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ABSTRACT. We describe a class of C∗-algebras which simultaneously gener-
alise the ultragraph algebras of Tomforde and the shift space C∗-algebras of
Matsumoto. In doing so we shed some new light on the different C∗-algebras
that may be associated to a shift space. Finally, we show how to associate a
simple C∗-algebra to an irreducible sofic shift.
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1. INTRODUCTION

The purpose of this paper is to introduce a class of C∗-algebras associated
to labelled graphs. Our motivation is to provide a common framework for work-
ing with the ultragraph algebras of Tomforde (see [26], [27]) and the C∗-algebras
associated to shift spaces studied by Matsumoto and Carlsen (see [14], [16], [6],
[8] amongst others). Here a labelled graph (E,L) over an alphabetA is a directed
graph E, together with a map L : E1 → A. An ultragraph G is a particular ex-
ample of a labelled graph (see Example 3.3 (ii)), and a shift space Λ has many
presentations as a labelled graph (see Example 3.3 (iii) of [13]). Hence it is natural
to give our common framework in terms of labelled graphs.

To a two-sided shift space Λ over a finite alphabet, Matsumoto associates
two C∗-algebras OΛ and OΛ∗ generated by partial isometries (see [8]). Although
OΛ and OΛ∗ are generated by elements satisfying the same relations, it turns out
that they are not isomorphic in general (see Theorem 4.1 of [8]). This fact mani-
fests itself in our realisation in Section 6.2 ofOΛ andOΛ∗ as the C∗-algebras of the
labelled graphs (EΛ,LΛ) and (EΛ∗ ,LΛ∗) respectively, which are not necessarily
isomorphic as labelled graphs. Moreover, in Corollary 6.9 we show that using
labelled graphs gives us the facility to canonically associate a simple C∗-algebra
to an irreducible sofic shift (cf. [8], [6], [7]).
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In fact we can associate a number of (possibly different) C∗-algebras to a
labelled graph. This leads us to the notion of a labelled space, which we describe
in Section 3. Briefly, a labelled space (E,L,B) consists of a labelled graph (E,L)
together with a collection B ⊆ 2E0

which plays the same role as G0 in [26] and
is related to the abelian AF-subalgebra AΛ (respectively AΛ∗ ) in OΛ (respectively
OΛ∗ ) generated by the source projections.

In Section 4 we define a representation of a labelled space in terms of par-
tial isometries {sa : a ∈ A} and projections {pA : A ∈ B} subject to certain
relations. Our relations generalise those found in [26], [14]. In order to build a
nondegenerate C∗-algebra from a representation of (E,L,B) it is necessary for
B to be weakly left-resolving: a condition which is a generalisation of the left-
resolving property for labelled graphs. Hence we may define C∗(E,L,B) to be
the C∗-algebra which is universal for representations of the weakly left-resolving
labelled space (E,L,B). Since any ultragraph has a natural realisation as a left-
resolving labelled graph, the class of C∗-algebras of labelled spaces contains the
ultragraph algebras (and hence, graph algebras and Exel-Laca algebras).

In Section 5 we give a version of the gauge-invariant uniqueness theorem
for C∗(E,L,B) which will ultimately allow us to make the connection with the
Matsumoto algebras.

In Section 6 we give three applications of our uniqueness theorem: In Sec-
tion 6.1 we show how to construct a dual labelled space, which is the analogue of
the higher block presentation of a shift space (cf. [13]). We give an isomorphism
theorem for dual labelled spaces which is a generalisation of Corollary 2.5 in [4]
and forms a starting point for future work (see [3]). In Section 6.2 we show that if
OΛ (respectively OΛ∗ ) has a gauge action, then it is isomorphic to the C∗-algebra
of a certain labelled space. Then in Section 6.3 we give necessary conditions for
the C∗-algebra of a labelled space to be isomorphic to the C∗-algebra of the un-
derlying directed graph. We then show how to associate a simple C∗-algebra to
an irreducible shift space. By example, we show that in general the C∗-algebra of
a labelled space will not be isomorphic to the C∗-algebra of any directed graph;
hence labelled graph C∗-algebras form a strictly larger class of C∗-algebras than
graph algebras.

This paper has benefitted from several helpful suggestions made by the
anonymous referee and Toke Carlsen.

Since we seek to generalise them, we begin by giving a brief description of
ultragraph algebras and Matsumoto algebras.

2. ULTRAGRAPH ALGEBRAS AND MATSUMOTO ALGEBRAS

2.1. ULTRAGRAPH ALGEBRAS. Following [26], an ultragraph G = (G0,G1, r, s)
consists of a countable set of vertices G0, a countable set of edges G1, and func-
tions s : G1 → G0 and r : G1 → 2G0

. Let G0 be the smallest collection of 2G0
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which contains s(e) and r(e) for all e ∈ G1 and is closed under finite intersections
and unions. The ultragraph algebra C∗(G) is the universal C∗-algebra for Cuntz-
Krieger G-families: collections of partial isometries {se : e ∈ G1} with mutually
orthogonal ranges, and projections {pA : A ∈ G0} satisfying the relations:

(1.) p∅ = 0, pA pB = pA∩B and pA∪B = pA + pB − pA∩B for all A, B ∈ G0;
(2.) s∗e se = pr(e) and ses∗e 6 ps(e) for all e ∈ G1;
(3.) pv = ∑

s(e)=v
ses∗e whenever 0 < |s−1(v)| < ∞;

(see Definition 2.7 in [26]). Recall that v ∈ G0 is an infinite emitter if |s−1(v)| = ∞.
If G has no infinite emitters, then the underlying graph (see Examples 3.3

(ii)) can still fail to be row-finite. With this in mind we make the following defini-
tion (cf. Remark 2.6 in [26]):

DEFINITION 2.1. The ultragraph G is row-finite if there are no infinite emit-
ters and r(e) is finite for all e ∈ G1.

Ultragraph algebras simultaneously generalise graph C∗-algebras and Exel-
Laca algebras (see Sections 3 and 4 of [26]). By Corollary 5.5 in [27] there is a non
row-finite ultragraph whose C∗-algebra is not isomorphic to a graph algebra or
an Exel-Laca algebra.

2.2. MATSUMOTO ALGEBRAS. For an introduction to shift spaces we refer the
reader to the excellent treatment in [13]. Let Λ be a two-sided shift space over a
finite alphabet A. Let

(2.1) XΛ = {(xi)i>1 : (xi)i∈Z ∈ Λ}

denote the set of all right-infinite sequences in Λ.
For each k > 1, let Λk be the set of all words with length k appearing in some

x ∈ Λ. We set Λ` =
⋃̀
k=0

Λk and Λ∗ =
∞⋃

k=0

Λk where Λ0 denotes the empty word ∅.

Following [8] there are two C∗-algebras associated to Λ. Each C∗-algebra is
generated by partial isometries {ta : a ∈ A} subject to

(2.2) ∑
a∈A

tat∗a = 1, and t∗αtαtβ = tβt∗αβtαβ, where α, β, αβ ∈ Λ∗.

