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INTRODUCTION

The program of classifying all nuclear C∗-algebras was initiated by George
Elliott. His work involving AF-algebras has provided a foundation for other clas-
sification theorems. Elliott [8] proved that the class of all AF-algebras are classi-
fied by their dimension groups. In 1993, Elliott [9] showed that the class of all
AT-algebras with real rank zero are classified by their K1 group and their ordered
K0 group. This remarkable result lead to many classification results for separable
nuclear C∗-algebras. See [11] for references. Most of these results involved simple
C∗-algebras with stable rank one or purely infinite simple C∗-algebras.

In 1997, Lin and Su [20] classified a class of (not necessarily simple) separa-
ble nuclear C∗-algebras with real rank zero that can be expressed as a direct limit
of generalized Toeplitz algebras. The invariant V∗(A) used by Lin and Su consists
of the following three objects: (1) V(A), the set of Murray-von Neumann equiva-
lence classes of projections; (2) k(A)+, certain equivalence classes of hyponormal
partial isometries; and (3) a map d : k(A)+ → V(A). Lin and Su used V∗ to clas-
sify the class of all unital separable C∗-algebras with real rank zero that are direct
limit of generalized Toeplitz algebras.
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V∗ was then used by Lin [17] to classify another class of (not necessarily
simple) nuclear separable C∗-algebras. Its basic building blocks consist of C∗-
algebras that are finite direct sums of corners of unital essential extensions of
Mk(C(S1)) by a stable Cuntz algebra Om ⊗ K. Lin proved that all unital C∗-
algebras with real rank zero that are direct limit of these building blocks are clas-
sified by V∗.

In this paper, we consider C∗-algebras that are direct limits of finite direct
sums of corners of unital essential extensions of Mk(C(S1)) by a separable nuclear
purely infinite simple C∗-algebra I satisfying the Universal Coefficient Theorem
(UCT). A C∗-algebra of this form will be called an AE-algebra. We will classify a
subclass of the class of all unital AE-algebras with real rank zero. A C∗-algebra
in this subclass will be called an AE0-algebra. We will show that the class of all
unital AE0-algebra with real rank zero are classified by V∗ and total K-theory.
In addition, we will show that unital AT-algebras with real rank zero and the
C∗-algebras classified in [17] are AE0-algebras. Also, a unital separable nuclear
purely infinite simple C∗-algebra with torsion free K1 and satisfying the UCT is
an AE0-algebra.

The paper is organized as follows. In Section 1, we give some definitions
and basic properties. In Section 2, we give perturbation lemmas that are used
throughout the paper. In Section 3, we introduce the invariant. In Section 4 and
Section 5, we prove a uniqueness theorem and an existence theorem. In Section 6,
we prove our main result.

1. DEFINITIONS AND BASIC PROPERTIES

1.1. PRELIMINARIES. (i) Let X be a compact subset of S1. Then the identity z on
X will be called the standard unitary generator.

(ii) Let C be a C∗-algebra. If C ⊂ A and 1C = 1A, then C is called a unital
C∗-subalgebra.

(iii) Hom(A, B) will denote the set of all ∗-homomorphisms from A to B.
(iv) We write p ∼ q if p is Murray-von Neumann equivalent to q.

(v) An extension 0 → B i→ E π→ A → 0 of C∗-algebras is said to be essential
if for every nonzero ideal J of E we have J ∩ i(B) 6= 0. If E is a unital essential
extension of A by B, then E can be identified as a unital C∗-subalgebra of M(B).
Note that an essential extension can be described by its Busby invariant τE : A →
M(B)/B.

(vi) Suppose E is an extension of A by B. Then the exponential map and the
index map associated to E will be denoted by δE

0 and δE
1 respectively.

(vii) Let N be the bootstrap category of [26] and let P be the class of all I ∈ N
such that I is a non-unital separable nuclear purely infinite simple C∗-algebra
with K∗(I) finitely generated. Let P1 be the class of all unital separable nuclear
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purely infinite simple C∗-algebras in N .
(viii) All semigroups have identities and homomorphisms preserve identities.

1.2. E -ALGEBRAS.

DEFINITION 1.1. Suppose E = pMn(E′)p for some n ∈ Z>0 and for some
projection p ∈ Mn(E′). Suppose E′ is a unital essential extension of C(S1) by a
C∗-algebra I ∈ P . Let π be the quotient map induced by the extension E′. If
π(p) = 1Mn(C(S1)) or p ∈ Mn(I), then E is said to be an E -algebra.

NOTATION 1.2. Let E be an E -algebra. If E is not a purely infinite simple
C∗-algebra, then E is a unital essential extension of Mn(C(S1)) by I, for some
I ∈ P , n ∈ Z>0. Denote I by I(E) and Mn(C(S1)) by Q(E). If E is in P1, then

set I(E) = E and Q(E) = 0. If E =
k⊕

i=1
Ei, where each Ei is an E -algebra, then set

I(E) =
k⊕

i=1
I(Ei) and Q(E) =

k⊕
i=1

Q(Ei). Note that E is in N .

DEFINITION 1.3. Let E = pMn(E′)p be an E -algebra. Then E is called an
E0-algebra if one of the following hold:

(i) K1(I(E′)) = 0;
(ii) K1(I(E′)) is a nonzero torsion free group and ker δE′

1 6= {0}.

PROPOSITION 1.4. Suppose E1 and E2 are finite direct sums of E -algebras. Let
ik : I(Ek) → Ek be the inclusion map and let πk : Ek → Q(Ek) be the quotient map.
If ϕ ∈ Hom(E1, E2), then there exist unique I(ϕ) ∈ Hom(I(E1), I(E2)) and Q(ϕ) ∈
Hom(Q(E1), Q(E2)) such that i2 ◦ I(ϕ) = ϕ ◦ i1 and Q(ϕ) ◦ π1 = π2 ◦ ϕ.

Proof. Since I(E1) is a finite direct sum of purely infinite simple C∗-algebras
and Q(E2) is a finite C∗-algebra, we have π2 ◦ ϕ ◦ i1 = 0. Hence, there exists
I(ϕ) ∈ Hom(I(E1), I(E2)) such that i2 ◦ I(ϕ) = ϕ ◦ i1. Thus, Q(ϕ) exists.

REMARK 1.5. Suppose E1 is an E -algebra and ker ϕ 6= {0}. Then ϕ ◦ i1 = 0.
Hence, there exists ϕQ1 ∈ Hom(Q(E1), E2) such that ϕQ1 ◦π1 = ϕ and π2 ◦ ϕQ1 =
Q(ϕ).

DEFINITION 1.6. If E = lim
−→

(En, ϕn,n+1), where En is a direct sum of E -
algebras, then E is called an AE-algebra. If each En is a direct sum of E0-algebras,
then E is called an AE0-algebra.

Let E = lim
−→

(En, ϕn,n+1) be an AE-algebra. Set I(E) = lim
−→

(I(En), I(ϕn,n+1))

and set Q(E) = lim
−→

(Q(En), Q(ϕn,n+1)). Then E is an extension of Q(E) by I(E).

PROPOSITION 1.7. Proposition 1.4 is still true when E1 and E2 are AE-algebras.

Proof. Note that Q(E1) and Q(E2) are finite C∗-algebras and I(E1), I(E2) are
direct limits of finite direct sums of purely infinite simple C∗-algebras.
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PROPOSITION 1.8. Suppose E is an E -algebra such that Q(E) ∼= Mk(C(S1)).
If e is a projection in E not in I(E), then every projection p ∈ Mn(Q(eEe)) lifts to a
projection in Mn(eEe) for all n ∈ Z>0. Consequently, δeEe

0 = 0.

Proof. By Theorem 1.2 in [30], RR(I(E)) = 0. The proposition now follows
from Lemma 2.5, Lemma 2.8, and Remark 2.9 in [29].

PROPOSITION 1.9. Let 0 → B → E → A → 0 be a unital extension. Suppose
(i) every hereditary C∗-subalgebra of B has an approximate identity consisting of

projections;
(ii) every projection in A lifts to a projection in E.

Suppose C is a unital C∗-subalgebra of A such that C ∼= Mn(C). Let {eij}n
i,j=1 be a

system of matrix units for C. Then, there exists a system of matrix units {eij}n
i,j=1 in E

such that 1E −
n
∑

i=1
eii ∈ B.

Effros [7] proved the above proposition when B is an AF-algebra. The key
components of the proof are (i) and (ii).

COROLLARY 1.10. Suppose E is an E -algebra such that Q(E) ∼= Ml(C(S1)). Let
e ∈ E be a projection not in I(E). Suppose {qij}n

i,j=1 is a system of matrix units for
Mn(C) ⊂ Q(eEe) ∼= Mn(C(S1)). Then there exists a system of matrix units {eij}n

i,j=1

in eEe such that π(eij) = qij and e−
n
∑

i=1
eii ∈ I(eEe).

Proof. By Theorem 1.2 in [30] and Corollary 2.6 in [2], I(eEe) satisfies (i) in
Proposition 1.9. By Proposition 1.8, eEe satisfies (ii) in Proposition 1.9.

PROPOSITION 1.11. Let A be a unital nuclear C∗-algebra in N and let I ∈ P . Let
τ be in Hom(A,M(I)/I) such that τ is injective and unital. Then, for any strongly
unital trivial extension τ0 (i.e. there exists σ0 ∈ Hom(A,M(I)) such that π ◦ σ0 = τ0
and σ0(1A) = 1M(I)), there exists u ∈ U(M(I)) such that Ad(π(u)) ◦ τ = τ ⊕ τ0.

Proof. Let s1, s2 ∈ M(I) be isometries such that 1M(I) = s1s∗1 + s2s∗2. Then
τ ⊕ τ0 can be written as π(s1)τ(a)π(s∗1) + π(s2)τ0(a)π(s∗2). Let E1 = π−1(τ(A)).
Define η : E1 → M(I) by η(x) = s1xs∗1 + s2(σ0 ◦ π(x))s∗2 for all x ∈ E1. Since
s2(σ0 ◦ π(·))s∗2|I = 0, by Theorem 8.3.1, pp. 125 in [25] ([13]), there exists u ∈
U(M(I)) such that η(x) − u∗xu ∈ I for all x ∈ E1. Hence π(u∗)τ(a)π(u) =
(τ ⊕ τ0)(a).

COROLLARY 1.12. Let E and E′ be two E -algebras such that Q = Q(E) ∼= Q(E′)
and I = I(E) ∼= I(E′). If [τE] = [τE′ ] in Ext(Q, I), then E ∼= E′.

The next lemma in well-known and we state it without proof.

LEMMA 1.13. Let I ∈ P . Let E be a unital C∗-subalgebra ofM(I) which contains
I as an essential ideal. Then:
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(i) Every unitary in E/I lifts to a non-unitary isometry in E.
(ii) u ∈ U(E/I) can be lifted to v ∈ U(E) if and only if δE

1 ([u]) = 0.
Consequently, if E is an E -algebra and Q(E) = C(S1), then E has a splitting if

and only if [τE] = 0 in Ext(C(S1), I(E)).

DEFINITION 1.14. Suppose I ∈ P . A unitary U ∈ M(I) is quasi-diagonal if
for every ε > 0, there exist a sequence {ek}∞

k=1 of mutually orthogonal projections
and a dense sequence {λk}∞

k=1 in sp(U) such that:

(i)
{

fn =
n
∑

k=1
ek

}∞

n=1
is an approximate identity of I consisting of projections;

(ii) U −
∞
∑

k=1
λkek ∈ I; and

(iii)
∥∥∥U −

∞
∑

k=1
λkek

∥∥∥ < ε;

where the sums converge in the strict topology.

PROPOSITION 1.15. Suppose I ∈ P . Suppose E is a unital C∗-subalgebra of
M(I) that contains I as an essential ideal. Let π : E → E/I be the quotient map. If
U ∈ U(E) such that sp(U) = sp(π(U)), then U is quasi-diagonal. Consequently, if
E is an E -algebra such that E is a trivial extension, then E is a quasi-diagonal extension
and every v ∈ U(E) is quasi-diagonal.

Proof. Choose a sequence {λk}∞
k=1 in sp(U) such that for all n ∈ Z>0, the

sequence {λk}∞
k=n is dense in sp(U). Let {pk}∞

k=1 be a sequence of mutually or-

thogonal projections in I such that
{

qn =
n
∑

k=1
pk

}∞

n=1
is an approximate iden-

tity for I. Set U′ =
∞
∑

k=1
λk pk, where the series converges in the strict topology.

Then sp(π(U)) = sp(π(U′)) = X ⊂ S1. Define σ1, σ2 : C(X) → M(I) by
σ1(z) = U and σ2(z) = U′. Let E1 = C*(U, I) and let E2 = C*(U′, I). Let
s1, s2 ∈ M(I) be isometries such that 1M(I) = s1s∗1 + s2s∗2. Define η1 : E1 →M(I)
by η1(x) = s1xs∗1 + s2(σ2 ◦ π(x))s∗2 for all x ∈ E1 and define η1 : E2 → M(I) by
η2(a) = s1(σ1 ◦ π(a))s∗1 + s2as∗2 for all a ∈ E2. Note that η1(U) = η2(U′).

By Theorem 8.3.1, pp. 125 in [25] ([13]), there exist unitaries V, W ∈ M(I)
such that ‖η1(U)−VUV∗‖ < ε/2, ‖η2(U′)−WU′W∗‖ < ε/2, η1(U)−VUV∗ ∈ I,
and η2(U′) − WU′W∗ ∈ I. Hence, we have that ‖U − V∗WU′W∗V‖ < ε and
U −V∗WU′W∗V ∈ I. Set ek = V∗W pkW∗V.

The last statement follows from Lemma 1.13 and the above result.

LEMMA 1.16. Suppose E is an E -algebra such that Q(E) = C(S1). Let π : E →
Q(E) be the quotient map. Then K1(E) ∼= K1(I(E)) ⊕ ran(π∗,1), where ran(π∗,1) is
generated by [π(u)] for some u ∈ U(E).

Proof. The lemma follows from the exactness of the six-term exact sequence
in K-theory, δE

0 = 0 (Proposition 1.8), and K1(C(S1)) = 〈[z]〉.
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PROPOSITION 1.17. Let E be an E -algebra and let p be a nonzero projection in E.
Then pEp is an E -algebra. Moreover, if E is an E0-algebra, then pEp is an E0-algebra.

Proof. If p ∈ I(E), then pEp is in P1 such that K∗(pEp) ∼= K∗(pI(E)p).
Hence, pEp is an E -algebra. Suppose p /∈ I(E). Let {eij}n

i,j=1 be system of matrix

units of Mn(C(S1)) ∼= Q(E). By Corollary 1.10, there exists a system of matrix

units {eij}n
i,j=1 ⊂ pEp such that π(eij) = eij and p −

n
∑

i=1
eii ∈ pI(E)p. Note that

e11 pI(E)pe11 ∈ P . Hence, e11 pEpe11 is an E -algebra with Q(e11 pEpe11) ∼= C(S1).
Then pEp is isomorphic to qMn(E′)q and qMn(E′)q is an E -algebra, where I ′ =

e11 pI(E)pe11, E′ = e11 pEpe11, and q =
n
∑

i=1
eii. Note that I(E′) ∼= I(pEp).

The last statement is clear from the above arguments.

2. PERTURBATION LEMMAS

We now give several lemmas that will play an important role in many of the
proofs in the sequel. Let A be a unital C∗-algebra. Denote the unit of Mm(A) by
1m. If m = 0, then 10 = 0. The unitization of A will be denoted by Ã.

LEMMA 2.1. Let A ∈ P1 and let ε > 0. Suppose u1, u2 ∈ U(A) such that
[u1] = [u2] in K1(A) and sup{dist(λ, sp(ui)) : λ ∈ S1} < ε. Then, there exists
W ∈ U(A) such that ‖W∗u1W − u2‖ < 3ε.

Proof. The lemma follows from Lemma 2.2 in [17] when [u1] = [u2] = 0 and
from Theorem 3 in [10] when [u1] 6= 0.

If E is a Hilbert A-module, let LA(E) be the set of all module homomor-
phisms T : E → E for which T has an adjoint T∗. It is a well-known fact that
LA(E) is a C∗-algebra with respect to the operator norm. Let x, y ∈ E. Define
θx,y ∈ LA(E) by θx,y(z) = x〈y, z〉. Let KA(E) be the C∗-subalgebra of LA(E)
generated by the collection {θx,y}x,y∈E. Then KA(E) is an ideal of LA(E).

DEFINITION 2.2. Let A(n) =
n⊕

k=1
A be the Hilbert A-module of orthogonal

direct sum of n copies of A. HA will denote the following Hilbert A-module:{
{an} : an ∈ A and

{ n

∑
k=1

a∗k ak

}∞

n=1
converges in norm as n → ∞

}
.

