C*-ALGEBRAS OF LABELLED GRAPHS

TERESA BATES and DAVID PASK

Communicated by William B. Arveson

ABSTRACT. We describe a class of C^* -algebras which simultaneously generalise the ultragraph algebras of Tomforde and the shift space C^* -algebras of Matsumoto. In doing so we shed some new light on the different C^* -algebras that may be associated to a shift space. Finally, we show how to associate a simple C^* -algebra to an irreducible sofic shift.

KEYWORDS: *C**-algebras, labelled graph, ultragraph, shift space, Matsumoto algebra.

MSC (2000): 46L05, 37B10.

1. INTRODUCTION

The purpose of this paper is to introduce a class of C^* -algebras associated to labelled graphs. Our motivation is to provide a common framework for working with the ultragraph algebras of Tomforde (see [26], [27]) and the C^* -algebras associated to shift spaces studied by Matsumoto and Carlsen (see [14], [16], [6], [8] amongst others). Here a labelled graph (E, \mathcal{L}) over an alphabet \mathcal{A} is a directed graph E, together with a map $\mathcal{L} : E^1 \to \mathcal{A}$. An ultragraph \mathcal{G} is a particular example of a labelled graph (see Example 3.3 (ii)), and a shift space Λ has many presentations as a labelled graph (see Example 3.3 (iii) of [13]). Hence it is natural to give our common framework in terms of labelled graphs.

To a two-sided shift space Λ over a finite alphabet, Matsumoto associates two C^* -algebras \mathcal{O}_{Λ} and \mathcal{O}_{Λ^*} generated by partial isometries (see [8]). Although \mathcal{O}_{Λ} and \mathcal{O}_{Λ^*} are generated by elements satisfying the same relations, it turns out that they are not isomorphic in general (see Theorem 4.1 of [8]). This fact manifests itself in our realisation in Section 6.2 of \mathcal{O}_{Λ} and \mathcal{O}_{Λ^*} as the C^* -algebras of the labelled graphs (E_{Λ} , \mathcal{L}_{Λ}) and (E_{Λ^*} , \mathcal{L}_{Λ^*}) respectively, which are not necessarily isomorphic as labelled graphs. Moreover, in Corollary 6.9 we show that using labelled graphs gives us the facility to canonically associate a simple C^* -algebra to an irreducible sofic shift (cf. [8], [6], [7]). In fact we can associate a number of (possibly different) C^* -algebras to a labelled graph. This leads us to the notion of a labelled space, which we describe in Section 3. Briefly, a labelled space $(E, \mathcal{L}, \mathcal{B})$ consists of a labelled graph (E, \mathcal{L}) together with a collection $\mathcal{B} \subseteq 2^{E^0}$ which plays the same role as \mathcal{G}^0 in [26] and is related to the abelian AF-subalgebra A_A (respectively A_{A^*}) in \mathcal{O}_A (respectively \mathcal{O}_{A^*}) generated by the source projections.

In Section 4 we define a representation of a labelled space in terms of partial isometries $\{s_a : a \in A\}$ and projections $\{p_A : A \in B\}$ subject to certain relations. Our relations generalise those found in [26], [14]. In order to build a nondegenerate C^* -algebra from a representation of $(E, \mathcal{L}, \mathcal{B})$ it is necessary for \mathcal{B} to be weakly left-resolving: a condition which is a generalisation of the leftresolving property for labelled graphs. Hence we may define $C^*(E, \mathcal{L}, \mathcal{B})$ to be the C^* -algebra which is universal for representations of the weakly left-resolving labelled space $(E, \mathcal{L}, \mathcal{B})$. Since any ultragraph has a natural realisation as a leftresolving labelled graph, the class of C^* -algebras of labelled spaces contains the ultragraph algebras (and hence, graph algebras and Exel-Laca algebras).

In Section 5 we give a version of the gauge-invariant uniqueness theorem for $C^*(E, \mathcal{L}, \mathcal{B})$ which will ultimately allow us to make the connection with the Matsumoto algebras.

In Section 6 we give three applications of our uniqueness theorem: In Section 6.1 we show how to construct a dual labelled space, which is the analogue of the higher block presentation of a shift space (cf. [13]). We give an isomorphism theorem for dual labelled spaces which is a generalisation of Corollary 2.5 in [4] and forms a starting point for future work (see [3]). In Section 6.2 we show that if \mathcal{O}_{Λ} (respectively \mathcal{O}_{Λ^*}) has a gauge action, then it is isomorphic to the *C**-algebra of a certain labelled space. Then in Section 6.3 we give necessary conditions for the *C**-algebra of a labelled space to be isomorphic to the *C**-algebra of the underlying directed graph. We then show how to associate a simple *C**-algebra to an irreducible shift space. By example, we show that in general the *C**-algebra of a labelled space will not be isomorphic to the *C**-algebra of any directed graph; hence labelled graph *C**-algebras form a strictly larger class of *C**-algebras than graph algebras.

This paper has benefitted from several helpful suggestions made by the anonymous referee and Toke Carlsen.

Since we seek to generalise them, we begin by giving a brief description of ultragraph algebras and Matsumoto algebras.

2. ULTRAGRAPH ALGEBRAS AND MATSUMOTO ALGEBRAS

2.1. ULTRAGRAPH ALGEBRAS. Following [26], an ultragraph $\mathcal{G} = (G^0, \mathcal{G}^1, r, s)$ consists of a countable set of vertices G^0 , a countable set of edges \mathcal{G}^1 , and functions $s : \mathcal{G}^1 \to G^0$ and $r : \mathcal{G}^1 \to 2^{G^0}$. Let \mathcal{G}^0 be the smallest collection of 2^{G^0}

which contains s(e) and r(e) for all $e \in \mathcal{G}^1$ and is closed under finite intersections and unions. The ultragraph algebra $C^*(\mathcal{G})$ is the universal C^* -algebra for Cuntz-Krieger \mathcal{G} -families: collections of partial isometries { $s_e : e \in \mathcal{G}^1$ } with mutually orthogonal ranges, and projections { $p_A : A \in \mathcal{G}^0$ } satisfying the relations:

(1.)
$$p_{\emptyset} = 0$$
, $p_A p_B = p_{A \cap B}$ and $p_{A \cup B} = p_A + p_B - p_{A \cap B}$ for all $A, B \in \mathcal{G}^0$;
(2.) $s_e^* s_e = p_{r(e)}$ and $s_e s_e^* \leq p_{s(e)}$ for all $e \in \mathcal{G}^1$;
(3.) $p_v = \sum_{s(e)=v} s_e s_e^*$ whenever $0 < |s^{-1}(v)| < \infty$;

(see Definition 2.7 in [26]). Recall that $v \in G^0$ is an infinite emitter if $|s^{-1}(v)| = \infty$.

If \mathcal{G} has no infinite emitters, then the underlying graph (see Examples 3.3 (ii)) can still fail to be row-finite. With this in mind we make the following definition (cf. Remark 2.6 in [26]):

DEFINITION 2.1. The ultragraph \mathcal{G} is *row-finite* if there are no infinite emitters and r(e) is finite for all $e \in \mathcal{G}^1$.

Ultragraph algebras simultaneously generalise graph C^* -algebras and Exel-Laca algebras (see Sections 3 and 4 of [26]). By Corollary 5.5 in [27] there is a non row-finite ultragraph whose C^* -algebra is not isomorphic to a graph algebra or an Exel-Laca algebra.

2.2. MATSUMOTO ALGEBRAS. For an introduction to shift spaces we refer the reader to the excellent treatment in [13]. Let Λ be a two-sided shift space over a finite alphabet A. Let

(2.1)
$$X_{\Lambda} = \{ (x_i)_{i \ge 1} : (x_i)_{i \in \mathbb{Z}} \in \Lambda \}$$

denote the set of all right-infinite sequences in Λ .

For each $k \ge 1$, let Λ^k be the set of all words with length k appearing in some $x \in \Lambda$. We set $\Lambda_\ell = \bigcup_{k=0}^\ell \Lambda^k$ and $\Lambda^* = \bigcup_{k=0}^\infty \Lambda^k$ where Λ^0 denotes the empty word \emptyset .

Following [8] there are two C^* -algebras associated to Λ . Each C^* -algebra is generated by partial isometries { $t_a : a \in \mathcal{A}$ } subject to

(2.2)
$$\sum_{a \in \mathcal{A}} t_a t_a^* = 1, \text{ and } t_\alpha^* t_\alpha t_\beta = t_\beta t_{\alpha\beta}^* t_{\alpha\beta}, \text{ where } \alpha, \beta, \alpha\beta \in \Lambda^*.$$

As in [8] we denote by \mathcal{O}_{Λ} the *C*^{*}-algebra defined directly on Hilbert space in [18], [20] and by \mathcal{O}_{Λ^*} the *C*^{*}-algebra defined using the Fock space construction in [14], [16], [17], [15], [19]. Because of the different ways in which the relations (2.2) are realised it turns out that \mathcal{O}_{Λ} and \mathcal{O}_{Λ^*} are not isomorphic in general (see Section 6 in [8]).

There is a uniqueness theorem for \mathcal{O}_{Λ} (respectively \mathcal{O}_{Λ^*}) when Λ satisfies Condition (I) (respectively Condition (I*)) given in Section 4 of [8] (respectively Section 3 of [8]). CONDITION I. For $x \in X_A$ and $l \in \mathbb{N}$ put $\Lambda_l(x) = \{\mu \in \Lambda_l : \mu x \in X_A\}$. Two infinite paths $x, y \in X_A$ are *l*-past equivalent (written $x \sim_l y$) if $\Lambda_l(x) = \Lambda_l(y)$. The shift space X_A satisfies Condition (I) if for any $l \in \mathbb{N}$ and $x \in X_A$ there exists $y \in X_A$ such that $y \neq x, y \sim_l x$.

CONDITION I*. For $\omega \in \Lambda^*$ and $l \in \mathbb{N}$ we set $\Lambda_l(\omega) = \{\mu : |\mu| \leq l, \ \mu\omega \in \Lambda^*\}$. Two words $\mu, \nu \in \Lambda^*$ are said to be *l*-past equivalent (written $\mu \sim_l \nu$) if $\Lambda_l(\mu) = \Lambda_l(\nu)$. The subset $\Lambda_l^* \subseteq \Lambda^*$ is defined by

$$\Lambda_l^* := \{ \omega \in \Lambda^* : |\{ \mu \in \Lambda^* : \mu \sim_l \omega\}| < \infty \}.$$

The shift space Λ satisfies Condition (I*) if for every $l \in \mathbb{N}$ and $\mu \in \Lambda_l^*$ there exist distinct words $\xi_1, \xi_2 \in \Lambda^*$ with $|\xi_1| = |\xi_2| = m$ such that

$$\mu \sim_l \xi_1 \gamma_1$$
 and $\mu \sim_l \xi_2 \gamma_2$

for some $\gamma_1, \gamma_2 \in \Lambda_{l+m}^*$.