As in [8] we denote by OΛ the C∗-algebra defined directly on Hilbert space
in [18], [20] and byOΛ∗ the C∗-algebra defined using the Fock space construction
in [14], [16], [17], [15], [19]. Because of the different ways in which the relations
(2.2) are realised it turns out that OΛ and OΛ∗ are not isomorphic in general (see
Section 6 in [8]).

There is a uniqueness theorem for OΛ (respectively OΛ∗ ) when Λ satisfies
Condition (I) (respectively Condition (I*)) given in Section 4 of [8] (respectively
Section 3 of [8]).
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CONDITION I. For x ∈ XΛ and l ∈ N put Λl(x) = {µ ∈ Λl : µx ∈ XΛ}.
Two infinite paths x, y ∈ XΛ are l-past equivalent (written x ∼l y) if Λl(x) = Λl(y).
The shift space XΛ satisfies Condition (I) if for any l ∈ N and x ∈ XΛ there exists
y ∈ XΛ such that y 6= x, y ∼l x.

CONDITION I*. For ω ∈ Λ∗ and l ∈ N we set Λl(ω) = {µ : |µ| 6 l, µω ∈
Λ∗}. Two words µ, ν ∈ Λ∗ are said to be l-past equivalent (written µ ∼l ν ) if
Λl(µ) = Λl(ν). The subset Λ∗l ⊆ Λ∗ is defined by

Λ∗l := {ω ∈ Λ∗ : |{µ ∈ Λ∗ : µ ∼l ω}| < ∞}.
The shift space Λ satisfies Condition (I*) if for every l ∈ N and µ ∈ Λ∗l there

exist distinct words ξ1, ξ2 ∈ Λ∗ with |ξ1| = |ξ2| = m such that

µ ∼l ξ1γ1 and µ ∼l ξ2γ2

for some γ1, γ2 ∈ Λ∗l+m.

PROPOSITION 2.2. Let Λ be a two-sided shift space over a finite alphabet which
satisfies Condition (I). Then there is a strongly continuous action β of T onOΛ such that
βz(ta) = zta for all a ∈ A and z ∈ T.

Proof. That each βz is an automorphism of OΛ for each z ∈ T follows from
Proposition 4.2 in [8]. A standard ε/3 argument shows that β is strongly contin-
uous.

From p. 363 in [14] there is always a gauge action onOΛ∗ . In [19] Matsumoto
defines λ-graph systems LΛ and LΛ∗ associated to a two-sided shift space Λ to-
gether with corresponding C∗-algebras OLΛ

and OLΛ∗ . By Theorem 5.6 in [8] we
see that if Λ satisfies Condition (I) thenOΛ

∼= OLΛ
and if Λ satisfies Condition (I*)

thenOΛ∗
∼= OLΛ∗ . Hence, for our purposes, it suffices to work withOΛ andOΛ∗ .

3. LABELLED SPACES

A directed graph E consists of a quadruple (E0, E1, r, s) where E0 and E1

are countable sets of vertices and edges respectively and r, s : E1 → E0 are maps
giving the direction of each edge. A path λ = e1 · · · en is a sequence of edges
ei ∈ E1 such that r(ei) = s(ei+1) for i = 1, . . . , n − 1. The collection of paths of
length n in E is denoted En and the collection of all finite paths in E by E∗, so
that E∗ =

⋃
n>0

En. The edge shift (XE, σE) associated to a directed graph E with no

sinks or sources is defined by:

XE = {x ∈ (E1)Z : s(xi+1) = r(xi) for all i ∈ Z} and (σEx)i = xi+1 for i ∈ Z.

The following definition is adapted from Definition 3.1.1 in [13]:

DEFINITION 3.1. A labelled graph (E,L) over an alphabet A consists of a
directed graph E together with a labelling map L : E1 → A.
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Without loss of generality we may assume that the map L is onto. We say
that the labelled graph (E,L) is row-finite if the underlying graph E is row-finite.

Given a labelled graph (E,L) such that every vertex in E emits and receives
an edge, we may define a subshift (X(E,L), σ) of AZ by

X(E,L) = {y ∈ AZ : there exists x ∈ XE such that yi = L(xi) for all i ∈ Z},

where σ is the shift map. The labelled graph (E,L) is said to be a presentation of
the shift space X = X(E,L). As shown in Section 3.1 of [13] a shift space may have
many different presentations (see Examples 3.3 (ii), (vi), (vii)).

Let A∗ be the collection of all words in the symbols of A (see Section 0.2 of
[25]). The map L extends naturally to a map L : En → A∗, where n > 1: for
λ = e1 · · · en ∈ En put L(λ) = L(e1) · · · L(en); in this case the path λ ∈ En is
said to be a representative of the labelled path L(e1) · · · L(en). Let L(En) denote
the collection of all labelled paths in (E,L) of length n, then L∗(E) =

⋃
n>1
L(En)

denotes the collection of all words in the alphabet A which may be represented
by paths in the labelled graph (E,L). In this way L induces a map from the
language

⋃
n>1

En of the subshift of finite type XE associated to E into L∗(E), the

language of the shift space X(E,L) presented by (E,L) (see Section 3 of [13]). The
usual length function | · | : E∗ → N transfers naturally over to L∗(E).

For α in L∗(E) we put

sL(α) = {s(λ) ∈ E0 : L(λ) = α} and rL(α) = {r(λ) ∈ E0 : L(λ) = α},

so that rL, sL : L∗(E) → 2E0
. We shall drop the subscript on rL and sL if the

context in which it is being used is clear. For α, β ∈ L∗(E) we have αβ ∈ L∗(E) if
and only if r(α) ∩ s(β) 6= ∅.

Where possible we shall denote the elements of A = L(E1) as a, b, etc.,
elements of L∗(E) as α, β, etc., leaving e, f for elements of E1 and λ, µ for elements
of E∗.

Let (E,L) and (F,L′) be graphs labelled by the same alphabet. A graph
isomorphism φ : E → F is a labelled graph isomorphism if L′(φ(e)) = L(e) for all
e ∈ E1 and we write φ : (E,L)→ (F,L′).

DEFINITION 3.2. The labelled graph (E,L) is left-resolving if for all v ∈ E0

the map L : r−1(v)→ A is injective.

The left-resolving condition ensures that for all v ∈ E0 the labels {L(e) :
r(e) = v} of all incoming edges to v are all different. In particular if λ, µ ∈ ⋃

n>1
En

satisfy L(λ) = L(µ) and r(λ) = r(µ) then λ = µ.

EXAMPLES 3.3. (i) Let E be a directed graph. Put A = E1 and let L : E1 →
E1 be the identity map (the trivial labelling); then (E,L) is a left-resolving labelled
graph.
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(ii) Let G = (G0,G1, r, s) be an ultragraph. Define E = EG by putting E0 = G0,
E1 = {(e, w) : e ∈ G1, w ∈ r(e)} and defining r′, s′ : E1 → E0 by s′(e, w) = s(e),
r′(e, w) = w. Set A = G1 and define LG : E1 → A by LG(e, w) = e. The resulting
labelled graph (EG ,LG) is left-resolving since the source map is single-valued. If
G is row-finite in the sense of Definition 2.1 then EG is row-finite.