PROPOSITION 2.3 (See Proposition 15.2.12 in [28]). LA(A(n)) ∼= Mn(A) ∼=
KA(A(n)), KA(HA) ∼= A⊗K, and LA(HA) ∼= M(A⊗K) for any C∗-algebra A.

We will use the above identifications throughout.
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Let

sn =


0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 ∈ LA(A(n)).

Suppose A is a unital C∗-algebra. Let ei = (0, . . . , 0, 1A, 0, . . . , 0) be the element in
A(n) that has 1A in the ith coordinate. Then sn(ei) = ei+1 for all i = 1, 2, . . . , n −
1 and sn(en) = e1. Note that sn is a unitary in LA(A(n)). Define the standard
unilateral shift S in LA(HA) by S({an}∞

n=1) = {0, a1, a2, . . . }.

LEMMA 2.4. Suppose that A is a unital C∗-algebra. For any u ∈ U(Mm(A)) and

for any integer n > m, set wn =
(

u 0
0 1n−m

)
sn. Then

sup{dist(λ, sp(wn)) : λ ∈ S1} <
π

n
+ 2

(m
n

)1/2
.

The above lemma was proved by Lin (see Lemma 2.4 in [17]) for the case
K1(A) = 0. By the proof, we see that the assumption K1(A) = 0 may be omitted.

LEMMA 2.5. Let A ∈ P1. Then, for any ε > 0 and for any k ∈ Z>0, there exists
N > k such that for all n > N and for any u, v ∈ U(Mk(A)) with [u] = [v] in K1(A),
there exists W ∈ U(Mn(A)) such that

‖W diag(u, 1n−k)snW∗ − diag(v, 1n−k)sn‖ < ε.

Proof. The lemma follows from Lemma 2.4 and Lemma 2.1.

LEMMA 2.6 (Rørdam). Let A be a unital C∗-algebra. Let l, k ∈ Z>0 and let
m > k + l. Suppose u ∈ U(Mk(A)), v ∈ U(A), and w1 ∈ U(Mm(A)). Suppose that

‖w1 diag(1l , v, 1m−l−1)smw∗
1 − diag(1l , u, 1m−k−l)sm‖ 6

7− 2π

l
.

Then, there exists w ∈ U(M2m(A)) such that wp2m = p2mw = p2m and

‖w diag(1l , v, 12m−l−1)s2mw∗ − diag(1l , u, 12m−k−l)s2m‖ 6
7
l

,

where p2m = diag(0, 0, . . . , 0, 1) ∈ M2m(A).

Proof. Let n = 2m. Define X ∈ Mn(C) ⊂ Mn(A) ∼= LA(A(n)) as follows:
Xei = e2i−1 and Xei+m = e2i for 1 6 i 6 m, where {ei}n

i=1 is the standard or-
thonormal basis for Cn. A direct computation shows that

XsnX∗ =


0 0 . . . 0 v1
12 0 . . . 0 0
0 12 . . . 0 0
...

...
. . .

...
...

0 0 . . . 12 0

 and X
(

sm 0
0 sm

)
X∗ =


0 0 . . . 0 12
12 0 . . . 0 0
0 12 . . . 0 0
...

...
. . .

...
...

0 0 . . . 12 0

,
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where v1 =
(

0 1
1 0

)
. Note that the eigenvalues of v1 are 1 and −1. Hence, there

exists a unitary v2 such that vl
2 = v1 and ‖v2 − 12‖ 6 π/l.

Set z = diag(v1, vl−1
2 , vl−2

2 , . . . , v2, 12, . . . , 12) ∈ Mn(C). Then

z∗XsnX∗z=



0 0 0 12
v2 0 0 0

v2 0 0
. . .

...
...

12 0 0
. . .

...
...

0 12 0

 and
∥∥∥X∗z∗XsnX∗zX−

(
sm 0
0 sm

) ∥∥∥6
π

l
.

Let z = {a(i, j)}n
i,j=1 and let X∗zX = {b(i, j)}n

i,j=1. Then

b(l + i, l + j) = a(2l + 2i − 1, 2l + 2j− 1) if i 6= j,

b(i, m + l + j) = a(2i − 1, 2(l + j)) = 0 if 0 < i 6 l and j > 0, and

b(m + l + i, j) = a(2(l + i), 2j− 1) = 0 if i > 0 and 0 < j 6 l.

Therefore

X∗zX =

B 0 C 0
0 1m−l 0 0
D 0 1l 0
0 0 0 1m−l

 and X∗z∗X =

B∗ 0 D∗ 0
0 1m−l 0 0

C∗ 0 1l 0
0 0 0 1m−l

,

where B, C, and D are in Ml(C). Hence, diag(1l , u, 1n−k−l) and diag(1l , v, 1n−l−1)
commute with X∗zX and X∗z∗X. Let w = X∗zX diag(w1, 1m)X∗z∗X. Then, we
have

‖w diag(1l , v, 1n−l−1)snw∗ − diag(1l , u, 1n−k−l)sn‖

6
π

l
+ ‖X∗zX diag(w1, 1m) diag(1l , v, 1n−l−1) diag(sm, sm) diag(w∗

1, 1m)X∗z∗X

− diag(1l , u, 1n−k−l)sn‖

6
π

l
+

7−2π

l
+‖X∗zX diag(1l , u, 1n−k−l) diag(sm, sm)X∗zX−diag(1l , u, 1n−k−l)sn‖

6
π

l
+

7− 2π

l
+

π

l
=

7
l

.

Finally, wpn = pn since X∗zXen = X∗zen = X∗en = en.

LEMMA 2.7. Let B ∈ P1 and set A = B ⊗K. Let E be the unital C∗-subalgebra
of M(A) generated by S and A, where S is the standard unilateral shift in M(A) ∼=
LB(HB). Let π : E → E/A be the quotient map. Suppose T is an isometry in E such
that π(T) = π(S) and [1 − TT∗] = [1 − SS∗] in K0(A). Then, for any ε > 0, there
exists w ∈ U(Ã) such that ‖w∗Tw− S‖ < ε.

Proof. Let p1 = 1− SS∗ = 1B and q1 = 1− TT∗. Since [p1] = [q1] in K0(A),
by Lemma 1.1 in [31], there exists a unitary w00 ∈ Ã ⊂ E such that w∗

00 p1w00 = q1.
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By replacing T with w00Tw∗
00, we may assume p1 = q1. Let u = p1 + TS∗. Then

u ∈ Ã and uS = T.

Let pi = p1 ⊗ eii and let Ek =
k
∑

i=1
pi, where {eij}∞

i,j=1 is the standard system of

matrix units for K. Choose m′ ∈ Z>0 such that 7/m′ < ε. Since {En}∞
n=1 forms an

approximate identity for A consisting of projections, there exist v ∈ U(Ã) and a
positive integer L > m′ such that (1) piv = vpi for i = 2, . . . , k; (2) p1v = vp1 = p1;
(3) v = vEL + 1− EL; and (4) ‖v− u‖ < ε/2. Suppose there exists w ∈ U(Ã) such
that ‖w∗Sw − vS‖ < ε/2. Then, ‖w∗Sw − T‖ 6 ‖w∗Sw − vS‖ + ‖vS − T‖ < ε.
Hence, by replacing T by vS, we may assume u = v.

Let {ei}∞
i=1 = {(1, 0, . . . ), (0, 1, 0, . . . ), . . . } be the standard orthonormal basis

for HB. Define a scalar matrix w0 ∈ LB(HB) as follows:

w0(ei) = eL+i+1 for i = 1, 2, . . . , L + 1,
w0(eL+i+1) = ei for i = 1, 2, . . . , L + 1,
w0(e2L+2+j) = e2L+2+j for j = 1, 2, . . . .

Note that w0 ∈ U(Ã) and w∗
0Sw0EL = SEL. Let u′ = w∗

0uw0. Then u′ = EL +
(E2L+2 − EL)u′(E2L+2 − EL) + 1− E2L+2.

Set u′′ = p1 + u′w∗
0Sw0S∗. It is easy to check that u′′S = w∗

0Tw0. Clearly,
u′′p1 = p1 = p1u′′. Note, for 1 < i 6 L, u′w∗

0Sw0S∗(ei) = u′w∗
0Sw0(ei−1) =

u′w∗
0S(eL+i) = u′w∗

0(eL+i+1) = u′(ei) = ei. Also, for all i > 2L + 4

u′w∗
0Sw0S∗(ei) = u′w∗

0Sw0(ei−1) = u′w∗
0S(ei−1) = u′w∗

0(ei) = u′(ei) = ei.

Therefore, u′′ = EL + (E2L+4 − EL)u′′(E2L+4 − EL) + (1 − E2L+4). So, we may
assume that u = u′′.

Let u1 = (E2L+4 − EL)u′′(E2L+4 − EL). Note that we may identify u1 as
an element in U(ML+4(B)). By Lemma 2.5, there exist m > 2L + 4, a unitary
w1 ∈ Mm(B), and a unitary v ∈ B = pL+1 ApL+1 such that

‖w1(EL + v + Em − EL+1)smw∗
1 − (EL + u1 + Em − E2L+4)sm‖ 6

7− 2π

L
.

By Lemma 2.6, there exists w2 ∈ U(M2m(B)) such that

‖w2(EL + v + E2m − EL+1)s2mw∗
2 − (EL + u1 + E2m − E2L+4)s2m‖ 6

7
L

and w2 p2m = p2mw2 = p2m. Set w3 = w2 + 1− E2m. Then wp2m = p2m. Thus

w3(EL + v + 1− EL+1)Sw∗
3(1− E2m−1) = (EL + v + 1− EL+1)S(1− E2m−1).

Note that w∗
3E2m−1 = E2m−1w∗

3E2m−1 and (EL + v + E2m − EL+1)s2mE2m−1 =
(EL + v + 1 − EL+1)SE2m−1. So, we have (EL + v + E2m − EL+1)s2mw∗

3E2m−1 =
(EL + v + 1− EL+1)Sw∗

3E2m−1.
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Let w = w3 diag(v∗, . . . , v∗, 1, . . . ), where v∗ is repeated L − 1 times. Then
w ∈ U(Ã) such that

‖wSw∗ − uS‖ = ‖(w3(EL + v + 1− EL+1)Sw∗
3 − uS)E2m−1‖

6 ‖w2(EL + v + E2m − EL+1)s2mw∗
2 − (EL + u1 + E2m − EL+4)s2m‖

6
7
L

< ε.

LEMMA 2.8. Let A be a separable purely infinite simple C∗-algebra and let s, t be
two non-unitary isometries in A (in Ã if A does not have a unit). Then, for any ε > 0,
there exists W ∈ U(A) (or U(Ã)) such that ‖W∗sW − t‖ < ε.

Proof. Suppose A is unital. Then the conclusion follows from Lemma 2.9 in
[17]. Suppose A is non-unital. Since A is a separable C∗-algebra with real rank
zero, there exist a projection e ∈ A and non-unitary isometries s′, t′ ∈ eAe such
that ‖s′ + 1 − e − s‖ < ε/3 and ‖t′ + 1 − e − t‖ < ε/3. By the unital case, there
exists w ∈ U(eAe) such that ‖w∗s′w − t′‖ < ε/3. Let W = w + 1 − e ∈ U(Ã).
Then ‖W∗sW − t‖ < ε.

LEMMA 2.9. Let E be an E -algebra. Then, for any ε > 0 and for any U1, U2 ∈
U(E) satisfying sp(U1) = sp(U1) = S1, π(U1) = π(U2), and [U1] = [U2] in K1(E),
there exists W ∈ U( Ĩ(E)) such that ‖W∗U1W −U2‖ < ε.

Proof. By Proposition 1.15, we may assume Ui =
∞
∑

k=1
λ

(i)
k e(i)

k , where the sum

converges in the strict topology. Using a similar argument as in the proof of
Proposition 2.10 in [17], we get W ∈ U(E) such that ‖W∗U1W −U2‖ < ε.

LEMMA 2.10. Let I ∈ P . Let E be a unital C∗-subalgebra ofM(I) which contains
I as an essential ideal. Suppose S1, S2 are two non-unitary isometries such that π(S1) =
π(S2) and [1− S1S∗1 ] = [1− S2S∗2 ] = 0 in K0(I). Then, for any ε > 0, there exists a
unitary W ∈ Ĩ such that ‖W∗S1W − S2‖ < ε.

Proof. By Lemma 1.13, there exists U ∈ U(E) and π(U) = π(S2). By Propo-
sition 1.15, we may assume that there exists a sequence of mutually orthogonal

projections {en}∞
n=1 in I such that U =

∞
∑

n=1
Un, where Un ∈ U(en Ien) and the sum

converges in the strict topology.

Let T =
∞
∑

n=2
Un + v, where the sum converges in the strict topology and v ∈

e1 Ie1 such that v∗v = e1 and vv∗ 6= e1. Note that T∗T = 1, TT∗ 6= 1, and π(T) =
π(S1). Arguing as in the proof of Lemma 2.11 in [17], there exists W1 ∈ U( Ĩ) such
that ‖W∗

1 S1W1 − T‖ < ε/2. Since π(T) = π(S2), we again get W2 ∈ U( Ĩ) such
that ‖W∗

2 S2W2 − T‖ < ε/2. Let W = W1W∗
2 . Then ‖W∗S1W − S2‖ < ε.
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3. THE INVARIANT

DEFINITION 3.1. Let A be a C∗-algebra. Let V(A) be the set of all Murray-
von Neumann equivalence classes of projections in matrices (of all sizes) over A.
If addition on V(A) is given by [p] + [q] = [p⊕ q] for all [p], [q] ∈ V(A), then V(A)
is an abelian semigroup. If ϕ ∈ Hom(A, B), then V(ϕ) will denote the induced
homomorphism.

LEMMA 3.2 (Proposition 5.5.5 in [1]). Let A be a C∗-algebra such that A has
an approximate identity consisting of projections. Then the map from the Grothendieck
group of V(A) to K0(A) is an isomorphism.

If A is a non-unital separable purely infinite simple C∗-algebra, then A has
an approximate identity consisting of projections. Throughout the rest of this
section, [p]0 will denote the image of [p] in K0(A).

LEMMA 3.3. Let E be an E -algebra with Q(E) = C(S1). Then for every projection
p ∈ Mn(E) not in Mn(I(E)), there exist a projection e(p) ∈ I(E) and a positive integer
n(p) 6 n such that p ∼ 1n(p) ⊕ e(p).

Proof. Since Q(E) = C(S1), there exists a projection q ∈ Mn(C(S1)) such
that π(q) = 1m and p ∼ q. So, we may assume π(p) = 1m = π(1m). Since
I(E) has an approximate identity consisting of projections, there exists a partial
isometry v ∈ Mn(E) such that v∗v 6 1m, vv∗ 6 p, and π(v) = 1m. Let e be a
nonzero projection in I(E) such that [e]0 = 0 in K0(I(E)). By Proposition 1.5 in [4],
there exists e′ ∈ I(E) such that (1m − v∗v)⊕ e′ ∼ e. Hence, p ∼ v∗v⊕ (p− vv∗) ∼
1m ⊕ e′ ⊕ (p− vv∗).

NOTATION 3.4. (i) Denote the disjoint union of X1 and X2 by X1 t X2.
(ii) Suppose E is an E -algebra such that Q(E) ∼= Mn(C(S1)). If x ∈ K0(I(E)),

then denote the image of x in K0(I(E))/ ran δE
1 by x.

THEOREM 3.5. (i) Let E be a separable purely infinite simple C∗-algebra. Consider
the abelian semigroup {0} t K0(E), where 0 + x = x for all x ∈ K0(E). Then V(E) ∼=
{0}tK0(E), where the isomorphism sends [0] to 0 and sends [p] to [p]0 for every nonzero
projection p.

(ii) Let E be an E -algebra with Q(E) = C(S1). Consider the abelian semigroup V =
{0} t K0(I(E)) t (Z>0 ⊕ (K0(I(E))/ ran δE

1 )), where addition is defined as follows:
Addition in K0(I(E)) and in Z>0 ⊕ (K0(I(E))/ ran δE

1 ) are the usual addition in those
semigroups. If x ∈ K0(I(E)) and (z1, z2) ∈ Z>0 ⊕ (K0(I(E))/ ran δE

1 ), then x +
(z1, z2) = (z1, z2 + x). Suppose α : V(E) → V is defined by α([p]) = 0 if p = 0;
α([p]) = [p]0 if p ∈ Mn(I(E)) \ {0}; and α([p]) = (n(p), [e(p)]0) otherwise, where
p ∼ 1n(p) ⊕ e(p) is the decomposition given in Lemma 3.3. Then α is a well-defined
isomorphism. Moreover, the natural map from V(I(E)) to V(E) is injective and α sends
its image onto {0} t K0(I(E)).
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(iii) Let E be a trivial extension with Q(E) = C(S1). Then α in (ii) gives an isomor-
phism from V(E) onto {0} tK0(I(E))⊕Z>0. Moreover, the natural map from V(I(E))
to V(E) is injective and α sends its image onto {0} t K0(I(E)).