PROPOSITION 2.2. Let Λ be a two-sided shift space over a finite alphabet which satisfies Condition (I). Then there is a strongly continuous action β of \mathbb{T} on \mathcal{O}_{Λ} such that $\beta_z(t_a) = zt_a$ for all $a \in \mathcal{A}$ and $z \in \mathbb{T}$.

Proof. That each β_z is an automorphism of \mathcal{O}_{Λ} for each $z \in \mathbb{T}$ follows from Proposition 4.2 in [8]. A standard $\epsilon/3$ argument shows that β is strongly continuous.

From p. 363 in [14] there is always a gauge action on \mathcal{O}_{Λ^*} . In [19] Matsumoto defines λ -graph systems \mathcal{L}_{Λ} and \mathcal{L}_{Λ^*} associated to a two-sided shift space Λ together with corresponding C^* -algebras $\mathcal{O}_{\mathcal{L}_{\Lambda}}$ and $\mathcal{O}_{\mathcal{L}_{\Lambda^*}}$. By Theorem 5.6 in [8] we see that if Λ satisfies Condition (I) then $\mathcal{O}_{\Lambda} \cong \mathcal{O}_{\mathcal{L}_{\Lambda}}$ and if Λ satisfies Condition (I*) then $\mathcal{O}_{\Lambda^*} \cong \mathcal{O}_{\mathcal{L}_{\Lambda^*}}$. Hence, for our purposes, it suffices to work with \mathcal{O}_{Λ} and \mathcal{O}_{Λ^*} .

3. LABELLED SPACES

A directed graph *E* consists of a quadruple (E^0, E^1, r, s) where E^0 and E^1 are countable sets of vertices and edges respectively and $r, s : E^1 \to E^0$ are maps giving the direction of each edge. A path $\lambda = e_1 \cdots e_n$ is a sequence of edges $e_i \in E^1$ such that $r(e_i) = s(e_{i+1})$ for $i = 1, \ldots, n-1$. The collection of paths of length *n* in *E* is denoted E^n and the collection of all finite paths in *E* by E^* , so that $E^* = \bigcup_{n \ge 0} E^n$. The edge shift (X_E, σ_E) associated to a directed graph *E* with no sinks or sources is defined by:

 $X_E = \{x \in (E^1)^{\mathbb{Z}} : s(x_{i+1}) = r(x_i) \text{ for all } i \in \mathbb{Z}\}$ and $(\sigma_E x)_i = x_{i+1}$ for $i \in \mathbb{Z}$. The following definition is adapted from Definition 3.1.1 in [13]:

DEFINITION 3.1. A *labelled graph* (E, \mathcal{L}) over an alphabet \mathcal{A} consists of a directed graph *E* together with a labelling map $\mathcal{L} : E^1 \to \mathcal{A}$.

Without loss of generality we may assume that the map \mathcal{L} is onto. We say that the labelled graph (E, \mathcal{L}) is *row-finite* if the underlying graph *E* is row-finite.

Given a labelled graph (E, \mathcal{L}) such that every vertex in *E* emits and receives an edge, we may define a subshift $(X_{(E,\mathcal{L})}, \sigma)$ of $\mathcal{A}^{\mathbb{Z}}$ by

$$\mathsf{X}_{(E,\mathcal{L})} = \{y \in \mathcal{A}^{\mathbb{Z}} : \text{ there exists } x \in \mathsf{X}_E \text{ such that } y_i = \mathcal{L}(x_i) \text{ for all } i \in \mathbb{Z}\},$$

where σ is the shift map. The labelled graph (E, \mathcal{L}) is said to be a *presentation* of the shift space $X = X_{(E,\mathcal{L})}$. As shown in Section 3.1 of [13] a shift space may have many different presentations (see Examples 3.3 (ii), (vi), (vii)).

Let \mathcal{A}^* be the collection of all *words* in the symbols of \mathcal{A} (see Section 0.2 of [25]). The map \mathcal{L} extends naturally to a map $\mathcal{L} : E^n \to \mathcal{A}^*$, where $n \ge 1$: for $\lambda = e_1 \cdots e_n \in E^n$ put $\mathcal{L}(\lambda) = \mathcal{L}(e_1) \cdots \mathcal{L}(e_n)$; in this case the path $\lambda \in E^n$ is said to be a *representative* of the *labelled path* $\mathcal{L}(e_1) \cdots \mathcal{L}(e_n)$. Let $\mathcal{L}(E^n)$ denote the collection of all labelled paths in (E, \mathcal{L}) of length n, then $\mathcal{L}^*(E) = \bigcup_{n \ge 1} \mathcal{L}(E^n)$

denotes the collection of all words in the alphabet \mathcal{A} which may be represented by paths in the labelled graph (E, \mathcal{L}) . In this way \mathcal{L} induces a map from the language $\bigcup_{n\geq 1} E^n$ of the subshift of finite type X_E associated to E into $\mathcal{L}^*(E)$, the

language of the shift space $X_{(E,\mathcal{L})}$ presented by (E,\mathcal{L}) (see Section 3 of [13]). The usual length function $|\cdot|: E^* \to \mathbb{N}$ transfers naturally over to $\mathcal{L}^*(E)$.

For α in $\mathcal{L}^*(E)$ we put

$$s_{\mathcal{L}}(\alpha) = \{s(\lambda) \in E^0 : \mathcal{L}(\lambda) = \alpha\}$$
 and $r_{\mathcal{L}}(\alpha) = \{r(\lambda) \in E^0 : \mathcal{L}(\lambda) = \alpha\},\$

so that $r_{\mathcal{L}}, s_{\mathcal{L}} : \mathcal{L}^*(E) \to 2^{E^0}$. We shall drop the subscript on $r_{\mathcal{L}}$ and $s_{\mathcal{L}}$ if the context in which it is being used is clear. For $\alpha, \beta \in \mathcal{L}^*(E)$ we have $\alpha\beta \in \mathcal{L}^*(E)$ if and only if $r(\alpha) \cap s(\beta) \neq \emptyset$.

Where possible we shall denote the elements of $\mathcal{A} = \mathcal{L}(E^1)$ as *a*, *b*, etc., elements of $\mathcal{L}^*(E)$ as α , β , etc., leaving *e*, *f* for elements of E^1 and λ , μ for elements of E^* .

Let (E, \mathcal{L}) and (F, \mathcal{L}') be graphs labelled by the same alphabet. A graph isomorphism $\phi : E \to F$ is a *labelled graph isomorphism* if $\mathcal{L}'(\phi(e)) = \mathcal{L}(e)$ for all $e \in E^1$ and we write $\phi : (E, \mathcal{L}) \to (F, \mathcal{L}')$.

DEFINITION 3.2. The labelled graph (E, \mathcal{L}) is *left-resolving* if for all $v \in E^0$ the map $\mathcal{L} : r^{-1}(v) \to \mathcal{A}$ is injective.

The left-resolving condition ensures that for all $v \in E^0$ the labels { $\mathcal{L}(e) : r(e) = v$ } of all incoming edges to v are all different. In particular if $\lambda, \mu \in \bigcup_{n \ge 1} E^n$ satisfy $\mathcal{L}(\lambda) = \mathcal{L}(\mu)$ and $r(\lambda) = r(\mu)$ then $\lambda = \mu$.

EXAMPLES 3.3. (i) Let *E* be a directed graph. Put $\mathcal{A} = E^1$ and let $\mathcal{L} : E^1 \rightarrow E^1$ be the identity map (the *trivial labelling*); then (E, \mathcal{L}) is a left-resolving labelled graph.

(ii) Let $\mathcal{G} = (G^0, \mathcal{G}^1, r, s)$ be an ultragraph. Define $E = E_{\mathcal{G}}$ by putting $E^0 = G^0$, $E^1 = \{(e, w) : e \in \mathcal{G}^1, w \in r(e)\}$ and defining $r', s' : E^1 \to E^0$ by s'(e, w) = s(e), r'(e, w) = w. Set $\mathcal{A} = \mathcal{G}^1$ and define $\mathcal{L}_{\mathcal{G}} : E^1 \to \mathcal{A}$ by $\mathcal{L}_{\mathcal{G}}(e, w) = e$. The resulting labelled graph $(E_{\mathcal{G}}, \mathcal{L}_{\mathcal{G}})$ is left-resolving since the source map is single-valued. If \mathcal{G} is row-finite in the sense of Definition 2.1 then $E_{\mathcal{G}}$ is row-finite.

On the other hand, given a left-resolving labelled graph (E, \mathcal{L}) over an alphabet \mathcal{A} where $s_{\mathcal{L}} : \mathcal{L}^*(E) \to 2^{E^0}$ is single-valued, we can form a ultragraph $\mathcal{G}_{(E,\mathcal{L})} = (E^0, \mathcal{A}, r', s')$ with $s' = s_{\mathcal{L}}$ and $r' = r_{\mathcal{L}}$. If (E, \mathcal{L}) is row-finite then the ultragraph $\mathcal{G}_{(E,\mathcal{L})}$ is row-finite.

(iii) Following Section 3 of [13] the labelled graphs

have the same language as the even shift *Y* since between any two 1's there must be an even number of 0's. Hence $X_{(E_i,\mathcal{L}_i)} = Y$ for i = 1, 2, 3 by Proposition 1.3.4 (3) of [13]. Only graphs (E_1, \mathcal{L}_1) and (E_2, \mathcal{L}_2) are left-resolving.

(iv) Let *E* be a directed graph and Γ a group which acts on (the right of) *E*. Define $\mathcal{L}_q : E^1 \to E^1/\Gamma$ by $\mathcal{L}_q(e) = q(e)$ where $q : E^1 \to E^1/\Gamma$ is the quotient map. If the action of Γ is free on E^1 , then the resulting labelled graph (E, \mathcal{L}_q) is left-resolving. More generally, if $p : F \to E$ is a graph morphism then there is a labelling $\mathcal{L}_p : F^1 \to E^1$ given by $\mathcal{L}_p(f) = p(f)$ for all $f \in E^1$. If p is a covering map then \mathcal{L}_p is left-resolving.

(v) Recall from Section 3 of [2], that an out-splitting of a directed graph *E* is formed by a partition \mathcal{P} of $s^{-1}(v)$ into $m(v) \ge 1$ non-empty subsets for each

 $v \in E^0$ (if $s^{-1}(v) = \emptyset$ then m(v) = 0). Given such a partition \mathcal{P} one may construct a directed graph $E_s(\mathcal{P})$ where $E_s(\mathcal{P}^1) = \{e^j : e \in E^1, 1 \leq j \leq m(r(e))\} \cup \{e : m(r(e)) = 0\}$. Define $\mathcal{L} : E_s(\mathcal{P})^1 \to E^1$ by $\mathcal{L}(e^j) = e$ for $1 \leq j \leq m(r(e))$ and $\mathcal{L}(e) = e$ if m(r(e)) = 0. For an in-splitting (see Section 5 in [2]) of E using a partition \mathcal{P} , a similar construction also yields a labelled graph. However the resulting labelling \mathcal{L} of the in-split graph $E_r(\mathcal{P})$ will not be left-resolving in general.