On the other hand, given a left-resolving labelled graph (E,L) over an al-
phabet A where sL : L∗(E) → 2E0

is single-valued, we can form a ultragraph
G(E,L) = (E0,A, r′, s′) with s′ = sL and r′ = rL. If (E,L) is row-finite then the
ultragraph G(E,L) is row-finite.

(iii) Following Section 3 of [13] the labelled graphs
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have the same language as the even shift Y since between any two 1’s there must
be an even number of 0’s. Hence X(Ei ,Li) = Y for i = 1, 2, 3 by Proposition 1.3.4
(3) of [13]. Only graphs (E1,L1) and (E2,L2) are left-resolving.

(iv) Let E be a directed graph and Γ a group which acts on (the right of) E.
Define Lq : E1 → E1/Γ by Lq(e) = q(e) where q : E1 → E1/Γ is the quotient
map. If the action of Γ is free on E1, then the resulting labelled graph (E,Lq) is
left-resolving. More generally, if p : F → E is a graph morphism then there is a
labelling Lp : F1 → E1 given by Lp( f ) = p( f ) for all f ∈ E1. If p is a covering
map then Lp is left-resolving.

(v) Recall from Section 3 of [2], that an out-splitting of a directed graph E
is formed by a partition P of s−1(v) into m(v) > 1 non-empty subsets for each
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v ∈ E0 (if s−1(v) = ∅ then m(v) = 0). Given such a partitionP one may construct
a directed graph Es(P) where Es(P1) = {ej : e ∈ E1, 1 6 j 6 m(r(e))} ∪ {e :
m(r(e)) = 0}. Define L : Es(P)1 → E1 by L(ej) = e for 1 6 j 6 m(r(e)) and
L(e) = e if m(r(e)) = 0. For an in-splitting (see Section 5 in [2]) of E using a parti-
tion P , a similar construction also yields a labelled graph. However the resulting
labelling L of the in-split graph Er(P) will not be left-resolving in general.

(vi) Let Λ be a two-sided shift space over a finite alphabet A with XΛ defined
as in (2.1). Let X−Λ = {(xi)i60 : (xi)i∈Z ∈ Λ} so that any element x ∈ Λ may
be written as x = x−x+. For arbitrary x+ ∈ XΛ and x− ∈ X−Λ the bi-infinite
sequence y = x−x+ may not belong to Λ. Define the past set of t ∈ XΛ as

P∞(t) = {x− ∈ X−Λ : x−t ∈ Λ}.
A shift is sofic if and only if the number of past sets is finite [11], [13].
For s, t ∈ XΛ, we say that s is past equivalent to t (denoted s ∼∞ t) if

P∞(s) = P∞(t). Define a labelled graph (EΛ,LΛ) as follows: let E0
Λ = {[v] :

v ∈ XΛ/ ∼∞}, E1
Λ = {([v], a, [w]) : a ∈ A, aw ∼∞ v} with s([v], a, [w]) = [v]

and r([v], a, [w]) = [w]. If ([v], a, [w]) ∈ E1
Λ we put LΛ([v], a, [w]) = a. The result-

ing left-resolving labelled graph is usually referred to as the left-Krieger cover of
Λ and the construction is evidently independent of the choice of representatives
(see [11]).

If Y is the even shift then (EY,LY) is labelled graph isomorphic to (E2,L2)
in (iii) above. Let Z be shift over the alphabet {1, 2, 3, 4} in which the words

{12k1, 32k12, 32k13, 42k14 : k > 0}
do not occur (see Section 4 of [8]) then (EZ,LZ) has six vertices.

(vii) Let Λ be a two-sided shift over a finite alphabet A. We construct a variant
of the predecessor graph (EΛ∗ ,LΛ∗) in the following way. For µ ∈ Λ∗ we define

P(µ) := {λ : λµ ∈ Λ∗}
and define an equivalence relation by µ ∼ ν if P(µ) = P(ν). A shift is sofic if and
only if the number of predecessor sets is finite [13].

Let Λ∗∞ denote those µ ∈ Λ∗ which have an infinite equivalence class. Since
A is finite Λ∗∞/ ∼ can be identified with ΩΛ∗ = lim

←
Ω∗l as described in Section 2 of

[16]. We set E0
Λ∗ = Λ∗∞/ ∼, E1

Λ∗ = {([µ], a, [ν]) : a ∈ A, [µ] = [aν]}, r([µ], a, [ν]) =
[ν] and s([µ], a, [ν]) = [µ]. The labelling map is defined by LΛ∗([µ], a, [ν]) = a.
The resulting labelled graph is evidently left-resolving.

If Y is the even shift then (EY∗ ,LY∗) is labelled graph isomorphic to (E2,L2)
in (iii) above (cf. [6], [16]). If Z is the sofic shift described in Example 3.3 (vi) then
(EZ∗ ,LZ∗) has seven vertices and contains (EZ,LZ) as a subgraph.

DEFINITION 3.4. Let (E,L) be a labelled graph. For A ⊆ E0 and α ∈ L∗(E)
the relative range of α with respect to A is defined to be

r(A, α) = {r(λ) : λ ∈ E∗,L(λ) = α, s(λ) ∈ A}.
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REMARK 3.5. For any A, B ⊆ E0 and α ∈ L∗(E) we have

r(A ∩ B, α) ⊆ r(A, α) ∩ r(B, α) and r(A ∪ B, α) = r(A, α) ∪ r(B, α).

For all A ⊆ E0 and α ∈ L∗(E) we have r(A, α) = r(A ∩ s(α), α).

A collection B ⊆ 2E0
of subsets of E0 is said to be closed under relative ranges

for (E,L) if for all A ∈ B and α ∈ L∗(E) we have r(A, α) ∈ B. If B is closed under
relative ranges for (E,L), contains r(α) for all α ∈ L∗(E) and is also closed under
finite intersections and unions, then we say that B is accommodating for (E,L).

DEFINITION 3.6. A labelled space consists of a triple (E,L,B), where (E,L)
is a labelled graph and B is accommodating for (E,L) .

DEFINITION 3.7. A labelled space (E,L,B) is weakly left-resolving if for every
A, B ∈ B and every α ∈ L∗(E) we have r(A, α) ∩ r(B, α) = r(A ∩ B, α).

In particular, the labelled space (E,L,B) is weakly left-resolving if no pair
of disjoint sets A, B ∈ B can emit paths λ, µ respectively with L(λ) = L(µ) and
r(λ) = r(µ). If (E,L) is left-resolving then (E,L,B) is weakly left-resolving for
any B. Evidently if (E,L,B) is weakly left-resolving, then (E,L,B′) is weakly
left-resolving for any B′ ⊆ B.

Consider the following subsets of 2E0
:

E={{v} : v∈E0 is a source or a sink }∪{r(α) : α∈L∗(E)}∪{s(α) : α∈L∗(E)},
E−={{v} : v ∈ E0 is a sink } ∪ {r(α) : α ∈ L∗(E)}.