(iv) Let E be an E -algebra. Then the map x to diag(x, 0) induces an isomorphism from
V(E) onto V(Mn(E)). If p is a projection in Mn(E) not in Mn(I(E)), then the inclusion
from pMn(E)p to Mn(E) induces an isomorphism from V(pMn(E)p) onto V(Mn(E)).
Hence, V(E) is a finitely generated abelian semigroup.

Proof. (i) is a consequence of Theorem 1.4 in [4] and Lemma 3.2.
It is easy to check that if p ∈ I(E), q ∈ E, and p ∼ q, then q ∈ I(E). Therefore,

V(E) = V(I(E)) t {[p] : p ∈ Mn(E) \ Mn(I(E)) for some n}
∼= {0} t K0(I(E)) t {[p] : p ∈ Mn(E) \ Mn(I(E)) for some n}.

(ii) and (iii) now follows from the exactness of the six-term exact sequence
in K-theory and Lemma 3.3. The last statement of the theorem is clear.

Let A be a C∗-algebra. An element s ∈ A is called hyponormal if s∗s > ss∗.
For a unital C∗-algebra A, let Sn(A) be the set of all nonzero hyponormal partial

isometries in Mn(A). Let S(A) =
∞⋃

n=1
Sn(A), where we embed Sn(A) into Sn+1(A)

by sending s to diag(s, 1).

DEFINITION 3.6. For v1, v2 ∈ Sn(A), we write v1 ' v2 if and only if there
exists m ∈ Z>0 such that (1n − v∗1v1 + v1)⊕ 1m is homotopic to (1n − v∗2v2 + v2)⊕
1m in Sn+m(A). Set k(A)+ = S(A)/ '. Let [s]k denote the equivalence class
represented by s. If addition is defined by [u]k + [v]k = [u ⊕ v]k, then k(A)+
becomes an abelian semigroup. If A is a non-unital C∗-algebra, then k(A)+ =
k(Ã)+. If ϕ ∈ Hom(A, B), then k(ϕ)+ will denote the induced homomorphism.

LEMMA 3.7. Let A be a unital C∗-algebra. Then the following hold:
(i) For all projections p, q ∈ Mn(A), we have [p]k = [q]k.

(ii) If s is an isometry and u is a unitary, then [su]k = [s]k + [u]k = [us]k.
(iii) k(A)+ = {[s]k : s is an isometry in Mn(A) for some n ∈ Z>0}.
(iv) k(B(`2))+ is isomorphic to Z>0 t {S} where addition in Z>0 is the usual one and

if x ∈ Z>0, then x + S = S .

Proof. Everything is easy to check. We only prove (iv) to familiarize the
reader with some techniques that will be used later. Let s and t be isometries
in B(`2). Note that [s]k = [t]k implies that 1B(`2) − ss∗ ∼ 1B(`2) − tt∗. Suppose
1B(`2) − ss∗ ∼ 1B(`2) − tt∗. Then there exists a unitary u in B(`2) such that u(1−
ss∗)u∗ = 1B(`2) − tt∗. Let w = (usu∗)∗t. It is easy to check that w is a unitary and
usu∗w = t. Note that there exists a norm continuous path of unitaries wt in B(`2)
such that w0 = 1B(`2) and w1 = w. Thus, [s]k = [usu∗]k = [usu∗w]k = [t]k.

Note that 1B(`2) − ss∗ ∼ 1B(`2) − tt∗ if π(s) and π(t) are not unitaries in
B(`2)/K. Hence, the map that sends [s]k to [1B(`2) − ss∗] is an isomorphism.
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LEMMA 3.8. Let A be a unital C∗-algebra. Suppose that s and v are isometries in
A such that ‖s− v‖ < 2/(4

√
2 + 1). Then [s]k = [v]k in k(A)+.

Proof. Suppose s or v is in U(A). Then, s, v ∈ U(A) and s∗v ∈ U0(A) since
‖s− v‖ < 2/(4

√
2 + 1) < 2. Thus, [v]k = [s]k in k(A)+. Suppose s and v are non-

unitary isometries. Note that ‖(1− ss∗)− (1− vv∗)‖ < 4/(4
√

2 + 1). Hence, there
exists w ∈ U(A) such that ‖1 − w‖ < 4

√
2/(4

√
2 + 1), w∗(1 − vv∗)w = 1 − ss∗,

and ‖w∗vw− s‖ < 2. Let x = w∗vw. Then x is an isometry with 1− xx∗ = 1− ss∗.
Also, u = x∗s ∈ U(A), xu = s, and ‖1 − u‖ < 2. Hence, by Lemma 3.7, [s]k =
[w∗vw]k = [v]k in k(A)+.

LEMMA 3.9. Let A be a unital C∗-algebra. If [u]k = [s]k, where u ∈ U(A) and s
is an isometry in A, then s ∈ U(A). If ι : K1(A) → k(A)+ be the natural map, then

k(A)+ = ι(K1(A)) t {[s]k : s non-unitary isometry in S(A)}.

Moreover, ι is injective and ι is an isomorphism whenever A has cancellation.

Proof. The first part of the lemma follows from Lemma 3.8. If A has cancel-
lation, then every isometry is a unitary. Hence, by Lemma 3.7, ι is surjective.

LEMMA 3.10. Let E be an E -algebra such that Q(E) = C(S1). Then there exist a
projection e ∈ I(E), a ∗-isomorphism I(η) : I(E) → eI(E)e⊗K, a unital and injective
η ∈ Hom(E,M(eI(E)e ⊗ K)), and y ∈ E such that π(y) = z, η(y) is the standard
unilateral shift for eI(E)e⊗K = I, and the following diagram commutes:

0 // I(E) //

I(η)

��

E //

η

��

Q(E) //

Q(η)
��

0

0 // I // M(I) // M(I)/I // 0

Proof. Let T be a non-unitary isometry such that π(T) = z. Set e′ = 1− TT∗.
By Corollary 2.6 in [2] and Theorem 3.2(i) in [30], there is a ∗-isomorphism γ :
I(E) → e′ I(E)e′ ⊗K. Hence, γ extends to a ∗-isomorphism γ from M(I(E)) onto
M(e′ I(E)e′⊗K). Set η′ = γ|E. Let S′ be the standard unilateral shift for e′ I(E)e′⊗
K = I ′. Let τ and τ′ be the Busby invariants for the extensions C∗(η′(T), I ′) and
C∗(S′, I ′) respectively. Since [1 − S′(S′)∗] = [e′] = δE

1 ([z]), we have [τ] = [τ′] in
Ext(C(S1), I(E)). By Proposition 1.11, there exists a unitary W ∈ M(e′ I(E)e′ ⊗K)
such that π(WS′W∗) = z. Set S = WS

′
W∗, e = We′W∗, and η = Ad(W) ◦ η′.

LEMMA 3.11. Let E be an E -algebra such that Q(E) ∼= Mn(C(S1)). Suppose S
and T are two non-unitary isometries. Then [π(S)] = [π(T)] in K1(Q(E)) if and only
if [S]k = [T]k in k(E)+.

Proof. If [S]k = [T]k, then by Lemma 3.9, [π(S)] = [π(T)]. Suppose [π(S)] =
[π(T)]. Then there exists w ∈ U0(E) such that π(S) = π(wT). By Lemma 3.7,
[wT]k = [T]k. Hence, we may assume π(S) = π(T).
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Let 0 < ε < 2/(4
√

2 + 1). Suppose [1 − SS∗]0 6= 0. Then C∗(S, I(E)) is
a unital essential extension of C(S1) by I(E). By Lemma 3.10, π(T) = π(S) =
π(S1), where S1 is the standard unilateral shift of eI(E)e ⊗ K ∼= I(E). Applying
Lemma 2.7 to T and S1, then to S and S1, there exists v ∈ U( Ĩ(E)) such that
‖v∗Sv − T‖ < ε. Suppose [1 − SS∗]0 = 0. Then by Lemma 2.10, there exists
v ∈ U( Ĩ(E)) such that ‖v∗Sv − T‖ < ε. Hence, by Lemma 3.8 and Lemma 3.7,
[S]k = [T]k.

Note that in the proof of the above lemma we proved the following.

PROPOSITION 3.12. Let E be an E -algebra such that Q(E) ∼= Mn(C(S1)). Let
ε > 0. If S and T are two non-unitary isometries in E such that π(S) = π(T), then
there exists w ∈ U( Ĩ(E′)) such that ‖w∗Sw− T‖ < ε.

THEOREM 3.13. (i) Let E be a purely infinite simple C∗-algebra. Consider the
abelian semigroup K1(E) t {S}, where addition is defined as follows: If x ∈ K1(E), then
x + nS = S for all n ∈ Z. Addition in K1(E) is the usual one. Define α : k(E)+ →
K1(E) t {S} by α([s]k) = [s] if s is a unitary and α([s]k) = S otherwise. Then α is a
well-defined isomorphism.

(ii) Let E be an E -algebra with Q(E) = C(S1) and E is a trivial extension. Consider
the abelian semigroup G = {(x, y) : x ∈ k(I(E))+ and y ∈ Z} with coordinate-
wise addition. Then k(E)+ is isomorphic to G via some isomorphism α. Moreover, the
map from k(I(E))+ to k(E)+ is injective and α sends its image onto the sub-semigroup
{(x, 0) : x ∈ k(I(E))+} of G.

(iii) Let E be an E -algebra with Q(E) = C(S1) and E is a non-trivial extension.
Consider the abelian semigroup K1(E)tZ with addition defined as follows: if x ∈ K1(E)
and n ∈ Z, then x + n = m + n where m = π∗,1(x) ∈ K1(Q(E)) ∼= Z. Addition in
K1(E) and in Z are the usual addition in those semigroups. (Note that the zero in K1(E)
is the zero in K1(E) t Z but the zero in Z is not the zero in K1(E) t Z.) Then there
exists an isomorphism α from k(E)+ onto K1(E) tZ. Moreover, α sends the image of the
natural injective map from k(I(E))+ to k(E)+ onto K1(I(E)) t {0}.

(iv) Let E be an E -algebra. Then the map x to diag(x, 1) induces an isomorphism
from k(E)+ onto k(Mn(E))+. If p is a projection in Mn(E) not in Mn(I(E)), then the
inclusion from pMn(E)p to Mn(E) induces an isomorphism from k(pMn(E)p)+ onto
k(Mn(E))+. Hence, k(E)+ is a finitely generated abelian semigroup.

Proof. (i) follows from Lemma 2.8, Lemma 3.8, and Lemma 3.7.
(ii) Let s be a non-unitary isometry in Mn(E). Since E is a trivial extension

and π(s) is a unitary in Mn(C(S1)), there exists u ∈ U(Mn(E)) such that π(s) =
π(u). Hence, su∗ is a non-unitary isometry in Mn( Ĩ(E)). So, [s]k = [su∗]k + [u]k in
k(E)+. Note that this decomposition is unique.

Let β be the isomorphism from K1(E) onto K1(I(E)) ⊕ Z. Define α from
k(E)+ to k(I(E))+ ⊕ Z by α([w]k) = β([u]) if w is a unitary. If w is a non-unitary
isometry in Mn(E), then by the above observation [w]k = [s]k + [u]k for some u ∈
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U(Mn(E)) and non-unitary isometry s ∈ Mn( Ĩ(E)). Define α([w]) = ([s]k, [u]),
where [s]k is now considered as an element in k(I(E))+. Then α is a well-defined
isomorphism with the desired property.

(iii) By Lemma 3.11, {[s]k : s is a non-unitary isometry in S(E)} ∼= Z, where
the isomorphism is induced by π. Define α : k(E)+ → K1(E) t Z by α([s]k) =
[s]k if s is a unitary and α([s]k) = [π(s)] otherwise. Then α is a well-defined
isomorphism with the desired property.

The last statement of the theorem is clear.

COROLLARY 3.14. Let E be an E -algebra such that Q(E) ∼= Mn(C(S1)). If k(E)
denotes the Grothendieck group of k(E)+, then π : E → Q(E) induces an isomorphism
from k(E) onto K1(Q(E)).

Proof. By Lemma 3.9, k(Q(E))+ ∼= Z and by Theorem 3.13, k(E) ∼= Z. It is
now easy to see that π induces an isomorphism from k(E) onto K1(Q(E)).

DEFINITION 3.15. Let A be a C∗-algebra and let

V(A) = {([u∗u], [u]k) : u ∈ S(A)} ⊂ V(A)⊕ k(A)+.

Define dA : k(A)+ → V(A) by dA([u]k) = [u∗u − uu∗]. For convenience, we will
sometimes denote dA by just d. A homomorphism α : V(A) → V(B) consists of
two homomorphisms αv : V(A) → V(B) and αk : k(A)+ → k(B)+ such that if
α([s]k) = [v]k, then αv([s∗s]) = [v∗v].

LEMMA 3.16. Let A be a C∗-algebra. Define ΘA
v : V(A) → V(A) by ΘA

v ([p]) =
([p], 0) and define ΘA

k : k(A)+ → V(A) by ΘA
k ([s]k) = ([s∗s], [s]k). Then ΘA

v and ΘA
k

are injective homomorphisms. Using ΘA
v and ΘA

k , we may identify V(A) and k(A)+ as
subsemigroups of V(A).

The proof of the above lemma is easy and we leave it for the reader.

DEFINITION 3.17. Define V∗(A) to be the set of triples

{([u∗u], [u]k, dA([u]k)) : u ∈ S(A)} ⊂ V(A)⊕ k(A)+ ⊕V(A).

Let A and B be C∗-algebras. A homomorphism η : V∗(A) → V∗(B) is a
homomorphism η : V(A) → V(B) such that ηv ◦ dA = dB ◦ ηk. If ϕ ∈ Hom(A, B),
then denote the induced homomorphism on V∗(A) by V∗(ϕ) .

LEMMA 3.18. Let E and E′ be two finite direct sums of E -algebras.
(i) Suppose α : V(E) → V(E′) is a homomorphism. Then, αv maps V(I(E)) to

V(I(E′)) and αk maps k(I(E))+ to k(I(E′))+.
(ii) If η : V∗(E) → V∗(E′) is a homomorphism, then η induces a homomorphism

from V∗(I(E)) to V∗(I(E′)). Also, if ι : K1(E) → k(E)+ and ι′ : K1(E′) → k(E′)+
are the injective homomorphisms given in Lemma 3.9, then ηk : k(E)+ → k(E′)+ maps
ι(K1(E)) to ι′(K1(E′)).
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Proof. (i) Using the identifications in Theorem 3.5 and Theorem 3.13 and all
semigroup homomorphisms are assumed to preserve identities, one easily checks
that αv maps V(I(E)) to V(I(E′)) and αk maps k(I(E))+ to k(I(E′))+.

(ii) The first part of (ii) follows from (i). Let π : E → Q(E) and π′ : E′ →
Q(E′) be the quotient maps. Suppose u ∈ U(Mn(E)) and ηk([u]k) = [s]k for some
isometry s ∈ Mm(E′). Then 0 ∼ 1m − ss∗. Hence, ss∗ = 1m. Thus, ηk maps
ι(K1(E)) to ι′(K1(E′)).

Let E1 and E2 be finite direct sums of E -algebras. Then Ei is an extension
of Q(Ei) by I(Ei). By Proposition 1.8, δ

Ei
0 = 0. So, the six-term exact sequence in

K-theory associated to Ei has the form

0 → K1(I(Ei)) → K1(Ei) → K1(Q(Ei)) → K0(I(Ei))→K0(Ei)→K0(Q(Ei))→0.

Denote this exact sequence by K(Ei). A map from K(E1) to K(E2) consists of six
group homomorphisms α = {αi}6

i=1 making the obvious diagram commute.
Let E be a unital extension of Q(E) by I(E). Set

Γ = {(x, y) : x ∈ K0(Q(E))+, y ∈ K1(Q(E)); if x = 0, then y = 0}.

Let K∗(Q(E)) denote the graded group K0(Q(E)) ⊕ K1(Q(E)) with the partial
order generated by Γ. By Proposition 1.4, every ϕ ∈ Hom(E1, E2) between two
direct sums of E -algebras induces a map {αi}6

i=1 from K(E1) to K(E2) such that
α6 ⊕ α3 preserves the order.

Using a similar method as in Section 1.16 in [17] we get the following.