(vi) Let Λ be a two-sided shift space over a finite alphabet \mathcal{A} with X_{Λ} defined as in (2.1). Let $X_{\Lambda}^{-} = \{(x_i)_{i \leq 0} : (x_i)_{i \in \mathbb{Z}} \in \Lambda\}$ so that any element $x \in \Lambda$ may be written as $x = x^{-}x^{+}$. For arbitrary $x^{+} \in X_{\Lambda}$ and $x^{-} \in X_{\Lambda}^{-}$ the bi-infinite sequence $y = x^{-}x^{+}$ may not belong to Λ . Define the past set of $t \in X_{\Lambda}$ as

$$P_{\infty}(t) = \{ x^{-} \in X_{\Lambda}^{-} : x^{-}t \in \Lambda \}.$$

A shift is *sofic* if and only if the number of past sets is finite [11], [13].

For $s, t \in X_{\Lambda}$, we say that s is *past equivalent* to t (denoted $s \sim_{\infty} t$) if $P_{\infty}(s) = P_{\infty}(t)$. Define a labelled graph $(E_{\Lambda}, \mathcal{L}_{\Lambda})$ as follows: let $E_{\Lambda}^{0} = \{[v] : v \in X_{\Lambda} / \sim_{\infty}\}, E_{\Lambda}^{1} = \{([v], a, [w]) : a \in \mathcal{A}, aw \sim_{\infty} v\}$ with s([v], a, [w]) = [v] and r([v], a, [w]) = [w]. If $([v], a, [w]) \in E_{\Lambda}^{1}$ we put $\mathcal{L}_{\Lambda}([v], a, [w]) = a$. The resulting left-resolving labelled graph is usually referred to as the *left-Krieger cover* of Λ and the construction is evidently independent of the choice of representatives (see [11]).

If *Y* is the even shift then (E_Y, \mathcal{L}_Y) is labelled graph isomorphic to (E_2, \mathcal{L}_2) in (iii) above. Let *Z* be shift over the alphabet {1,2,3,4} in which the words

$$\{12^{k}1, 32^{k}12, 32^{k}13, 42^{k}14 : k \ge 0\}$$

do not occur (see Section 4 of [8]) then (E_Z, \mathcal{L}_Z) has six vertices.

(vii) Let Λ be a two-sided shift over a finite alphabet \mathcal{A} . We construct a variant of the predecessor graph ($E_{\Lambda^*}, \mathcal{L}_{\Lambda^*}$) in the following way. For $\mu \in \Lambda^*$ we define

$$P(\mu) := \{\lambda : \lambda \mu \in \Lambda^*\}$$

and define an equivalence relation by $\mu \sim \nu$ if $P(\mu) = P(\nu)$. A shift is sofic if and only if the number of predecessor sets is finite [13].

Let Λ_{∞}^* denote those $\mu \in \Lambda^*$ which have an infinite equivalence class. Since \mathcal{A} is finite $\Lambda_{\infty}^* / \sim$ can be identified with $\Omega_{\Lambda^*} = \lim_{\leftarrow} \Omega_l^*$ as described in Section 2 of [16]. We set $E_{\Lambda^*}^0 = \Lambda_{\infty}^* / \sim$, $E_{\Lambda^*}^1 = \{([\mu], a, [\nu]) : a \in \mathcal{A}, [\mu] = [a\nu]\}, r([\mu], a, [\nu]) = [\nu]$ and $s([\mu], a, [\nu]) = [\mu]$. The labelling map is defined by $\mathcal{L}_{\Lambda^*}([\mu], a, [\nu]) = a$. The resulting labelled graph is evidently left-resolving.

If *Y* is the even shift then $(E_{Y^*}, \mathcal{L}_{Y^*})$ is labelled graph isomorphic to (E_2, \mathcal{L}_2) in (iii) above (cf. [6], [16]). If *Z* is the sofic shift described in Example 3.3 (vi) then $(E_{Z^*}, \mathcal{L}_{Z^*})$ has seven vertices and contains (E_Z, \mathcal{L}_Z) as a subgraph.

DEFINITION 3.4. Let (E, \mathcal{L}) be a labelled graph. For $A \subseteq E^0$ and $\alpha \in \mathcal{L}^*(E)$ the *relative range of* α *with respect to* A is defined to be

$$r(A, \alpha) = \{r(\lambda) : \lambda \in E^*, \mathcal{L}(\lambda) = \alpha, s(\lambda) \in A\}.$$

REMARK 3.5. For any $A, B \subseteq E^0$ and $\alpha \in \mathcal{L}^*(E)$ we have

 $r(A \cap B, \alpha) \subseteq r(A, \alpha) \cap r(B, \alpha)$ and $r(A \cup B, \alpha) = r(A, \alpha) \cup r(B, \alpha)$.

For all $A \subseteq E^0$ and $\alpha \in \mathcal{L}^*(E)$ we have $r(A, \alpha) = r(A \cap s(\alpha), \alpha)$.

A collection $\mathcal{B} \subseteq 2^{E^0}$ of subsets of E^0 is said to be *closed under relative ranges* for (E, \mathcal{L}) if for all $A \in \mathcal{B}$ and $\alpha \in \mathcal{L}^*(E)$ we have $r(A, \alpha) \in \mathcal{B}$. If \mathcal{B} is closed under relative ranges for (E, \mathcal{L}) , contains $r(\alpha)$ for all $\alpha \in \mathcal{L}^*(E)$ and is also closed under finite intersections and unions, then we say that \mathcal{B} is *accommodating* for (E, \mathcal{L}) .

DEFINITION 3.6. A *labelled space* consists of a triple $(E, \mathcal{L}, \mathcal{B})$, where (E, \mathcal{L}) is a labelled graph and \mathcal{B} is accommodating for (E, \mathcal{L}) .

DEFINITION 3.7. A labelled space $(E, \mathcal{L}, \mathcal{B})$ is *weakly left-resolving* if for every $A, B \in \mathcal{B}$ and every $\alpha \in \mathcal{L}^*(E)$ we have $r(A, \alpha) \cap r(B, \alpha) = r(A \cap B, \alpha)$.

In particular, the labelled space $(E, \mathcal{L}, \mathcal{B})$ is weakly left-resolving if no pair of disjoint sets $A, B \in \mathcal{B}$ can emit paths λ, μ respectively with $\mathcal{L}(\lambda) = \mathcal{L}(\mu)$ and $r(\lambda) = r(\mu)$. If (E, \mathcal{L}) is left-resolving then $(E, \mathcal{L}, \mathcal{B})$ is weakly left-resolving for any \mathcal{B} . Evidently if $(E, \mathcal{L}, \mathcal{B})$ is weakly left-resolving, then $(E, \mathcal{L}, \mathcal{B}')$ is weakly left-resolving for any $\mathcal{B}' \subseteq \mathcal{B}$.

Consider the following subsets of 2^{E^0} :

 $\mathcal{E} = \{\{v\} : v \in E^0 \text{ is a source or a sink } \} \cup \{r(\alpha) : \alpha \in \mathcal{L}^*(E)\} \cup \{s(\alpha) : \alpha \in \mathcal{L}^*(E)\},$ $\mathcal{E}^- = \{\{v\} : v \in E^0 \text{ is a sink } \} \cup \{r(\alpha) : \alpha \in \mathcal{L}^*(E)\}.$

The following definition is analogous to the definition of \mathcal{G}^0 in [26].

DEFINITION 3.8. Let \mathcal{E}^0 (respectively $\mathcal{E}^{0,-}$) denote the smallest subset of 2^{E^0} containing \mathcal{E} (respectively \mathcal{E}^-) which is accommodating for (E, \mathcal{L}) .

Remark 3.9. If $\alpha, \beta \in \mathcal{L}^*(E)$ are such that $\alpha\beta \in \mathcal{L}^*(E)$ then

 $r(s(\alpha), \alpha\beta) = r(\alpha\beta)$ and $r(r(\alpha), \beta) = r(\alpha\beta)$.

For $\alpha, \beta \in \mathcal{L}^*(E)$ with $\alpha\beta \in \mathcal{L}^*(E)$ and $A \subseteq E^0$ we have $r(r(A, \alpha), \beta) = r(A, \alpha\beta)$.

For labelled spaces $(E, \mathcal{L}, \mathcal{E}^0)$ which are weakly left-resolving Remark 3.5 and Remark 3.9 show that to form \mathcal{E}^0 it suffices to form

$$\mathcal{E} \cup \{r(A, \alpha) : A \in \mathcal{E}, \alpha \in \mathcal{L}^*(E)\}$$

and then close under finite intersections and unions. To form $\mathcal{E}^{0,-}$, by Remark 3.5 it suffices to close \mathcal{E}^- under finite intersections and unions. Evidently, $\mathcal{E}^{0,-} \subseteq \mathcal{E}^0$; the containment can be strict, for instance this occurs when *E* has sources. One can show that $\mathcal{E}^0 = \mathcal{E}^{0,-}$ if and only if for every $\alpha \in \mathcal{L}^*(E)$, $s(\alpha)$ can be written as a finite union of sets of the form $\bigcap_{i=1}^n r(\beta_i)$. Since E^0 , $\mathcal{L}^*(E)$ and \mathcal{E} are countable it follows that \mathcal{E}^0 and $\mathcal{E}^{0,-}$ are countable.

For $A \in 2^{E^0}$ and $n \ge 1$ let

$$L_A^n = \{ \alpha \in \mathcal{L}(E^n) : A \cap s(\alpha) \neq \emptyset \}$$

denote those labelled paths of length *n* whose source intersects *A* nontrivially.

4. C*-ALGEBRAS OF LABELLED SPACES

DEFINITION 4.1. Let $(E, \mathcal{L}, \mathcal{B})$ be a weakly left-resolving labelled space. A representation of $(E, \mathcal{L}, \mathcal{B})$ consists of projections $\{p_A : A \in \mathcal{B}\}$ and partial isometries $\{s_a : a \in \mathcal{L}(E^1)\}$ with the properties that:

(i) If $A, B \in \mathcal{B}$ then $p_A p_B = p_{A \cap B}$ and $p_{A \cup B} = p_A + p_B - p_{A \cap B}$, where $p_{\emptyset} = 0$. (ii) If $a \in \mathcal{L}(E^1)$ and $A \in \mathcal{B}$ then $p_A s_a = s_a p_{r(A,a)}$.

(iii) If $a, b \in \mathcal{L}(E^1)$ then $s_a^* s_a = p_{r(a)}$ and $s_a^* s_b = 0$ unless a = b.

