.
[13] D. Lind, B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge Univ. Press, Cambridge 1995.
[14] K. Matsumoto, On C*-algebras associated with subshifts, Internat. J. Math. 8(1997), 357-374.
[15] K. Matsumoto, K-theory for C^{*}-algebras associated with subshifts, Math. Scand. 82(1998), 237-255.
[16] K. Matsumoto, Dimension groups for subshifts and simplicity of the associated C^{*} algebras, J. Math. Soc. Japan 51(1999), 679-697.
[17] K. Matsumoto, Relations among generators of C^{*}-algebras associated with subshifts, Internat. J. Math. 10(1999), 385-405.
[18] K. Matsumoto, On automorphisms of C^{*}-algebras associated with subshifts, J. Operator Theory 44(2000), 91-112.
[19] K. Matsumoto, Stabilized C^{*}-algebras constructed from symbolic dynamical systems, Ergodic Theory Dynamical Systems 20(2000), 821-841.
[20] K. МАтsumoto, Bowen-Franks groups for subshifts and Ext-groups for C^{*}-algebras, K-Theory 23(2001), 67-104.
[21] K. Matsumoto, C*-algebras associated with presentations of subshifts, Documenta Math. 7(2002), 1-30.
[22] D. Pask, I. Raeburn, On the K-theory of Cuntz-Krieger algebras, Publ. Res. Inst. Math. Soc. 32(1996), 415-443.
[23] I. RAEbURN, W. SZymAŃSKI, Cuntz-Krieger algebras of infinite graphs and matrices, Trans. Amer. Math. Soc. 356(2004), 39-59.
[24] J. SAMUEL, C*-algebras of sofic shifts, Ph.D. Dissertation, University of Victoria, Victoria, BC, Canada 1998.
[25] R.G. TAYLOR, Models of Computation and Formal Languages, Oxford Univ. Press, Oxford 1998.
[26] M. TOMFORDE, A unified approach to Exel-Laca algebras and C^{*}-algebras associated to graphs, J. Operator Theory 50(2003), 345-368.
[27] M. TOMFORDE, Simplicity of ultragraph algebras, Indiana Univ. Math. J. 52(2003), 901-926.

TERESA BATES, School of Mathematics and Statistics, UNSW, Sydney 2052, AUSTRALIA

E-mail address: teresa@unsw.edu.au
DAVID PASK, School of Mathematical and Physical Sciences, The University of Newcastle, NSW 2308, Australia

E-mail address: david.pask@newcastle.edu.au

Received March 24, 2005; revised July 4, 2005.