PROPOSITION 3.19. Let E1 and E2 be two finite direct sums of E -algebras. Sup-
pose η : V∗(E1) → V∗(E2) is a homomorphism. Then η induces a map {αi}6

i=1 from
K(E1) to K(E2) such that α6 ⊕ α3 preserves the order.

Let E be anAE-algebra. It is easy to check that δE
0 = 0. Hence, if E and E′ are

two AE-algebras, then a map from K(E) to K(E′) is defined exactly the same way
as for E -algebras. Note that by Proposition 1.7, every ϕ ∈ Hom(E, E′) between
two AE-algebras induces a map from K(E) to K(E′).

PROPOSITION 3.20. Let E = lim
−→

(Ei, ϕi,i+1) and E′ = lim
−→

(E′i , ϕ′i,i+1) be unital

AE-algebras. Let α : V∗(E) → V∗(E′) be a homomorphism.
(i) α induces the following commutative diagram for some increasing sequence of

natural numbers {mk}∞
k=1:

V∗(E1) //

α(1)

��

V∗(E2) //

α(2)

��

· · · // V∗(E)

α

��
V∗(E′m1

) // V∗(E′m2
) // · · · // V∗(E′)

(ii) There exists a unique map {αi}6
i=1 from K(E) to K(E′) induced by α.
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Furthermore, the map α6 ⊕ α3 from K∗(Q(E)) to K∗(Q(E′)) preserves the order.
If αv([1E]) = [1E′ ], then α(i) may be chosen such that α

(i)
v ([1Ei ]) = [1E′mi

] for all i.

Proof. Let [0] denote the identity of V(E), V(E′), V(En), and V(E′n). Note
that V∗(E) = lim

−→
(V∗(Ei), V∗(ϕi,i+1)) and V∗(E′) = lim

−→
(V∗(E′i), V∗(ϕ′i,i+1)). Denote

the maps from k(En)+ to V(En), from k(E′n)+ to V(E′n), from k(E)+ to V(E), and
from k(E′)+ to V(E′) by dn, d′n, d, and d′ respectively. We will show that there
exists m1 ∈ Z>0 and a homomorphism α(1) : V∗(E1) → V∗(Em1) such that α ◦
V∗(ϕ1,∞) = V∗(ϕ′m1,∞) ◦ α(1). Note that we may assume E1 has only one summand
and E1 is not a unital purely infinite simple C∗-algebra.

Case 1: Suppose E1 is a non-trivial extension. Then k(E1)+ ∼= K1(E1)tZ and
V(E1) ∼= {[0]} t K0(I(E1)) t ((K0(I(E1))/ ran δE1

1 ) ⊕ Z>0). Let s1, s2, and s3 be
non-unitary isometries in E1 such that [s1]k = 1, [s2]k = −1, and [s3]k = 1− 1 = 0.

Suppose αv ◦ V(ϕ1,∞)|V(I(E1)) = [0]. For each n ∈ Z>0, choose xn ∈ V(E′n)
such that V(ϕ′n,∞)(xn) = αv ◦V(ϕ1,∞)((0, 1)). Define α1,n from V(E1) to V(En) by
α1,n|V(I(E1)) = [0] and α1,n((a, k)) = kxn. It is clear that α1,n is a homomorphism
such that αv ◦V(ϕ1,∞) = V(ϕ′n,∞) ◦ α1,n.

Since K1(E1) is a finitely generated abelian group, there exists n2 ∈ Z>0 such
that for all n > n2, there exists a homomorphism γ1,n : K1(E1) → K1(E′n) with
αk ◦ k(ϕ1,∞)+|K1(E1) = (ϕ′n,∞)∗,1 ◦ γ1,n. Note that ran(αk ◦ k(ϕ1,∞)+) is a subset
of K1(E′) since αv ◦ V(ϕ1,∞)|V(I(E1)) = [0]. Let (αk ◦ k(ϕ1,∞)+)([s1]k) = [t′1]k and
(αk ◦ k(ϕ1,∞)+)([s2]k) = [t′2]k, where t′1, t′2 ∈ U(Mn(E′)). Note that [t′1]k + [t′2]k =
0 in K1(E′). Therefore, there exists n2 ∈ Z>0 such that for all n > n2, there
exist yn,i ∈ K1(E′n) with (αk ◦ k(ϕ1,∞)+)([si]k) = k(ϕ′n,∞)+(yn,i) for i = 1, 2 and
yn,1 + yn,2 = 0 in K1(E′n). Define β1,n : k(E1)+ → k(E′n)+ by β1,n|K1(E1) = γ1,n and
β1,n(`1[s1]k + `2[s2]k) = `1yn,1 + `2yn,2 for all `1, `2 ∈ Z>0.

Choose m1 = max{n1, n2}. Set α(1) = (α1,m1 , β1,m1). Then α(1) : V(E1) →
V(E′m1

) is a homomorphism. Note that (d′m1
◦ β1,m1)([si]k) = (α1,m1 ◦ d1)([si]k) =

[0]. Therefore, α(1) is the desired homomorphism.
Suppose αv ◦ V(ϕ1,∞)|V(I(E1)) 6= [0]. It is easy to see that there exists n1 ∈

Z>0 such that for all n > n1, there exists a homomorphism αI,n
1 : V∗(I(E1)) →

V∗(I(E′n)) with V∗(I(ϕ′n,∞)) ◦ αI,n
1 = α|V∗(I(E1)) ◦V∗(I(ϕ1,∞)). By Proposition 3.19,

αI,n
1 induces a homomorphism λi,n : Ki(I(E1)) → Ki(I(E′n)) for i = 0, 1. Also,

αI,n
1 induces two homomorphisms αI,n,v

1 : V(I(E1)) → V(I(E′n)) and αI,n,k
1 :

k(I(E1))+ → k(I(E′n))+. Since ran(αI,n,v
1 ◦ d1) is finitely generated, we may as-

sume that ran(αI,n,v
1 ◦ d1) is a subset of ran d′n for all n > n1. Since V(E1) and

k(E1)+ are finitely generated, there exists n2 > n1 such that ran(α ◦ V∗(ϕ1,∞)) is
a subset of ran(V∗(ϕ′n,∞)) for all n > n2. Note that ran(αI,n,v

1 ◦ d1) is a subset of
ran d′n for all n > n2. Therefore, for all n > n2, the homomorphism λ0,n induces

a homomorphism λ̃0,n : K0(I(E1))/ ran δE1
1 → K0(I(E′n))/ ran δ

E′n
1 such that the
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diagram commutes

K0(I(E1))
λ0,n //

��

K0(I(E′n)) // K0(I(E′n))/ ran δ
E′m1
1

K0(I(E1))/ ran δE1
1

λ̃0,n

33ggggggggggggggggggggg

For all n > n2, choose xn ∈ V(E′n) such that αv ◦ V(ϕ1,∞)((0, 1)) = V(ϕ′n,∞)(xn).
Define α1,v,n : V(E1) → V(E′n) by α1,v,n|V(I(E1)) = αI,n,v

1 and α1,v,n((a, k)) =
λ̃0,n(a) + kxn for k ∈ Z>0. Then, α1,v,n is a homomorphism such that V(ϕ′n,∞) ◦
α1,v,n = αv ◦V(ϕ1,∞).

Since K1(E1) is finitely generated, there exists n3 > n2 such that for all n >
n3 we have a homomorphism β1,n : K1(E1) → K1(E′n) with αk ◦ k(ϕ1,∞)+|K1(E1) =
(ϕ′n,∞)∗,1 ◦ β1,n and β1,n|K1(I(E1)) = λ1,n. Also, there exists n4 > n3 such that for all
n > n4, there exist y1,n, y2,n ∈ k(E′n)+ with (αk ◦ k(ϕ1,∞)+)([si]k) = k(ϕ′n,∞(yi,n))+
and y1,n + y2,n is the identity of the subsemigroup k(E′n)+ \ K1(E′n).

Define α1,k,n : k(E1)+ → k(E′n)+ by α1,k|K1(E1) = β1,n and α1,k,n(`1[s1]k +
`2[s2]k) = `1y1,n + `2y2,n for all `1, `2 ∈ Z>0. Then α1,k,n is a homomorphism
such that k(ϕ′n,∞)+ ◦ α1,k,n = k(ϕ1,∞)+ ◦ αk. Note that there exists m1 > n4

such that (V(ϕ′n4,m1
) ◦ α1,v,n4 ◦ d1)([si]k) = (V(ϕ′n4,m1

) ◦ d′n4
)(yi,n4). Hence, α(1) =

(V(ϕ′n4,m1
) ◦ α1,v,n4 , k(ϕ′n4,m1

)+ ◦ β1,n4) is the desired homomorphism.
Case 2: Suppose E1 is a trivial extension. Then k(E1)+ ∼= k(I(E1))+ ⊕ Z and

V(E1) ∼= {[0]} t (K0(I(E1))⊕ Z>0). This case is proved in a similar fashion as in
Case 1 but it is easier.

Next, starting with E2, there exist m′
2 > m1 and a homomorphism β(2) :

V∗(E2) → V∗(E′m′
2
) such that α ◦ V∗(ϕ2,∞) = V∗(ϕ′m′

2,∞) ◦ β(2). Hence, there exists

m2 > m′
2 such that V∗(ϕ′m′

2,m2
) ◦ V∗(ϕ′m1,m′

2
) ◦ α(1) = V∗(ϕ′m′

2,m2
) ◦ β(2) ◦ V∗(ϕ1,2).

Let α(2) = V∗(ϕ′m′
2,m2

) ◦ β(2). Then, the following diagram commutes:

V∗(E1)

α(1)

��

V∗(ϕ1,2)
// V∗(E2)

α(2)

��

V∗(ϕ2,∞)
// V∗(E)

α

��
V∗(E′m1

)
V∗(ϕ′m1,m2

)
// V∗(E′m2

)
V∗(ϕ′m2,∞)

// V∗(E′)

Continuing this process, we get the desired result.

Let Cn be the mapping cone of the degree n map θn : C0((0, 1)) → C0((0, 1)).
Then Cn ∈ N , K0(Cn) = Z/nZ, and K1(Cn) = 0. The total K-theory of A is de-

fined to be K(A) =
∞⊕

n=0
K∗(A; Z/nZ), where K∗(A; Z/nZ) = K∗(A ⊗ Cn) for n >

2, K∗(A; Z/0Z) = K∗(A), and K∗(A; Z/1Z) = 0. It is a Z/2Z×Z>0 graded group.
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Let Λ denote the category of Bockstein maps. Denote the group of all Z/2Z×Z>0
graded group homomorphisms which are Λ-linear by HomΛ(K(A), K(B)). See
Section 4 in [5] for more details.

Consider the following extension of C∗-algebras 0 → B
ϕ
→ E

ψ
→ A → 0. Let

ϕn = ϕ ⊗ idCn and let ψn = ϕ ⊗ idCn . Since Cn is nuclear, we have the following
six-term exact sequence:

K0(B; Z/nZ)
(ϕn)∗,0 // K0(E; Z/nZ)

(ψn)∗,0 // K0(A; Z/nZ)

δE⊗Cn
0

��
K1(A; Z/nZ)

δE⊗Cn
1

OO

K1(E; Z/nZ)
(ψn)∗,1

oo K1(B; Z/nZ)
(ϕn)∗,1

oo

If E is an E -algebra or an AE-algebra, then set

K̃(E) =
(

K(B), K(E), K(A),
∞⊕

n=0

((ϕn)∗,0 ⊕ (ϕn)∗,1),
∞⊕

n=0

((ψn)∗ ⊕ (ψn)∗,1), δE
1

)
.

DEFINITION 3.21. Let E and E′ be two finite direct sums of E -algebras or E
and E′ are AE-algebras. Then a homomorphism η : K̃(E) → K̃(E′) is a system of
Λ-linear maps,

η1 : K(I(E)) → K(I(E′)), η2 : K(E) → K(E′), and η3 : K(Q(E)) → K(Q(E′))

making the obvious diagrams commute.

The invariant used to classify all unital AE0-algebras with real rank zero is
(V∗(E), K̃(E)). A homomorphism η : (V∗(E1), K̃(E1)) → (V∗(E2), K̃(E2)), where
each Ei is a finite direct sum of E -algebras, is a system of two homomorphisms
η1 : V∗(E1) → V∗(E2) and η2 : K̃(E1) → K̃(E2) such that the following diagrams
commute:

K(I(E1)) //

η2

��

K∗(I(E1))

(α1,α4)

��

K(E1) //

η2

��

K∗(E1)

(α2,α5)

��

K(Q(E1)) //

η2

��

K∗(Q(E1))

(α3,α6)

��
K(I(E2)) // K∗(I(E2)) K(E2) // K∗(E2) K(Q(E2)) // K∗(Q(E2)) ,

where the horizontal maps are the projection maps and {αi}6
i=1 are the unique

maps (in Proposition 3.19) induced by η1. If E and E′ are two unital AE-algebras,
then a homomorphism from (V∗(E), K̃(E)) to (V∗(E′), K̃(E′)) is defined similarly
but now we use Proposition 3.20 to get the unique maps {αi}6

i=1. By Proposi-
tion 1.4 and by Proposition 1.7, if ϕ ∈ Hom(E, E′), E and E′ are E -algebras or AE-
algebras, then ϕ induces a homomorphism [ϕ] : (V∗(E), K̃(E)) → (V∗(E), K̃(E)).
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4. THE UNIQUENESS THEOREM

4.1. AUTOMORPHISMS.

DEFINITION 4.1. Let E be a C∗-algebra. Then Aut(E) will denote the group
of all ∗-automorphism of E. The topology on Aut(E) will be the norm topology,
i.e. ‖α‖ = sup

‖a‖61
‖α(a)‖. Let Aut0(E) denote the set of all α ∈ Aut(E) that are in

the same path component as idE with the norm topology.

THEOREM 4.2 (Theorem 3.2 in [18]). Let E be a C∗-algebra. Then every α ∈
Aut0(E) ⊂ Aut(E) is approximately inner.

Let E be a separable C∗-algebra. Then the above theorem follows from the
following facts:

(1) By Corollary 8.7.8 in [21], every α ∈ Aut0(E) is a product of derivable
∗-automorphisms; and

(2) By Lemma 8.6.12 in [21], every derivation is approximately inner. This
observation was made by Lin in [15]. Lin then showed in [18] that the general
case can be reduced to the separable case.

COROLLARY 4.3. Suppose α, β ∈ Aut(E). Suppose that β−1 ◦ α ∈ Aut0(E) and
β is approximately inner. Then α is approximately inner.

DEFINITION 4.4. Let E be a unital essential extension of A by I ∈ P . Note
that we may assume E is a unital C∗-subalgebra of M(I). Suppose U ∈ M(I) is
a unitary such that Ux − xU ∈ I for all x ∈ E. Define Eα to be the C∗-subalgebra
of M(I) generated by E and U. Define Aα to be the C∗-subalgebra of M(I)/I
generated by A and π(U). Note that α = Ad(U) ∈ Aut(E) such that π ◦ α = π.

LEMMA 4.5. Let E be an E -algebra such that Q(E) = C(S1) and let U be a
unitary in M(I(E)) such that Ux − xU ∈ I(E) for all x ∈ E. Set α = Ad(U).
Let h : E oα Z → Eα be the canonical surjective map. Then h gives the following
commutative diagram:

K0(I(E) oI(α) Z) //

&&NNNNNNNNNNN
K0(E oα Z) //

��

K0(Q(E) oQ(α) Z)

δ
EoαZ
0

��

xxppppppppppp

K0(I(E)) // K0(Eα) // K0(Q(E)α)

δEα
0

��
K1(Q(E)α)

δEα
1

OO

K1(Eα)oo K1(I(E))oo

K1(Q(E) oQ(α) Z)

δ
EoαZ
1

OO

88ppppppppppp
K1(E oα Z)oo

OO

K1(I(E) oI(α) Z)oo

ffNNNNNNNNNNN
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Proof. Note that h sends I(E) oI(α) Z to I(E). Hence, we have the following
commutative diagram:

0 // I(E) oI(α) Z //

I(h)
��

E oα Z //

h
��

Q(E) oQ(α) Z //

Q(h)
��

0

0 // I(E) // Eα
// Q(E)α

// 0

Set I(E)α = I(E) oI(α) Z, Eα = EoαZ, and Q(E)α = Q(E) oQ(α) Z.

// Ki(I(E)) //

��

Ki(E) //

��

Ki(Q(E))
δE

i //

��

Ki+1(I(E)) //

��
// Ki(I(E)α) //

��

Ki(Eα) //

��

Ki(Q(E)α)
δEα

i //

��

Ki+1(I(E)α) //

��
// Ki+1(I(E)) // Ki+1(E) // Ki+1(Q(E))

δE
i+1 // Ki+2(I(E)) //

FIGURE 1. K-theory of the Crossed Product

LEMMA 4.6. Let E be an E -algebra and let α ∈ Aut(E). Then Figure 1 is a
commutative diagram.