The following definition is analogous to the definition of G0 in [26].

DEFINITION 3.8. Let E0 (respectively E0,−) denote the smallest subset of 2E0

containing E (respectively E−) which is accommodating for (E,L) .

REMARK 3.9. If α, β ∈ L∗(E) are such that αβ ∈ L∗(E) then

r(s(α), αβ) = r(αβ) and r(r(α), β) = r(αβ).

For α, β ∈ L∗(E) with αβ ∈ L∗(E) and A ⊆ E0 we have r(r(A, α), β) = r(A, αβ).

For labelled spaces (E,L, E0) which are weakly left-resolving Remark 3.5
and Remark 3.9 show that to form E0 it suffices to form

E ∪ {r(A, α) : A ∈ E , α ∈ L∗(E)}

and then close under finite intersections and unions. To form E0,−, by Remark 3.5
it suffices to close E− under finite intersections and unions. Evidently, E0,− ⊆ E0;
the containment can be strict, for instance this occurs when E has sources. One
can show that E0 = E0,− if and only if for every α ∈ L∗(E), s(α) can be written as

a finite union of sets of the form
n⋂

i=1
r(βi). Since E0, L∗(E) and E are countable it

follows that E0 and E0,− are countable.
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For A ∈ 2E0
and n > 1 let

Ln
A = {α ∈ L(En) : A ∩ s(α) 6= ∅}

denote those labelled paths of length n whose source intersects A nontrivially.

4. C∗-ALGEBRAS OF LABELLED SPACES

DEFINITION 4.1. Let (E,L,B) be a weakly left-resolving labelled space. A
representation of (E,L,B) consists of projections {pA : A ∈ B} and partial isome-
tries {sa : a ∈ L(E1)} with the properties that:

(i) If A, B ∈ B then pA pB = pA∩B and pA∪B = pA + pB− pA∩B, where p∅ = 0.
(ii) If a ∈ L(E1) and A ∈ B then pAsa = sa pr(A,a).

(iii) If a, b ∈ L(E1) then s∗a sa = pr(a) and s∗a sb = 0 unless a = b.
(iv) For A ∈ B, if L1

A is finite and non-empty we have

(4.1) pA = ∑
a∈L1

A

sa pr(A,a)s∗a .

If a, b ∈ L(E1) are such that ab ∈ L∗(E) then we have

(s∗a sa)(sbs∗b) = pr(a)sbs∗b = sb pr(r(a),b)s∗b = sbs∗b pr(a) = (sbs∗b)(s∗a sa).

Hence sasb is a partial isometry which is nonzero if and only if sa and sb are.
Therefore we may define sab = sasb and similarly define sα for all α ∈ L∗(E). One
checks that Definition 4.1 (ii) holds for α ∈ L∗(E), Definition 4.1 (iii) holds for
α, β ∈ L(En) for n > 1 and Definition 4.1 (iv) holds for A ∈ B with finite and
nonempty Ln

A for n > 1. Then (cf. (2.2)) we have

s∗αsαsβ = pr(α)sβ = sβ pr(r(α),β)) = sβ pr(αβ) = sβs∗αβsαβ.

To justify the requirement that (E,L,B) is weakly left-resolving in Defini-
tions 4.1, consider the following: Let {pA, sa} be a representation of (E,L,B) in
which pA 6= 0 for all A ∈ B. By Definition 4.1 (i) we have (pA − pA∩B)(pB −
pA∩B) = 0 for all A, B ∈ B. Suppose, for contradiction, that there is α ∈ L∗(E)
such that r(A, α) ∩ r(B, α) 6= r(A ∩ B, α). From Definition 4.1 (iv) we have

pA− pA∩B > sα(pr(A,α)− pr(A∩B,α))s∗α and pB− pA∩B > sα(pr(B,α)− pr(A∩B,α))s∗α

so (pA− pA∩B)(pB− pA∩B) 6=0, a contradiction. Thus a representation of (E,L,B)
will be degenerate if (E,L,B) is not weakly left-resolving.

Relation (iv) in Definition 4.1 can make sense even if A ∈ B emits infin-
itely many edges in E: If there are only finitely many different labels attached to
the edges which A emits then L1

A is finite. For directed graphs the analogue of
equation (4.1) holds when a vertex has finite valency; when this is true at every
vertex, the graph is called row-finite. With this in mind, we make the following
definition:
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DEFINITION 4.2. Let (E,L,B) be a labelled space. We say that A ∈ B is
singular if L1

A is infinite. If no set A ∈ B is singular we say that (E,L,B) is set-
finite.

If (E,L,B) is set-finite, then Ln
A is finite for all A ∈ B and all n > 1. In

the examples below, the resulting labelled space will be set-finite whenever the
original graph is row-finite.

EXAMPLES 4.3. (i) Let E be a directed graph with the trivial labelling L.
Then E0 consists of all the finite subsets of E0. If E is row-finite then (E,L, E0)
and (E,L, E0,−) are set-finite. One may show that a representation of (E,L, E0) is
a Cuntz-Krieger E-family and conversely (see [1], [4] for instance). If all sources
in E have finite valency, then the ∗-algebra generated by a representation of
(E,L, E0,−) contains a representation of (E,L, E0). If there is a source v ∈ E0 with
infinite valency then there is no representative of pv in the ∗-algebra generated
by a representation of (E,L, E0,−).

(ii) Under the identification of an ultragraph G with a labelled graph (EG ,LG)
we have E0

G = G0. Since A = G1 a representation of (EG ,LG , E0
G) is a Cuntz-

Krieger G-family (see Definition 2.7 of [26]). If G has sources which are singular
then we get similar behaviour to that described in (i) above.

(iii) In Examples 3.3 (iii) we have E0
i = 2E0

i for i = 1, 2, 3. Though E0,−
1 = 2E0

1 ,
we find that E0,−

2 = {{w}, {u, w}, {v, w}, {u, v, w}} and E0,−
3 = {∅, {u}, {v},

{u, v}, {u, v, w}}. A representation of (E2,L2, E0,−
2 ) is generated by partial isome-

tries s0, s1 satisfying the relations in Proposition 8.3 of [14] and Section 2 of [6] for
OY, where Y is the even shift.

(iv) A covering p : F → E of directed graphs yields a labelling Lp : F1 → E1.
We may identify F 0 with the collection of inverse images of the finite subsets of
E0. A representation of (F,Lp,F 0) is a Cuntz-Krieger E-family. If F has sources
with infinite valency, then we get similar behaviour to that described in (i) above.

(v) An outsplitting Es(P) of E gives rise to a labelling L : Es(P)1 → E1. If P
is proper then we may identify ES (P)0 with the collection of finite subsets of E0,
and a representation of (Es(P),L, ES (P)0) is a Cuntz-Krieger E-family. If E has
sources with infinite valency then, we get similar behaviour to that described in
(i) above, even when the outsplitting is proper.