(iv) For $A \in \mathcal{B}$, if L_A^1 is finite and non-empty we have

(4.1)
$$p_A = \sum_{a \in L_A^1} s_a p_{r(A,a)} s_a^*.$$

If $a, b \in \mathcal{L}(E^1)$ are such that $ab \in \mathcal{L}^*(E)$ then we have

$$(s_a^*s_a)(s_bs_b^*) = p_{r(a)}s_bs_b^* = s_bp_{r(r(a),b)}s_b^* = s_bs_b^*p_{r(a)} = (s_bs_b^*)(s_a^*s_a).$$

Hence $s_a s_b$ is a partial isometry which is nonzero if and only if s_a and s_b are. Therefore we may define $s_{ab} = s_a s_b$ and similarly define s_α for all $\alpha \in \mathcal{L}^*(E)$. One checks that Definition 4.1 (ii) holds for $\alpha \in \mathcal{L}^*(E)$, Definition 4.1 (iii) holds for $\alpha, \beta \in \mathcal{L}(E^n)$ for $n \ge 1$ and Definition 4.1 (iv) holds for $A \in \mathcal{B}$ with finite and nonempty L_A^n for $n \ge 1$. Then (cf. (2.2)) we have

$$s_{\alpha}^* s_{\alpha} s_{\beta} = p_{r(\alpha)} s_{\beta} = s_{\beta} p_{r(r(\alpha),\beta)} = s_{\beta} p_{r(\alpha\beta)} = s_{\beta} s_{\alpha\beta}^* s_{\alpha\beta}.$$

To justify the requirement that $(E, \mathcal{L}, \mathcal{B})$ is weakly left-resolving in Definitions 4.1, consider the following: Let $\{p_A, s_a\}$ be a representation of $(E, \mathcal{L}, \mathcal{B})$ in which $p_A \neq 0$ for all $A \in \mathcal{B}$. By Definition 4.1 (i) we have $(p_A - p_{A \cap B})(p_B - p_{A \cap B}) = 0$ for all $A, B \in \mathcal{B}$. Suppose, for contradiction, that there is $\alpha \in \mathcal{L}^*(E)$ such that $r(A, \alpha) \cap r(B, \alpha) \neq r(A \cap B, \alpha)$. From Definition 4.1 (iv) we have

$$p_A - p_{A \cap B} \ge s_{\alpha} (p_{r(A,\alpha)} - p_{r(A \cap B,\alpha)}) s_{\alpha}^*$$
 and $p_B - p_{A \cap B} \ge s_{\alpha} (p_{r(B,\alpha)} - p_{r(A \cap B,\alpha)}) s_{\alpha}^*$
so $(p_A - p_{A \cap B}) (p_B - p_{A \cap B}) \ne 0$, a contradiction. Thus a representation of $(E, \mathcal{L}, \mathcal{B})$
will be degenerate if $(E, \mathcal{L}, \mathcal{B})$ is not weakly left-resolving.

Relation (iv) in Definition 4.1 can make sense even if $A \in \mathcal{B}$ emits infinitely many edges in E: If there are only finitely many different labels attached to the edges which A emits then L_A^1 is finite. For directed graphs the analogue of equation (4.1) holds when a vertex has finite valency; when this is true at every vertex, the graph is called row-finite. With this in mind, we make the following definition: DEFINITION 4.2. Let $(E, \mathcal{L}, \mathcal{B})$ be a labelled space. We say that $A \in \mathcal{B}$ is *singular* if L_A^1 is infinite. If no set $A \in \mathcal{B}$ is singular we say that $(E, \mathcal{L}, \mathcal{B})$ is *setfinite*.

If $(E, \mathcal{L}, \mathcal{B})$ is set-finite, then L_A^n is finite for all $A \in \mathcal{B}$ and all $n \ge 1$. In the examples below, the resulting labelled space will be set-finite whenever the original graph is row-finite.

EXAMPLES 4.3. (i) Let *E* be a directed graph with the trivial labelling \mathcal{L} . Then \mathcal{E}^0 consists of all the finite subsets of E^0 . If *E* is row-finite then $(E, \mathcal{L}, \mathcal{E}^0)$ and $(E, \mathcal{L}, \mathcal{E}^{0,-})$ are set-finite. One may show that a representation of $(E, \mathcal{L}, \mathcal{E}^0)$ is a Cuntz-Krieger *E*-family and conversely (see [1], [4] for instance). If all sources in *E* have finite valency, then the *-algebra generated by a representation of $(E, \mathcal{L}, \mathcal{E}^{0,-})$ contains a representation of $(E, \mathcal{L}, \mathcal{E}^0)$. If there is a source $v \in E^0$ with infinite valency then there is no representative of p_v in the *-algebra generated by a representation of $(E, \mathcal{L}, \mathcal{E}^{0,-})$.

(ii) Under the identification of an ultragraph \mathcal{G} with a labelled graph $(E_{\mathcal{G}}, \mathcal{L}_{\mathcal{G}})$ we have $\mathcal{E}_{\mathcal{G}}^0 = \mathcal{G}^0$. Since $\mathcal{A} = \mathcal{G}^1$ a representation of $(E_{\mathcal{G}}, \mathcal{L}_{\mathcal{G}}, \mathcal{E}_{\mathcal{G}}^0)$ is a Cuntz-Krieger \mathcal{G} -family (see Definition 2.7 of [26]). If \mathcal{G} has sources which are singular then we get similar behaviour to that described in (i) above.

(iii) In Examples 3.3 (iii) we have $\mathcal{E}_i^0 = 2^{E_i^0}$ for i = 1, 2, 3. Though $\mathcal{E}_1^{0,-} = 2^{E_1^0}$, we find that $\mathcal{E}_2^{0,-} = \{\{w\}, \{u,w\}, \{v,w\}, \{u,v,w\}\}$ and $\mathcal{E}_3^{0,-} = \{\emptyset, \{u\}, \{v\}, \{u,v\}, \{u,v\}\}$. A representation of $(E_2, \mathcal{L}_2, \mathcal{E}_2^{0,-})$ is generated by partial isometries s_0, s_1 satisfying the relations in Proposition 8.3 of [14] and Section 2 of [6] for \mathcal{O}_Y , where Y is the even shift.

(iv) A covering $p : F \to E$ of directed graphs yields a labelling $\mathcal{L}_p : F^1 \to E^1$. We may identify \mathcal{F}^0 with the collection of inverse images of the finite subsets of E^0 . A representation of $(F, \mathcal{L}_p, \mathcal{F}^0)$ is a Cuntz-Krieger *E*-family. If *F* has sources with infinite valency, then we get similar behaviour to that described in (i) above.

(v) An outsplitting $E_s(\mathcal{P})$ of E gives rise to a labelling $\mathcal{L} : E_s(\mathcal{P})^1 \to E^1$. If \mathcal{P} is proper then we may identify $\mathcal{E}_s(\mathcal{P})^0$ with the collection of finite subsets of E^0 , and a representation of $(E_s(\mathcal{P}), \mathcal{L}, \mathcal{E}_s(\mathcal{P})^0)$ is a Cuntz-Krieger E-family. If E has sources with infinite valency then, we get similar behaviour to that described in (i) above, even when the outsplitting is proper.

(vi) An arbitrary shift $\Lambda \subseteq \mathcal{A}^{\mathbb{Z}}$ gives rise to a left-resolving labelled graph $(E_{\Lambda}, \mathcal{L}_{\Lambda})$ with no sources or sinks, called the Left Krieger cover. If \mathcal{A} is finite then the generators of \mathcal{O}_{Λ} form a representation of $(E_{\Lambda}, \mathcal{L}_{\Lambda}, \mathcal{E}_{\Lambda}^{0,-})$ (cf. [8], [14]).

(vii) An arbitrary shift $\Lambda \subseteq \mathcal{A}^{\mathbb{Z}}$ gives rise to a left-resolving labelled graph $(\mathcal{E}_{\Lambda^*}, \mathcal{L}_{\Lambda^*})$ with no sources or sinks, called the predecessor graph. If \mathcal{A} is finite then the generators of \mathcal{O}_{Λ^*} form a representation of the $(\mathcal{E}_{\Lambda^*}, \mathcal{L}_{\Lambda^*}, \mathcal{E}_{\Lambda^*}^{0,-})$ (cf. [8], [14]).

Examples 4.3 (i)–(v) show that it is possible for \mathcal{E}^0 and $\mathcal{E}^{0,-}$ to be different,

but for the *-algebras generated by representations of $(E, \mathcal{L}, \mathcal{E}^0)$ and $(E, \mathcal{L}, \mathcal{E}^{0,-})$ to be the same.

Let $(E, \mathcal{L}, \mathcal{B})$ be a labelled space. Let $\mathcal{B}^* = \mathcal{L}^*(E) \cup \mathcal{B}$ and extend r, s to \mathcal{B}^* by r(A) = A, s(A) = A for all $A \in \mathcal{B}$. For $A \in \mathcal{B}$, put $s_A = p_A$, so s_β is defined for all $\beta \in \mathcal{B}^*$.

LEMMA 4.4. Let $(E, \mathcal{L}, \mathcal{B})$ be a weakly left-resolving labelled space and $\{s_a, p_A\}$ be a representation of $(E, \mathcal{L}, \mathcal{B})$. Then any nonzero product of s_a , p_A and s_b^* can be written as a finite combination of elements of the form $s_{\alpha}p_As_{\beta}^*$ for some $A \in \mathcal{B}$, and $\alpha, \beta \in \mathcal{B}^*$ satisfying $A \subseteq r(\alpha) \cap r(\beta) \neq \emptyset$.

Proof. Since $s_{\alpha}p_{A}s_{\beta}^{*} = s_{\alpha}p_{r(\alpha)\cap A\cap r(\beta)}s_{\beta}^{*}$ it follows that $s_{\alpha}p_{A}s_{\beta}^{*}$ is zero unless $A \cap r(\alpha) \cap r(\beta) \neq \emptyset$ and without loss of generality we may assume that $A \subseteq r(\alpha) \cap r(\beta)$. For $\alpha, \beta, \gamma, \delta \in \mathcal{L}^{*}(E)$ and $A, B \in \mathcal{B}$ we have

(4.2)
$$(s_{\alpha}p_{A}s_{\beta}^{*})(s_{\gamma}p_{B}s_{\delta}^{*}) = \begin{cases} s_{\alpha\gamma'}p_{r(A,\gamma')\cap B}s_{\delta}^{*} & \text{if } \gamma = \beta\gamma', \\ s_{\alpha}p_{A\cap r(B,\beta')}s_{\delta\beta'}^{*} & \text{if } \beta = \gamma\beta', \\ s_{\alpha}p_{A\cap B}s_{\delta}^{*} & \text{if } \beta = \gamma, \\ 0 & \text{otherwise}. \end{cases}$$

To see this, suppose $\gamma = \beta \gamma'$ then as $A \subseteq r(\beta) \cap r(\alpha)$

$$s_{\alpha}p_{A}s_{\beta}^{*}s_{\gamma}p_{B}s_{\delta}^{*} = s_{\alpha}p_{A}s_{\beta}^{*}s_{\beta}s_{\gamma'}p_{B}s_{\delta}^{*} = s_{\alpha}p_{A}p_{r(\beta)}s_{\gamma'}p_{B}s_{\delta}^{*}$$
$$= s_{\alpha}p_{A}s_{\gamma'}p_{B}s_{\delta}^{*} = s_{\alpha\gamma'}p_{r(A,\gamma')\cap B}s_{\delta}^{*}.$$

A similar calculation gives the desired formulas in the cases $\beta = \gamma \beta'$ and $\beta = \gamma$. If β and γ have no common initial segment, then without loss of generality, assume that $\beta \in \mathcal{L}(E^n)$ and $\gamma \in \mathcal{L}(E^m)$ with n > m. Write $\beta = \beta' \beta''$ where $\beta' \in \mathcal{L}(E^m)$, and then by Definition 4.1(iv) we have $s^*_{\beta}s_{\gamma} = s^*_{\beta''}s^*_{\beta'}s_{\gamma} = 0$ since $\beta' \neq \gamma$ and so $s_{\alpha}p_A s^*_{\beta}s_{\gamma}p_A s^*_{\delta} = 0$. By Definition 4.1 (i) and (ii) we may extend (4.2) to the case when $\alpha, \beta, \gamma, \delta \in \mathcal{B}^*$.