Proof. Use the fact that the Pimsner-Voiculescu exact sequence is natural.

LEMMA 4.7. Let E be an E0-algebra and let U ∈ M(I(E)) be a unitary such that
Ux − xU ∈ I(E) for all x ∈ E. Set α = Ad(U). Suppose Q(E)α

∼= Q(E)⊗ C(S1) and
α∗,i = (idE)∗,i on Ki(E). Then δEα

0 = 0.

Proof. Note that the homomorphism from K0(Q(E) oα Z) to K0(Q(E)α) in
Lemma 4.5 is an isomorphism. If K1(I(E)) = 0, then it is clear that δEα

0 = 0.
Suppose K1(I(E)) is torsion free and ker δE

1 6= {0}. Hence, ran δE
1 is a torsion

group. Note that δE
0 = 0. By performing a diagram chase in Figure 1, we see that

ran δEoαZ
0 is a torsion group. Hence, by Lemma 4.5, ran δEα

0 is a torsion group.
Since K1(I(E)) is torsion free, δEα

0 = 0.

LEMMA 4.8. Let E be an E -algebra with Q(E) = C(S1). Let U ∈ M(I(E)) be a
unitary such that Ux − xU ∈ I(E) for all x ∈ E. Set α = Ad(U). Then there exists a
norm continuous path Vt ∈ U(M(I(E))) such that:

(i) Vtx − xVt ∈ I(E) for all x ∈ E and for all t ∈ [0, 1];
(ii) V0 = U; and

(iii) Q(E)β1
∼= Q(E)⊗ C(S1), where β1 = Ad(V1).
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Proof. Let [x, y] denote the element xy− yx. Note that Q(E)α
∼= C(X), where

X is a compact subset of S1 × S1. Let {ξn}∞
n=1 be a subset of X such that for all

k ∈ Z>0, {ξn}∞
n=k is dense in X and let {en}∞

n=1 be an approximate identity of

I(E) consisting of projections. For all f ∈ C(X), let σ0( f ) =
∞
∑

n=1
f (ξn)(en − en−1),

where the sum converges in the strict topology. By Proposition 3.2 in [16], there
exists an abelian AF-algebra B ⊂ M(I(E))/I(E) such that ran(τ0) ⊂ B, where
τ0 = π ◦ σ0. Hence, there exists a self-adjoint element h1 ∈ M(I(E))/I(E) such
that τ0(π(U)) = exp(ih1) and [h1, τ0(b)] = 0. Let τ = τα ⊕ τ0. By Proposition 1.11,
there exists a unitary Z ∈ M(I(E)) such that τα = Ad(π(Z))(τα ⊕ τ0). Let e1 =
Ad(π(Z))(τα(1) ⊕ 0) and let e2 = Ad(π(Z))(0 ⊕ τ0(1)). Note that e1 lifts to a
projection P1 ∈ M(I(E)). Set P2 = 1− P1. Then P1 + P2 = 1 and π(Pi) = ei.

Let τ2 : Q(E)⊗ C([0, 1]) → e2M(I(E))/I(E)e2 be a strongly unital essential
trivial extension. Let g be a self-adjoint element in C([0, 1]) such that sp(g) =
[0, 2π]. Then the C∗-algebra C which is generated by Q(E)⊗ 1 and exp(i(1⊗ g))
is isomorphic to Q(E) ⊗ C(S1). Let h2 = τ2(1 ⊗ g). If τ′2 = τ2|C, then τ′2 is a
strongly unital trivial essential extension such that [h2, τ′2(x ⊗ 1)] = 0 for all x ∈
Q(E). Note that by Proposition 1.11, Ad(π(Z)) ◦ τ0|Q(E) is unitarily equivalent to
τ′2|Q(E)⊗1. Hence, by conjugating τ′2 by the image of a unitary in P2M(I(E))P2,
we may assume Ad(π(Z)) ◦ τ0|Q(E) = τ′2|Q(E)⊗1. Let vt = Ad(π(Z))(π(U) ⊕
exp(i(1 − t)h1))(e1 + exp(ith2)). Then v0 = π(U) and C∗(v1, τ′2(Q(E) ⊗ 1)) ∼=
Q(E) ⊗ C(S1). Hence, there exists a norm continuous path of unitaries Vt ∈
M(I(E)) such that Vtx − xVt ∈ I(E) for all x ∈ E, V0 = U, and π(V1) = v1.

THEOREM 4.9. Let E be an E0-algebra such that Q(E) = C(S1). Let U ∈
M(I(E)) be a unitary such that Ux − xU ∈ I(E) for all x ∈ E. Let α = Ad(U).
If α∗,i = (idE)∗,i on Ki(E) for i = 0, 1, then α is approximately inner.

Proof. By Lemma 4.8 and Corollary 4.3, we may assume Q(E)α = Q(E) ⊗
C(S1) = C(S1 × S1). Let u = π(U). Note that sp(u) = S1. Let H = (1/2)(U + U∗)
and let W = exp(iH). Since sp(U) = S1, we have sp(H) = [−π, π]. Define β =
Ad(W). Since H is in the C∗-algebra generated by U, we have Wx − xW ∈ I(E)
for all x ∈ E. Let βt = Ad(exp(iH(1− t))). Then βt ∈ Aut(E) such that β0 = β,
β1 = idE, and Q(βt) = idQ(E).

Apply Lemma 4.8 to get a norm continuous path of unitaries Vt in M(I(E))
such that V0 = W, Vtx− xVt ∈ I(E) for all x ∈ E, and Q(E)σ1 = C(S1 × S1) where
σ1 = Ad(V1). Let τα and τσ1 be the Busby invariants associated to the extensions
Eα and Eσ1 respectively.

Since I(E) ∈ P , there exists an isomorphism λi from Ki(M(I(E))/I(E)) to
K1−i(I(E)) such that δEα

i = λi ◦ (τα)∗,i. By Lemma 4.7, δEα
0 = 0. Hence, (τα)∗,0 = 0.

It is clear that (τσ1)∗,0 = 0.
It is easy to check that the homomorphism (τα)∗,1 : K1(Q(E)α) → K0(I(E))

is completely determined by (τα)∗,1([z]) = (λ−1
1 ◦ δE

1 )([z]) and (τα)∗,1([π(U)]) =
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0 and the homomorphism (τσ1)∗,1 is completely determined by (τσ1)∗,1([z]) =
(λ−1

1 ◦ δE
1 )([z]) and (τσ1)∗,1([π(V1)]) = 0. Hence, (τα)∗,1 = (τσ1)∗,1 on K1(C(S1 ×

S1)).
By Proposition 1.11, Ad(π(Z)) ◦ τσ1 = τα for some unitary Z in M(I(E)).

So, Z∗V1Z −U ∈ I(E). Let V = [Z∗V1Z]∗U. Then π(V) = 1. Hence, α is approxi-
mately inner since α = Ad(Z∗V1Z) ◦Ad(V) and Ad(Z∗V1Z) ∈ Aut0(E).

LEMMA 4.10. Suppose E1 and E2 are E0-algebras. Suppose E1 is a unital C∗-
subalgebra of E2, Q(E1) = C(S1), and I(E1) is a nonzero hereditary C∗-subalgebra of
I(E2). Let v ∈ M(I(E1)) be a unitary such that vx − xv ∈ I(E1) for all x ∈ E1. Set
α = Ad(v).

Suppose α∗,1(nξ) = nξ in K1(E2) for some n > 1, where ξ is the generator of the
copy of ran(π∗,1) in K1(E1) ∼= K1(I(E1))⊕ ran(π∗,1). Then α∗,i = (idE1)∗,i on Ki(E1)
for i = 0, 1.

Proof. Let ιi : I(Ei) → Ei be the inclusion map and let πi : Ei → Q(Ei) be
the quotient map. Let j : E1 → E2 be the inclusion map and let ξ = [w] for some
w ∈ U(E1). It is easy to check that α∗,0 = (idE1)∗,0.

Suppose K1(I(E1)) = 0. Then, (π1)∗,1 is injective. Hence, α∗,1 = (idE1)∗,1

since Q(α)∗,1 = idK1(Q(E1)). Suppose K1(I(E1)) is torsion free and ker δE1
1 6= {0}.

Note that j induces the following commutative diagram such that the rows are
exact sequences and I(j)∗,i is an isomorphism for i = 0, 1:

0 // K1(I(E1)) //

I(j)∗,1
��

K1(E1) //

j∗,1
��

K1(Q(E1))

Q(j)∗,1
��

// K0(I(E1))

I(j)∗,0
��

0 // K1(I(E2)) // K1(E2) // K1(Q(E2)) // K0(I(E2))

Since K1(Q(E2)) ∼= Z ∼= K1(Q(E′)), the map Q(j)∗,1 is injective or the zero map.
Case 1. Suppose [Q(j)(z)] = 0 in K1(Q(E2)). Then Q(j)∗,1 is the zero map.

Hence, j∗,1(K1(E2)) ⊂ K1(I(E2)). By performing a diagram chase in the above
diagram, we see that [w] = a1 + a2, for some a1 ∈ K1(I(E1)) and a2 ∈ ker(j∗,1).
Since v is a unitary in M(I(E1)), we have α∗,1(a1) = a1. Since π1 ◦ α = π1 and
since (π1)∗,1|ker(j∗,1) is injective, by a diagram chase, α∗,1(a2) = a2. Therefore,
α∗,1 = (idE1)∗,1 on K1(E1).

Case 2. Suppose [Q(j)(z)] 6= 0. By the Five Lemma, j∗,1 is injective. There-
fore, [α(wn)] = [wn] 6= 0 in K1(E1). Hence, by the exactness of the Pimsner-
Voiculescu exact sequence, [wn] lifts to an element x in K0(E1 oα Z).

Consider Figure 1, where E is replaced by E1. Since π1 ◦ α = π1 and since
the unitary group of M(I(E1)) is connected,

0 → K0(Q(E1)) → K0(Q(E1) oQ(α) Z) → K1(Q(E1)) → 0 and

0 → K1(I(E1)) → K1(I(E1) oI(α) Z) → K0(I(E1)) → 0
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are exact sequences. Note that δE1
0 = 0, K1(I(E1)) is torsion free, and ran δE1

1 is a
torsion group. Hence, by an easy diagram chase in Figure 1, we see that [w] lifts
to an element in K0(E1 oα Z). Hence, by the exactness of the Pimsner-Voiculescu
exact sequence, α∗,1 = (idE1)∗,1 on K1(E1).

4.2. UNIQUENESS THEOREMS.

DEFINITION 4.11 (Definition 1.4.11 in [12]). Let A = C(S1)⊗ B, where B is
a C∗-algebra and let ε > 0. We identify C(S1) ⊗ B with C(S1, B). A finite subset
F ⊂ A is weakly approximately constant to within ε if for any t ∈ S1, there exists
U(t) ∈ U(A) such that ‖U(t)∗ f (t)U(t)− f (1)‖ < ε for all f ∈ F .

Suppose C and D are unital C∗-algebras and ϕ, ψ ∈ Hom(C, D). Let G ⊂ C.
We say that ϕ and ψ are approximately the same on G to within ε > 0 if ‖ϕ( f ) −
ψ( f )‖ < ε for all f ∈ G.

DEFINITION 4.12. Let {eij}n
i,j=1 be the standard system of matrix units in

Mn(C) ⊂ Mn(C(S1)). Let z be the standard unitary generator of C(S1) = e11
Mn(C(S1))e11. Then {z} t {eij}n

i,j=1 will be called the set of standard generators

for Mn(C(S1)).

THEOREM 4.13. Let E be an E0-algebra. Let π : E → Q(E) denote the quotient
map. Let F = {zi}n

i=1 ⊂ E such that π(F ) contains the set of standard generators
for Q(E). Let ε > 0. Then there exists δ > 0 such that if E′ is an E0-algebra and
ϕi ∈ Hom(E, E′) is unital and injective for i = 1, 2 with:

(i) [ϕ1] = [ϕ2] on (V∗(E), K̃(E)) and
(ii) Q(ϕ1) and Q(ϕ2) are approximately the same on π(F ) to within δ,

then ϕ2 and ϕ1 are approximately unitarily equivalent on F to within ε.

Proof. Let E = pMl(E1)p for some p ∈ Ml(E) with π(p) = 1l . If E is not
isomorphic to Ml(E1), then define ϕ̃i ∈ Hom(E ⊗ M2, E′ ⊗ M2) by ϕ̃i = ϕi ⊗ id.
Since π(p) = 1l , by Lemma 3.3, there exists a projection e ∈ I(E) such that (e ⊕
1E)M2(E)(e ⊕ 1E) ∼= Ml(E1). Since [ϕ1(e)] = [ϕ2(e)] in K0(I(E′)), by Lemma 1.1
in [31], there exists W1 ∈ U( Ĩ(E′)) such that W∗

1 ϕ1(e)W1 = ϕ2(e). Hence, we may
assume ϕ1(e) = ϕ2(e). Let E2 = (e ⊕ 1E)M2(E)(e ⊕ 1E) and let C = (ϕ1(e) ⊕
1E′ )M2(E′)(ϕ1(e) ⊕ 1E′ ). Set ψi = ϕ̃i|E2 . Then ψi ∈ Hom(E2, C) is unital and
injective. Note that ψi(I(E2)) ⊂ I(C) since ϕi(I(E)) ⊂ I(E′). Hence, ψi induces
an element Q(ψi) in Hom(Q(E2), Q(C)). Clearly, Q(ϕi) = Q(ψi). Therefore, we
can reduce the general case to the case E = Ml(E1) and hence to the case l = 1.

Suppose E is a non-trivial extension. By Lemma 3.10, there exists a non-
unitary isometry S1 ∈ E such that E is generated by (1− S1S∗1)I(E)(1− S1S∗1) and
S1. Let q = 1 − S1S∗1 . Then, we may assume z1 = S1 and zi = gi ∈ qI(E)q for
i = 2, 3, . . . , n.

Recall that K1(E) ∼= K1(I(E)) ⊕ ran(π∗,1). By Lemma 1.16, there exists ξ ∈
U(E) such that [ξ] generates the copy of ran(π∗,1) in K1(E). Since E is generated
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by F , there exists 0 < δ′ < min{1/2, ε/2} such that if C is any unital C∗-algebra
and γ and λ are unital ∗-homomorphisms from E to C such that ‖γ(x)− λ(x)‖ <

δ′ for all x ∈ F , then ‖γ(ξ)− λ(ξ)‖ < 1.
Choose 0 < ρ < δ′ such that if C is a unital C∗-algebra, S2 is an isometry in

C, and x ∈ C with ‖S2 − x‖ < ρ, then x∗x is invertible in C. Also, ρ can be chosen
such that ‖S2 − x|x|−1‖ < δ′/100 and ‖S2S∗2 − x|x|−2x∗‖ < δ′/100.

Let 0 < δ < ρ. Then, since ‖Q(ϕ1)(z)−Q(ϕ2)(z)‖ < δ, there exists a ∈ I(E′)
such that ‖ϕ1(z1) − ϕ2(z1) + a‖ < δ. Let z′1 = (ϕ2(z1) − a)|ϕ2(z1) − a|−1. Then
(z′1)

∗z′1 = 1 and ‖(1 − ϕ1(z1)ϕ1(z1)∗) − d‖ < δ′/100, where d = 1 − z′1(z′1)
∗.

Therefore, there exists W ′ ∈ U( Ĩ(E′)) such that (W ′)∗(1− ϕ1(z1)ϕ1(z1)∗)W ′ = d
and ‖W ′ − 1‖ < δ′/50. Hence, ‖(W ′)∗ϕ1(z1)W ′ − z′1‖ < δ′/20 and π′(z′1) =
π′ ◦ ϕ2(z1).

Set S = z′1 and T = ϕ2(z1). Since [1 − SS∗] = [1 − TT∗] in K0(I(E′)),

by Lemma 1.1 in [31], there exists W ∈ U( Ĩ(E′)) such that Ad(W)(1 − SS∗) =
1 − TT∗. Note that 1 − SS∗ 6= 0 and 1 − TT∗ 6= 0. By replacing Ad(W ′) ◦ ϕ1
with Ad(WW ′) ◦ ϕ1 and S with Ad(W)(S), we may assume that 1 − SS∗ = 1 −
TT∗ = d.