(vi) An arbitrary shift Λ ⊆ AZ gives rise to a left-resolving labelled graph
(EΛ,LΛ) with no sources or sinks, called the Left Krieger cover. IfA is finite then
the generators of OΛ form a representation of (EΛ,LΛ, E0,−

Λ ) (cf. [8], [14]).
(vii) An arbitrary shift Λ ⊆ AZ gives rise to a left-resolving labelled graph

(EΛ∗ ,LΛ∗) with no sources or sinks, called the predecessor graph. If A is finite
then the generators of OΛ∗ form a representation of the (EΛ∗ ,LΛ∗ , E0,−

Λ∗ ) (cf. [8],
[14]).

Examples 4.3 (i)–(v) show that it is possible for E0 and E0,− to be different,
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but for the ∗-algebras generated by representations of (E,L, E0) and (E,L, E0,−)
to be the same.

Let (E,L,B) be a labelled space. Let B∗ = L∗(E) ∪ B and extend r, s to B∗
by r(A) = A, s(A) = A for all A ∈ B. For A ∈ B, put sA = pA, so sβ is defined
for all β ∈ B∗.

LEMMA 4.4. Let (E,L,B) be a weakly left-resolving labelled space and {sa, pA}
be a representation of (E,L,B). Then any nonzero product of sa, pA and s∗b can be
written as a finite combination of elements of the form sα pAs∗β for some A ∈ B, and
α, β ∈ B∗ satisfying A ⊆ r(α) ∩ r(β) 6= ∅.

Proof. Since sα pAs∗β = sα pr(α)∩A∩r(β)s∗β it follows that sα pAs∗β is zero unless
A ∩ r(α) ∩ r(β) 6= ∅ and without loss of generality we may assume that A ⊆
r(α) ∩ r(β). For α, β, γ, δ ∈ L∗(E) and A, B ∈ B we have

(4.2) (sα pAs∗β)(sγ pBs∗δ) =


sαγ′ pr(A,γ′)∩Bs∗δ if γ = βγ′,
sα pA∩r(B,β′)s∗δβ′ if β = γβ′,

sα pA∩Bs∗δ if β = γ,
0 otherwise .

To see this, suppose γ = βγ′ then as A ⊆ r(β) ∩ r(α)

sα pAs∗βsγ pBs∗δ = sα pAs∗βsβsγ′ pBs∗δ = sα pA pr(β)sγ′ pBs∗δ
= sα pAsγ′ pBs∗δ = sαγ′ pr(A,γ′)∩Bs∗δ .

A similar calculation gives the desired formulas in the cases β = γβ′ and
β = γ. If β and γ have no common initial segment, then without loss of generality,
assume that β ∈ L(En) and γ ∈ L(Em) with n > m. Write β = β′β′′ where
β′ ∈ L(Em), and then by Definition 4.1(iv) we have s∗βsγ = s∗β′′ s

∗
β′ sγ = 0 since

β′ 6= γ and so sα pAs∗βsγ pAs∗δ = 0. By Definition 4.1 (i) and (ii) we may extend
(4.2) to the case when α, β, γ, δ ∈ B∗.

THEOREM 4.5. Let (E,L,B) be a weakly left-resolving labelled space. There exists
a C∗-algebra B generated by a universal representation of {sa, pA} of (E,L,B). Further-
more the sa’s are nonzero and every pA with A 6= ∅ is nonzero.

Proof. Let S(E,L,B) := {(α, A, β) : α, β ∈ B∗, A ∈ B, A ⊆ r(α) ∩ r(β)} and
let k(E,L,B) be the space of functions of finite support on S(E,L,B). The set of point
masses {eτ : τ ∈ S(E,L,B)} forms a basis for k(E,L,B). Set (α, A, β)∗ := (β, A, α);
then thinking of e(α,A,β) as sα pAs∗β and using (4.2) we can define a multiplication
with respect to which k(E,L,B) is a ∗-algebra.

As a ∗-algebra k(E,L,B) is generated by the elements qA := e(A,A,A) for A ∈ B
and ta := e(a,r(a),r(a)) for a ∈ L(E1). Our definition of multiplication ensures that
properties (ii) and (iii) of Definition 4.1 hold; moreover qAqB = qA∩B. We mod out
by the ideal J generated by the elements qA∪B− qA− qB + qA∩B for A, B ∈ B, and
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qA − ∑
a∈L1

A

sa pr(A,a)s∗a for A ∈ B with L1
A nonempty and finite. Then the images rA

of qA and ua of ta in k(E,L,B)/J form a representation of (E,L,B) that generates
k(E,L,B)/J. The triple (k(E,L,B)/J, rA, ua) has the required universal property, but
is not a C∗-algebra. Using a standard argument we can convert this triple to a C∗-
algebra B satisfying the required properties (see Theorem 2.1 of [10] for instance).

Now for each a ∈ L(E1) and e ∈ L−1(a), letH(a,e) be an infinite-dimensional
Hilbert space. Also for each v ∈ s(a) we define H(a,v) :=

⊕
{e:s(e)=v,L(e)=a}

H(a,e). If

v is a sink let Hv be an infinite-dimensional Hilbert space. For A ∈ B we define
HA :=

⊕
b∈L1

A

⊕
v∈s(b)∩A

H(b,v) and then note that each Hilbert space we have defined

is a subspace of

H :=
( ⊕

a∈L(E1)

⊕
v∈s(a)

H(a,v)

) ⊕
{v:s−1(v)=∅}

Hv.

For each a ∈ L(E1), let Sa be a partial isometry with initial space Hr(a) and
final space

⊕
v∈s(a)

H(a,v) ⊆ Hs(a). For A ∈ B, define PA to be the projection of H

ontoHA, where this is interpreted as the zero projection when A = ∅.
It is easy to verify that since (E,L,B) is weakly left-resolving, the operators

{Sa, PA} form a representation of (E,L,B) in which Sa, PA are nonzero. By the
universal property there exists a homomorphism πS,P : B→ C∗({Sa, PA}). Since
the Sa’s and PA’s are nonzero, it follows that the sa’s and pA’s are also nonzero.

DEFINITION 4.6. Let (E,L,B) be a weakly left-resolving labelled space, then
C∗(E,L,B) is the universal C∗-algebra generated by a representation of (E,L,B).

Let (E,L,B) be a weakly left-resolving labelled space and {sa, pA} be the
universal representation of (E,L,B), then by Lemma 4.4

span {sα pAs∗β : α, β ∈ L∗(E), A ∈ B, A ⊆ r(α) ∩ r(β)}

is a dense ∗-subalgebra of C∗(E,L,B). The following result may be proved along
the same lines as Lemma 3.2 of [26].

LEMMA 4.7. Let A be finite, E have no sinks, and (E,L,B) be a weakly left-
resolving labelled space. Then C∗(E,L,B) is unital.

Proof. Observe that ∑
a∈A

sas∗a is a unit for C∗(E,L,B).

LEMMA 4.8. If φ : (E,L)→ (F,L′) is a labelled graph isomorphism, then for all
B which are accommodating for (E,L) we have C∗(E,L,B) ∼= C∗(F,L′, φ(B)).