THEOREM 4.5. Let $(E, \mathcal{L}, \mathcal{B})$ be a weakly left-resolving labelled space. There exists a C*-algebra B generated by a universal representation of $\{s_a, p_A\}$ of $(E, \mathcal{L}, \mathcal{B})$. Furthermore the s_a 's are nonzero and every p_A with $A \neq \emptyset$ is nonzero.

Proof. Let $S_{(E,\mathcal{L},\mathcal{B})} := \{(\alpha, A, \beta) : \alpha, \beta \in \mathcal{B}^*, A \in \mathcal{B}, A \subseteq r(\alpha) \cap r(\beta)\}$ and let $k_{(E,\mathcal{L},\mathcal{B})}$ be the space of functions of finite support on $S_{(E,\mathcal{L},\mathcal{B})}$. The set of point masses $\{e_{\tau} : \tau \in S_{(E,\mathcal{L},\mathcal{B})}\}$ forms a basis for $k_{(E,\mathcal{L},\mathcal{B})}$. Set $(\alpha, A, \beta)^* := (\beta, A, \alpha)$; then thinking of $e_{(\alpha,A,\beta)}$ as $s_{\alpha}p_A s_{\beta}^*$ and using (4.2) we can define a multiplication with respect to which $k_{(E,\mathcal{L},\mathcal{B})}$ is a *-algebra.

As a *-algebra $k_{(E,\mathcal{L},\mathcal{B})}$ is generated by the elements $q_A := e_{(A,A,A)}$ for $A \in \mathcal{B}$ and $t_a := e_{(a,r(a),r(a))}$ for $a \in \mathcal{L}(E^1)$. Our definition of multiplication ensures that properties (ii) and (iii) of Definition 4.1 hold; moreover $q_A q_B = q_{A\cap B}$. We mod out by the ideal *J* generated by the elements $q_{A\cup B} - q_A - q_B + q_{A\cap B}$ for $A, B \in \mathcal{B}$, and $q_A - \sum_{a \in L_A^1} s_a p_{r(A,a)} s_a^*$ for $A \in \mathcal{B}$ with L_A^1 nonempty and finite. Then the images r_A

of q_A and u_a of t_a in $k_{(E,\mathcal{L},\mathcal{B})}/J$ form a representation of $(E,\mathcal{L},\mathcal{B})$ that generates $k_{(E,\mathcal{L},\mathcal{B})}/J$. The triple $(k_{(E,\mathcal{L},\mathcal{B})}/J, r_A, u_a)$ has the required universal property, but is not a *C**-algebra. Using a standard argument we can convert this triple to a *C**-algebra *B* satisfying the required properties (see Theorem 2.1 of [10] for instance).

Now for each $a \in \mathcal{L}(E^1)$ and $e \in \mathcal{L}^{-1}(a)$, let $\mathcal{H}_{(a,e)}$ be an infinite-dimensional Hilbert space. Also for each $v \in s(a)$ we define $\mathcal{H}_{(a,v)} := \bigoplus_{\{e:s(e)=v,\mathcal{L}(e)=a\}} \mathcal{H}_{(a,e)}$. If

v is a sink let \mathcal{H}_v be an infinite-dimensional Hilbert space. For $A \in \mathcal{B}$ we define $\mathcal{H}_A := \bigoplus_{b \in L_A^1} \bigoplus_{v \in s(b) \cap A} \mathcal{H}_{(b,v)}$ and then note that each Hilbert space we have defined

is a subspace of

$$\mathcal{H}:=\Big(igoplus_{a\in\mathcal{L}(E^1)}igoplus_{v\in s(a)}\mathcal{H}_{(a,v)}\Big)igoplus_{\{v:s^{-1}(v)=\oslash\}}\mathcal{H}_v.$$

For each $a \in \mathcal{L}(E^1)$, let S_a be a partial isometry with initial space $\mathcal{H}_{r(a)}$ and final space $\bigoplus_{v \in s(a)} \mathcal{H}_{(a,v)} \subseteq \mathcal{H}_{s(a)}$. For $A \in \mathcal{B}$, define P_A to be the projection of \mathcal{H}

onto \mathcal{H}_A , where this is interpreted as the zero projection when $A = \emptyset$.

It is easy to verify that since $(E, \mathcal{L}, \mathcal{B})$ is weakly left-resolving, the operators $\{S_a, P_A\}$ form a representation of $(E, \mathcal{L}, \mathcal{B})$ in which S_a, P_A are nonzero. By the universal property there exists a homomorphism $\pi_{S,P} : B \to C^*(\{S_a, P_A\})$. Since the S_a 's and P_A 's are nonzero, it follows that the s_a 's and p_A 's are also nonzero.

DEFINITION 4.6. Let $(E, \mathcal{L}, \mathcal{B})$ be a weakly left-resolving labelled space, then $C^*(E, \mathcal{L}, \mathcal{B})$ is the universal C^* -algebra generated by a representation of $(E, \mathcal{L}, \mathcal{B})$.

Let $(E, \mathcal{L}, \mathcal{B})$ be a weakly left-resolving labelled space and $\{s_a, p_A\}$ be the universal representation of $(E, \mathcal{L}, \mathcal{B})$, then by Lemma 4.4

span {
$$s_{\alpha}p_{A}s_{\beta}^{*}: \alpha, \beta \in \mathcal{L}^{*}(E), A \in \mathcal{B}, A \subseteq r(\alpha) \cap r(\beta)$$
}

is a dense *-subalgebra of $C^*(E, \mathcal{L}, \mathcal{B})$. The following result may be proved along the same lines as Lemma 3.2 of [26].

LEMMA 4.7. Let \mathcal{A} be finite, E have no sinks, and $(E, \mathcal{L}, \mathcal{B})$ be a weakly leftresolving labelled space. Then $C^*(E, \mathcal{L}, \mathcal{B})$ is unital.

Proof. Observe that
$$\sum_{a \in A} s_a s_a^*$$
 is a unit for $C^*(E, \mathcal{L}, \mathcal{B})$.

LEMMA 4.8. If $\phi : (E, \mathcal{L}) \to (F, \mathcal{L}')$ is a labelled graph isomorphism, then for all \mathcal{B} which are accommodating for (E, \mathcal{L}) we have $C^*(E, \mathcal{L}, \mathcal{B}) \cong C^*(F, \mathcal{L}', \phi(\mathcal{B}))$.

Proof. The map ϕ induces a bijection between the generators of $C^*(E, \mathcal{L}, \mathcal{B})$ and $C^*(F, \mathcal{L}', \phi(\mathcal{B}))$ and so by the universal property there are homomorphisms from one C^* -algebra to the other which are also inverses of each other.

5. GAUGE INVARIANT UNIQUENESS THEOREM

Let $\{s_a, p_A\}$ be the universal representation of $(E, \mathcal{L}, \mathcal{B})$ which generates $C^*(E, \mathcal{L}, \mathcal{B})$. For $z \in \mathbb{T}$, $a \in \mathcal{L}(E^1)$ and $A \in \mathcal{B}$ let

$$t_a := \gamma_z s_a = z s_a$$
 and $q_A := \gamma_z p_A = p_A;$

then the family $\{t_a, q_A\} \in C^*(E, \mathcal{L}, \mathcal{B})$ is also a representation of $(E, \mathcal{L}, \mathcal{B})$. By universality of $C^*(E, \mathcal{L}, \mathcal{B})$ and a routine $\epsilon/3$ argument we see that γ extends to a strongly continuous action

$$\gamma: \mathbb{T} \to \operatorname{Aut} C^*(E, \mathcal{L}, \mathcal{B})$$

which we call the gauge action.

PROPOSITION 5.1. (i) Let *E* be a directed graph with the trivial labelling \mathcal{L} . Then $C^*(E, \mathcal{L}, \mathcal{E}^0) \cong C^*(E)$.

(ii) Let \mathcal{G} be an ultragraph. Then $C^*(E_{\mathcal{G}}, \mathcal{L}_{\mathcal{G}}, \mathcal{E}^0_{\mathcal{G}}) \cong C^*(\mathcal{G})$, where $(E_{\mathcal{G}}, \mathcal{L}_{\mathcal{G}})$ is the labelled graph associated to \mathcal{G} .

(iii) Let $p: F \to E$ be a covering map with induced labelling $\mathcal{L}_p: F^1 \to E^1$. Then $C^*(F, \mathcal{L}_p, \mathcal{F}^0) \cong C^*(E)$.

(iv) Let *E* be a directed graph and let $E_s(\mathcal{P})$ be an outsplitting. Let \mathcal{L} be the labelling of $E_s(\mathcal{P})$ induced by the outsplitting. If \mathcal{P} is a proper partition then $C^*(E_s(\mathcal{P}), \mathcal{L}, \mathcal{E}_s(\mathcal{P})^0) \cong C^*(E)$.

Proof. In each case the left hand side contains a generating set for the C^* -algebra on the right as shown in Examples 4.3. We apply the appropriate gauge-invariant uniqueness theorem for the algebra on the right hand side to obtain the isomorphism.

To establish connections with the Matsumoto algebras we need a version of the gauge-invariant uniqueness theorem for labelled graph algebras.

LEMMA 5.2. Let $(E, \mathcal{L}, \mathcal{B})$ be a weakly left-resolving labelled space, $\{s_a, p_A\}$ a representation of $(E, \mathcal{L}, \mathcal{B})$, and $Y = \{s_{\alpha_i} p_{A_i} s_{\beta_i}^* : i = 1, ..., N\}$ be a set of partial isometries in $C^*(E, \mathcal{L}, \mathcal{B})$ which is closed under multiplication and taking adjoints. If q is a minimal projection in $C^*(Y)$ then either

(i) $q = s_{\alpha_i} p_{A_i} s^*_{\alpha_i}$ for some $1 \leq i \leq N$; or

(ii) $q = s_{\alpha_i} p_{A_i} s_{\alpha_i}^* - q'$ where $q' = \sum_{l=1}^m s_{\alpha_{k(l)}} p_{A_{k(l)}} s_{\alpha_{k(l)}}^*$ and $1 \le i \le N$; moreover there is a nonzero $r = s_{\alpha_i\beta} p_{r(A_i,\beta)} s_{\alpha_i\beta}^* \in C^*(E, \mathcal{L}, \mathcal{B})$ such that q'r = 0 and $q \ge r$.