By Corollary 2.6 in [2] and Theorem 3.2(i) in [30], we may write I(E′) =
d′ I(E′)d′ ⊗ K with [d] = [d′] in K0(I(E′)). By Lemma 1.1 in [31], there exists
V ∈ U( Ĩ(E)) such that V∗dV = d′. Suppose we have found u ∈ U(E′) such that
‖u∗V∗ϕ1(x)Vu − V∗ϕ2(x)V‖ < ε for all x ∈ F . Then ‖w∗ϕ1(x)w − ϕ2(x)‖ <

ε for all x ∈ F , where w = Ad(V∗uV). Hence, we may assume V = 1 and
I(E′) = dI(E′)d⊗K.

By Proposition 3.12, there exists w1 ∈ U( Ĩ(E′)) such that ‖w∗
1Tw1 − S‖ <

δ/16. We also have ‖w∗
1(1− TT∗)w1 − (1− SS∗)‖ < δ/8. Therefore, there exists

w′
2 ∈ U( Ĩ(E′)) such that ‖1− w′

2‖ < δ/4 and (w′
2)
∗w∗

1(1− TT∗)w1w′
2 = 1− SS∗.

Hence, we may assume w∗
1(1− TT∗)w1 = 1− SS∗ and ‖w∗

1Tw1 − S‖ < δ/2.
Note that Ad(w1) ◦ ϕ2 and Ad(W ′) ◦ ϕ1 map qI(E)q to dI(E′)d and Ad(w1) ◦

ϕ2 and Ad(W ′) ◦ ϕ1|qI(E)q induce the same map on K(qI(E)q). Hence, by Theorem
4.10 in [18], there exists u ∈ U(dI(E′)d) such that

‖w∗
1 ϕ2(zi)w1 − u∗(W ′)∗ϕ1(zi)W ′u‖ <

δ

2
for all i > 2.

Let X = {Smb(S∗)n : b ∈ dI(E′)d and m, n ∈ Z>0} and let I be the closed
linear span of the set X. Let E2 be the C∗-algebra generated by I and S. Note that
S is the standard unilateral shift of I and 1E2 = 1E′ . Hence, E2 is a unital essential

extension of C(S1) by I = I(E2). Let w2 =
∞
∑

n=0
Snu(S∗)n, where the sum converges

in the strict topology. Then w2 is a unitary in M(I(E2)) and w∗
2Sw2 = S. Hence,

α = Ad(w2) ∈ Aut(E2) and

‖w∗
1 ϕ2(zi)w1 − w∗

2(W ′)∗ϕ1(zi)W ′w2‖ <
δ

2
< δ′
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for all i = 2, . . . , n and

‖w∗
1 ϕ2(z1)w1 − w∗

2(W ′)∗ϕ1(z1)W ′w2‖ <
δ

16
+

δ′

20
< δ′.

Hence, by the choice of δ′ and by Lemma 4.10, (Ad(v))∗,i = idKi(E2). Thus, by
Theorem 4.9, there exists w3 ∈ U(E2) such that ‖w∗

3xw3 − w∗
2xw2‖ < ε/2 for all

x ∈ {S} ∪ {(Ad(W ′) ◦ ϕ1)(zi) : i = 2, . . . , n}. Therefore,

‖w∗
1 ϕ2(zi)w1 − w∗

3(W ′)∗ϕ1(zi)W ′w3‖ < δ′ +
ε

2
< ε

for all i = 2, . . . , n. Also, we have

‖w∗
1 ϕ2)(z1)w1 − w∗

3(W ′)∗ϕ1(z1)W ′w3‖ <
δ

16
+

ε

2
+

δ′

20
< ε.

Now, suppose E is a trivial extension. Let 0 < δ < min{1/8, ε/5}. By Propo-

sition 1.15, E is generated by I(E) and U =
∞
∑

n=1
λn pn. Therefore, we may assume

z1 = (1− pN)U(1− pN) and z2, . . . , zn ∈ pN I(E)pN , where pN is a projection in
I(E). Since V∗(I(ϕ1)) = V∗(I(ϕ2)) on V∗(I(E)), by Lemma 1.1 in [31], there ex-
ists W ′ ∈ U( Ĩ(E′)) such that (W ′)∗ϕ1(pN)W ′ = ϕ2(pN). Hence, we may assume
ϕ1(pN) = ϕ2(pN). Let q = ϕ1(1− pN).

Note that there exists a b ∈ qI(E′)q such that ‖ϕ1(z1) − ϕ2(z1) + b‖ < δ.
Since 0 < δ < 1/2, |ϕ2(z1)− b| is invertible. Let w = (ϕ2(z1)− b)|ϕ2(z1)− b|−1.
Then w is a unitary in qE′q and ‖ϕ1(z1) − w‖ < 4δ. Note that π′(w) = (π′ ◦
ϕ2)(z1) and [w] = [ϕ1(z1)] = [ϕ2(z1)] in K1(qE′q). Therefore, by Lemma 2.9,
there exists a unitary U1 ∈ Cq + qI(E′)q such that ‖U∗

1 wU1 − ϕ2(z1)‖ < δ. Hence,
‖U∗

1 ϕ1(z1)U1 − ϕ2(z1)‖ < 5δ < ε. Since we have [ϕ1|pN I(p)N
] = [ϕ2|pN I(p)N

] on
K(pN I(E)pN), by Theorem 4.10 in [18], there exists u1 ∈ U((1 − q)I(E′)(1 − q))
such that ‖u∗1 ϕ1(zi)u1 − ϕ2(zi)‖ < ε for all i = 2, . . . , n. Let W = U1 + u1. Then
W ∈ U(E′) such that ‖W∗ϕ1(zi)W − ϕ2(zi)‖ < ε for all i = 1, 2, . . . , n.

By the proof, we see that δ is independent of ϕ1, ϕ2, and E′.

THEOREM 4.14. Let E be an E0-algebra such that Q(E) ∼= Ml(C(S1)) and let
F ⊂ E be a finite subset of E such that π(F ) contains the standard generators for Q(E).
Let ε > 0. Then there exists a δ > 0 such that the following holds:

Let E′ be an E0-algebra. Suppose ϕ1, ϕ2 ∈ Hom(E, E′) induce the same map on
(V∗(E), K̃(E)).

(i) If ϕ1 and ϕ2 are injective and the maps Q(ϕ1) and Q(ϕ2) are approximately the
same to within δ on π(F ), then ϕ1 and ϕ2 are approximately unitarily equivalent on F
to within ε.

(ii) If ϕ1 and ϕ2 are not injective but (ϕ1)Q and (ϕ2)Q are injective and if the maps
Q(ϕ1) and Q(ϕ2) are approximately the same on π(F ) to within δ, then ϕ1 and ϕ2 are
approximately unitarily equivalent on F to within ε.

Proof. It is easy to see that we may assume that ϕ1 and ϕ2 are unital.
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(i) If E′ is not a purely infinite simple C∗-algebra, then the conclusion fol-
lows from Theorem 4.13. If E′ is a purely infinite simple C∗-algebra, then the
conclusion follows from Theorem 6.7 in [19].

(ii) We will use the same notation as in the proof of Theorem 4.13. Since
ϕi is not injective, there exists (ϕi)Q ∈ Hom(Q(E), E′) such that ϕi = (ϕi)Q ◦ π

and π′ ◦ (ϕi)Q = Q(ϕi). Note that sp(ϕ1(z1)) = sp(ϕ2(z1)) = S1 since (ϕ1)Q and
(ϕ2)Q are injective. By Lemma 2.9, there exists U ∈ U(E′) such that ‖U∗ϕ2(z1)U−
ϕ1(z1)‖ < ε.

THEOREM 4.15. Let E and E′ be E0-algebras such that Q(E) ∼= Mn(C(S1)), let
ε > 0, and let F ⊂ E be a finite subset such that π(F ) is weakly approximately constant
to within ε/3. Suppose ϕ1, ϕ2 ∈ Hom(E, E′) induce the same map on (V∗(E), K̃(E)).
Then we have the following:

(i) Suppose Q(E′) ∼= Mm(C(S1)). Let { fij}m
i,j=1 be the standard system of matrix

units for Mm(C) ⊂ Mm(C(S1)). If ϕ1 and ϕ2 are not injective, (ϕ1)Q(z) and (ϕ2)Q(z)
have finite spectra in f11Q(E′) f11 ∼= C(S1), then ϕ1 and ϕ2 are approximately unitarily
equivalent on F to within ε > 0.

(ii) If Q(ϕ1) and Q(ϕ2) are zero, then ϕ1 and ϕ2 are approximately unitarily equiv-
alent on F to within ε.

Proof. (i) follows from the proof of Proposition 2.20(1) in [17].
(ii) Note that we may assume ϕ1 and ϕ2 are in Hom(E, pI(E′)p) for some

projection p ∈ I(E′) and ϕ1(1) = p = ϕ2(1). If both ϕ1 and ϕ2 are injective, then
the conclusion follows from Theorem 6.7 in [19]. If ϕ1 and ϕ2 are not injective,
then ϕi = (ϕi)Q ◦ π. Since V(ϕ1) = V(ϕ2) on V(E), we may assume (ϕ1)Q and
(ϕ2)Q both agree on Mn(C) ⊂ Mn(C(S1)) ∼= Q(E). Therefore, we may assume
n = 1. Suppose (ϕ1)Q and (ϕ2)Q are injective. Then the conclusion follows from
Lemma 2.1. Hence, we may assume (ϕ1)Q is not injective. Therefore, (ϕ1)Q(z)
and (ϕ2)Q(z) are in the same path component as p in U(pI(E′)p). By Corollary 2
in [22], there are ξ1, . . . , ξl , ζ1, . . . , ζL ∈ S1 and mutually orthogonal projections
p1, . . . , pl , q1, . . . , qL ∈ pI(E′)p such that

∥∥∥(ϕ1)Q( f )−
l

∑
k=1

(ϕ1)Q( f (ξk)1)pk

∥∥∥<
ε

3
and

∥∥∥(ϕ2)Q( f )−
L

∑
j=1

(ϕ2)Q( f (ζ j)1)qj

∥∥∥<
ε

3

for all f ∈ π(F ).

Set (ϕ′1)Q(g) =
l

∑
k=1

(ϕ1)Q(g(ξk)1)pk and (ϕ′2)Q(g) =
L
∑

j=1
(ϕ2)Q(g(ζ j)1)qj for

all g ∈ Q(E). Since π(F ) is weakly approximately constant to within ε/3, by part
(i), (ϕ′1)Q and (ϕ′2)Q are approximately unitarily equivalent on π(F ) to within
ε/3. Thus, ϕ1 and ϕ2 are approximately unitarily equivalent on F to within ε.
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5. THE EXISTENCE THEOREM

THEOREM 5.1. Let E and E′ be two finite direct sums of E -algebras. Let α :
V∗(E) → V∗(E′) be a homomorphism such that αv([1E]) = [P] for some projection
P ∈ E′. Let {αi}6

i=1 be the unique map from K(E) to K(E′) induced by α. (See Propo-
sition 3.19.) Suppose ψ ∈ Hom(Q(E), Q(E′)) induces α3 and α6. Then there exists
ϕ ∈ Hom(E, E′) such that ϕ induces α, π′ ◦ ϕ = ψ ◦ π, and ϕ(1E) = P.

Proof. By Corollary 2.6 in [2] and Theorem 1.2 in [30], I(E) = qIq ⊗ K, for
some I ∈ P and for some projection q ∈ I. Let {eij}∞

i,j=1 be the standard system of
matrix units for K ⊂ qIq⊗K.

It is clear that we may assume E′ has only one summand. Write E =
k⊕

j=1
Ej,

where each Ej is an E -algebra. Denote the unit of Ej by 1(j). Write ψ =
k⊕

j=1
ψj,

where each ψj is in Hom(Q(Ej), Q(E′)). Let ej = ψ(1Q(Ej)). By Lemma 2.5 and
Remark 2.9 in [29] and by Proposition 1.8, there exists a collection of mutually
orthogonal projections {dj}k

j=1 ⊂ E′ such that π′(dj) = ej for all j = 1, 2, . . . , k.

We may assume that P = d1 + · · ·+ dk and αv([1(j)]) = [dj]. Thus, it is enough to
show that for each j, there exists ϕj ∈ Hom(Ej, djE′dj) that induces α|V∗(Ej) such
that π′ ◦ ϕ = ψj ◦ π and ϕj(1Ej ) = dj. So, we may assume that E has only one
summand. Moreover, since djE′dj is again an E -algebra (Proposition 1.17), we
may assume P = 1E′ .

Case 1. E′ is a unital nuclear purely infinite simple C∗-algebra in N . This
case is an easy consequence of Theorem 6.7 in [19].

Case 2. Suppose E′ is not a unital purely infinite simple C∗-algebra. Note
that E can not be a unital purely infinite simple C∗-algebra. Let E = qMl(E1)q
and let E′ = PMk(E2)P, where Ei is an E -algebra with Q(Ei) = C(S1). We will
show that we can reduce this general case to the case l = 1 and q = 1.

First assume that P 6= 1k. Note that e = 1l − q is a projection in I(E) such that
eq = 0 and e + q = 1l . Since αv(V(I(E))) ⊂ V(I(E′)), there exists a projection e′ ∈
(1k − P)Mk(I(E2))(1k − P) such that [e′] = α([e]). Let E′′ = (P + e′)Mk(E2)(P +
e′). Let π′′ denote the quotient map from E′′ onto Q(E′′) and let π′ denote the
quotient map from E′ onto Q(E′).

Suppose we have found ϕ′ ∈ Hom(Ml(E1), E′′) that induces α such that
ϕ′(1l) = P + e′ and π′ ◦ ϕ′ = ψ ◦ π. Let P′ = ϕ′(q). Then, there exists U ∈ U(E′′)
such that U∗P′U = P. Denote the inclusion map from E′ to E′′ by j. It is easy
to see that Q(j) is an isomorphism. Choose u such that Q(j)(u) = π′′(U). Since
δE′′

1 ([π′′(U)]) = 0 and since Q(j)∗,1 is an isomorphism, we have δE′
1 ([u]) = 0. By

Lemma 1.13, there exists W ∈ U(E′) such that π′(W) = u. Let W0 = e′ + W∗ and
let V = UW0. Take ϕ = Ad(V) ◦ ϕ′|E. Then ϕ induces α, π′ ◦ ϕ = ψ ◦ π, and
ϕ(1E) = P. Hence, we may assume E = Ml(E1).
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Assume that P = 1k. Suppose we have found ϕ′ ∈ Hom(Ml(E1), Mk(E2))
such that ϕ′ induces α, π′ ◦ ϕ′ = ψ ◦ π, and ϕ′(1l) = 1k. Note that ϕ′(q) ∼ 1k. Let
q′ = ϕ′(q). Then 1k − q′ ∈ I(E′) and [1k − q′] = 0 in K0(I(E′)). Since q′ ∼ 1k, there
exists v such that v∗v = q′ and vv∗ = 1k. Let ϕ = Ad(v) ◦ ϕ′|E. It is easy to check
that ϕ is the desired ∗-homomorphism.

We will now show that we may assume E = E1. Let {pij}l
i,j=1 be a system

of matrix units for Ml(C) ⊂ Ml(E1) = E. Let qij = ψ(π(pij)). By Corollary 1.10,

there exists a system of matrix units {q′ij}
l
i,j=1 ⊂ E′ such that π′(q′ij) = qij for all

i, j = 1, 2, . . . , l. Note that αv([pii]) = αv([p11]), [q′ii] = [q′11], and α6([π(pii)]) =

[q′11]. Since αv([1l ]) = [1E′ ], if d = 1E′ −
l

∑
i=1

q′ii 6= 0, then there are mutually

orthogonal and mutually equivalent projections a1, a2, . . . , al ∈ dE′d such that
l

∑
i=1

ai = d. So, there exists a system of matrix units {aij}l
i,j=1 ⊂ dE′d such that

aii = ai for i = 1, 2, . . . , l. Let qij = q′ij + aij for i, j = 1, 2, . . . , l. Then π′(qij) = qij
and α([pii]) = [qii]. It is now clear that it is enough to show that there exists ϕ ∈
Hom(p11Ep11, q11E′q11) such that ϕ induces α, π′ ◦ ϕ = ψ ◦ π, and ϕ(p11) = q11.
So, for the rest of the proof we will assume E is an E -algebra with Q(E) = C(S1)
and α([1E]) = [1E′ ].

Let W be an isometry in E′ such that π′(W) = ψ(z). Let 0 be the zero element
in K0(I(E)) ⊂ V(I(E)) which is represented by a nonzero projection. We break
Case 2 into three sub-cases.

(i) Suppose αv(V(I(E))) = {0}. Then, there exists α′ : V∗(Q(E)) → V∗(E′)
such that α′ ◦ V∗(π) = α. Note that k(Q(E))+ ∼= K1(Q(E)) ∼= Z is generated
by [z]. So, there exists W ∈ U(E′) such that [W] = α′([z]) and π′(W) = ψ(z).
Let B be the C∗-subalgebra generated by W. Then there is ϕ′ ∈ Hom(Q(E), B)
such that ϕ′(z) = W and ϕ′(1Q(E)) = 1B. Hence, ϕ = ϕ′ ◦ π is the desired ∗-
homomorphism.