Proof. The map φ induces a bijection between the generators of C∗(E,L,B)
and C∗(F,L′, φ(B)) and so by the universal property there are homomorphisms
from one C∗-algebra to the other which are also inverses of each other.
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5. GAUGE INVARIANT UNIQUENESS THEOREM

Let {sa, pA} be the universal representation of (E,L,B) which generates
C∗(E,L,B). For z ∈ T, a ∈ L(E1) and A ∈ B let

ta := γzsa = zsa and qA := γz pA = pA;

then the family {ta, qA} ∈ C∗(E,L,B) is also a representation of (E,L,B). By
universality of C∗(E,L,B) and a routine ε/3 argument we see that γ extends to
a strongly continuous action

γ : T→ Aut C∗(E,L,B)

which we call the gauge action.

PROPOSITION 5.1. (i) Let E be a directed graph with the trivial labelling L. Then
C∗(E,L, E0) ∼= C∗(E).

(ii) Let G be an ultragraph. Then C∗(EG ,LG , E0
G) ∼= C∗(G), where (EG ,LG) is the

labelled graph associated to G .
(iii) Let p : F → E be a covering map with induced labelling Lp : F1 → E1. Then

C∗(F,Lp,F 0) ∼= C∗(E).
(iv) Let E be a directed graph and let Es(P) be an outsplitting. Let L be the labelling of

Es(P) induced by the outsplitting. If P is a proper partition then C∗(Es(P),L, Es(P)0)
∼= C∗(E).

Proof. In each case the left hand side contains a generating set for the C∗-
algebra on the right as shown in Examples 4.3. We apply the appropriate gauge-
invariant uniqueness theorem for the algebra on the right hand side to obtain the
isomorphism.

To establish connections with the Matsumoto algebras we need a version of
the gauge-invariant uniqueness theorem for labelled graph algebras.

LEMMA 5.2. Let (E,L,B) be a weakly left-resolving labelled space, {sa, pA} a
representation of (E,L,B), and Y = {sαi pAi s

∗
βi

: i = 1, . . . , N} be a set of partial
isometries in C∗(E,L,B) which is closed under multiplication and taking adjoints. If q
is a minimal projection in C∗(Y) then either

(i) q = sαi pAi s
∗
αi

for some 1 6 i 6 N; or

(ii) q = sαi pAi s
∗
αi
− q′ where q′ =

m
∑

l=1
sαk(l) pAk(l)

s∗αk(l)
and 1 6 i 6 N; moreover there

is a nonzero r = sαi β pr(Ai ,β)s∗αi β
∈ C∗(E,L,B) such that q′r = 0 and q > r.

Proof. By 4.2 any projection in C∗(Y) may be written as

n

∑
j=1

sαi(j) pAi(j)
s∗αi(j)
−

m

∑
l=1

sαk(l) pAk(l)
s∗αk(l)
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where the projections in each sum are mutually orthogonal and for each l there is
a unique j such that sαi(j) pAi(j)

s∗αi(j)
> sαk(l) pAk(l)

s∗αk(l)
.

If q =
n
∑

j=1
sαi(j) pAi(j)

s∗αi(j)
−

m
∑

l=1
sαk(l) pAk(l)

s∗αk(l)
is a minimal projection in C∗(Y)

then we must have n = 1. If m = 0 then q = sαi pAi s
∗
αi

for some 1 6 i 6 N. If

m 6= 0 then q = sαi pAi s
∗
αi
− q′ where q′ =

m
∑

l=1
sαk(l) pAk(l)

s∗αk(l)
and 1 6 k 6 N. Since

q′ is the sum of finitely many projections and q 6= 0 it follows by repeated use of
Definition 4.1 (iv) that there is a nonzero r = sαi β pr(Ai ,β)s∗αi β

in C∗(E,L,B) such
that rq′ = 0 and q > r.

THEOREM 5.3. Let (E,L,B) be a weakly left-resolving labelled space and let
{Sa, PA} be a representation of (E,L,B) on Hilbert space. Take πS,P to be the repre-
sentation of C∗(E,L,B) satisfying πS,P(sa) = Sa and πS,P(pA) = PA. Suppose that
each PA is non-zero whenever A 6= ∅, and that there is a strongly continuous action β
of T on C∗(Sα, PA) such that for all z ∈ T, βz ◦ πS,P = πS,P ◦ γz. Then πS,P is faithful.

Proof. A straightforward argument along the lines of Lemma 2.2.3 of [22]
shows that

C∗(E,L,B)γ = span{sα pAs∗β : α, β ∈ L(En) for some n and A ⊆ r(α) ∩ r(β)}

where C∗(E,L,B)γ is the fixed point algebra of C∗(E,L,B) under the gauge ac-
tion γ. We claim that C∗(E,L,B)γ is AF. Let Y be a finite subset of C∗(E,L,B)γ.
Since y ∈ Y may be approximated by a finite linear combination of elements of
the form sα pAs∗β where |α| = |β| we may assume that Y = {sαi pAi s

∗
βi

: |αi| =
|βi|, i = 1, . . . , N}.

Let M be the length of the longest word in {α1, . . . , αN}. Let W denote the
collection of all words in L∗(E) of length at most M that can be formed from
composing subwords of α1, . . . , αN , β1, . . . , βN . Let C be the collection all finite
intersections of {Ai}n

i=1 and {r(Ai, γ) : 1 6 i 6 N, γ ∈ W}. By (4.2) a non-
zero product of elements of Y is of the form sγ pAs∗δ where γ, δ ∈ W and A ∈ C.
Since W and C are finite it follows that Y′ = {sγ pAs∗δ : γ, δ ∈ W, A ∈ C} is
finite, closed under adjoints and C∗(Y) = C∗(Y′). Hence we may assume that
Y is closed under multiplication and taking adjoints. Thus C∗(Y) = span(Y) is
finite dimensional and so C∗(E,L,B)γ is AF by Theorem 2.2 of [5], establishing
our claim.

To show that the canonical map πS,P : C∗(E,L,B) → C∗(Sa, PA) is injec-
tive on C∗(E,L,B)γ we write C∗(E,L,B)γ as

⋃
C∗(Yn) where {Yn : n > 1} is an

increasing family of finite sets which are closed under multiplication and taking
adjoints. Suppose, for contradiction, that πS,P is not faithful on C∗(Yn) for some
n. Then its kernel is an ideal and so must contain a nonzero minimal projection
q. If Yn = {sαi pAi s

∗
βi

: i = 1, . . . , N(n)} then by Lemma 5.2 either q = sαi pAi s
∗
αi
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for some 1 6 i 6 N(n) or q = sαi pAi s
∗
αi
− q′ where q′ =

m
∑

k=1
sαi(k) pAi(k)

s∗αi(k)
and

1 6 i 6 N(n). In the first case πS,P(sαi pAi ) = Sαi PAi is a partial isometry with
initial projection PAi and final projection Sαi PAi S

∗
αi

. But PAi = πS,P(pAi ) 6= 0 by
hypothesis and so πS,P(q) = πS,P(sαi pAi s

∗
αi

) = Sαi PAi S
∗
αi
6= 0 which is a contra-

diction. In the second case by Lemma 5.2 (ii) there is r = sαi β pr(Ai ,β)s∗αi β
such that

q > r and q′r = 0. We may apply the above argument to show that πS,P(r) 6= 0
and hence πS,P(q) > πS,P(r) 6= 0 which is also a contradiction. Hence πS,P is
injective on C∗(Yn) and the result follows by arguments similar to those in Theo-
rem 2.1 of [4].