Proof. By 4.2 any projection in $C^*(Y)$ may be written as

$$\sum_{j=1}^{n} s_{\alpha_{i(j)}} p_{A_{i(j)}} s_{\alpha_{i(j)}}^{*} - \sum_{l=1}^{m} s_{\alpha_{k(l)}} p_{A_{k(l)}} s_{\alpha_{k(l)}}^{*}$$

where the projections in each sum are mutually orthogonal and for each *l* there is a unique *j* such that $s_{\alpha_{i(j)}} p_{A_{i(j)}} s^*_{\alpha_{i(j)}} \ge s_{\alpha_{k(l)}} p_{A_{k(l)}} s^*_{\alpha_{k(l)}}$.

If $q = \sum_{j=1}^{n} s_{\alpha_{i(j)}} p_{A_{i(j)}} s_{\alpha_{i(j)}}^* - \sum_{l=1}^{m} s_{\alpha_{k(l)}} p_{A_{k(l)}} s_{\alpha_{k(l)}}^*$ is a minimal projection in $C^*(Y)$ then we must have n = 1. If m = 0 then $q = s_{\alpha_i} p_{A_i} s_{\alpha_i}^*$ for some $1 \le i \le N$. If $m \ne 0$ then $q = s_{\alpha_i} p_{A_i} s_{\alpha_i}^* - q'$ where $q' = \sum_{l=1}^{m} s_{\alpha_{k(l)}} p_{A_{k(l)}} s_{\alpha_{k(l)}}^*$ and $1 \le k \le N$. Since q' is the sum of finitely many projections and $q \ne 0$ it follows by repeated use of Definition 4.1 (iv) that there is a nonzero $r = s_{\alpha_i\beta}p_{r(A_i,\beta)}s_{\alpha_i\beta}^*$ in $C^*(E, \mathcal{L}, \mathcal{B})$ such that rq' = 0 and $q \ge r$.

THEOREM 5.3. Let $(E, \mathcal{L}, \mathcal{B})$ be a weakly left-resolving labelled space and let $\{S_a, P_A\}$ be a representation of $(E, \mathcal{L}, \mathcal{B})$ on Hilbert space. Take $\pi_{S,P}$ to be the representation of $C^*(E, \mathcal{L}, \mathcal{B})$ satisfying $\pi_{S,P}(s_a) = S_a$ and $\pi_{S,P}(p_A) = P_A$. Suppose that each P_A is non-zero whenever $A \neq \emptyset$, and that there is a strongly continuous action β of \mathbb{T} on $C^*(S_\alpha, P_A)$ such that for all $z \in \mathbb{T}$, $\beta_z \circ \pi_{S,P} = \pi_{S,P} \circ \gamma_z$. Then $\pi_{S,P}$ is faithful.

Proof. A straightforward argument along the lines of Lemma 2.2.3 of [22] shows that

$$C^*(E, \mathcal{L}, \mathcal{B})^{\gamma} = \overline{\operatorname{span}}\{s_{\alpha}p_As_{\beta}^* : \alpha, \beta \in \mathcal{L}(E^n) \text{ for some } n \text{ and } A \subseteq r(\alpha) \cap r(\beta)\}$$

where $C^*(E, \mathcal{L}, \mathcal{B})^{\gamma}$ is the fixed point algebra of $C^*(E, \mathcal{L}, \mathcal{B})$ under the gauge action γ . We claim that $C^*(E, \mathcal{L}, \mathcal{B})^{\gamma}$ is AF. Let Y be a finite subset of $C^*(E, \mathcal{L}, \mathcal{B})^{\gamma}$. Since $y \in Y$ may be approximated by a finite linear combination of elements of the form $s_{\alpha}p_As_{\beta}^*$ where $|\alpha| = |\beta|$ we may assume that $Y = \{s_{\alpha_i}p_As_{\beta_i}^* : |\alpha_i| = |\beta_i|, i = 1, ..., N\}$.

Let *M* be the length of the longest word in $\{\alpha_1, \ldots, \alpha_N\}$. Let *W* denote the collection of all words in $\mathcal{L}^*(E)$ of length at most *M* that can be formed from composing subwords of $\alpha_1, \ldots, \alpha_N, \beta_1, \ldots, \beta_N$. Let *C* be the collection all finite intersections of $\{A_i\}_{i=1}^n$ and $\{r(A_i, \gamma) : 1 \leq i \leq N, \gamma \in W\}$. By (4.2) a non-zero product of elements of *Y* is of the form $s_{\gamma}p_As_{\delta}^*$ where $\gamma, \delta \in W$ and $A \in C$. Since *W* and *C* are finite it follows that $Y' = \{s_{\gamma}p_As_{\delta}^* : \gamma, \delta \in W, A \in C\}$ is finite, closed under adjoints and $C^*(Y) = C^*(Y')$. Hence we may assume that *Y* is closed under multiplication and taking adjoints. Thus $C^*(Y) = \overline{\text{span}}(Y)$ is finite dimensional and so $C^*(E, \mathcal{L}, \mathcal{B})^{\gamma}$ is AF by Theorem 2.2 of [5], establishing our claim.

To show that the canonical map $\pi_{S,P} : \underline{C^*(E, \mathcal{L}, \mathcal{B})} \to C^*(S_a, P_A)$ is injective on $C^*(E, \mathcal{L}, \mathcal{B})^{\gamma}$ we write $C^*(E, \mathcal{L}, \mathcal{B})^{\gamma}$ as $\overline{\bigcup C^*(Y_n)}$ where $\{Y_n : n \ge 1\}$ is an increasing family of finite sets which are closed under multiplication and taking adjoints. Suppose, for contradiction, that $\pi_{S,P}$ is not faithful on $C^*(Y_n)$ for some n. Then its kernel is an ideal and so must contain a nonzero minimal projection q. If $Y_n = \{s_{\alpha_i} p_{A_i} s^*_{\beta_i} : i = 1, ..., N(n)\}$ then by Lemma 5.2 either $q = s_{\alpha_i} p_{A_i} s^*_{\alpha_i}$

for some $1 \leq i \leq N(n)$ or $q = s_{\alpha_i} p_{A_i} s_{\alpha_i}^* - q'$ where $q' = \sum_{k=1}^m s_{\alpha_{i(k)}} p_{A_{i(k)}} s_{\alpha_{i(k)}}^*$ and $1 \leq i \leq N(n)$. In the first case $\pi_{S,P}(s_{\alpha_i} p_{A_i}) = S_{\alpha_i} P_{A_i}$ is a partial isometry with initial projection P_{A_i} and final projection $S_{\alpha_i} P_{A_i} S_{\alpha_i}^*$. But $P_{A_i} = \pi_{S,P}(p_{A_i}) \neq 0$ by hypothesis and so $\pi_{S,P}(q) = \pi_{S,P}(s_{\alpha_i} p_{A_i} S_{\alpha_i}^*) = S_{\alpha_i} P_{A_i} S_{\alpha_i}^* \neq 0$ which is a contradiction. In the second case by Lemma 5.2 (ii) there is $r = s_{\alpha_i\beta}p_{r(A_i,\beta)}s_{\alpha_i\beta}^*$ such that $q \geq r$ and q'r = 0. We may apply the above argument to show that $\pi_{S,P}(r) \neq 0$ and hence $\pi_{S,P}(q) \geq \pi_{S,P}(r) \neq 0$ which is also a contradiction. Hence $\pi_{S,P}$ is injective on $C^*(Y_n)$ and the result follows by arguments similar to those in Theorem 2.1 of [4].

6. APPLICATIONS

6.1. DUAL LABELLED GRAPHS. Let E have no sinks and (E, \mathcal{L}) be a labelled graph over alphabet \mathcal{A} . From this data we may form the *dual labelled graph* $(\widehat{E}, \widehat{\mathcal{L}})$ over alphabet $\widehat{\mathcal{A}} := \mathcal{L}(E^2)$ as follows: Let $\widehat{E}^0 = E^1$, $\widehat{E}^1 = E^2$ and the maps $r', s' : \widehat{E}^1 \to \widehat{E}^0$ be given by r'(ef) = f and s'(ef) = e. The labelling $\widehat{\mathcal{L}} : \widehat{E}^1 \to \widehat{\mathcal{A}}$ is induced by the original labelling, so that $\widehat{\mathcal{L}}(ef) = \mathcal{L}(e)\mathcal{L}(f)$. For $ab \in \widehat{\mathcal{L}}(\widehat{E}^1) = \mathcal{L}(E^2)$ we have

$$r_{\widehat{\mathcal{L}}}(ab) = \{f : \widehat{\mathcal{L}}(ef) = ab\}, \text{ and } s_{\widehat{\mathcal{L}}}(ab) = \{e : \widehat{\mathcal{L}}(ef) = ab\}$$

and for $B \in 2^{E^1}$

$$r_{\widehat{\mathcal{L}}}(B,ab) = \{f : \widehat{\mathcal{L}}(ef) = ab, e \in B\}.$$

These maps extend naturally to $\widehat{\mathcal{L}}^*(\widehat{E}) = \bigcup_{n \ge 1} \widehat{\mathcal{L}}(\widehat{E}^n)$ where for $n \ge 1$, $\widehat{\mathcal{L}}(\widehat{E}^n)$

is identified with $\mathcal{L}(E^{n+1})$. Consider the following subsets of 2^{E^1}

$$\widehat{\mathcal{E}} = \{\{e\} : s(e) \text{ is a source}\} \cup \{r_{\widehat{\mathcal{L}}}(\alpha) : \alpha \in \widehat{\mathcal{L}}^*(\widehat{E})\} \cup \{s_{\widehat{\mathcal{L}}}(\alpha) : \alpha \in \widehat{\mathcal{L}}^*(\widehat{E})\},\\ \widehat{\mathcal{E}}^- = \{r_{\widehat{\mathcal{L}}}(\alpha) : \alpha \in \widehat{\mathcal{L}}^*(\widehat{E})\}.$$

Let $\hat{\mathcal{E}}^0$ (respectively $\hat{\mathcal{E}}^{0,-}$) be the smallest collection of subsets of 2^{E^1} containing $\hat{\mathcal{E}}$ (respectively $\hat{\mathcal{E}}^-$) which is accommodating for $(\hat{E}, \hat{\mathcal{L}})$. One checks easily that if $(E, \mathcal{L}, \mathcal{B})$ is left-resolving, then $(\hat{E}, \hat{\mathcal{L}}, \hat{\mathcal{B}})$ is weakly left-resolving for $\mathcal{B} = \mathcal{E}^0, \mathcal{E}^{0,-}$.

For $B \in \widehat{\mathcal{E}}^0$ (respectively $B \in \widehat{\mathcal{E}}^{0,-}$) we set

$$\widehat{L}^1_B = \{ab \in \widehat{\mathcal{L}}(\widehat{E}^1) : s_{\widehat{\mathcal{L}}}(ab) \cap B \neq \emptyset\}.$$

If *E* has no sources and sinks, the shift $X_{(\widehat{E},\widehat{\mathcal{L}})}$ determined by the dual labelled graph $(\widehat{E},\widehat{\mathcal{L}})$ of (E,\mathcal{L}) is the second higher block shift $X_{(E,\mathcal{L})}^{[2]}$ formed from $X_{(E,\mathcal{L})}$ (cf. Section 1.4 of [13]).