(ii) Assume that E is a non-trivial extension and αv(V(I(E))) 6= {0}. Hence,
αv ◦ d([S1]) 6= 0. By Lemma 1.13, we may assume W is a non-unitary isome-
try. We claim that there exists ϕ′ ∈ Hom(E, E′) such that I(ϕ′) induces α|V∗(I(E)),
π′ ◦ ϕ′ = ψ ◦ π, and ϕ′(1E) = 1E′ . Let f be a nonzero projection in I(E′) such that
αv([e11]) = [ f ]. By Corollary 2.6 in [2] and Theorem 1.2 in [30], we may assume
I(E′) = f I(E′) f ⊗K. Hence I(E′) has an approximate identity consisting of pro-
jections {pi}∞

i=1 such that fi = pi − pi−1 and [ fi] = [ f ] for all i ∈ Z>1. Therefore, by
Theorem 6.7 in [19], there exists ϕ1 ∈ Hom(I(E), I(E′)) such that ϕ1 is injective,
ϕ1(eii) = fi for all i ∈ Z>0 and ϕ1 induces α|V∗(I(E)). By Lemma 3.2 in [17], there
exists a unital injective ∗-homomorphism ϕ̃1 : M(I(E)) → M(I(E′)) extending
ϕ1. Set ϕ2 = ϕ̃1|E. Then C∗(W, I(E′)) and C∗(ϕ2(S1), I(E′)) are equivalent uni-
tal essential extensions of C(S1) by I(E′). Then, by Proposition 1.11, there exists
a unitary U ∈ M(I(E′)) such that π′(U)(π′ ◦ ϕ2(S1))π′(U)∗ = π′(W). Then
ϕ′ = Ad(U) ◦ ϕ2 is the desired ∗-homomorphism. This proves the claim.
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We will now show that there exists a unital ϕ : E → E′ which induces α

and π′ ◦ ϕ = ψ ◦ π. Suppose ker δE
1 = {0}. Then K1(E) ∼= K1(I(E)), where

the isomorphism is induced by the inclusion map from I(E) to E. Hence, the
∗-homomorphism constructed above is the desired ∗-homomorphism. Suppose
ker δE

1 6= {0}. Let e be a nonzero projection in I(E′) such that [e] is the zero element
in K0(I(E′)). Note that the inclusion j : (1E′ − e)E′(1E′ − e) → E′ induces an
isomorphism from V∗((1E′ − e)E′(1E′ − e)) onto V∗(E′). Let π′ denote the quotient
map from E′ onto Q(E′) and from (1E′ − e)E′(1E′ − e) onto Q((1E′ − e)E′(1E′ − e)).
Since Q((1E′ − e)E′(1E′ − e)) = Q(E′), we have Q(j) = idQ(E′). Therefore, we may
choose a non-unitary isometry W ′ ∈ (1E′ − e)E′(1E′ − e) such that π′(W ′) = ψ(z).
By the above claim, there exists a unital injective ∗-homomorphism ϕ′ : E →
(1E′ − e)E′(1E′ − e) such that I(ϕ′) induces α|V∗(I(E)) and π′ ◦ ϕ′ = ψ ◦ π.

By Lemma 3.9, K1(E) can be identified as a subsemigroup of k(E)+. Since
ker δE

1 6= {0}, we have K1(E) ∼= K1(I(E)) ⊕ Z. By Lemma 1.16, there exists w ∈
U(E) such that [w] = (0, 1). By Theorem 3.13, k(eI(E′)e)+ ∼= K1(eI(E′)e) t {S}.
It is easy to see there exists a homomorphism β : V∗(E) → V∗(eI(E′)e) such
that β(x) = [e] for all x 6= 0 in V(E), β(y) = S for all y ∈ k(E)+ \ (K1(E) ∪
K1(I(E))), and β([w]) = αk([w])− (ϕ′)∗,1([w]). Therefore, by Case 1, there exists
ϕ′′ ∈ Hom(E, eE′e) such that ϕ′′ induces β and ϕ′′(1E) = e. Then ϕ = ϕ′ + ϕ′′ is
the desired ∗-homomorphism.

(iii) Suppose E is a trivial extension and α(V(I(E))) 6= {0}. Since E is a
trivial extension, k(E)+ ∼= k(I(E))+ ⊕ Z, where the copy of Z is generated by a
unitary in E. By Lemma 3.18, α(0, 1) ∈ K1(E′). So, by Lemma 1.16, there exists
W ∈ U(E′) such that α(0, 1) = [W] in K1(I(E′))⊕Z ∼= K1(E′) ⊂ k(E′)+.

We first assume that sp(π′(W)) = S1. As in the proof of Case 2(ii), there
exist an approximate identity {qi}∞

i=1 of I(E′) consisting of projections such that
[qi]− [qi−1] = α([eii]) for all i ∈ Z>0 and a unital injective ∗-homomorphism ϕ′ :
M(I(E)) → M(I(E′)) such that I(ϕ′) induces α|V∗(I(E)) and ϕ′(eii) = di = qi −
qi−1 for all i ∈ Z>0. By Proposition 1.15, we may assume E is generated by w and

I(E), where w =
∞
∑

k=1
λkekk (convergence is in the strict topology). Let V = ϕ′(w).

Note that sp(π′(V)) = S1. Set E1 = C∗(V, I(E′)) and set E2 = C∗(W, I(E′)).
Then E1 and E2 are trivial essential extensions of C(S1) by I(E′). Hence, by The-
orem 8.3.1, pp. 125 in [25] ([13]), there exists a unitary U ∈ M(I(E′)) such that
‖U∗VU −W‖ < 1 and U∗VU −W ∈ I(E′). Let ϕ = (Ad U ◦ ϕ′)|E. Then ϕ is the
desired ∗-homomorphism.

Suppose sp(π′(W)) = X 6= S1. Let J = {a ∈ E : π(a)|X = 0}. Since
E is a trivial extension, k(E)+ ∼= {(x, y) : x ∈ k(I(E))+, y ∈ Z} and V(E) ∼=
K0(I(E)) ⊕ Z>0. Let f be a nonzero projection in I(E′) such that α([e11]) = [ f ].
Let ηv : V(E) → V(I(E′)) be ηv(a, b) = α(a, 0) and let ηk : k(E)+ → k(I(E′))+ be
ηk(x, y) = α(x, 0). Note that ηv|V(I(E)) = α|V(I(E)) and ηk|k(I(E))+ = α|k(I(E))+ . It
is easy to check that η = (ηv, ηk) is a homomorphism from V∗(E) to V∗( f I(E′) f ).
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Therefore, by Case 1, there exists γ ∈ Hom(E, f I(E′) f ) such that γ induces η and
γ(1E) = f .

Let B be the hereditary C∗-subalgebra of f I(E′) f generated by γ(J). By
Corollary 2.6 in [2] and Theorem 1.2 in [30], B is a stable purely infinite simple
C∗-algebra in N . Hence, there exist approximate identities {en}∞

n=1 and {e′n}∞
n=1

for B and for I(E′) respectively such that en and e′n are projections with the fol-
lowing property: e0 = e′0 = 0, {en − en−1}∞

n=1 and {e′n − e′n−1}
∞
n=1 are collections

of mutually orthogonal projections, and for all n ∈ Z>0, [en − en−1] = [e′n − e′n−1].
So, there exists vn ∈ I(E′) such that v∗nvn = e′n − e′n−1 and vnv∗n = en − en−1 for

all n ∈ Z>0. Set V =
∞
∑

n=1
vn, where the sum converges in the strict topology.

Then V is an element in the double commutant of I(E′). Note that bV ∈ I(E′)
for all b ∈ B and V∗a ∈ B for all a ∈ I(E′). Therefore, the map σ : B → I(E′)
defined by σ(b) = V∗bV is a ∗-homomorphism and [σ(p)] = [p] in K0(I(E′)) for
all projections p ∈ B. Also, [σ(u)] = [u] in K1(I(E′)) for all unitaries u ∈ B̃. Let
γ1 = (σ ◦ γ)|J . Then γ1 maps an approximate identity of J to an approximate
identity of I(E′). Hence, by Lemma 3.2 in [17], there exists a unital extension
γ̃1 : M(J) →M(I(E′)) of γ1.

Note that J is an essential ideal of E since I(E) is an essential ideal of E.
Let w ∈ U(E) be as in the case sp(π′(W)) = S1. It is now easy to check that
sp(π′ ◦ γ̃1(w)) = X = sp(π′(W)). Therefore, C∗(γ̃1(w), I(E′)) and C∗(W, I(E′))
are unital essential trivial extensions of C(X) by I(E′). So, by Theorem 8.3.1, pp.
125 in [25] ([13]), there exists a unitary U ∈ M(I(E′)) such that ‖U∗γ̃1(w)U −
W‖ < 1 and U∗γ̃1(w)U − W ∈ I(E′). Let ϕ = (Ad U ◦ γ̃1)|E. Then ϕ is the
desired ∗-homomorphism.

Let A and B be separable nuclear C∗-algebras satisfying the UCT. The sub-
group of Ext1

Z(K∗(A), K1−∗(B)) consisting of all pure extensions will be denoted
by Pext1

Z(K∗(A), K1−∗(B)). Set KL(A, B) = KK(A, B)/ Pext1
Z(K∗(A), K1−∗(B))

and set ext1
Z(K∗(A), K1−∗(B)) = Ext1

Z(K∗(A), K1−∗(B))/ Pext1
Z(K∗(A), K1−∗(B)).

Then

0 // ext1
Z(K∗(A), K1−∗(B)) // KL(A, B) Γ // Hom(K∗(A), K∗(B)) // 0

is an exact sequence. See Rørdam, Section 5 in [24].

THEOREM 5.2 (Theorem 1.4 in [6]). Let A be a C∗-algebra in N and let B be a
σ-unital C∗-algebra. Then there is a short exact sequence

0 // Pext1
Z(K∗(A), K1−∗(B))

d // KK(A, B) Γ // HomΛ(K(A), K(B)) // 0

which is natural in each variable. Therefore, KL(A, B) ∼= HomΛ(K(A), K(B)), where
the isomorphism is natural.

We are now ready to prove the main result of this section.
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THEOREM 5.3. Let E =
n⊕

i=1
Ei and E′ =

k⊕
j=1

E′j be two finite direct sums of E0-

algebras. Suppose α : (V∗(E), K̃(E)) → (V∗(E′), K̃(E′)) is a homomorphism satisfying
αv([1E]) = [1E′ ] and α|V(I(Ei)) 6= 0 for all i = 1, 2, . . . , n. Suppose ψ : Q(E) → Q(E′)
is a ∗-homomorphism as in Theorem 5.1. Then there exists a unital ∗-homomorphism
ϕ : E → E′ such that ϕ induces α and π′ ◦ ϕ = ψ ◦ π.

Proof. It is clear that we may assume E′ has only one summand. Note that
if K∗(A) and K∗(B) are finitely generated, then KK(A, B) is naturality isomorphic
to KL(A, B).

Suppose E′ is a unital purely infinite simple C∗-algebra. Then the exis-
tence of ϕ follows from Theorem 5.2 and Theorem 6.7 in [19]. Suppose that
E′ is not a purely infinite simple C∗-algebra. Let {αi}6

i=1 be as in Theorem 5.1.
By Theorem 5.2, there exist β ∈ KK(E, E′), β I ∈ KK(I(E), I(E′)), and βQ ∈
KK(Q(E), Q(E′)) such that:

(1) Γ(β I) = (α1, α4), Γ(β) = (α2, α5), and Γ(βQ) = (α3, α6) = (ψ∗,1, ψ∗,0),
and

(2) β I = α|K(I(E)), β = α|K(E), βQ = α|K(Q(E)), using the identification in
Theorem 5.2.

Let [i] be the element in KK(I(E), E) induced by i : I(E) → E. We define
[i′], [π′], [π] in a similar fashion. Since α is a homomorphism from (V∗(E), K̃(E))
to (V∗(E′), K̃(E′)) and since the isomorphism in Theorem 5.2 is natural, we have
[i] × β = β I × [i′] and β × [π′] = [π] × βQ, where × represent the Kasparov
product.

Let p be a nonzero projection I(E′) such that [p] = 0 in K0(I(E′)). It is
easy to see that the embedding j : (1 − p)E′(1 − p) → E′ induces an isomor-
phism from V∗((1− p)E′(1− p)) onto V∗(E′). By Theorem 1.17 in [26], there exists
[j]−1 ∈ KK(E′, (1− p)E′(1− p)) such that [j]× [j]−1 = [id(1−p)E′(1−p)] and [j]−1 ×
[j] = [idE′ ]. By Theorem 5.1, there exists a unital ∗-homomorphism ϕ′ : E →
(1 − p)E′(1 − p) such that ϕ′ induces j−1

∗ ◦ α and π′ ◦ j ◦ ϕ′ = ψ ◦ π. Note that
β − [ϕ′] × [j] is an element of Ext1

Z(K0(E), K1(E′)) and β I − [I(ϕ′)] × [I(j)] is an
element of Ext1

Z(K0(I(E)), K1(I(E′))). Also, we have βQ = [ψ] = [Q(ϕ′)] in
KK(Q(E), Q(E′)).

Note that the following diagram is commutative where the rows are split
exact sequences:

0 // Ext1
Z(K0(E), K1(I(E′)))

i′∗ //

i∗

��

Ext1
Z(K0(E), K1(E′))

π′∗ //

i∗

��

Ext1
Z((K0(E), ran(π′)∗,1) //

i∗

��

0

0 // Ext1
Z(K0(I(E)), K1(I(E′)))

i′∗ // Ext1
Z(K0(I(E)), K1(E′))

π′∗ // Ext1
Z(K0(I(E)), ran(π′)∗,1) // 0

Let b = π′
∗(β − [ϕ′] × [j]). Since (β I − [I(ϕ′)] × [I(j)]) × [i′] = [i] × (β − [ϕ′] ×

[j]), by a diagram chase in the above diagram, i∗(b) = 0. Note that K0(E) ∼=
K0(I(E))/ ran δE

1 ⊕Z. By considering the long exact sequence between Hom and
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Ext induced by

0 → ran δE
1 → K0(I(E)) → K0(I(E))/ ran δE

1 → 0,

we see that i∗ : Ext1
Z(K0(E), ran(π′)∗,1) → Ext1

Z(K0(I(E)), ran(π′)∗,1) is injective.
So, b = 0. Therefore, there exists y ∈ Ext1

Z(K0(E), K1(I(E′))) such that βE − [ϕ′]×
[j] = y × [i′]. By Theorem 6.7 in [19], there exists a unital ∗-homomorphism ϕ′′ :
E → pI(E′)p such that [ϕ′′] = y. Then ϕ = ϕ′ + ϕ′′ is a unital ∗-homomorphism
such that ϕ induces α and π′ ◦ ϕ = ψ ◦ π.

6. A CLASSIFICATION RESULT

THEOREM 6.1 (Classification Theorem). Let E and E′ be unital AE0-algebras
with real rank zero. Suppose α : (V∗(E), K̃(E)) → (V∗(E′), K̃(E′)) is an isomorphism
such that αv([1E]) = [1E′ ]. Then there exists a unital isomorphism ϕ : E → E′ such that
ϕ induces α. By Proposition 1.7, the converse is also true.

Proof. Let E = lim
−→

(Ei, ϕi,i+1) and let E′ = lim
−→

(E′i , ϕ′i,i+1). Since E and E′ are

unital C∗-algebras, we may assume all maps are unital. Since HomΛ(K(A), K(B))
is naturally isomorphic to KL(A, B) and KL(A, lim

−→
Bn) = lim

−→
KL(A, Bn) when-

ever K∗(A) is finitely generated (see Proposition 7.13 in [26] and Theorem 5.1 in
[27]), by Proposition 3.20 and by passing to subsystems and reindexing, we get
the following commutative diagram:

(V∗(E1), K̃(E1)) //

α(1)

��

(V∗(E2), K̃(E2)) //

α(2)

��

· · · // (V∗(E), K̃(E))

α

��
(V∗(E′1), K̃(E′1))

//

β(1)
66mmmmmmmmmmmm

(V∗(E′2), K̃(E′2))

β(2)

99sssssssssss
// · · · // (V∗(E′), K̃(E′))

β

OO

where αi([1Ei ]) = [1E′i
] and βi([1E′i

]) = [1Ei+1 ]. Recall from Section 3 that K(Ei)
represent the six-term exact sequence in K-theory induced by the extension Ei.
Therefore, the above diagram induces the following commutative diagram:

K(E1) //

α(1)

��

K(E2) //

α(2)

��

· · · // K(E)

α

��
K(E′1) //

β(1)
;;vvvvvvvvv
K(E′2)

β(2)
<<zzzzzzzzz

// · · · // K(E′)

β

OO

Furthermore, the following diagram commutes:

K∗(Q(E1)) //

��

K∗(Q(E2)) //

��

· · · // K∗(Q(E))

��
K∗(Q(E′1)) //

88qqqqqqqqqqq
K∗(Q(E′2))

::uuuuuuuuuu
// · · · // K∗(Q(E′))

OO
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where each homomorphism lifts to a ∗-homomorphism at the level of C∗-algebras.
By Theorem 5.3, there are unital ∗-homomorphisms η′k : Ek → E′k and γ′k : E′k →
Ek+1 such that η′k induces α(k) and γ′k induces β(k).