6. APPLICATIONS

6.1. DUAL LABELLED GRAPHS. Let E have no sinks and (E,L) be a labelled graph
over alphabetA. From this data we may form the dual labelled graph (Ê, L̂) over al-
phabet Â := L(E2) as follows: Let Ê0 = E1, Ê1 = E2 and the maps r′, s′ : Ê1 → Ê0

be given by r′(e f ) = f and s′(e f ) = e. The labelling L̂ : Ê1 → Â is induced by
the original labelling, so that L̂(e f ) = L(e)L( f ). For ab ∈ L̂(Ê1) = L(E2) we
have

rL̂(ab) = { f : L̂(e f ) = ab}, and sL̂(ab) = {e : L̂(e f ) = ab}

and for B ∈ 2E1

rL̂(B, ab) = { f : L̂(e f ) = ab, e ∈ B}.

These maps extend naturally to L̂∗(Ê) =
⋃

n>1
L̂(Ên) where for n > 1, L̂(Ên)

is identified with L(En+1). Consider the following subsets of 2E1

Ê = {{e} : s(e) is a source} ∪ {rL̂(α) : α ∈ L̂∗(Ê)} ∪ {sL̂(α) : α ∈ L̂∗(Ê)},

Ê− = {rL̂(α) : α ∈ L̂∗(Ê)}.

Let Ê0 (respectively Ê0,−) be the smallest collection of subsets of 2E1
con-

taining Ê (respectively Ê−) which is accommodating for (Ê, L̂). One checks eas-
ily that if (E,L,B) is left-resolving, then (Ê, L̂, B̂) is weakly left-resolving for
B = E0, E0,−.

For B ∈ Ê0 (respectively B ∈ Ê0,−) we set

L̂1
B = {ab ∈ L̂(Ê1) : sL̂(ab) ∩ B 6= ∅}.

If E has no sources and sinks, the shift X(Ê,L̂) determined by the dual la-

belled graph (Ê, L̂) of (E,L) is the second higher block shift X[2]
(E,L) formed from

X(E,L) (cf. Section 1.4 of [13]).
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REMARK 6.1. Suppose that ab ∈ L(E2) then c ∈ L1
r(ab) if and only if bc ∈

L̂1
rL̂(ab); moreover r(r(ab), c) = r(s(rL̂(ab)), bc). Suppose that A ∈ E0 (respec-

tively A ∈ E0,−) then a ∈ L1
A and ab ∈ L(E2) if and only if ab ∈ L̂1

s−1(A).

THEOREM 6.2. Let (E,L) be a set-finite, left-resolving labelled graph with no
sinks; then C∗(E,L, E0) ∼= C∗(Ê, L̂, Ê0), moreover C∗(E,L, E0,−) ∼= C∗(Ê, L̂, Ê0,−).

Proof. Let {sa, pA} be a representation of (E,L, E0) and {tab, qB} be a repre-
sentation of (Ê, L̂, Ê0). For ab ∈ L̂(Ê1) and B ∈ Ê0 let Tab = sasbs∗b and

QB := ∑
ab∈L̂1

B

sab pr(s(B),ab)s∗ab.

Since (E,L, E0) is set-finite (Ê, L̂, Ê0) is set-finite by Remark 6.1 and so the above
sum is finite. One checks that {Tab, QB} is a representation of (Ê, L̂, Ê0).

By the universal property there is a homomorphism πT,Q : C∗(Ê, L̂, Ê0) →
C∗(E,L, E0) with πT,Q(tab) = Tab and πT,Q(qB) = QB. Since πT,Q intertwines
the respective gauge actions and QB 6= 0 it follows from Theorem 5.3 that πT,Q is
faithful. We claim that πT,Q is surjective. For a ∈ L(E1) we have

sa = sa pr(a) = sa ∑
b∈L1

r(a)

sb pr(r(a),b)s∗b = ∑
b∈L1

r(a)

sasbs∗b sb pr(ab)s∗b

= ∑
b∈L1

r(a)

sasbs∗b ∑
c∈L1

r(ab)

sbc pr(r(ab),c)s∗bc

= ∑
b∈L1

r(a)

Tab ∑
bc∈L̂1

rL̂(ab)

sbc pr(s(rL̂(ab)),bc)s∗bc (by Remark 6.1) = ∑
b∈L1

r(a)

TabQrL̂(ab)

and so sa ∈ C∗(Tab, QB). For A ∈ E0, by Remark 6.1 we have

pA= ∑
a∈L1

A

sa pr(A,a)s∗a= ∑
a∈L1

A

sa ∑
b∈L1

r(A,a)

sb pr(r(A,a),b)s∗b s∗a= ∑
ab∈L̂1

s−1(A)

sab pr(A,ab)s∗ab=Qs−1(A)

which establishes our claim. The second isomorphism is proved along similar
lines.

6.2. MATSUMOTO ALGEBRAS.

THEOREM 6.3. Let Λ be a shift space over a finite alphabet A which satisfies Con-
dition (I) and has left-Krieger cover (EΛ,LΛ) then OΛ

∼= C∗(EΛ,LΛ, E0,−
Λ ). Moreover,

if Λ has predecessor graph (EΛ∗ ,LΛ∗) then OΛ∗
∼= C∗(EΛ∗ ,LΛ∗ , E0,−

Λ∗ ).

Proof. By definition every A ∈ E0,−
Λ can be written as a union of sets of the

form Aj =
m(j)⋂
i=1

r(µ
j
i) for j = 1, . . . , n. For µ ∈ Λ∗ let qr(µ) = t∗µtµ, then since the

projections {t∗µtµ : µ ∈ Λ∗} are mutually commutative (see p. 686 of [16]) we
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may define qr(µ)∩r(ν) = qr(µ)qr(ν), and hence define qAj for 1 6 j 6 n. By the
inclusion-exclusion principle one may further define

qA =
n

∑
j=1

qAj −∑
j 6=k

qAj qAk + · · ·+ (−1)n+1qA1 · · · qAn .

Using calculations along the lines of those in Section 3 of [14] one checks that
{ta, qA} is a representation of (EΛ,LΛ, E0,−

Λ ). Let {sa, pA} be a representation of
(EΛ,LΛ, E0,−

Λ ). By the universal property for C∗(EΛ,LΛ, E0,−
Λ ) there is a map πt,q :

C∗(EΛ,LΛ, E0,−
Λ ) → OΛ such that πt,q(sa) = ta and πt,q(pA) = qA, in particular

πt,q is surjective. Since Λ satisfies Condition (I) it follows by Proposition 2.2 that
OΛ carries a strongly continuous action β of T. Since βz ◦ πt,q = πt,q ◦ γz for all
z ∈ T and πt,q(pA) = qA 6= 0 it follows from Theorem 5.3 that πt,q is injective,
which completes the proof of the first statement.