REMARK 6.1. Suppose that $ab \in \mathcal{L}(E^2)$ then $c \in L^1_{r(ab)}$ if and only if $bc \in \widehat{L}^1_{r_{\widehat{\mathcal{L}}}(ab)}$; moreover $r(r(ab), c) = r(s(r_{\widehat{\mathcal{L}}}(ab)), bc)$. Suppose that $A \in \mathcal{E}^0$ (respectively $A \in \mathcal{E}^{0,-}$) then $a \in L^1_A$ and $ab \in \mathcal{L}(E^2)$ if and only if $ab \in \widehat{L}^1_{s^{-1}(A)}$.

THEOREM 6.2. Let (E, \mathcal{L}) be a set-finite, left-resolving labelled graph with no sinks; then $C^*(E, \mathcal{L}, \mathcal{E}^0) \cong C^*(\widehat{E}, \widehat{\mathcal{L}}, \widehat{\mathcal{E}}^0)$, moreover $C^*(E, \mathcal{L}, \mathcal{E}^{0,-}) \cong C^*(\widehat{E}, \widehat{\mathcal{L}}, \widehat{\mathcal{E}}^{0,-})$.

Proof. Let $\{s_a, p_A\}$ be a representation of $(E, \mathcal{L}, \mathcal{E}^0)$ and $\{t_{ab}, q_B\}$ be a representation of $(\widehat{E}, \widehat{\mathcal{L}}, \widehat{\mathcal{E}}^0)$. For $ab \in \widehat{\mathcal{L}}(\widehat{E}^1)$ and $B \in \widehat{\mathcal{E}}^0$ let $T_{ab} = s_a s_b s_b^*$ and

$$Q_B := \sum_{ab \in \widehat{L}_B^1} s_{ab} p_{r(s(B),ab)} s_{ab}^*.$$

Since $(E, \mathcal{L}, \mathcal{E}^0)$ is set-finite $(\widehat{E}, \widehat{\mathcal{L}}, \widehat{\mathcal{E}}^0)$ is set-finite by Remark 6.1 and so the above sum is finite. One checks that $\{T_{ab}, Q_B\}$ is a representation of $(\widehat{E}, \widehat{\mathcal{L}}, \widehat{\mathcal{E}}^0)$.

By the universal property there is a homomorphism $\pi_{T,Q} : C^*(\widehat{E}, \widehat{\mathcal{L}}, \widehat{\mathcal{E}}^0) \to C^*(E, \mathcal{L}, \mathcal{E}^0)$ with $\pi_{T,Q}(t_{ab}) = T_{ab}$ and $\pi_{T,Q}(q_B) = Q_B$. Since $\pi_{T,Q}$ intertwines the respective gauge actions and $Q_B \neq 0$ it follows from Theorem 5.3 that $\pi_{T,Q}$ is faithful. We claim that $\pi_{T,Q}$ is surjective. For $a \in \mathcal{L}(E^1)$ we have

$$s_{a} = s_{a} p_{r(a)} = s_{a} \sum_{b \in L_{r(a)}^{1}} s_{b} p_{r(r(a),b)} s_{b}^{*} = \sum_{b \in L_{r(a)}^{1}} s_{a} s_{b} s_{b}^{*} s_{b} p_{r(ab)} s_{b}^{*}$$
$$= \sum_{b \in L_{r(a)}^{1}} s_{a} s_{b} s_{b}^{*} \sum_{c \in L_{r(ab)}^{1}} s_{bc} p_{r(r(ab),c)} s_{bc}^{*}$$
$$= \sum_{b \in L_{r(a)}^{1}} T_{ab} \sum_{bc \in \hat{L}_{r(ab)}^{1}} s_{bc} p_{r(s(r_{\hat{L}}(ab)),bc)} s_{bc}^{*} \text{ (by Remark 6.1)} = \sum_{b \in L_{r(a)}^{1}} T_{ab} Q_{r_{\hat{L}}(ab)}$$

and so $s_a \in C^*(T_{ab}, Q_B)$. For $A \in \mathcal{E}^0$, by Remark 6.1 we have

$$p_{A} = \sum_{a \in L_{A}^{1}} s_{a} p_{r(A,a)} s_{a}^{*} = \sum_{a \in L_{A}^{1}} s_{a} \sum_{b \in L_{r(A,a)}^{1}} s_{b} p_{r(r(A,a),b)} s_{b}^{*} s_{a}^{*} = \sum_{ab \in \hat{L}_{s^{-1}(A)}^{1}} s_{ab} p_{r(A,ab)} s_{ab}^{*} = Q_{s^{-1}(A)}$$

which establishes our claim. The second isomorphism is proved along similar lines.

6.2. MATSUMOTO ALGEBRAS.

THEOREM 6.3. Let Λ be a shift space over a finite alphabet \mathcal{A} which satisfies Condition (I) and has left-Krieger cover $(E_{\Lambda}, \mathcal{L}_{\Lambda})$ then $\mathcal{O}_{\Lambda} \cong C^*(E_{\Lambda}, \mathcal{L}_{\Lambda}, \mathcal{E}_{\Lambda}^{0,-})$. Moreover, if Λ has predecessor graph $(E_{\Lambda^*}, \mathcal{L}_{\Lambda^*})$ then $\mathcal{O}_{\Lambda^*} \cong C^*(E_{\Lambda^*}, \mathcal{L}_{\Lambda^*}, \mathcal{E}_{\Lambda^*}^{0,-})$.

Proof. By definition every $A \in \mathcal{E}^{0,-}_{\Lambda}$ can be written as a union of sets of the form $A_j = \bigcap_{i=1}^{m(j)} r(\mu_i^j)$ for j = 1, ..., n. For $\mu \in \Lambda^*$ let $q_{r(\mu)} = t_{\mu}^* t_{\mu}$, then since the projections $\{t_{\mu}^* t_{\mu} : \mu \in \Lambda^*\}$ are mutually commutative (see p. 686 of [16]) we

may define $q_{r(\mu)\cap r(\nu)} = q_{r(\mu)}q_{r(\nu)}$, and hence define q_{A_j} for $1 \le j \le n$. By the inclusion-exclusion principle one may further define

$$q_A = \sum_{j=1}^n q_{A_j} - \sum_{j \neq k} q_{A_j} q_{A_k} + \dots + (-1)^{n+1} q_{A_1} \cdots q_{A_n}$$

Using calculations along the lines of those in Section 3 of [14] one checks that $\{t_a, q_A\}$ is a representation of $(E_A, \mathcal{L}_A, \mathcal{E}_A^{0,-})$. Let $\{s_a, p_A\}$ be a representation of $(E_A, \mathcal{L}_A, \mathcal{E}_A^{0,-})$. By the universal property for $C^*(E_A, \mathcal{L}_A, \mathcal{E}_A^{0,-})$ there is a map $\pi_{t,q} : C^*(E_A, \mathcal{L}_A, \mathcal{E}_A^{0,-}) \to \mathcal{O}_A$ such that $\pi_{t,q}(s_a) = t_a$ and $\pi_{t,q}(p_A) = q_A$, in particular $\pi_{t,q}$ is surjective. Since A satisfies Condition (I) it follows by Proposition 2.2 that \mathcal{O}_A carries a strongly continuous action β of \mathbb{T} . Since $\beta_z \circ \pi_{t,q} = \pi_{t,q} \circ \gamma_z$ for all $z \in \mathbb{T}$ and $\pi_{t,q}(p_A) = q_A \neq 0$ it follows from Theorem 5.3 that $\pi_{t,q}$ is injective, which completes the proof of the first statement.

The second statement is proved similarly.

REMARKS 6.4. (i) In Section 5 of [8] a Condition (*) is given under which for shift spaces Λ satisfying (*) Conditions (I) and (I*) are equivalent and $\mathcal{O}_{\Lambda} \cong \mathcal{O}_{\Lambda^*}$. This suggests that if Λ satisfies (*) then $(E_{\Lambda}, \mathcal{L}_{\Lambda})$ is labelled graph isomorphic to $(E_{\Lambda^*}, \mathcal{L}_{\Lambda^*})$ and the isomorphism of \mathcal{O}_{Λ} and \mathcal{O}_{Λ^*} can be deduced from Theorem 4.8. However Theorem 6.1 of [8] shows that, in general, \mathcal{O}_{Λ} and \mathcal{O}_{Λ^*} are not isomorphic. In particular, $(E_{\Lambda}, \mathcal{L}_{\Lambda})$ and $(E_{\Lambda^*}, \mathcal{L}_{\Lambda^*})$ are not labelled graph isomorphic in general.

(ii) The isomorphism of $C^*(E_\Lambda, \mathcal{L}_\Lambda, \mathcal{E}_\Lambda^{0,-})$ and \mathcal{O}_Λ identifies $C^*(p_\Lambda : \Lambda \in \mathcal{E}_\Lambda^{0,-})$ with $A_\Lambda \subset \mathcal{O}_\Lambda$. Recall from Corollary 4.7 of [16] that $A_\Lambda \cong C(\Omega_\Lambda)$, hence we may think of the elements of $\mathcal{E}_\Lambda^{0,-}$ as indexing closed sets in Ω_Λ .

(iii) In [7] Carlsen constructs a C^* -algebra which has \mathcal{O}_{Λ} as a quotient, that is isomorphic to \mathcal{O}_{Λ} if Λ satisfies Condition (I), and always carries a gauge action. A proof along the lines of Theorem 6.3 shows that this new algebra is isomorphic to $C^*(E_{\Lambda}, \mathcal{L}_{\Lambda}, \mathcal{E}_{\Lambda}^{0,-})$ for all Λ .

6.3. FINITENESS CONDITIONS.

DEFINITION 6.5. A labelled graph (E, \mathcal{L}) is *label-finite* if $|\mathcal{L}^{-1}(a)| < \infty$ for all $a \in \mathcal{L}(E^1)$.

If (E, \mathcal{L}) is label-finite then $\mathcal{L}^{-1}(\alpha)$ is finite for all $\alpha \in \mathcal{L}^*(E)$ and so all sets in \mathcal{E}^0 are finite (and conversely). If (E, \mathcal{L}) is label-finite then $(\widehat{E}, \widehat{\mathcal{L}})$ is label-finite. If *E* is row-finite and (E, \mathcal{L}) is label-finite then $(E, \mathcal{L}, \mathcal{E}^0)$ is set-finite.

The following result generalises Corollary 2.5 in [4] (see also Remark 3.3 (i) in [2]).

THEOREM 6.6. Let (E, \mathcal{L}) be a row-finite left-resolving labelled graph which is label-finite and satisfies $\{v\} \in \mathcal{E}^0$ for all $v \in E^0$. Then $C^*(E, \mathcal{L}, \mathcal{E}^0) \cong C^*(E)$; moreover if $\{v\} \in \mathcal{E}^{0,-}$ for all $v \in E^0$ then $C^*(E, \mathcal{L}, \mathcal{E}^{0,-}) \cong C^*(E)$.