Let {εn}∞
n=1 ⊂ R>0 be a decreasing sequence such that

∞
∑

n=1
εn < ∞. Let Fn

be a finite subset of the unit ball of En and let F ′
n be a finite subset of the unit ball

of E′n such that (1) ϕn,n+1(Fn) ⊂ Fn+1 and ϕ′n,n+1(F
′
n) ⊂ F ′

n+1; (2)
∞⋃

n=1
ϕn,n+1(Fn)

is dense in the unit ball of E; and (3)
∞⋃

n=1
ϕ′n,n+1(F

′
n) is dense in the unit ball of

E′. Let πk and π′
k denote the quotient maps from Ek onto Q(Ek) and from E′k onto

Q(E′k) respectively. We may assume that for all n ∈ Z>0, πn(Fn) and π′
n(F ′

n)
contain the standard generators for Q(En) and Q(E′n) respectively.

Let {E1,i}
l(1)
i=1 be the summands of E1. Let δ1,i > 0 be the positive number

given in Theorem 4.14 corresponding to ε1/2, E1,i, and the image of F1 in E1,i.
Let 0 < δ1 < min{δ1,i}, where the minimum is taken over all summand of E1.
By Lemma 1.4.14 in [12], Q(ϕ1,l1)(π1(F1)) is weakly approximately constant to
within δ1/140 for some l1 ∈ Z>0. By Lemma 1.4.14 in [12], there exists n1 >

l1 such that Q(ϕl1,n1
)(πl1(ϕ1,l1(F1) ∪ Fl1)) is weakly approximately constant to

within δ1/140.
Let {E′n1,i}

l(n1)
i=1 be the summands of En1 . Let λ1,i be the positive number

given in Theorem 4.14 corresponding to ε2/2, E′n1,i, and the image of F ′
n1
∪ (η′n1

◦
ϕ1,n1)(F1) in E′n1,i. Let 0 < λ1 < min{λ1,i}, where the minimum is taken over all
summand of E′n1

. Then Q(ϕ′n1,l′1
)(π′(F ′

n1
∪ η′n1

◦Q(ϕ1,n1)(F1))) is weakly approx-

imately constant to within λ1/140 for some l′1 ∈ Z>0 by Lemma 1.4.14 in [12].
Using Lemma 1.4.14 in [12] again, Q(ϕ′l′1,k1

)(π′
l1
(F ′

l′1
) ∪ Q(ϕ′n1,l′1

)(F ′
n1
∪ Q(η′n1

) ◦
Q(ϕ1,n1)(F1))) is weakly approximate constant to within λ1/140 for some k1 > l′1.

By Theorem 2.29 and Theorem 3.25 in [12], there exists m′
2 > k1 + 1 such

that Q(ϕl1,m) and Q(ϕk1+1,m ◦ γ′k1
◦ ϕ′n1,k1

◦ η′n1
◦ ϕl1,n1

) are approximately unitar-
ily equivalent to within δ1/2 on πl1(ϕ1,l1(F1) ∪ Fl1) for any m > m′

2. In particu-
lar, there exists v1 ∈ U(Q(Em′

2
)) such that if Q(γ′k1,m′

2
) = Ad(v1) ◦ Q(ϕk1+1,m′

2
) ◦

Q(γ′k1
), then we have the following diagrams:

Q(E1) // Q(El1 ) // Q(En1 ) //

��

Q(Ek1
) // Q(Ek1+1) // Q(Em′

2
)

Q(E′n1
) // Q(E′k1

)
Q(γ′k1,m′2

)

44jjjjjjjjjjjjjjjjjjjj
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Q(El1 ) // Q(En1 ) //

��

Q(Ek1
) // Q(Ek1+1) // Q(Em′

2
)

Q(E′n1
) // Q(E′k1

)
Q(γ′k1,m′2

)

44jjjjjjjjjjjjjjjjjjjj

where the first diagram is approximately commutative on π1(F1) to within δ1
and the second diagram is approximately commutative on πl1(ϕ1,l1(F1) ∪ Fl1) to
within δ1. By Theorem 5.3, there exists a unital ∗-homomorphism γ′′k1

from E′k1

to Em′
2

such that γ′′k1
and ϕk1+1,m′

2
◦ γ′k1

induce the same map on (V∗(E′k1
), K̃(E′k1

))
and Q(γ′′k1

) = Q(γ′k1,m′
2
).

Let m1 = 1. We will show that there exists m2 > m′
2 such that ϕm′

2,m2
◦ ϕ1,m′

2
and ϕm′

2,m2
◦ γ′′k1

◦ ϕ′n1,k1
◦ η′n1

◦ ϕ1,n1 are approximately unitarily equivalent on F1

within ε1. Let Ej
m′

2
be the jth summand of Em′

2
and let Pj : Em′

2
→ Ej

m′
2

be the
projection onto the jth summand. Suppose that P : E1 → H is the projection of
E1 onto one of its summands.

(a) Suppose Pj ◦ ϕ1,m′
2

is injective on H and Q(H) 6= 0. By the choice of δ1 > 0

and by Theorem 4.14(i), there exists a unitary Wj ∈ (Pj ◦ ϕ1,m′
2
)(1E1)Ej

m′
2
(Pj ◦

ϕ1,m′
2
)(1E1) such that Pj ◦ ϕ1,m′

2
and Ad(Wj) ◦ Pj ◦ γ′′k1

◦ ϕ′n1,k1
◦ η′n1

◦ ϕ1,n1 are ap-
proximately the same on P(F1) to within ε1. Set m(j) = m′

2.
(b) Suppose Q(H) = 0. In this case, P ◦ ϕ1,l1(F1) is a finite subset of a

corner of eI(En1)e for some nonzero projection e ∈ I(En1). Note that eI(En1)e
will be mapped to e′ I(Ej

m′
2
)e′ for some nonzero projection e′ ∈ I(Ej

m′
2
). So, from

the commutative diagrams involving (V∗(·), K̃(·)) and by Theorem 4.10 in [18],
there is a unitary Wj ∈ (Pj ◦ ϕ1,m′

2
)(1E1)Ej

m′
2
(Pj ◦ ϕ1,m′

2
)(1E1) such that Pj ◦ ϕ1,m′

2

and Ad(Wj) ◦ Pj ◦ γ′′k1
◦ ϕ′n1,k1

◦ η′n1
◦ ϕ1,n1 are approximately the same on P(F1) to

within ε1. Set m(j) = m′
2.

(c) Suppose Pj ◦ ϕ1,m′
2

is not injective on H but Q(Pj ◦ ϕ1,m′
2
) is injective on

Q(H). By Theorem 4.14 (ii), there exists a unitary Wj ∈ (Pj ◦ ϕ1,m′
2
)(1E1)Ej

m′
2
(Pj ◦

ϕ1,m′
2
)(1E1) such that Pj ◦ ϕ1,m′

2
and Ad(Wj) ◦ Pj ◦ γ′′k1

◦ ϕ′n1,k1
◦ η′n1

◦ ϕ1,n1 are ap-
proximately the same on P(F1) to within ε1. Set m(j) = m′

2.
(d) Suppose Pj ◦ ϕ1,m′

2
is not injective on H and Q(Pj ◦ ϕ1,m′

2
)|Q(H) = 0.

Then by Theorem 4.15(ii), there exists a unitary Wj ∈ (Pj ◦ ϕ1,m′
2
)(1E1)Ej

m′
2
(Pj ◦

ϕ1,m′
2
)(1E1) such that Pj ◦ ϕ1,m′

2
and Ad(Wj) ◦ Pj ◦ γ′′k1

◦ ϕ′n1,k1
◦ η′n1

◦ ϕ1,n1 are ap-
proximately the same on P(F1) to within ε1. Set m(j) = m′

2.
(e) Suppose Pj ◦ ϕ1,m′

2
is not injective on H and Q(Pj ◦ ϕ1,m′

2
)|Q(H) 6= 0 (but

Q(H) 6= 0). Therefore, H is not a purely infinite simple C∗-algebra. Let u be
the canonical unitary generator of Q(H). Since Pj ◦ ϕ1,m′

2
is not injective on H,

Pj ◦ ϕ1,m′
2

factors through Q(H). Let κ be the ∗-homomorphism from Q(H) to
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Ej
m′

2
induced by Pj ◦ ϕ1,m′

2
. The commutativity at the level of (V∗(·), K̃(·)) shows

that Pj ◦ γ′′k1
◦ ϕ′n1,k1

◦ η′n1
◦ ϕ1,n1 |H also factors through Q(H). Denote the induced

map by κ′. Let u1 = κ(u) and u2 = κ′(u). Note that [u1] = [u2] in K1((Pj ◦
ϕ1,m′

2
)(1E1)Ej

m′
2
(Pj ◦ ϕ1,m′

2
)(1E1)) and u1, u2 are map to the same element in Q((Pj ◦

ϕ1,m′
2
)(1E1)Ej

m′
2
(Pj ◦ ϕ1,m′

2
)(1E1)). If sp(u1) = sp(u2) = S1, by Lemma 2.9, there

exists a unitary Wj ∈ I((Pj ◦ ϕ1,m′
2
)(1E1)Ej

m′
2
(Pj ◦ ϕ1,m′

2
)(1E1)) such that ‖Wju2W∗

j −
u1‖ < ε1. Set m(j) = m′

2.
Suppose sp(u1) 6= S1 or sp(u2) 6= S1. Then u1 and u2 are connected to

the identity in the unitary group of (Pj ◦ ϕ1,m′
2
)(1E1)Ej

m′
2
(Pj ◦ ϕ1,m′

2
)(1E1). Since

RR(E) = 0, by Theorem 5 in [14], there exists m(j) > m′
2 such that for i =

1, 2 we have that ‖ϕm′
2,m(j)(ui) − vi‖ < ε1/2, where v1, v2 are unitaries in (Pj ◦

ϕ1,m(j))(1E1)Ej
m′

2
(Pj ◦ ϕ1,m(j))(1E1) with finite spectrum. By replacing ui by vi for

i = 1, 2, we obtain two ∗-homomorphisms h1, h2 : H → (Pj ◦ ϕ1,m(j))(1E1)Ej
m′

2
(Pj ◦

ϕ1,m(j))(1E1) such that h1 and ϕl1,m(j)|H are approximately the same to within
ε1/2 on P(F1) and h2 and Pj ◦ γ′′k1

◦ ϕ′n1,k1
◦ η′n1

◦ ϕl1,n1
|H are approximately the

same to within ε1/2 on P(F1). It follows from Theorem 4.15 (i) that there exists
a unitary Wj ∈ (Pj ◦ ϕ1,m(j))(1E1)Ej

m′
2
(Pj ◦ ϕ1,m(j))(1E1) such that Pj ◦ ϕ1,m(j) and

Ad(Wj) ◦ Pj ◦ ◦ϕm′
2,m(j) ◦ γ′′k1

◦ ϕ′n1,k1
◦ η′n1

◦ ϕ1,n1 are approximately the same on
P(F1) to within ε1. Set m(j) = m′

2.
If m′′

2,H = max
j
{m(j)}, then by the above observations, there exists a unitary

W ∈ (ϕ1,m′′
2
◦ P)(1E1)Em′′

2
(ϕ1,m′′

2
◦ P)(1E1) such that

‖ϕ1,m′′
2
( f )−Ad(W) ◦ ϕm′

2,m′′
2
◦ γ′′k1

◦ ϕ′n1,k1
◦ η′n1

◦ ϕ1,n1( f )‖ < ε1

for all f ∈ P(F1). Then let m2 = max{m′′
2,H}, where the maximum is taken

over all direct summands of E1. So ϕ1,m2 and ϕm′
2,m2

◦ γ′′k1
◦ ϕ′n1,k1

◦ η′n1
◦ ϕ1,n1

are approximately unitarily equivalent on F1 to within ε1. Hence, there exists
U ∈ U(Em2) such that if η1 = η′n1

◦ ϕ1,n1 and γ1 = Ad(U) ◦ ϕm′
2,m2

◦ γ′′k1
◦ ϕ′n1,k1

,
then ϕ1,m2 and γ1 ◦ η1 are approximately the same on F1 to within ε1.

Let G ′1 = F ′
n1
∪ η1(F1) and let G2 = Fm2 ∪ ϕ1,m2(F1) ∪ γ1(G ′1). Denote the

summands of Em2 by {Em2,i}
l(m2)
i=1 . Let δ2,i > 0 be the positive number that is given

in Theorem 4.14 which corresponds to ε3/2, Ei
m2

, and the image of G2 in Ei
m2

. Let
0 < δ2 < min{δ2,i}, where the minimum is taken over all direct summands of
Em2 . By Lemma 1.4.14 in [12], there exists l2 > m2 such that Q(ϕm2,l2)(G2) is
weakly approximately constant to within δ2/140. By Lemma 1.4.14 in [12], we
get n′2 > l2 such that Q(ϕl2,n′2

)(πl2(Fl2 ∪ ϕm2,l2(G2))) is weakly approximately
constant to within δ2/140.
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Note Q(ϕ′l′1,k1
)(π′(ϕn1,l′1

(G ′1))) is weakly approximately constant to within

λ1/140. Hence, by Theorem 2.29 and Theorem 3.25 in [12], there exists n′′2 > n′2
such that Q(ϕl′1,m) and Q(ϕn′2,m ◦ η′n2

◦ Ad(U) ◦ ϕm2,n′2
◦ γ′′k1

◦ ϕl′1,k1
) are approxi-

mately unitarily equivalent to within λ1/2 on π′
l′1
(ϕn1,l′1

(G ′1)) for any m > n′′2 . Set

κ1 = Ad(U) ◦ ϕm2,n′2
◦ γ′′k1

◦ ϕl′1,k1
.

By the choice of l′1 and k1 and using the same argument as above we get
a positive integer n2 > n′′2 and a unitary V ∈ E′n2

such that ϕ′n1,n2
and Ad(V) ◦

ϕn′2,n2
◦ η′n′2

◦ ϕm2,n′2
◦ γ1 are approximately the same on f ∈ G ′1 to within ε2.

Set η2 = Ad(V) ◦ ϕn′2,n2
◦ η′n′2

◦ ϕm2,n′2
and κ2 = Ad(V) ◦ ϕ′n′2,n2

◦ η′n′2
. Then

γ1 ◦ η1 and ϕ1,m2 are approximately the same on F1 to within ε1 and η2 ◦ γ1 and
ϕ′n1,n2

are approximately the same on F ′
n1
∪ η1(F1) to within ε2. Furthermore,

η2 can be rewritten as ϕ′n′2,n2
◦ ηn′2

◦ ϕm2,n′2
or κ2 ◦ ϕm2,n′2

. The choice of l2 and n′2
ensures that the above construction can continue. Therefore, we get the following
approximately intertwining diagram:

E1 //

η1

��

Em2
//

η2

��

· · · // E

E′n1

γ1

==||||||||
// E′n2

γ2

>>||||||||
// · · · // E′

Hence, there exists a unital isomorphism ϕ : E → E′ such that ϕ induces α.

COROLLARY 6.2. Suppose K1(I(En)) = 0 = K1(I(E′n)) for all n ∈ Z>0 in
Theorem 6.1. If α : V∗(E) → V∗(E′) is an isomorphism such that αv([1E]) = [1E′ ], then
there exists a unital isomorphism ϕ : E → E′ such that ϕ induces α.

Proof. Note that there exists an isomorphism (β1, β2) from (V∗(E), K̃(E)) to
(V∗(E), K̃(E)) such that β1 = α since K1(I(En)) = 0 = K1(I(E′n)).

REMARK 6.3. Every unital AT-algebra with real rank zero is anAE0-algebra.

The result follows from Theorem 6.1 and Theorem 4.3 in [17].

REMARK 6.4. A unital separable nuclear purely infinite simple C∗-algebra
satisfying the UCT with torsion free K1 is an AE0-algebra. See [13] and [23].
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