The second statement is proved similarly.

REMARKS 6.4. (i) In Section 5 of [8] a Condition (∗) is given under which for
shift spaces Λ satisfying (∗) Conditions (I) and (I*) are equivalent andOΛ

∼= OΛ∗ .
This suggests that if Λ satisfies (∗) then (EΛ,LΛ) is labelled graph isomorphic
to (EΛ∗ ,LΛ∗) and the isomorphism of OΛ and OΛ∗ can be deduced from Theo-
rem 4.8. However Theorem 6.1 of [8] shows that, in general, OΛ and OΛ∗ are not
isomorphic. In particular, (EΛ,LΛ) and (EΛ∗ ,LΛ∗) are not labelled graph isomor-
phic in general.

(ii) The isomorphism of C∗(EΛ,LΛ, E0,−
Λ ) andOΛ identifies C∗(pA : A ∈ E0,−

Λ )
with AΛ ⊂ OΛ. Recall from Corollary 4.7 of [16] that AΛ

∼= C(ΩΛ), hence we
may think of the elements of E0,−

Λ as indexing closed sets in ΩΛ.
(iii) In [7] Carlsen constructs a C∗-algebra which has OΛ as a quotient, that is

isomorphic to OΛ if Λ satisfies Condition (I), and always carries a gauge action.
A proof along the lines of Theorem 6.3 shows that this new algebra is isomorphic
to C∗(EΛ,LΛ, E0,−

Λ ) for all Λ.

6.3. FINITENESS CONDITIONS.

DEFINITION 6.5. A labelled graph (E,L) is label-finite if |L−1(a)| < ∞ for
all a ∈ L(E1).

If (E,L) is label-finite then L−1(α) is finite for all α ∈ L∗(E) and so all sets
in E0 are finite (and conversely). If (E,L) is label-finite then (Ê, L̂) is label-finite.
If E is row-finite and (E,L) is label-finite then (E,L, E0) is set-finite.

The following result generalises Corollary 2.5 in [4] (see also Remark 3.3 (i)
in [2]).

THEOREM 6.6. Let (E,L) be a row-finite left-resolving labelled graph which is
label-finite and satisfies {v} ∈ E0 for all v ∈ E0. Then C∗(E,L, E0) ∼= C∗(E); moreover
if {v} ∈ E0,− for all v ∈ E0 then C∗(E,L, E0,−) ∼= C∗(E).
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Proof. Let {se, pv} be the canonical Cuntz-Krieger E-family and {ta, qA} be
the canonical generators of C∗(E,L, E0). For a ∈ L(E1) and A ∈ E0 let

Ta = ∑
e∈E1 :L(e)=a

se , and QA = ∑
v∈A

pv .

The above sums make sense since (E,L) is label-finite. Since E is row-finite
one may easily check that these operators define a representation of (E,L, E0). By
the universal property of C∗(E,L, E0) there is a homomorphism πT,Q : C∗(E,L, E0)
→ C∗(E) given by πT,Q(ta) = Ta and πT,Q(qA) = QA for all a ∈ L(E1) and A ∈
E0. Since {v} ∈ E0 for all v ∈ E0, we have pv = Qv ∈ C∗(Ta, QA) for all v ∈ E0.
Since our labelled graph is left-resolving we have se = TL(e)Qr(e) ∈ C∗(Ta, QA)
for all e ∈ E1, and so πT,Q is surjective. The canonical gauge actions on C∗(E)
and C∗(E,L, E0) satisfy the required properties and πT,Q(qA) = QA 6= 0 for all
A ∈ E0, so πT,Q is an isomorphism by Theorem 5.3.

The proof of the second isomorphism is essentially the same.

COROLLARY 6.7. Let G = (G0,G1, r, s) be a row-finite ultragraph; then C∗(G) ∼=
C∗(EG) where EG is the underlying directed graph of G.

Proof. From Examples 3.3 (ii) a row-finite ultragraph G may be realised as
a row-finite left-resolving labelled graph (EG ,LG). As EG is row-finite it follows
that (EG ,LG) is label-finite. Since the source map is single-valued it follows that
v ∈ E0

G for all v ∈ G0 = E0
G and hence the result follows from Theorem 6.6.

The following result was first observed in Theorem 3.5 of [6] (see also Corol-
lary 3.4.5 in [24]).

COROLLARY 6.8. Let Λ be a sofic shift over a finite alphabet; then OΛ
∼= C∗(EΛ)

where (EΛ,LΛ) is the left-Krieger cover of Λ.

Proof. As E0
Λ is finite and each v ∈ E0

Λ has a different past there are the word
αv ∈ L∗(EΛ) with rLΛ

(αv) = {v}. Hence {v} ∈ E0,−
Λ for all v ∈ E0

Λ. The result
follows by Theorem 6.6.

From Theorem 3.3.18 in [13] any two minimal left-resolving representations
(E,L), (F,L′) of an irreducible sofic shift are labelled graph isomorphic and so
C∗(E,L, E0

−) ∼= C∗(F,L′,F 0
−) by Lemma 4.8. Moreover, one may use the mini-

mality of the representation to show that the underlying graph E is irreducible
(cf. Lemma 3.3.10 in [13]). Hence we have:

COROLLARY 6.9. Let (E,L) be a minimal left-resolving presentation of an irre-
ducible sofic shift over a finite alphabet, then C∗(E,L, E0,−) ∼= C∗(E,L, E0) is simple.

REMARK 6.10. Recall that the graph (E2,L2) in Examples 3.3 (ii) is the left-
Krieger cover of the even shift Y. Although Y is irreducible, (E2,L2) is not a
minimal left-resolving presentation of Y and OY ∼= C∗(E2) is not simple. How-
ever the graph (E1,L1) Examples 3.3 (ii) is a minimal left-resolving cover of Y
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and so

C∗(E1,L1, E0,−
1 ) ∼= C∗(E1,L1, E0

1 ) ∼= C∗(E1)

is simple. Similarly C∗(EZ,LZ, E0,−
Z ) ∼= C∗(EZ) is simple where Z is the irre-

ducible shift introduced in Examples 3.3 (vi).
Thus, if one wishes to associate a simple C∗-algebra to an irreducible sofic

shift Λ, then one should use the minimal left-resolving presentation of Λ ([6], [7]).

For a general shift space Λ, either (EΛ,LΛ) will not be row-finite or there
will be v ∈ E0

Λ with v 6∈ E0,−
Λ . This indicates that the C∗-algebras corresponding to

presentations of such shift spaces will not be Morita equivalent to graph algebras.
The shift associated to a certain Shannon graph (see Theorem 7.7 of [21]) provides
such an example.

Acknowledgements. This research was supported by the University of Newcastle and
the University of New South Wales.

REFERENCES

[1] T. BATES, J.-H. HONG, I. RAEBURN, W. SZYMAŃSKI, The ideal structure of the C∗–
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