Proof. Let $\{s_e, p_v\}$ be the canonical Cuntz-Krieger *E*-family and $\{t_a, q_A\}$ be the canonical generators of $C^*(E, \mathcal{L}, \mathcal{E}^0)$. For $a \in \mathcal{L}(E^1)$ and $A \in \mathcal{E}^0$ let

$$T_a = \sum_{e \in E^1: \mathcal{L}(e) = a} s_e$$
, and $Q_A = \sum_{v \in A} p_v$.

The above sums make sense since (E, \mathcal{L}) is label-finite. Since E is row-finite one may easily check that these operators define a representation of $(E, \mathcal{L}, \mathcal{E}^0)$. By the universal property of $C^*(E, \mathcal{L}, \mathcal{E}^0)$ there is a homomorphism $\pi_{T,Q}: C^*(E, \mathcal{L}, \mathcal{E}^0)$ $\rightarrow C^*(E)$ given by $\pi_{T,Q}(t_a) = T_a$ and $\pi_{T,Q}(q_A) = Q_A$ for all $a \in \mathcal{L}(E^1)$ and $A \in \mathcal{E}^0$. Since $\{v\} \in \mathcal{E}^0$ for all $v \in E^0$, we have $p_v = Q_v \in C^*(T_a, Q_A)$ for all $v \in E^0$. Since our labelled graph is left-resolving we have $s_e = T_{\mathcal{L}(e)}Q_{r(e)} \in C^*(T_a, Q_A)$ for all $e \in E^1$, and so $\pi_{T,Q}$ is surjective. The canonical gauge actions on $C^*(E)$ and $C^*(E, \mathcal{L}, \mathcal{E}^0)$ satisfy the required properties and $\pi_{T,Q}(q_A) = Q_A \neq 0$ for all $A \in \mathcal{E}^0$, so $\pi_{T,Q}$ is an isomorphism by Theorem 5.3.

The proof of the second isomorphism is essentially the same.

COROLLARY 6.7. Let $\mathcal{G} = (G^0, \mathcal{G}^1, r, s)$ be a row-finite ultragraph; then $C^*(\mathcal{G}) \cong C^*(E_{\mathcal{G}})$ where $E_{\mathcal{G}}$ is the underlying directed graph of \mathcal{G} .

Proof. From Examples 3.3 (ii) a row-finite ultragraph \mathcal{G} may be realised as a row-finite left-resolving labelled graph $(E_{\mathcal{G}}, \mathcal{L}_{\mathcal{G}})$. As $E_{\mathcal{G}}$ is row-finite it follows that $(E_{\mathcal{G}}, \mathcal{L}_{\mathcal{G}})$ is label-finite. Since the source map is single-valued it follows that $v \in \mathcal{E}_{\mathcal{G}}^{\mathcal{G}}$ for all $v \in \mathcal{G}^{\mathcal{G}} = E_{\mathcal{G}}^{\mathcal{G}}$ and hence the result follows from Theorem 6.6.

The following result was first observed in Theorem 3.5 of [6] (see also Corollary 3.4.5 in [24]).

COROLLARY 6.8. Let Λ be a sofic shift over a finite alphabet; then $\mathcal{O}_{\Lambda} \cong C^*(E_{\Lambda})$ where $(E_{\Lambda}, \mathcal{L}_{\Lambda})$ is the left-Krieger cover of Λ .

Proof. As E_{Λ}^{0} is finite and each $v \in E_{\Lambda}^{0}$ has a different past there are the word $\alpha_{v} \in \mathcal{L}^{*}(E_{\Lambda})$ with $r_{\mathcal{L}_{\Lambda}}(\alpha_{v}) = \{v\}$. Hence $\{v\} \in \mathcal{E}_{\Lambda}^{0,-}$ for all $v \in E_{\Lambda}^{0}$. The result follows by Theorem 6.6.

From Theorem 3.3.18 in [13] any two minimal left-resolving representations $(E, \mathcal{L}), (F, \mathcal{L}')$ of an irreducible sofic shift are labelled graph isomorphic and so $C^*(E, \mathcal{L}, \mathcal{E}^0_-) \cong C^*(F, \mathcal{L}', \mathcal{F}^0_-)$ by Lemma 4.8. Moreover, one may use the minimality of the representation to show that the underlying graph *E* is irreducible (cf. Lemma 3.3.10 in [13]). Hence we have:

COROLLARY 6.9. Let (E, \mathcal{L}) be a minimal left-resolving presentation of an irreducible sofic shift over a finite alphabet, then $C^*(E, \mathcal{L}, \mathcal{E}^{0,-}) \cong C^*(E, \mathcal{L}, \mathcal{E}^0)$ is simple.

REMARK 6.10. Recall that the graph (E_2, \mathcal{L}_2) in Examples 3.3 (ii) is the left-Krieger cover of the even shift *Y*. Although *Y* is irreducible, (E_2, \mathcal{L}_2) is not a minimal left-resolving presentation of *Y* and $\mathcal{O}_Y \cong C^*(E_2)$ is not simple. However the graph (E_1, \mathcal{L}_1) Examples 3.3 (ii) is a minimal left-resolving cover of *Y* and so

$$C^*(E_1, \mathcal{L}_1, \mathcal{E}_1^{0, -}) \cong C^*(E_1, \mathcal{L}_1, \mathcal{E}_1^0) \cong C^*(E_1)$$

is simple. Similarly $C^*(E_Z, \mathcal{L}_Z, \mathcal{E}_Z^{0,-}) \cong C^*(E_Z)$ is simple where *Z* is the irreducible shift introduced in Examples 3.3 (vi).

Thus, if one wishes to associate a simple C^* -algebra to an irreducible sofic shift Λ , then one should use the minimal left-resolving presentation of Λ ([6], [7]).

For a general shift space Λ , either $(E_{\Lambda}, \mathcal{L}_{\Lambda})$ will not be row-finite or there will be $v \in E_{\Lambda}^{0}$ with $v \notin \mathcal{E}_{\Lambda}^{0,-}$. This indicates that the C*-algebras corresponding to presentations of such shift spaces will not be Morita equivalent to graph algebras. The shift associated to a certain Shannon graph (see Theorem 7.7 of [21]) provides such an example.

Acknowledgements. This research was supported by the University of Newcastle and the University of New South Wales.

REFERENCES

- T. BATES, J.-H. HONG, I. RAEBURN, W. SZYMAŃSKI, The ideal structure of the C^{*}algebras of infinite graphs, *Illinois J. Math.* 46(2002), 1159–1176.
- [2] T. BATES, D. PASK, Flow equivalence of graph algebras, *Ergodic Theory Dynamical Systems* 24(2004), 367–382.
- [3] T. BATES, D. PASK, Flow equivalence of labelled graph algebras, in preparation.
- [4] T. BATES, D. PASK, I. RAEBURN, W. SZYMAŃSKI, The C*-algebras of row-finite graphs, New York J. Math. 6(2000), 307–324.
- [5] O. BRATTELI, Inductive limits of finite dimensional C*-algebras, Trans. Amer. Math. Soc. 171(1972), 195–234.
- [6] T. CARLSEN, On C*-algebras associated with sofic shifts, J. Operator Theory 49(2003), 203–212.
- [7] T. CARLSEN, Cuntz-Pimsner C*-algebras associated with subshifts, preprint, arXiv.math.OA/0505503.
- [8] T. CARLSEN, K. MATSUMOTO, Some remarks on the C*-algebras associated with subshifts, *Math. Scand.* 95(2004), 145–160.
- [9] K. DEICKE, D. PASK, I. RAEBURN, Coverings of directed graphs and crossed products of C*-algebras by coactions of homogeneous spaces, *Internat. J. Math.* 14(2003), 773– 789.
- [10] A. AN HUEF, I. RAEBURN, The ideal structure of Cuntz-Krieger algebras, Ergodic Theory Dynamical Systems 17(1997), 611–624.
- [11] W. KRIEGER, Sofic systems. I, Israel J. Math. 48(1984), 305–330.
- [12] A. KUMJIAN, D. PASK, I. RAEBURN, Cuntz-Krieger algebras of directed graphs, Pacific J. Math. 184(1998), 161–174.

- [13] D. LIND, B. MARCUS, An Introduction to Symbolic Dynamics and Coding, Cambridge Univ. Press, Cambridge 1995.
- [14] K. MATSUMOTO, On C*-algebras associated with subshifts, Internat. J. Math. 8(1997), 357–374.
- [15] K. MATSUMOTO, K-theory for C*-algebras associated with subshifts, Math. Scand. 82(1998), 237–255.
- [16] K. MATSUMOTO, Dimension groups for subshifts and simplicity of the associated C*algebras, J. Math. Soc. Japan 51(1999), 679–697.
- [17] K. MATSUMOTO, Relations among generators of C*-algebras associated with subshifts, Internat. J. Math. 10(1999), 385–405.
- [18] K. MATSUMOTO, On automorphisms of C*-algebras associated with subshifts, J. Operator Theory 44(2000), 91–112.
- [19] K. MATSUMOTO, Stabilized C*-algebras constructed from symbolic dynamical systems, *Ergodic Theory Dynamical Systems* 20(2000), 821–841.
- [20] K. MATSUMOTO, Bowen-Franks groups for subshifts and Ext-groups for C*-algebras, *K-Theory* **23**(2001), 67–104.
- [21] K. MATSUMOTO, *C**-algebras associated with presentations of subshifts, *Documenta Math.* 7(2002), 1–30.
- [22] D. PASK, I. RAEBURN, On the K-theory of Cuntz-Krieger algebras, Publ. Res. Inst. Math. Soc. 32(1996), 415–443.
- [23] I. RAEBURN, W. SZYMAŃSKI, Cuntz-Krieger algebras of infinite graphs and matrices, *Trans. Amer. Math. Soc.* 356(2004), 39–59.
- [24] J. SAMUEL, *C*-algebras of sofic shifts*, Ph.D. Dissertation, University of Victoria, Victoria, BC, Canada 1998.
- [25] R.G. TAYLOR, Models of Computation and Formal Languages, Oxford Univ. Press, Oxford 1998.
- [26] M. TOMFORDE, A unified approach to Exel-Laca algebras and C*-algebras associated to graphs, J. Operator Theory 50(2003), 345–368.
- [27] M. TOMFORDE, Simplicity of ultragraph algebras, Indiana Univ. Math. J. 52(2003), 901–926.

TERESA BATES, SCHOOL OF MATHEMATICS AND STATISTICS, UNSW, SYDNEY 2052, AUSTRALIA

E-mail address: teresa@unsw.edu.au

DAVID PASK, SCHOOL OF MATHEMATICAL AND PHYSICAL SCIENCES, THE UNI-VERSITY OF NEWCASTLE, NSW 2308, AUSTRALIA

E-mail address: david.pask@newcastle.edu.au

Received March 24, 2005; revised July 4, 2005.